
SDL Server Guides
Document current as of 12/15/2023 02:09 PM.

This document provides the information for creating and integrating the SmartDeviceLink

(SDL) server component with the mobile libraries and vehicle's Head Unit (HU).

The Policy Server's main purpose is to curate policy tables composed of rules and

permissions defined by a vehicle’s OEM. Each vehicle will download its Policy Table and

use it to govern SDL behaviors.

Abbreviations used in this document are collected in the table below

Overview

Abbreviations and Definitions

https://smartdevicelink.com/en/guides/sdl-server/api-reference-documentation/policy-table/overview/
https://sdl-devportal-media-production.s3.amazonaws.com/

A B B R E V I A T I O N M E A N I N G

BT Bluetooth

GUI Graphical User Interface

HMI Human Machine Interface

IVI In Vehicle Infotainment

JSON JavaScript Object Notation

OEM Original Equipment Manufacturer

RPC Remote Procedure Call

SDE Software Development Environment

SDL SmartDeviceLink

SEE Software Engineering Environment

TTS Text To Speech

VDOP Vertical Dilution of Precision

VR Voice Recognition

Introduction

Below are the API routes that the Policy Server exposes.

There may be CORS issues in the case where a separate web app needs to make API calls

to the policy server, such as an HMI using the applications/store route. For cases like

these, CORS is enabled. Preflight is also enabled for sufficiently complex POST requests.

See below for the routes which have CORS or preflight enabled by default. The full list of

routes and their middleware can also be seen in the project's app/v1/app.js file.

R O U T E C O R S P R E F L I G H T

If basic authentication is enabled, the Policy Server UI opens a login page on startup which

will call this route. The Policy Server will then validate that the entered password matches

the one set up by the server maintainer.

Retrieves information regarding applications, functional groups, or consumer friendly

messages. An id (or additionally uuid for applications) can be specified so as to retrieve

information for a specific item. Functional groups and consumer messages can be set to

return templates containing all necessary information on that item being stored in the

POST

/api/v1/staging/policy
true true

POST

/api/v1/production/policy
true true

GET

/api/v1/applications/store
true false

GET

/api/v1/applications/store/s

taging

true false

POST /api/v1/login

GET /api/v1/applications & GET /api/v1/groups & GET /api/v1/messages

database. Applications can be filtered by approval status. If no parameters are specified /

applications will return the latest version of each app, /groups and /messages will

return the latest version of all functional groups or consumer messages in either

production or staging mode.

Updates an application's approval status. In the future this route will also notify the app's

developer via email of the change in approval status.

If an application has been set to automatically approve all future updates then this route

will validate the app uuid and update the approval status. In the future this route will also

notify the app's developer via email of the change in approval status.

This route updates whether an app will have access to administrator functional groups.

This route updates whether an app will be able to send unknown RPCs through App

Service RPC Passsthrough.

This route updates the hybrid preference of an app.

This route updates whether an app should have RPC Encryption enabled.

POST /api/v1/applications/action

POST /api/v1/applications/auto

POST /api/v1/applications/administrator

POST /api/v1/applications/passthrough

POST /api/v1/applications/hybrid

PUT /api/v1/applications/rpcEncryption

PUT /api/v1/applications/service/permission

This route modifies the App Services permissions of an application.

This route queries the Policy Server database for an app's certificate and returns it, unless

it's expired. If it is expired a 400 response is returned. Either appId or AppId is required in

the query or the json body of the request.

Example requests:

GET /api/v1/applications/certificate/get?appId=31cc4209-79e7-4704-9ec4-
3b485d3eeb93

OR

POST /api/v1/applications/certificate/get
{
 appId: 31cc4209-79e7-4704-9ec4-3b485d3eeb93
}

Response:

{
 "meta": {
 "request_id": "427a7fb4-f2f1-44d6-8c2b-e7d927790960",
 "code": 200,
 "message": null
 },
 "data": {
 "certificate": "MIIKMQIBAzCCCf..."
 }
}

POST & GET /api/v1/applications/certificate/get

The certificate is a Base64 encoded string containing the pkcs12 certificate. This contains

the certificate and private key and can be read using an openssl library with the password

provided as CERTIFICATE_PASSPHRASE in your server's .env settings.

Example using openssl (note that the cert is a Base64 string and the `CERTIFICATE_PASS

PHRASE is used to read the pkcs12 certificate):

echo "MIIKMQIBAzCCCf..." | base64 -D > app-cert.p12 && openssl pkcs12 -nokeys -in
app-cert.p12 -passin pass:CERTIFICATE_PASSPHRASE

This route updates the pkcs12 certificate of an application in the database.

Returns the functional groups for which a given application has access.

Updates the functional groups for which a given application has access.

Retrieves approved, embedded application information, filterable by uuid or by transpor

t_type . The possible values for transport_type are webengine and websocket . The

return object includes app bundle information such as the location of the bundle and its

file size, compressed and uncompressed. The logic of where to store these app packages

is customizable by the policy server. See the customizable/webengine-bundle/index.js

file for details.

POST /api/v1/applications/certificate

GET /api/v1/applications/groups

PUT /api/v1/applications/groups

GET /api/v1/applications/store

GET /api/v1/applications/store/staging

Does the same thing as /api/v1/applications/store, but returns apps whose approval

statuses are in staging.

This is the route that should be specified on a company's page on the SDL Developer

Portal (in the box titled Webhook URL under Company Info) to be hit by the SHAID server

when an app has been updated.

These are the routes sdl_core's default Policy Table should use when requesting a Policy

Table update with either /staging or /production specified.

Given a "shortened" Policy Table, the Policy Server will use that information to

automatically construct a full Policy Table response and return it to the requester.

This is the route hit by the Policy Server UI requesting a preview of the Policy Table. A

variable environment indicates whether it is to be staging or production.

The Policy Server UI makes a request to this route which returns an example Policy Table

segment for a particular app.

The route updates the available permissions and permission relationships from SHAID.

This route returns a list of permissions that are currently not attributed to any functional

groups.

POST /api/v1/webhook

POST /api/v1/staging/policy & POST /api/v1/production/policy

GET /api/v1/policy/preview

POST /api/v1/policy/apps

POST /api/v1/permissions/update

GET /api/v1/permissions/unmapped

These routes are hit by the Policy Server UI to update a functional group's/consumer

message's information or to change its deleted status.

These routes return the names of all functional groups or consumer friendly messages

recognized by the Policy Server.

These routes are hit by the Policy Server UI to promote a functional group or consumer

message from staging to production. If the functional group has a user consent prompt

associated with it then the consent prompt must be promoted to production before

promoting the functional group.

This route updates the Policy Server's list of languages.

This route will return either the staging or production module config object.

This route will update the staging module config object on record.

This route will promote the current staging module config to production.

POST /api/v1/groups & POST /api/v1/messages

GET /api/v1/groups/names & GET /api/v1/messages/names

POST /api/v1/groups/promote & POST /api/v1/messages/promote

POST /api/v1/messages/update

GET /api/v1/module

POST /api/v1/module

POST /api/v1/module/promote

This route will return a PEM certificate. It is used by the UI when generating app

certificates and must be provided a private key in order to function.

This route will return a RSA private key. It is used by the UI when generating an

application's private keys.

This route will add or update a custom vehicle data item.

This route will return a list of custom vehicle data items filtered by status and optionally

by id.

This route will promote the custom vehicle data on staging to production.

This route will return a list of all the data types and custom vehicle data parameter types

on record.

These are API routes that are accessed by the Policy Server user interface.

POST /api/v1/security/certificate

POST /api/v1/security/private

POST /api/v1/vehicle-data

GET /api/v1/vehicle-data

POST /api/v1/vehicle-data/promote

GET /api/v1/vehicle-data/type

User Interface Pages

The Applications page.

The App Details page with information regarding an app specified by the id. The

Applications page documentation contains more information pertaining to this page.

The View Policy Table page.

The Functional Groups page.

The Functional Group Details page with information regarding a functional group that is

specified by an id. The Functional Groups page documentation contains more information

pertaining to this page.

The Consumer Friendly Messages page.

The Consumer Message Details page with information regarding a consumer message

that is specified by an id. The Consumer Messages page documentation contains more

information pertaining to this page.

/applications

/applications/:id

/policytable

/functionalgroups

/functionalgroups/manage

/consumermessages

/consumermessages/manage

https://sdl-devportal-media-production.s3.amazonaws.com/guides/sdl-server/user-interface/applications
https://sdl-devportal-media-production.s3.amazonaws.com/guides/sdl-server/user-interface/view-policy-table
https://sdl-devportal-media-production.s3.amazonaws.com/guides/sdl-server/user-interface/messages-and-functional-groups
https://sdl-devportal-media-production.s3.amazonaws.com/guides/sdl-server/user-interface/messages-and-functional-groups

The Custom Vehicle Data page.

The Module Config page.

The About page.

Docker Engine is required to be installed. The docker folder in the policy server contains

all the files needed to set up the policy server through docker images. The docker-compo

se.yml file will spin up the server, the Postgres database, and the Redis database and

automatically connect them all. The policy server is made available on http://localhost:3

000 .

An .env file is expected in the docker directory, and the Dockerfile will pull in all

environment variables from that file, just like how the policy server uses the .env file in

the root directory. The Dockerfile uses the remote sdl_server repository instead of the

local installation. The branch can be changed by changing the docker-compose.yml file's

arg VERSION value: its default is the master branch.

The following are notable .env variables to the docker environment. They are not a

comprehensive list. The usual variables such as SHAID_PUBLIC_KEY and SHAID_SECR

/vehicledata

/moduleconfig

/about

Docker Install (For versions 3.0+)

Docker Compose Installation

Environment Variables

https://sdl-devportal-media-production.s3.amazonaws.com/guides/sdl-server/user-interface/custom-vehicle-data
https://sdl-devportal-media-production.s3.amazonaws.com/guides/sdl-server/user-interface/module-config
https://sdl-devportal-media-production.s3.amazonaws.com/guides/sdl-server/user-interface/about
https://docs.docker.com/engine/install/

ET_KEY are still required for usage. Connection to postgres and redis is automatic and

no further configuration is required for them, such as setting environment variables.

N A M E T Y P E U S A G E D E S C R I P T I O N

DB_HOST String Postgres

Please do not use

this value. It is

predefined to work

with Docker

Compose

DB_PASSWORD String Postgres

Not required to be

set. Defaults to

"postgres"

DB_USER String Postgres

Not required to be

set. Defaults to

"postgres"

DB_DATABASE String Postgres

Not required to be

set. Defaults to

"postgres"

CACHE_HOST String Redis

Please do not set

this value. It is

predefined to work

with Docker

Compose

BUCKET_NAME String
WebEngine app

support

The name of the S3

bucket to store app

bundles. You must

create this bucket

and configure it to

allow remote

writing!

AWS_REGION String
WebEngine app

support

The region of the

S3 bucket

N A M E T Y P E U S A G E D E S C R I P T I O N

Note the nearly empty keys subfolder. Insert your own key and pem files meant for the

certificate generation feature and SSL connections in there, and the contents will be

copied into the docker container policy server's customizable/ca folder and customizab

le/ssl folder. You will still need the necessary environment variables to activate

certificate generation and SSL connections respectively.

You need to run the following commands in the docker directory of the project.

To start a new or existing cluster, remembering to rebuild the policy server image in case

of .env changes (Make sure you are in the docker folder of the policy server):

docker compose up --build

Use Ctrl+C once to stop all the docker containers.

To tear down a cluster without removing the volume (this will delete the database

contents!):

docker compose down

To tear down a cluster and remove the volume (this will delete the database contents!):

docker compose down -v

Read the rest of this page if you wish to launch the server without the use of Docker.

AWS_ACCESS_KEY

_ID
String

WebEngine app

support

AWS credentials to

allow S3 usage.

These are exclusive

to the docker install

of the policy server!

AWS_SECRET_ACC

ESS_KEY
String

WebEngine app

support

AWS credentials to

allow S3 usage.

These are exclusive

to the docker install

of the policy server!

Commands

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/loading-node-credentials-environment.html
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/loading-node-credentials-environment.html

The following must be installed before installation of the Policy Server can begin:

P R O J E C T V E R S I O N

Note: For policy server major version 2, be aware it will not function if the Node.js version

is 13 or higher.

You must also acquire a set of SHAID API keys. These are made available to level 4 OEM

members through the developer portal.

NOTE: Be careful not to use sets of SHAID API keys from multiple vendors. Some Policy

Server actions (like changing the auto-approval status of an app) will attempt to send

information back to SHAID and if the wrong SHAID API keys are used then the action may

fail.

Download the project to your current directory.

Normal Installation

Prerequisites

Postgres 9.6+

Node.js 8.12.0+

NPM 3.0.0+

Setup Guide

https://smartdevicelink.com/

git clone https://github.com/smartdevicelink/sdl_server.git
cd sdl_server

The recommended branch to use is master, which should be used by default. Install

dependencies.

npm install

NOTE: Starting with the Policy Server v3.1.1, you'll need the following command to install

dependencies:

npm install --legacy-peer-deps

The Policy Server requires a SQL database, and currently the only supported

implementation is PostgreSQL. In the next section, we will cover how to get one running

locally.

To install PostgreSQL on a Mac with Homebrew, run the following command in a Terminal

window:

brew install postgresql

Then run the following command to start PostgreSQL, and ensure that you won't need to

start it again in case your system resets:

PostgreSQL Installation (Mac)

pg_ctl -D /usr/local/var/postgres start && brew services start postgresql

You can run the following command to know if you have PostgreSQL and also check that

you are running the most recent version:

psql -V

To install PostgreSQL in Ubuntu, run the following commands from the PostgreSQL

documentation:

Create the file repository configuration:
sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt $(lsb_release -cs)-pgdg
main" > /etc/apt/sources.list.d/pgdg.list'

Import the repository signing key:
wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo apt-
key add -

Update the package lists:
sudo apt-get update

Install the latest version of PostgreSQL.
If you want a specific version, use 'postgresql-12' or similar instead of 'postgresql':
sudo apt-get -y install postgresql

You can run the following command to know if you have PostgreSQL and also check that

you are running the most recent version:

psql -V

PostgreSQL Installation (Ubuntu)

In order to start creating users and databases, you will have to log in to PostgreSQL. It

comes with a postgres user that should have no password by default. Run the following

command to log in as the postgres user:

psql -U postgres

If you're prompted for a password but have not yet set one, you'll have to locate and

modify your pg_hba.conf file. Find the line that contains

local all postgres peer

Update it to contain

local all postgres trust

Then restart postgres and attempt to log in to postgres again

sudo service postgresql restart
psql -U postgres

Logging in to PostgreSQL

You should now be in the postgres command-line interface. You can type help to get

more info. If you want to continue using the postgres user, you can add a password with

the following command:

ALTER USER postgres WITH PASSWORD '<password>';

If you want to create a new user, run the following commands to create one with a

password and give them super user access:

CREATE USER <username> WITH PASSWORD '<password>';
ALTER USER <username> WITH SUPERUSER;

Alternatively you can use the GRANT command to limit the user's permissions. In the

future, you can log in to PostgreSQL using this new user. Next, you'll need to run the

following command to add a new database for the Policy Server to manage:

CREATE DATABASE <database_name>;

This database will be where the Policy Server stores all of its data pertaining to policy

table generation. Remember to save your PostgreSQL username, password, and database

name so you can use them in the next section. To exit the PostgreSQL CLI, simply type q

uit and hit Enter.

Creating the PostgreSQL Database

Environment Variables

https://tableplus.com/blog/2018/04/postgresql-how-to-grant-access-to-users.html

Once you set up a database (locally or remotely) you'll need to supply the Policy Server

with some environment variables. This Policy Server uses the dotenv module, meaning

you can write all your environment variables in a .env file located in the root directory of

the Policy Server. The Policy Server will load the variables at .env . .env files will not be

tracked by Git.

There are several settings that can be configured for Policy Server usage. See below for

explanations on the purpose of each of them.

Basic Environment Variables

https://www.npmjs.com/package/dotenv

N A M E T Y P E E X A M P L E D E S C R I P T I O N

POLICY_SERVER_H

OST
String testing.com

The hostname or

public IP address

which the server

runs on

POLICY_SERVER_P

ORT
Number 3000

The port which the

server runs on. It is

optional and the

default is 3000

DB_USER String postgres

The name of the

user to allow the

server to access the

database

DB_DATABASE String postgres

The name of the

database where

policy and app

data is stored

DB_PASSWORD String password

The password used

to log into the

database

DB_HOST String rds-database.com

The host name or

IP address of the

database

DB_PORT Number 5432
The port number of

the database

TEST_PG_USER String postgres

Same as DB_USER

but for specifically

running tests via n
pm run test

N A M E T Y P E E X A M P L E D E S C R I P T I O N

TEST_PG_DATABA

SE
String postgres

Same as

DB_DATABASE but

for specifically

running tests via n
pm run test

TEST_PG_PASSWO

RD
String password

Same as

DB_PASSWORD but

for specifically

running tests via n
pm run test

TEST_PG_HOST String rds-database.com

Same as DB_HOST

but for specifically

running tests via n
pm run test

TEST_PG_PORT Number 5432

Same as DB_PORT

but for specifically

running tests via n
pm run test

SHAID Environment Variables

N A M E T Y P E D E S C R I P T I O N

SHAID_PUBLIC_KEY String

A public key given to you

through the developer portal

that allows access to SHAID

endpoints.

SHAID_SECRET_KEY String

A secret key given to you

through the developer portal

that allows access to SHAID

endpoints.

SHAID_URL String

The location of the SHAID

server. The default value will

query the production SHAID

server. It is not

recommended to change

this value.

Caching Environment Variables

https://smartdevicelink.com/
https://smartdevicelink.com/

N A M E T Y P E E X A M P L E D E S C R I P T I O N

CACHE_MODULE String Redis

The name of the

caching module to

use. Currently

supports null (no

caching, default) or

"redis"

CACHE_HOST String redis-host.com

The host name or

IP address of the

cache server

CACHE_PORT Number 6379
The port number of

the cache server

CACHE_PASSWOR

D
String password

The password used

to log into the

cache server

Emailing Environment Variables

N A M E T Y P E E X A M P L E D E S C R I P T I O N

SMTP_HOST String smpt-host.com

The host name or

IP address of an

SMTP server to use

for email

notifications. A null

value implies that

outgoing emails

are disabled

SMTP_PORT Number 25

The port number of

the SMTP server.

The default is 25

SMTP_USERNAME String smtp

The username of

the optional SMTP

user

SMTP_PASSWORD String password

The password of

the optional SMTP

user

SMTP_FROM String example@email.com

The email address

which emails are

sent from. A null

value implies that

outgoing emails

are disabled

NOTIFY_APP_REVI

EW_FREQUENCY

String Enum

(DISABLED, REALTIME)
REALTIME

The frequency of

which outgoing

emails should be

sent to notify the

OEM of new apps

ready for review.

The default is

DISABLED

N A M E T Y P E E X A M P L E D E S C R I P T I O N

N A M E T Y P E E X A M P L E D E S C R I P T I O N

NOTIFY_APP_REVI

EW_EMAILS

String with comma-

separated values

example1@email.com

,example2@email.co

m

A comma-

separated list of

email addresses to

send an email to

when new apps are

ready for review

Mandatory Certificate and Encryption Environment
Variables

CA_PRIVATE_KEY_

FILENAME
String CA.key

The filename of

your .key file

generated, to be

placed in custom
izable/ca/

CA_CERTIFICATE_F

ILENAME
String CA.pem

The filename of

your .pem file

generated, to be

placed in custom
izable/ca/

CERTIFICATE_PAS

SPHRASE
String password

A secret password

used for every

certificate

generated

CERTIFICATE_COM

MON_NAME
String *.company.com

Default information

of the issuer's fully

qualified domain

name to secure

Optional Certificate and Encryption Environment
Variables

N A M E T Y P E E X A M P L E D E S C R I P T I O N

POLICY_SERVER_P

ORT_SSL
Number 443

The port which the

server should listen

for SSL

connections on

(typically 443). It is

optional and the

default is null (do

not listen for SSL

connections)

SSL_CERTIFICATE_

FILENAME
String file.pem

The filename of the

SSL certificate

located in ./custo
mizable/ssl .

Required if a value

is set for POLICY
_SERVER_PORT
_SSL

SSL_PRIVATE_KEY_

FILENAME
String file.key

The filename of the

SSL certificate's

private key located

in ./customizabl
e/ssl . Required if

a value is set for P
OLICY_SERVER
_PORT_SSL

PRIVATE_KEY_BITS

IZE
Number 2048

The size of the

private keys

generated. Default

2048

N A M E T Y P E E X A M P L E D E S C R I P T I O N

PRIVATE_KEY_CIP

HER
String des3

The type of cipher

to use for

encryption/decrypti

on. Defaults to

"des3"

CERTIFICATE_COU

NTRY
String US

Default information

of the issuer's

country (two-letter

ISO code)

CERTIFICATE_STAT

E
String Michigan

Default information

of the issuer's state

CERTIFICATE_LOC

ALITY
String Royal Oak

Default information

of the issuer's city

CERTIFICATE_ORG

ANIZATION
String Livio

Default information

of the issuer's legal

company name

CERTIFICATE_ORG

ANIZATION_UNIT
String Human Resources

Default information

of the issuer's

company's branch

CERTIFICATE_EMAI

L_ADDRESS
String example@email.com

Default information

of the issuer's

email address

CERTIFICATE_HAS

H
String sha256

The cryptographic

hash function to

use. Defaults to

'sha256'

N A M E T Y P E E X A M P L E D E S C R I P T I O N

CERTIFICATE_DAY

S
Number 7

The number of

days until the

certificate expires.

Defaults to 7

ENCRYPTION_REQ

UIRED
Boolean true

Whether or not to

require RPC

encryption for auto-

approved app

versions. Defaults

to "false"

MODULE_CONFIG_

ENCRYPT_CERT_B

UNDLE

Boolean true

Whether to

package the

module config's

certificate and

private key into a

pkcs12 bundle

string using the

CERTIFICATE_PASS

PHRASE. If false

(default), it will just

be a concatenation

of the certificate

and the private key

Miscellaneous Environment Variables

N A M E T Y P E E X A M P L E D E S C R I P T I O N

The Policy Server comes with migration scripts that can be run using npm scripts. You can

see a list of all the possible scripts by looking in package.json , but these are the most

important ones:

start-server: Runs the migration up script which initializes data in the database and

starts the Policy Server

dev or start: Starts the dev server with hot reloading so any changes made to the UI

are instantly updated in the browser

NOTE: Using the dev server can cause CORS issues when connecting to the API so it

should only be used when testing UI changes.

build: Generates a new staging/production build using webpack. Not required to be

used if you're using the start-server script.

lint: Parses the Policy Server code and checks for syntactical or stylistic errors.

test: Runs the unit tests packaged with the project. Uses the TEST_ database

environment variables to modify the database. This will clear all policy server data

when running! Make sure you use a database you do not mind being cleared!

db-migrate-up: Runs all migrations on the database.

db-migrate-reset: Runs migration downs and clears the database.

Run the following command to finalize set up and start the server.

npm run start-server

Verify that it started properly by navigating to your configured host and port, or to the

default address: http://localhost:3000/

Now you have a Policy Server running!

AUTO_APPROVE_A

LL_APPS
Boolean true

Whether or not to

auto-approve all

app versions

received by SHAID

(except for

blacklisted apps).

Defaults to "false"

http://localhost:3000/

If you wish to enable caching with an unofficially supported datastore, you may

create a custom cache module. Do so by creating a folder inside custom/cache

with the name of your module. Put your implementation in a file named index.js

inside of your module's folder. Your module should export the following functions:

get(key, callback): Receives a value from the cache stored at key.

set(key, value, callback): Sets a value in the cache stored at key.

del(key, callback): Deletes a value from the cache stored at key.

flushall(callback): Deletes all data previously set in the cache.

Set your CACHE_ environment variables to correspond with your new datastore

solution and access information.

For your convenience, we have implemented the following security features into the Policy

Server.

HTTPS connections (disabled by default) can be enabled by doing the following:

Store your SSL Certificate and Private Key files in the ./customizable/ssl directory

Set your POLICY_SERVER_PORT_SSL environment variable to your desired secure port

(typically 443)

Set your SSL_CERTIFICATE_FILENAME environment variable to the filename of your SSL

Certificate file

Set your SSL_PRIVATE_KEY_FILENAME environment variable to the filename of your

Private Key file

If you are unable to modify your environment variables, you may define these settings in the

./settings.js configuration file

Restart your Policy Server and navigate to your server's hostname on the secure port!

Security

HTTPS Connections (SSL/TLS)

Basic Authentication

You may optionally require your Policy Server administrators to enter a password before

being able to access the user interface. We recommend using a more secure method of

authentication in accordance to your company's IT security standards, but provide this

basic authentication feature for convenience.

By default, basic authentication is disabled. To enable it, simply set your AUTH_TYPE

environment variable to basic and your BASIC_AUTH_PASSWORD environment variable

to a password of your choice, then restart your Policy Server. If you are unable to modify

your environment variables, you may define these settings in the ./settings.js

configuration file.

You may wish to encrypt your Policy Table when in transit to/from SDL Core. To achieve

this, we've implemented skeleton methods to house your custom encryption logic. The

Policy Table JSON object (array) is passed to these methods so you can run encryption

and decryption transformations against it. By default, these methods perform no

transformations.

The customizable Policy Table skeleton encryptPolicyTable and decryptPolicyTable

methods are located in the Policy Server project at the following file path: ./customizabl

Policy Table Encryption

e/encryption/index.js

If you modify this skeleton method to implement Policy Table encryption on your Policy

Server, you will also need to implement corresponding cryptography logic via the crypt

and decrypt methods in your build of SDL Core. These methods are available in the sam

ple_policy_manager.py file of SDL Core.

If you are attempting to use encrypted RPCs with SDL Core, you will need to have

certificates for both Core and the Mobile Proxy. Generating the CA key and certificate files

will have to be done manually (see below). After they are created and certificate

generation is enabled, additional ones can be created via the Policy Server UI. The Policy

Server uses a wrapper for OpenSSL to provide the same options that would normally be

provided when directly dealing with OpenSSL.

OpenSSL version 1.1.0+ must be installed. The source files can be found here along with

instructions for installation.

Once OpenSSL is properly installed, you'll need to take the necessary steps to establish a

certificate authority. The CA will be responsible for signing all certificates created by the

policy server. This can be done by simply entering the following two commands into any

terminal:

Configurable CA Key and Certificate Creation

P REREQU ISITES

https://github.com/smartdevicelink/sdl_core/blob/master/src/appMain/sample_policy_manager.py#L45
https://www.openssl.org/source/

C O M M A N D E X P L A N A T I O N

The CA files will then need to be relocated to the ./customizable/ca folder and their file

names will need to be specified in the .env file.

The following environment variables are the most relevant for getting the policy server set

up to start creating certificates on its own:

openssl genrsa -out CA.key 2048

This creates a 2048 bit RSA private key and

saves it in the file "CA.key". It will later be used

for signing certificates.

openssl req -x509 -new -nodes -key CA.key -

sha256 -days 3650 -out CA.pem

This creates a certificate in the file name

"CA.pem" that will be used in the creation of

additional certificates. It is set to expire after 10

years. OpenSSL will then prompt you for further

information.

V A R I A B L E I S M A N D A T O R Y D E S C R I P T I O N

CA_PRIVATE_KEY_FILENAM

E
true

The filename of your .key file

generated, to be placed in

customizable/ca/

CA_CERTIFICATE_FILENAME true

The filename of your .pem

file generated, to be placed

in customizable/ca/

CERTIFICATE_PASSPHRASE true
A secret password used for

every certificate generated.

CERTIFICATE_COMMON_NA

ME
true

Default information of the

issuer's fully qualified

domain name to secure

PRIVATE_KEY_BITSIZE false
The size of the private keys

generated. Defaults to 2048.

PRIVATE_KEY_CIPHER false

The type of cipher to use for

encryption/decryption.

Defaults to "des3".

CERTIFICATE_COUNTRY false

Default information of the

issuer's country (two-letter

ISO code).

CERTIFICATE_STATE false
Default information of the

issuer's state.

CERTIFICATE_LOCALITY false
Default information of the

issuer's city.

CERTIFICATE_ORGANIZATIO

N
false

Default information of the

issuer's legal company

name.

V A R I A B L E I S M A N D A T O R Y D E S C R I P T I O N

To know if this process was successful and if your policy server is now capable of

generating keys and certificates, check the About page to see if certificate generation is

enabled.

CERTIFICATE_ORGANIZATIO

N_UNIT
false

Default information of the

issuer's company's branch.

CERTIFICATE_EMAIL_ADDRE

SS
false

Default information of the

issuer's email address

CERTIFICATE_HASH false

The cryptographic hash

function to use. Defaults to

sha256.

CERTIFICATE_DAYS false

The number of days until the

certificate expires. Defaults

to 7 days.

MODULE_CONFIG_ENCRYPT

_CERT_BUNDLE
false

Whether to package the

module config's certificate

and private key into a

pkcs12 bundle string using

the

CERTIFICATE_PASSPHRASE.

If false (default), it will just

be a concatenation of the

certificate and the private

key

Retrieving the Certificates

SDL Core's certificate is stored in the module_config of the policy table and is updated via

a Policy Table Update. For an app to retrieve its certificate, it must make either a GET or

POST request to the /api/v1/applications/certificate/get endpoint. See the API

documentation for more details.

When the Policy Server starts up, it will try to update its current information by using

external sources such as SHAID. It will do the following:

Update the permission list and permission relationships. These permissions include

RPCs, vehicle parameters and module types.

Synchronize the app categories from SHAID.

Update language information. Language code information is retrieved from the SDL

RPC spec, specified in settings.js. This is used for the consumer friendly messages

object.

Query and store SHAID applications. The Policy Server will grab new or updated

application information from SHAID and store it in the Policy Server's database.

Pull in changes from new releases of the RPC spec, if there are any, and store its

information.

Check and renew certificates for the stored applications, if applicable.

Check and renew the module config certificate, if applicable.

After all tasks above have been completed, expose the UI and API routes for the

Policy Server. It is important that the Policy Server receives all the information

above before allowing requests from Core to happen.

Set up cron jobs for updating permission information, for generating templates and

for updating the languages. The Policy Server does not need a cron job for getting

new application information from SHAID because of webhooks.

Occasionally, you may receive a banner on the bottom of the Policy Server UI indicating an

update is available. When this occurs, we recommend following the update procedure

below to ensure your version of the Policy Server is up-to-date with the latest patches and

features.

First, use Git to pull the latest version of the Policy Server:

On Startup

https://raw.githubusercontent.com/smartdevicelink/rpc_spec/master/MOBILE_API.xml

git pull

Then, update NPM modules with:

npm update

Finally, start the server using the typical method:

npm run start-server

Verify that it started properly by navigating to http://localhost:3000/

Now your updated Policy Server is up and running!

The Policy Server allows for some extra configuration through the use of custom

modules. The Policy Server relies on these modules for logging and querying tasks, and

so the ability to write a new module allows for great flexibility in how these tasks are

handled.

Only two named functions need to be exported in an object for a valid implementation: in

fo and error . info accepts a string as its first parameter and is used to log non-error

messages using the string. error accepts a string and is used for logging error messages

using the string. Check the default winston module for an example.

Loggers

http://localhost:3000/

Currently only PostgreSQL has been tested enough to be considered a usable type of

database for the Policy Server. See the default postgres module for an example.

The migration scripts setup the tables necessary to contain all of the functional group

info, consumer message info, country information, etc., and populates those tables with

the initial data from a default Policy Table. Any updates to this data will come through as

another migration up script and a download from the repository will be needed to get

those changes. An alert will appear in the UI to notify the user when a new version of the

Policy Server exists.

With the introduction of WebEngine applications, the Policy Server requires additional

setup to be able to support them. This is because WebEngine apps need to be uploaded

and servable for execution by supported HMIs, and the Policy Server provides the

information necessary for downloading these app bundles. The implementation details are

up to the Policy Server maintainer, as the method of hosting these WebEngine app bundles

may depend on the environment and manner in which the Policy Server is running.

The entrypoint for the custom implementation starts in the customizable/webengine-bun

dle/index.js file in the project. In the single function stub handleBundle the URL of the

app bundle is passed in. The goal is for the Policy Server to download the bundle from the

passed in URL, extract the bundle to get the compressed and uncompressed file size data,

and to host it in a publicly accessible location. The new URL for the WebEngine app bundle

and its size information is expected to be returned in the cb argument for the handleBu

ndle function, and that information will automatically be reflected in future calls to the /a

pi/v1/applications/store route. Check the customizable/webengine-bundle/index.js file

comments for specifics.

Databases

WebEngine Support

Getting Started

It is recommended that the app bundles are hosted in a dedicated online file-sharing

service such as AWS's S3 buckets. These URLs are expected to be persistent and

unchanging, even after Policy Server restarts or migrations.

You may use this code snippet for reference on how to implement the handleBundle

function. This implementation stores the app bundles on an S3 bucket, and assumes that

the bucket exists, and that your computer's credentials are set up to be authenticated with

AWS, and that you have installed the node-stream-zip and aws-sdk node modules to

the Policy Server. Note that AWS has changed how new buckets are configured as of April

2023, so make sure you have your bucket set up to be public and to enable ACLs in the

Object Ownership settings.

S3 Storage Code Example

// skeleton function for customized downloading and extracting of package
information
const http = require('http');
const https = require('https');
const fs = require('fs');
const UUID = require('uuid');
const AWS = require('aws-sdk');
const StreamZip = require('node-stream-zip');
AWS.config.update({region: 'us-east-1'});
// assumes the bucket already exists. make sure it is set up to allow writing objects
to it from remote sources!
const BUCKET_NAME = 'webengine-bundles';

/**
 * asynchronous function for downloading the bundle from the given url and
extracting its size information
 * @param package_url - a publicly accessible external url that's used to download
the bundle onto the Policy Server
 * @param cb - a callback function that expects two arguments
 * if there was a failure in the process, it should be sent as the first argument. the
Policy Server will log it
 * the second argument to return must follow the formatted object below
 * {
 * url: the Policy Server should save a copy of the app bundle somewhere
publicly accessible
 * this url must be a full resolved url
 * size_compressed_bytes: the number of bytes of the compressed downloaded
bundle
 * size_decompressed_bytes: the number of bytes of the extracted downloaded
bundle
 * }
 */
exports.handleBundle = function (package_url, cb) {
 let compressedSize = 0;
 let bucketUrl = '';
 const TMP_FILE_NAME = `${UUID.v4()}.zip`;

 // read the URL and save it to a buffer variable
 readUrlToBuffer(package_url)
 .then(zipBuffer => { // submit the file contents to S3
 compressedSize = zipBuffer.length;
 const randomString = UUID.v4();
 const fileName = `${randomString}.zip`;
 bucketUrl = `https://${BUCKET_NAME}.s3.amazonaws.com/${fileName}`;
 // make the bundle publicly accessible
 const objectParams = {Bucket: BUCKET_NAME, ACL: 'public-read', Key:
fileName, Body: zipBuffer};
 // Create object upload promise
 return new AWS.S3().putObject(objectParams).promise();
 })
 .then(() => { // unzip the contents of the bundle to get its uncompressed data
information

 return streamUrlToTmpFile(bucketUrl, TMP_FILE_NAME);
 })
 .then(() => {
 return unzipAndGetUncompressedSize(TMP_FILE_NAME);
 })
 .then(uncompressedSize => {
 // delete the tmp zip file
 fs.unlink(TMP_FILE_NAME, () => {
 // all the information has been collected
 cb(null, {
 url: bucketUrl,
 size_compressed_bytes: compressedSize,
 size_decompressed_bytes: uncompressedSize
 });
 });
 })
 .catch(err => {
 // delete the tmp zip file
 fs.unlink(TMP_FILE_NAME, () => {
 cb(err);
 });
 });
}

function unzipAndGetUncompressedSize (fileName) {
 let uncompressedSize = 0;

 return new Promise((resolve, reject) => {
 const zip = new StreamZip({
 file: fileName,
 skipEntryNameValidation: true
 });
 zip.on('ready', () => {
 // iterate through every unzipped entry and count up the file sizes
 for (const entry of Object.values(zip.entries())) {
 if (!entry.isDirectory) {
 uncompressedSize += entry.size;
 }
 }
 // close the file once you're done
 zip.close()
 resolve(uncompressedSize);
 });

 // Handle errors
 zip.on('error', err => { reject(err) });
 });
}

function streamUrlToTmpFile (url, fileName) {
 const urlObj = new URL(url);
 return new Promise((resolve, reject) => {
 function resCallback (res) {
 res.pipe(fs.createWriteStream(fileName)).on('close', resolve);

 }
 if (urlObj.protocol === "https:") {
 https.get(url, resCallback).end();
 } else {
 http.get(url, resCallback).end();
 }
 });
}

function readUrlToBuffer (url) {
 const urlObj = new URL(url);
 return new Promise((resolve, reject) => {
 let zipBuffer = [];
 function resCallback (res) {
 res.on('data', data => {
 zipBuffer.push(data);
 })
 .on('close', function () { // file fully downloaded
 // put the zip contents to a buffer
 resolve(Buffer.concat(zipBuffer));
 });
 }

 if (urlObj.protocol === "https:") {
 https.get(url, resCallback).end();
 } else {
 http.get(url, resCallback).end();
 }
 })
}

A majority of the modifications made to the Policy Table are done through SQL database

queries. To make this easier, the Policy Server has a user interface that can be found by

navigating to http://localhost:3000/ in a browser of your choice. There are four main pages

to the Policy Server.

Applications

View Policy Table

User Interface

http://localhost:3000/
https://sdl-devportal-media-production.s3.amazonaws.com/applications/
https://sdl-devportal-media-production.s3.amazonaws.com/view-policy-table/

Functional Groupings

Consumer Friendly Messages

Custom Vehicle Data

About

Vue.js is an open source JavaScript framework which the Policy Server uses in building

the user interface. It allows the creation of multiple components of a similar structure. For

the Policy Server, the larger components for building each page exist in the

/src/components directory while the smaller and more numerous items are located in the

/common subdirectory. Any files related to styling such as CSS, text fonts, and images, are

in the /assets subdirectory. The basic HTML for the user interface can be found in the

/ui/raw directory.

The Policy Server is an open source project giving the user the ability to customize the

project to his/her specific needs. Webpack is used to bundle the files into a build and then

the build files are executed. If any changes are made to the files before restarting the

server, the build command (found in the package.json) must be run in the terminal to

rebuild the project with the newly made changes. The /build folder contains all files

associated with Webpack.

Vue.js

Webpack

Applications

https://sdl-devportal-media-production.s3.amazonaws.com/messages-and-functional-groups/
https://sdl-devportal-media-production.s3.amazonaws.com/messages-and-functional-groups/
https://sdl-devportal-media-production.s3.amazonaws.com/custom-vehicle-data/
https://sdl-devportal-media-production.s3.amazonaws.com/about/
https://vuejs.org/v2/guide/
https://developer.mozilla.org/en-US/docs/Web/CSS
https://webpack.js.org/concepts/
https://webpack.js.org/concepts/

This page displays a list of applications pulled from the SHAID server. When initially

added, apps will be pending approval. Reviewing each app will give the user a detailed page

on the important information associated with the app such as the requested permissions,

developer contact information, and preview of what its segment in the Policy Table would

look like.

General App Info

P R O P E R T Y D E F I N I T I O N

Application Name The String for which to identify the application.

Last Update
The timestamp from when the app information

was most recently updated.

Platform Android/IOS

Category
Specifies the type of application. eg. Media,

Information, Social.

Widgets
Whether this app is requesting the use of

widgets.

Hybrid App Preference
Which app to show on the HMI when the same

app is detected on multiple platforms.

Endpoint
For cloud/embedded apps, the server endpoint

of the app.

Transport Type
For cloud/embedded apps, the expected

transport type of the server endpoint.

Toggles

T O G G L E N O T E S

P R O P E R T Y D E F I N I T I O N

Automatically approve future versions of this

app

The current version will still need to be

approved manually.

Grant all versions of this app access to

"Administrator" Functional Groups

Allow all versions of this app to send unknown

RPCs through App Service RPC passthrough

Require RPC encryption for this version of the

app

App Display Names

Name

Alternate strings to identify the application. The

app's name must match one of these in order

for it to connect to Core.

General Permissions

P R O P E R T Y D E F I N I T I O N

Service Provider options appear when an application has requested to be an App Service

provider. OEMs may choose which RPCs/events the application is allowed to receive via

the permission toggle switches. OEMs should note that disabling all the toggle switches

does not revoke the application's general ability to act as an App Service Provider, but

simply limits the app's abilities regarding that particular Service.

P R O P E R T Y D E F I N I T I O N

P R O P E R T Y D E F I N I T I O N

Name Strings to identify the permission.

Type RPC

Min. HMI Level BACKGROUND/FULL/NONE/LIMITED

Service Provider

Permissions
An RPC/event related to the app's requested

service.

Grant Proprietary Functional Groups

Functional Group Name
A functional group that is categorized as a

proprietary functional group.

Developer Contact Info

P R O P E R T Y D E F I N I T I O N

An application can have a private key and certificate associated with it, if certificate

generation is enabled. The certificate is set up to auto renew one day before its expiration,

but these values can also be manually renewed by clicking "Generate Key and Certificate",

followed by clicking "Save Key and Certificate".

This is an example of how the app and its required permissions will appear in the Policy

Table.

Vendor
The name of the developer to contact regarding

this application.

Email The contact email for the Vendor.

Phone The contact phone number for the Vendor.

Tech Email
The optional contact email for technical issues

regarding the app.

Tech Phone
The optional contact phone number for

technical issues.

Certificates

Policy Table Preview

{
 "nicknames": [
 "Livio Music",
 "Livio Music Player"
],
 "keep_context": true,
 "steal_focus": true,
 "priority": "NONE",
 "default_hmi": "NONE",
 "groups": [
 "AdministratorGroup",
 "AppServiceConsumerGroup",
 "AppServiceProviderGroup",
 "Base-4",
 "DialNumberOnlyGroup",
 "DrivingCharacteristics-3",
 "HapticGroup",
 "Notifications",
 "OnKeyboardInputOnlyGroup",
 "OnTouchEventOnlyGroup"
],
 "moduleType": [],
 "RequestType": [],
 "RequestSubType": [],
 "app_services": {
 "MEDIA": {
 "service_names": [
 "Livio Music",
 "Livio Music Player"
],
 "handled_rpcs": [
 {
 "function_id": 41
 }
]
 },
 "NAVIGATION": {
 "service_names": [
 "Livio",
 "Livio Music and Nav"
],
 "handled_rpcs": [
 {
 "function_id": 45
 },
 {
 "function_id": 32784
 },
 {
 "function_id": 46
 }
]

 }
 },
 "hybrid_app_preference": "MOBILE"
}

The top right corner of the application's review page contains a drop down allowing the

user to change the approval state of the application. See below for what each state

signifies.

New applications and updated applications that reach your SDL Policy Server will be

granted the approval state of pending. Pending applications are treated like limited

applications in that they will not be given any changes requested, but will be given

permissions in default functional groups. Pending applications require action performed

on them in order for the application to be officially approved or limited.

Applications in the staging state will have their permissions granted when using the

staging policy table, but not the production policy table. This mode is useful for testing

purposes.

Applications in the accepted state will have their permissions granted when using both the

staging and the production policy table. This state is for applications that are allowed to

be used in a production environment.

Limited applications will not receive their requested changes. However, permissions

received from the previously accepted version and from default functional groups will still

be given. Additional options include providing a reasoning for limiting the application for

your future reference. While in the limited state, you also have the option to blacklist the

application.

Significance of Approval States

PENDI NG

S TA G I NG

A CCEPT ED

L I MI T ED

A blacklisted application will not receive any permissions, including permissions from

default functional groups. All future update requests will also be blacklisted. This action is

reversible.

Each time an app is updated on the SDL Developer Portal at smartdevicelink.com, the

app's changes will appear in your Policy Server pending re-approval. If an app is from a

trusted developer and you would like to always approve future revisions of it, you can

choose to "Automatically approve updates" under "General App Info" of the app's review

page.

Newer versions of applications that come in will have a state of pending, but that will not

affect the statuses granted to its previously approved versions. The latest permitted

application will have their changes used for the policy table until a new version's changes

are also permitted.

The pages for displaying lists of consumer messages and functional groups are structured

in the same way, using similar Vue.js components. For information on the properties of

the consumer messages and functional groups, refer back to the earlier documentation

regarding the Policy Table.

Each functional group or consumer message card will have identifying information

displayed on a card. This information includes the name, and the number of permissions

BL A CKL I S T ED

New Application Versions

Consumer Messages &
Functional Groups

Cards

https://sdl-devportal-media-production.s3.amazonaws.com/api-reference-documentation/policy-table/overview/

or languages. If the information in the card has been altered since the time of creation

then it will have a "MODIFIED" tag. All cards are listed in alphabetical order by name.

It should be noted that the cards under "Production" cannot be edited. If you wish to edit

an existing functional group that has been set to "Production" then you must edit the

staging version of that group. Remember to hit the save button at the bottom of the page

to keep any changes.

Editing

Functional Groups

P R O P E R T Y D E F I N I T I O N

Name
The String for which to identify the functional

groups.

Description
A body of text to outline the permissions

associated with this functional group.

User Consent Prompt
The consumer friendly message to be displayed

when requesting input from the user.

Special Grants

C H E C K B O X N O T E S

C H E C K B O X N O T E S

Grant this functional group to all applications

by default

If set to true, all staging and accepted

applications will have access to this functional

group and its permissions.

Grant this functional group to all applications

prior to the user accepting SDL data consent

Grant this functional group to all applications

after the user has accepted SDL data consent

Grant this functional group to all applications

with at least one service provider type

Grant this functional group to applications

with "Administrator" privileges

Grant this functional group to applications

with widget management privileges

This is a proprietary functional group

Encryption

Require RPCs in this functional group to be

encrypted

RPCs

P R O P E R T Y D E F I N I T I O N

When creating a new functional group, first consider if there should be a user consent

prompt associated with the group. If yes, the following diagram will walk through the

Parameters

References possible vehicle information that

can retrieved. This is only applicable to vehicle

data RPCs. eg. GetVehicleData,

SubscribeVehicleData

Supported HMI Levels
SDL Core interface display levels allowed by the

app

Creating a New Functional Group

correct steps.

For information on the language object properties, refer back to the documentation on the

consumer messages object.

Consumer Messages

https://smartdevicelink.com/en/guides/sdl-server/api-reference-documentation/policy-table/consumer-friendly-messages/

This environment is where temporary or unfinished entries reside. They can be edited and

reworked.

Production entries are not directly editable and may only be created/edited/deleted by

promoting them from the staging entries. Only promote staging entries to production if

you are certain that all information associated is correct.

Staging

Production

Module Config

The module_config object of the Policy Table is represented here. For information on the

properties of the module config, refer back to the earlier documentation regarding the

Policy Table.

The process of editing and saving is very similar to that of functional groups and

consumer messages. It is simpler here because the entire object is either in staging or

production. Production versions cannot be edited, but can be overwritten by promoting a

staging module config. There is no creating or deleting module configs.

For information on the different properties that make up the Policy Table object, refer back

to the Policy Table documentation.

Editing and Saving

Policy Table

https://sdl-devportal-media-production.s3.amazonaws.com/api-reference-documentation/policy-table/overview/
https://sdl-devportal-media-production.s3.amazonaws.com/api-reference-documentation/policy-table/overview/

This page is for viewing an example Policy Table with functional groups and consumer

messages available to the server. Staging is where any changes should be made and

where any temporary entries should exist. Production is for finalized groups and messages

that should no longer be changed. This example table will use the most recent version for

the environment chosen. You can minimize certain properties by clicking anywhere there

is "[]" or "{}".

This is where OEM-specific custom vehicle data definitions can be defined and managed.

Staging & Production

Custom Vehicle Data

Cards

Each card will have identifying information, which includes the name of the top level

vehicle data, and the number of nested parameters it contains. If the information in the

card has been altered since the time of creation then it will have a "MODIFIED" tag. All

cards are listed in alphabetical order by name.

It should be noted that the cards under the "Production" view cannot be edited. If you wish

to edit existing cards then you need to be in the "Staging" view and then click on the card.

When editing, remember to hit the save button at the bottom of the page to keep any

changes.

Editing

Once a new custom vehicle data item is created, it will be available as an option to assign

to vehicle data RPCs in functional groups.

Properties

P R O P E R T Y D E F I N I T I O N

Name
The vehicle data item (ex. gps, speed). This is

the parameter SDL Core uses for requests.

Type

The data type of the vehicle data item. It can be

a generic type like Integer or String, or an

enumeration defined in the API XML file. For a

vehicle data item that has sub parameters, this

value would be Struct.

Key

A reference to the OEM Network Mapping table

which defines the attributes for this vehicle

data item.

Is Mandatory
Whether this parameter is required to be

included for the vehicle data item.

Min Length
The minimum length of the value if it is a

string.

Max Length
The maximum length of the value if it is a

string.

Min Size
The minimum number of items for the value if

it is an array.

Max Size
The maximum number of items for the value if

it is an array.

Min Value
The minimum value for the value if it is a

number.

Max Value
The maximum value for the value if it is a

number.

P R O P E R T Y D E F I N I T I O N

This environment is where temporary or unfinished entries reside. They can be edited and

reworked.

Is Array
Whether this parameter is an array of the

specified type.

Creating a New Vehicle Data Item

Staging

Production

Production entries are not directly editable and may only be created/edited/deleted by

promoting them from the staging entries. Only promote staging entries to production if

you are certain that all information associated is correct.

This section provides basic information about your SDL Policy Server's configuration

settings, including:

Currently installed version (and if a new version is available)

Webhook URL (to be entered on smartdevicelink.com)

SSL port (if enabled)

Caching service (if enabled)

Authentication type (if enabled)

Auto-approve incoming apps (if enabled)

Require RPC Encryption for auto-approved apps (if enabled)

Certificate generation (if enabled)

Email notifications (if enabled)

About

Policies are rules enforced by SDL core that configure how the system can and/or will

behave. For example, a policy could prohibit the use of an application (e.g. Flappy Bird) in a

specific type of vehicle. In general, policies are configured by an OEM (e.g. Ford, Toyota,

Suzuki) and stored in their SDL Policy Server. Once configured, all policies for a specific

vehicle can be requested in the form a JSON document called a Policy Table. Policy

Tables are downloaded to a vehicle's head unit where it can be enforced by SDL Core.

An example Policy Table is available in the SDL Core repository.

Policy Tables Overview

Example Policy Table

https://github.com/smartdevicelink/sdl_core
https://github.com/smartdevicelink/sdl_server
http://www.json.org/
https://github.com/smartdevicelink/sdl_core
https://github.com/smartdevicelink/sdl_core/blob/master/src/appMain/sdl_preloaded_pt.json

An application's permissions and settings are stored in the app_policies property in a

Policy Table. The application policies are used to grant applications access to a specific

set of features, such as vehicle data and/or running in the background. Any other

application related data, such as user-consents, can also be stored in application policies

as well.

Settings for a specific application are stored in the app_policies object as a property

named after the application's unique ID (e.g. "663645645" or any string of at most 100

characters). The value of this property can be either an object containing properties listed

below or a reference to another sibling property (e.g. "default" or "device"). In addition, a

special value of "null" can be used to indicate that the application has been revoked.

Application Policies

Application ID

A P P L I C A T I O N
P R O P E R T Y T Y P E D E S C R I P T I O N

keep_context Boolean

When true, allows the

application to display

messages even if another

app enters the foreground

(HMI level FULL).

steal_focus Boolean

When true, allows the

application to steal the

foreground from another

application at will.

priority String
Priority level assigned to the

application.

default_hmi String

HMI level given to the

application following a

successful registration with

SDL Core.

groups Array of Strings

A list of functional

groupings the application

has access to.

preconsented_groups Array of Strings

List of functional groupings

that do not require a user

consent because the

consent has already been

given in another place. (e.g.

an application EULA)

https://sdl-devportal-media-production.s3.amazonaws.com/functional-groupings

A P P L I C A T I O N
P R O P E R T Y T Y P E D E S C R I P T I O N

RequestType Array of Strings

List of Request Types that an

app is allowed to use in a

SystemRequest RPC. If

omitted, all requestTypes are

disallowed. If an empty array

is provided, all requestTypes

are allowed.

RequestSubType Array of Strings

List of Request SubTypes

(defined by individual OEMs)

that an app is allowed to use

in a SystemRequest RPC. If

omitted, all requestSubTypes

are disallowed. If an empty

array is provided, all

requestSubTypes are

allowed.

AppHMIType Array of Strings

List of HMI Types used to

group the application into

different containers in an

HMI system. If omitted, all

appHMITypes are allowed.

heart_beat_timeout_ms String

A streaming/projection app

will be automatically

disconnected if no app

communication occurs over

this period of time (in

milliseconds).

certificate String

The app's encryption

certificate for video

streaming/projection (if

applicable)

A P P L I C A T I O N
P R O P E R T Y T Y P E D E S C R I P T I O N

An application can be categorized by an HMI type allowing the SDL-enabled head unit to

understand how to appropriately handle the application. There are several HMI types listed

below.

nicknames Array of Strings

A list of names the

application goes by. Some

OEMs may require the app's

name to match a value in

this array in order to run.

Application HMI Types

A P P L I C A T I O N H M I T Y P E D E S C R I P T I O N

An HMI Level describes the state of an application. Resources are granted to an

application based on its current state. While some resources are granted automatically to

an application in a specific HMI Level, many can be controlled by the Policy Table.

BACKGROUND_PROCESS

COMMUNICATION

DEFAULT

INFORMATION

MEDIA

MESSAGING

NAVIGATION

SOCIAL

SYSTEM

TESTING

WEB_VIEW

Application HMI Levels

L E V E L V A L U E S H O R T D E S C R I P T I O N

Full 0

An application is typically in

Full when it is displayed in

the HMI. In Full an

application has access to

the HMI supported

resources, e.g. UI, VR, TTS,

audio system, and etc.

Limited 1

An application is typically

placed in Limited when a

message or menu is

displayed Limited to

restrict its permissions.

Background 2

An application is typically in

Background when it is not

being displayed by the HMI.

When in Background an

application can send RPCs

according to the Policy Table

rules.

None 3

When placed in None an

application has no access to

HMI supported resources.

Request Types

R E Q U E S T T Y P E D E S C R I P T I O N

HTTP

FILE_RESUME

AUTH_REQUEST

AUTH_CHALLENGE

AUTH_ACK

PROPRIETARY

QUERY_APPS

LAUNCH_APP

LOCK_SCREEN_ICON_URL

TRAFFIC_MESSAGE_CHANNEL

DRIVER_PROFILE

VOICE_SEARCH

NAVIGATION

PHONE

CLIMATE

SETTINGS

R E Q U E S T T Y P E D E S C R I P T I O N

A default application configuration can be stored in the app_policies object as a property

named default. This property's value is an object containing any valid application property

excluding certificate and nicknames.

Permissions granted to the user's device post-DataConsent.

An example of how the Application Policy portion of a Policy Table might look.

VEHICLE_DIAGNOSTICS

EMERGENCY

MEDIA

FOTA

OEM_SPECIFIC

Used for OEM defined requests, requestSubType

should be used to determine how to handle this

type of request.

Default

Device

Example

https://smartdevicelink.com/en/guides/sdl-server/api-reference-documentation/policy-table/application-policies/#Application-Property

"app_policies": {
 "default": {
 "keep_context": true,
 "steal_focus": true,
 "priority": "NONE",
 "default_hmi": "NONE",
 "groups": ["Base-1"],
 "preconsented_groups": [],
 "RequestType": [],
 "memory_kb": 5,
 "watchdog_timer_ms": 55
 },
 "device": {
 "keep_context": true,
 "steal_focus": true,
 "priority": "NONE",
 "default_hmi": "NONE",
 "groups": ["Base-2"],
 "preconsented_groups": []
 },
 "pre_DataConsent": {
 "keep_context": true,
 "steal_focus": true,
 "priority": "NONE",
 "default_hmi": "NONE",
 "groups": ["BaseBeforeDataConsent"],
 "preconsented_groups": [],
 "memory_kb": 5,
 "watchdog_timer_ms": 55
 },
 "[App ID 1]": "null",
 "[App ID 2]": "default",
 "[App ID 3]": {
 "nicknames": ["Awesome Music App"],
 "keep_context": true,
 "steal_focus": true,
 "priority": "NONE",
 "default_hmi": "NONE",
 "groups": ["Base-1", "VehicleInfo-1"],
 "preconsented_groups": [],
 "RequestType": [],
 "RequestSubType": ["Sub Type"],
 "AppHMIType": ["MEDIA"],
 "memory_kb": 5,
 "watchdog_timer_ms": 55,
 "certificate": "[Your Certificate]"
 }
}

There are certain scenarios when SDL Core needs to display a message to the user. Some

examples are when an error occurs or an application is unauthorized. These messages

can include spoken text and text displayed to a user in multiple languages. All of this

information is stored in the consumer_friendly_messages property.

All messages are given a unique name (e.g. "AppUnauthorized" or "DataConsent") and

stored as an object in the consumer_friendly_messages object's messages property.

Since each message should support multiple languages, each message object will contain

a property named languages. Language properties are named by combining the ISO 639-1

language code and the ISO 3166 alpha-2 country code. For example, messages for English

speaking citizens of the United States would be under the key en-us.

Inside each language object is the data to be displayed or spoken by the module. The data

is organized in the following properties.

Consumer Friendly Messages

Messages

Language

Message Text

http://en.wikipedia.org/wiki/ISO_639-1
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

M E S S A G E T E X T
P R O P E R T Y T Y P E D E S C R I P T I O N

The version property in the consumer_friendly_messages object defines the current

version of all the messages. It is used during a Policy Table update to determine whether

or not the consumer friendly messages need to be updated. The version must be in the

format ###.###.### .

An example of how the Consumer Friendly Messages portion of a Policy Table might look.

tts String
Text that can be read aloud

by the vehicle module.

line1 String
First line of text to be

displayed on the head unit.

line2 String
Second line of text to be

displayed on the head unit.

text-body String
Body of text to be displayed

on the head unit.

label String

Version

Example

https://sdl-devportal-media-production.s3.amazonaws.com/policy-table-update

"consumer_friendly_messages": {
 "version": "001.001.015",
 "messages": {
 "AppUnauthorized": {
 "languages": {
 "de-de": {
 "tts": "Diese Version von %appName% ist nicht autorisiert und wird nicht
mit SDL funktionieren.",
 "line1": "nicht autorisiert"
 },
 "en-ie": {
 "tts": "This version of %appName% is not authorized and will not work
with SDL.",
 "line1": "not authorized"
 },
 "en-us": {
 "tts": "This version of %appName% is not authorized and will not work
with SDL.",
 "line1": "Not Authorized"
 }
 }
 },
 "DataConsent": {
 "languages": {
 "en-us": {
 "tts": "To use mobile apps with SDL, SDL may use your mobile device's
data plan....",
 "line1": "Enable Mobile Apps",
 "line2": "on SDL? (Uses Data)"
 }
 }
 }
 }
}

Information about each device that connects to SDL Core is recorded in the Policy Table.

This information is used to persist configurations for the head unit based on the device

connected.

Device Data

Devices are identified in the Policy Table using a unique identifier. Device unique

identifier(s) are either a bluetooth mac address or USB serial address irreversibly

encrypted/hashed using SHA-256. Information about a specific device is stored using its

unique identifier as a key. The following properties describe the information stored.

P R O P E R T Y T Y P E D E S C R I P T I O N

Whether or not an SDL user has given permission for a feature can be stored for each

device and application connected to a vehicle's head unit. For example, a user may

consent to allowing SDL to use their phone's cellular data to download Policy Table

updates. These consent records are stored in the user_consent_records property.

Device Specific Information

hardware String
Type and/or name of the

hardware. (e.g. iPhone 7)

max_number_rfcom_ports Number
Number of RFCOM ports

supported by the device.

firmware_rev String Device's firmware version

os String
Operating system. (e.g. iOS

or Android)

os_version String
Device's operating system

version.

carrier String
The mobile phone's carrier.

(e.g. Verizon or AT&T)

User Consents

User consent(s) for a device are stored in a property named device in the

user_consent_records object. The value of this property is an object with the following

properties:

U S E R C O N S E N T
R E C O R D P R O P E R T Y T Y P E D E S C R I P T I O N

User consent(s) can also be saved per application on a device under a property named

after its Application ID. The value of this property is an object with the same user consent

record properties as device above.

An example of how the Device Data portion of a Policy Table might look.

Device

consent_groups Object
A listing of SDL features that

are accepted or declined.

input String
Accepted values are "GUI" or

"VUI"

time_stamp String
A timestamp in ISO 8601

format.

Application

Example

http://en.wikipedia.org/wiki/ISO_8601

"device_data": {
 "[ID VALUE HERE]": {
 "hardware": "iPhone 4S",
 "max_number_rfcom_ports": 25,
 "firmware_rev": null,
 "os": "iOS",
 "os_version": "5",
 "carrier": "AT&T",
 "user_consent_records": {
 "device": {
 "consent_groups": {
 "DataConsent-1": true
 },
 "input": "VUI",
 "time_stamp": "4/24/2012 12:30:00 PM"
 },
 "[APP ID HERE]": {
 "consent_groups": {
 "Location-1": true,
 "DrivingData-1": false
 },
 "input": "VUI",
 "time_stamp": "3/26/2012 10:41:00 AM "
 }
 }
 }
}

Before an application can use each feature offered by SDL it must first be granted

permission to do so in the Policy Table. Each feature may require several RPCs with

specific HMI level permission, as well as allowed parameters and other information. In

order to avoid duplicating this data for each application, SDL instead uses functional

groupings. A functional grouping is simply a group of RPC messages and parameters with

specific HMI permissions and allowed parameters. So for example, if an application

named Torque wanted access to vehicle data you would simply add the VehicleData

functional group to Torque's allowed policies.

Functional Groupings

Each functional group is given a unique name (e.g. BasicVehicleData) that is used to

reference that group from anywhere within the Policy Table. Each functional group may

contain the following properties.

F U N C T I O N A L G R O U P
P R O P E R T Y T Y P E D E S C R I P T I O N

Each RPC in the rpcs property has a unique name that represents an existing RPC (e.g.

AddSubMenu). In each RPC object there may be the following properties.

Functional Group

rpcs Object

A list of Remote Procedure

Calls and their

configurations for the

current functional grouping.

user_consent_prompt String

References a consumer

friendly message prompt

that is required to use the

RPC. If this field is not

present, then a consumer

friendly message prompt is

not required.

RPCS

P R O P E R T Y T Y P E D E S C R I P T I O N

An example of how the Functional Groupings portion of a Policy Table might look.

hmi_levels Array

An ordered list of HMI levels

that an application is

allowed to use the RPC

command in.

parameters Array

A list of allowed parameters

that the application can use

with the RPC command.

Example

https://smartdevicelink.com/en/guides/sdl-server/api-reference-documentation/policy-table/application-policies/#Application-HMI-Levels

"functional_groupings": {
 "Base-1": {
 "rpcs": {
 "AddCommand": {
 "hmi_levels": [
 "BACKGROUND",
 "FULL",
 "LIMITED"
]
 },
 "AddSubMenu": {
 "hmi_levels": [
 "BACKGROUND",
 "FULL",
 "LIMITED"
]
 },
 "Alert": {
 "hmi_levels": [
 "FULL",
 "LIMITED"
]
 },
 }
 },
 "VehicleInfo-1": {
 "user_consent_prompt": "VehicleInfo",
 "rpcs": {
 "GetVehicleData": {
 "hmi_levels": [
 "BACKGROUND",
 "FULL",
 "LIMITED"
],
 "parameters": [
 "engineTorque",
 "externalTemperature",
 "fuelLevel",
 "fuelLevel_State",
 "headLampStatus",
 "instantFuelConsumption",
 "odometer",
 "tirePressure",
 "vin",
 "wiperStatus"
]
 },
 }
 }
}

The module configuration property contains information used to configure SDL Core for

use on the current vehicle.

There is a limit for the number of notifications that can be displayed per priority level. The

limit is instead based on notifications per minute. You can configure these in the

notifications_per_minute_by_priority property which has a max array size of 5. The

following are the available priority levels.

Module Config

Notifications

P R O P E R T Y T Y P E D E S C R I P T I O N

Periodically changes will be made to a Policy Table, either by the Policy Server or SDL

Core. This means SDL Core should check for and perform a Policy Table update, which

synchronizes the local and Policy Server Policy Tables. You can configure when SDL Core

will check using the following configurations.

EMERGENCY Number

Number of emergency

notifications that can be

displayed per minute.

COMMUNICATION Number

Number of communication

notifications that can be

displayed per minute.

NAVIGATION Number

Number of navigation

notifications that can be

displayed per minute.

NONE Number

Number of notifications

without a priority that can be

displayed per minute.

NORMAL Number

Number of notifications with

a normal priority that can be

displayed per minute.

voiceCommunication Number

Number of voice

communication

notifications that can be

displayed per minute.

Policy Table Update Configurations

https://smartdevicelink.com/en/guides/sdl-server/api-reference-documentation/policy-table-update/

P R O P E R T Y T Y P E D E S C R I P T I O N

SDL Core can use a predefined Policy Table located locally on the vehicle's head unit. This

is present to initially configure SDL Core as well as to enable the storage of vehicle data

before a Policy Table update has occurred.

P R O P E R T Y T Y P E D E S C R I P T I O N

The policy table's structure is determined by the following configurations.

exchange_after_x_ignition_c

ycles
Number

Update Policy Table after a

number of ignitions.

exchange_after_x_kilometers Number

Update Policy Table after a

number of kilometers

traveled.

exchange_after_x_days Number
Update Policy Table after a

number of days.

Preloaded Policy Tables

preloaded_pt Boolean

When true, SDL Core will use

the local copy of the Policy

Table.

Policy Table Structure Configurations

P R O P E R T Y T Y P E D E S C R I P T I O N

All requests made directly by SDL Core or by proxy can be configured using the following

attributes.

P R O P E R T Y T Y P E D E S C R I P T I O N

This section is a list of URLs that are used throughout the SDL lifecycle, such as Policy

Table updates, module software updates, and lock screen imagery.

full_app_id_supported Boolean

When true, an app's fullAp
pID will be used in the app
_policies section as it's

key. If false or omitted, the

short-form appID will be

used.

Server Requests

timeout_after_x_seconds Number

Elapsed seconds until a

Policy Table update request

will timeout.

endpoints Object

Contains a list of endpoints

(see below) that may

contain a default or app-

specific array of server

endpoints.

seconds_between_retries Array
A list of seconds to wait

before each retry.

Endpoints

P R O P E R T Y T Y P E D E S C R I P T I O N

This section stores additional properties related to endpoints.

P R O P E R T Y T Y P E D E S C R I P T I O N

0X07 Array

A list of URLs that can be

used for Policy Table

updates.

0X04 Array

A list of URLs that can be

used to retrieve module

software updates.

queryAppsUrl Array

A list of URLs that can be

used to receive valid apps

for querying on iOS devices.

lock_screen_icon_url Array

A list of URLs to image files

which can be displayed by

the application on the

driver's device during

lockout.

custom_vehicle_data_mappi

ng_url
Array

A list of URLs that can be

used for the OEM Network

Mapping table.

Endpoint Properties

custom_vehicle_data_mappi

ng_url.version
String

The current OEM Network

Mapping table version.

Vehicle identification information is stored in the module configuration portion of the

Policy Table.

P R O P E R T Y T Y P E D E S C R I P T I O N

An example of how the Module Config portion of a Policy Table might look.

Vehicle Information

vehicle_make String Manufacturer of the vehicle.

vehicle_model String Model of a vehicle.

vehicle_year String Year the vehicle was made.

Example

"module_config": {
 "lock_screen_dismissal_enabled": true,
 "endpoints": {
 "0x07": {
 "default": ["http://localhost:3000/api/1/policies/proprietary"]
 },
 "lock_screen_icon_url": {
 "default":["https://i.imgur.com/TgkvOIZ.png"]
 },
 "custom_vehicle_data_mapping_url":{
 "default":["http://localhost:3000/api/1/vehicleDataMap"]
 }
 }
 },
 "endpoint_properties": {
 "custom_vehicle_data_mapping_url": {
 "version":"0.1.2"
 }
 },
 "exchange_after_x_ignition_cycles": 100,
 "exchange_after_x_kilometers": 1800,
 "exchange_after_x_days": 30,
 "full_app_id_supported": true,
 "notifications_per_minute_by_priority": {
 "EMERGENCY": 60,
 "NAVIGATION": 15,
 "voiceCommunication": 10,
 "COMMUNICATION": 6,
 "NORMAL": 4,
 "NONE": 0
 },
 "seconds_between_retries": [1, 5, 25, 125, 625],
 "timeout_after_x_seconds": 60,
 "vehicle_make": "Ford",
 "vehicle_model": "F-150",
 "vehicle_year": "2015"
}

Module Meta

The current language and regional settings can be configured using the following

properties.

P R O P E R T Y T Y P E D E S C R I P T I O N

The current version of the vehicle's module should be stored in the following property.

P R O P E R T Y T Y P E D E S C R I P T I O N

Information about when a Policy Table update has last taken place is stored in the

following properties.

Language and Country

language String

Current system language.

ISO 639-1 combined with ISO

3166 alpha-2 country code.

Module Version

ccpu_version String
Software version for the

module running SDL Core.

Policy Table Update

http://en.wikipedia.org/wiki/ISO_639-1
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

P R O P E R T Y T Y P E D E S C R I P T I O N

Additional vehicle information is stored in the module meta property.

P R O P E R T Y T Y P E D E S C R I P T I O N

An example of how the Module Meta portion of a Policy Table might look.

pt_exchanged_at_odometer_

x
Number

Marks the odometer reading

in kilometers at the time of

the last successful Policy

Table update.

pt_exchanged_x_days_after_

epoch
Number

Marks the time of the last

successful Policy Table

update.

ignition_cycles_since_last_ex

change
Number

Number of ignition cycles

since the last Policy Table

update.

Vehicle Data

vin String
The vehicle's unique

identification number.

Example

"module_meta": {
 "ccpu_version": "4.1.2.B_EB355B",
 "language": "en-us",
 "pt_exchanged_at_odometer_x": 1903,
 "pt_exchanged_x_days_after_epoch": 46684,
 "ignition_cycles_since_last_exchange": 50,
 "vin": "1FAPP4442VH100001"
}

Errors and usage statistics that occur while an application is in use or are related to an

application are record. The information does not contain user information and is very

small as to use as little mobile data as possible. This data is sent to the Policy Server

when performing a Policy Table update.

Errors and usage statistic that occur while an application is in use or are related to an

application are recorded. The following properties are tracked in a property named after

the application's ID.

Usage and Errors

Application Errors

https://sdl-devportal-media-production.s3.amazonaws.com/policy-table-update

P R O P E R T Y T Y P E D E S C R I P T I O N

app_registration_language_

gui
String

Language used to register

the application using GUI.

app_registration_language_v

ui
String

Language used to register

the application using VUI.

count_of_rejected_rpcs_calls Number

Count of RPC calls that were

rejected because access was

not allowed due to a policy.

count_of_rejections_duplicat

e_name
Number

Number of times an

application registration uses

a name which is already

registered in the current

ignition cycle.

count_of_rejections_nickna

me_mismatch
Number

Number of times an app is

not allowed to register

because its registration does

not match one of the app-

specific policy nicknames.

count_of_removals_for_bad_

behavior
Number

The module has criteria for

identifying unacceptably

bad application behavior.

This tracks the number of

times that distinction leads

the module to unregister an

application.

count_of_rfcom_limit_reache

d
Number

Number of times the

maximum number of rfcom

channels are used on a

device by the application.

P R O P E R T Y T Y P E D E S C R I P T I O N

count_of_rpcs_sent_in_hmi_

none
Number

Number of times an

application tried to use an

RPC (not

unregisterAppInterface) in

the HMI_NONE state. Counts

the number of conflicts with

the built-in/hardcoded

restriction for

HMI_STATE=NONE.

count_of_run_attempts_whil

e_revoked
Number

Incremented when the user

selects a revoked application

from the HMI menu.

count_of_user_selections Number

Number of times a user

selected to run the app.

Increment one when app

starts via Mobile Apps Menu

or VR. Increment one the first

time the app leaves its

default_hmi for HMI_FULL,

as in the resuming app

scenario. Do not increment

anytime an app comes into

HMI_FULL. Do not increment

when cycling sources. For all

3 scenarios, both successful

and unsuccessful app starts

shall be counted.

minutes_in_hmi_background Number

Number of minutes the

application is in the

HMI_BACKGROUND state.

minutes_in_hmi_full Number

Number of minutes the

application is in the

HMI_FULL state.

P R O P E R T Y T Y P E D E S C R I P T I O N

Some basic usage and error counts are stored in the following properties.

P R O P E R T Y T Y P E D E S C R I P T I O N

An example of how the Usage and Error portion of a Policy Table might look.

minutes_in_hmi_limited Number

Number of minutes the

application is in the

HMI_LIMITED state.

minutes_in_hmi_none Number

Number of minutes the

application is in the

HMI_NONE state.

General Errors

count_of_iap_buffer_full Number

Number of times the iOS

accessory protocol buffer is

full.

Example

"usage_and_error_counts": {
 "count_of_iap_buffer_full": 1,
 "app_level": {
 "[App ID Here]": {
 "app_registration_language_gui": "en-us",
 "app_registration_language_vui": "en-us",
 "count_of_rejected_rpcs_calls": 9,
 "count_of_rejections_duplicate_name": 2,
 "count_of_rejections_nickname_mismatch": 1,
 "count_of_removals_for_bad_behavior": 6,
 "count_of_rfcom_limit_reached": 1,
 "count_of_rpcs_sent_in_hmi_none": 7,
 "count_of_run_attempts_while_revoked": 0,
 "count_of_user_selections": 7,
 "minutes_in_hmi_background": 123,
 "minutes_in_hmi_full": 123,
 "minutes_in_hmi_limited": 456,
 "minutes_in_hmi_none": 456
 }
 }
}

Periodically changes will be made to a Policy Table, either by the Policy Server or SDL

Core. In order to synchronize the two tables, a Policy Table update must be performed. An

update is triggered by Core by either an application connecting for the first time, or by one

of the Policy Table update configurations, or by a user's request. When requesting a Policy

Table update, SDL Core sends its current Policy Table, called a Policy Table snapshot, to

the server. The server records any aggregate usage data as needed or designed, then

responds to the request with a Policy Table update that contains the latest module config,

functional groupings, application policies, and consumer friendly messages. The

application policies section will only contain information for the current list of

applications in the received Policy Table snapshot. In addition, the consumer friendly

messages will only be included if an update is required, meaning the received Policy Table

snapshot has an older version than the server.

Policy Table Update

https://sdl-devportal-media-production.s3.amazonaws.com/policy-table/module-config/#Policy-Table-Update-Configurations
https://sdl-devportal-media-production.s3.amazonaws.com/policy-table/module-config
https://sdl-devportal-media-production.s3.amazonaws.com/policy-table/functional-groupings
https://sdl-devportal-media-production.s3.amazonaws.com/policy-table/application-policies
https://sdl-devportal-media-production.s3.amazonaws.com/policy-table/consumer-friendly-messages

S EQU EN C E D IA GRA M

Policy Table Update Sequence Diagram

1. A Policy Table update is triggered by SDL Core and a snapshot of the current Policy

Table is created. The snapshot includes the entire local Policy Table with one

exception. Only the version number property of the consumer friendly messages

section is included in the snapshot.

Policy Table Update Sequence
Diagram Steps

View Diagram

https://sdl-devportal-media-production.s3.amazonaws.com/policy-table/consumer-friendly-messages

2. An OnSystemRequest RPC is created with a request type of proprietary. The RPC

contains a Policy Table snapshot in binary and a URL from one of the endpoints

defined in the module config. In addition, HTML request headers can be present to

be used when making the request.

3. The RPC's data is, optionally, encrypted using an asynchronous key that only the

Policy Server can decrypt. The URL and headers are not encrypted since they are

required by the mobile library to forward the request to the Policy Server.

4. The RPC is then sent to the mobile library.

5. The mobile library will ignore the request body containing the Policy Table snapshot,

because it is marked as proprietary, and will forward the request to the URL included

in the OnSystemRequest RPC. If the request fails to send then the mobile library will

attempt to retry using the configuration specified in the module config.

6. When the server receives the Policy Table update request it will first look up the

module in the server's database using a unique identifier. If the module is not found

an error will be returned in the server's response.

7. If the Policy Table snapshot is encrypted, then the server will use the symmetric key

found in the module's database record, the one we just looked up, to decrypt the

Policy Table snapshot. If the data cannot be decrypted, then the data is not from a

trusted source and an error is returned in the server's response.

8. The aggregate usage data and vehicle data in the received Policy Table snapshot is

recorded to the server's database. Typically Usage and Error Counts, Device Data,

and Module Meta contain data to be recorded.

9. A Policy Table update is created based on the received Policy Table snapshot. Note

that only applications listed in the policy snapshot will be included in the update. In

addition, if the consumer friendly messages version number is lower than the

version available on the server, then the updated consumer friendly messages will

also be included in the policy update.

10. Then the Policy Table update is, optionally, encrypted using an asynchronous key

from the module record we previously looked up.

11. Finally the Policy Table update is returned in the response to the policy update

request.

12. The mobile library then forwards the server's response to SDL Core using a

SystemRequest RPC message.

13. After being received byCore the response body, if encrypted, is decrypted using an

asymmetric key. If the body cannot be decrypted, then the data is not from a trusted

source and an error is returned to the mobile library using a

SystemRequestResponse RPC.

https://sdl-devportal-media-production.s3.amazonaws.com/policy-table/module-config
https://sdl-devportal-media-production.s3.amazonaws.com/policy-table/module-config
https://sdl-devportal-media-production.s3.amazonaws.com/policy-table/usage-and-errors
https://sdl-devportal-media-production.s3.amazonaws.com/policy-table/device-data
https://sdl-devportal-media-production.s3.amazonaws.com/policy-table/module-meta

14. The Policy Table update is applied by replacing the following fields in the local

Policy Table with the fields from the Policy Table update: module config, functional

groupings, and application policies. In addition, if the consumer friendly messages

section of the Policy Table update contains a messages subsection, then the entire

consumer friendly messages portion of the local Policy Table will be replaced with

the values from the Policy Table update.

15. If the response is valid and everything updates ok, then success is returned to the

mobile library using a SystemRequestResponse RPC.

The SDL Policy Server helps manage functional groups for the user. Using the UI, groups

of permissions can be easily created and tested. Each functional group represents a

collection of permissions that should be granted together when incoming application

requests sets of permissions. How these apps get the correct functional groups is

another part of the problem, and the SDL Policy Server automatically handles that for the

user.

An application must be granted its permissions in order for functional groups to be

assigned to it. An application is granted permissions if that application version's approval

state is in STAGING or in ACCEPTED, and the difference between the states is whether

that application's permissions are granted when using only the staging policy table or

when using both staging and production policy tables.

Incoming applications will request specific permissions (ex. Alert, Show, speed, gps) in a

certain HMI level. The permission requested and the HMI level requested must both be

present in a functional group for that functional group to be eligible for being granted to

the user. For every permission that is granted by an application, the server will search

through all functional groups to find ones matching that permission and HMI level. If there

is a match found, that functional group and all other permissions found in that group will

be granted to the user.

About

Factors

https://sdl-devportal-media-production.s3.amazonaws.com/policy-table/module-config
https://sdl-devportal-media-production.s3.amazonaws.com/policy-table/functional-groupings
https://sdl-devportal-media-production.s3.amazonaws.com/policy-table/application-policies
https://sdl-devportal-media-production.s3.amazonaws.com/policy-table/consumer-friendly-messages

Any functional group that is checked to be granted to all applications by default will

automatically be given to all applications that are not blacklisted.

Any functional group that is checked to be granted to all applications prior to the user

accepting SDL data consent will automatically be given to all applications that are not

blacklisted.

Proprietary functional group are to be manually assigned to applications in review.

Applications requesting widget management privileges will be given functional groups that

have the corresponding checkbox checked.

Applications requesting administrator privileges will be given functional groups that have

the corresponding checkbox checked.

Applications requesting at least one service provider type will be given functional groups

that have the corresponding checkbox checked.

When using the staging policy table, the functional groups that are available for

assignment will be the same functional groups seen in the Functional Groups UI menu in

STAGING mode. Similarly, the production policy table uses the functional groups seen in

PRODUCTION mode.

An application comes in requesting permissions for the vehicle data gps in HMI_BACK

GROUND . The application's approval state is in ACCEPTED.

The functional groups in STAGING mode include the following:

1. Contains gps in HMI levels FULL, LIMITED, BACKGROUND. Contains speed in HMI level

FULL

2. Contains gps in HMI levels FULL, LIMITED, BACKGROUND. Contains rpm in HMI level

FULL

The functional groups in PRODUCTION mode include the following:

1. Contains gps in HMI levels FULL, LIMITED. Contains speed in HMI level FULL

2. Contains gps in HMI levels FULL, LIMITED, BACKGROUND. Contains rpm in HMI level

FULL

Example

If the STAGING policy table is requested, the application is allowed permissions because

the approval state is ACCEPTED. It will potentially receive functional groups in STAGING

mode. It gets functional group #1 and #2 because both contain the requested gps

permission in HMI_BACKGROUND . It also gets speed in HMI level FULL and rpm in

HMI level FULL.

If the PRODUCTION policy table is requested, the application is allowed permissions

because the approval state is ACCEPTED. It will potentially receive functional groups in

PRODUCTION mode. It gets functional group #2 because only #2 contains the requested

gps permission in HMI_BACKGROUND . It also gets rpm in HMI level FULL. If the

approval state was STAGING, it would only get the default functional groups, and there are

none in this case.

The Policy Server uses a PostgreSql database to store, retrieve, and update information.

All scripts for the initial data migration are located in the migrations folder. The scripts

necessary to build or reset the database are found there. Ensure that your policy server

has been updated to have the latest migrations. If new migrations exist, they will be run on

startup.

Any action that generates newly created or updated data, such as modifying a consumer

message, will first generate a SQL statement to execute the desired query. The Policy

Server generates these statements with the npm module sql-bricks-postgres.

PostgreSQL

Migrations

Database Alterations

https://www.postgresql.org/about/
https://www.npmjs.com/package/sql-bricks-postgres

