
SDL Core Guides
Document current as of 12/15/2023 02:19 PM.

Here you will find guides on how to set up SDL Core, integrate an HMI, and how to use

various features in the project.

Install and Run SDL Core

INI Configuration

Multiple Transports Configuration

SDL Core and HMI Communication

Developing The HMI UI

Integrating Vehicle Data

Overview

Table of Contents

Getting Started

Integrating Your HMI

Migrating to Newer SDL Versions

https://sdl-devportal-media-production.s3.amazonaws.com/getting-started/install-and-run/
https://sdl-devportal-media-production.s3.amazonaws.com/getting-started/ini-configuration/
https://sdl-devportal-media-production.s3.amazonaws.com/getting-started/multiple-transports-configuration/
https://sdl-devportal-media-production.s3.amazonaws.com/integrating-your-hmi/sdl-core-and-hmi-communication/
https://sdl-devportal-media-production.s3.amazonaws.com/integrating-your-hmi/developing-the-hmi-ui/
https://sdl-devportal-media-production.s3.amazonaws.com/integrating-your-hmi/vehicle-data/
https://sdl-devportal-media-production.s3.amazonaws.com/

Migrating SDL Core 6.1 to 7.0

Migrating SDL Core 7.0 to 7.1

Migrating SDL Core 7.1 to 8.0

Migrating SDL Core 8.0 to 8.1

Web Engine App Support

Transport Manager

Resume Controller

Security Manager

Logger

Audio and Video Streaming

App Service Guidelines

Multiple Transports

Remote Control

RPC Encryption

Service Status Update

Smart Objects

Frequently Asked Questions

Doxygen Inline Documentation

Developer Documentation

Feature Documentation

FAQ

Doxygen

Installation

https://sdl-devportal-media-production.s3.amazonaws.com/migrating-to-newer-sdl-versions/migrating-sdl-core-61-to-70/
https://sdl-devportal-media-production.s3.amazonaws.com/migrating-to-newer-sdl-versions/migrating-sdl-core-70-to-71/
https://sdl-devportal-media-production.s3.amazonaws.com/migrating-to-newer-sdl-versions/migrating-sdl-core-71-to-80/
https://sdl-devportal-media-production.s3.amazonaws.com/migrating-to-newer-sdl-versions/migrating-sdl-core-80-to-81/
https://sdl-devportal-media-production.s3.amazonaws.com/developer-documentation/web-engine-app-support/
https://sdl-devportal-media-production.s3.amazonaws.com/developer-documentation/transport-manager/
https://sdl-devportal-media-production.s3.amazonaws.com/developer-documentation/resumecontroller/
https://sdl-devportal-media-production.s3.amazonaws.com/developer-documentation/security-manager/
https://sdl-devportal-media-production.s3.amazonaws.com/developer-documentation/logger/
https://sdl-devportal-media-production.s3.amazonaws.com/feature-documentation/audio-and-video-streaming/
https://sdl-devportal-media-production.s3.amazonaws.com/feature-documentation/app-service-guidelines/
https://sdl-devportal-media-production.s3.amazonaws.com/feature-documentation/multiple-transports/
https://sdl-devportal-media-production.s3.amazonaws.com/feature-documentation/remote-control/
https://sdl-devportal-media-production.s3.amazonaws.com/feature-documentation/rpc-encryption/
https://sdl-devportal-media-production.s3.amazonaws.com/feature-documentation/service-status-update/
https://sdl-devportal-media-production.s3.amazonaws.com/feature-documentation/smart-objects/
https://sdl-devportal-media-production.s3.amazonaws.com/faq/
https://sdl-devportal-media-production.s3.amazonaws.com/doxygen-inline-documentation/

A quick guide to installing, configuring, and running an instance of SDL Core on a Linux OS

(default environment is Ubuntu 20.04 LTS).

The dependencies for SDL Core vary based on the configuration. You can change SDL

Core's build configuration in the top level CMakeLists.txt. We have defaulted this file to a

configuration which we believe is common for people who are interested in getting up and

running quickly, generally on a Linux VM.

The default dependencies for SDL Core can be installed with the following command:

sudo apt-get install git cmake build-essential sqlite3 libsqlite3-dev libssl-dev
libssl1.1 libusb-1.0-0-dev libudev-dev libgtest-dev libbluetooth3 libbluetooth-dev bluez-
tools libpulse-dev python3-pip python3-setuptools python3-wheel python

To get the source code of SDL Core, clone the git repository like so:

git clone https://github.com/smartdevicelink/sdl_core

Before building for the first time, there are a few commands that need to be run in the

source folder to initialize the project:

cd sdl_core
git submodule init
git submodule update

Dependencies

Clone SDL Core and Submodules

https://github.com/smartdevicelink/sdl_core

CMake is used to configure your SDL Core build before you compile the project, this is

where you can enable or disable certain features such as logging. The latest list of CMake

configuration options can be found in the root CMake file of the project, located at

sdl_core/CMakeLists.txt. Listed below are the possible configurations for these options,

default values are bolded.

O P T I O N V A L U E (S) D E P E N D E N C I E S D E S C R I P T I O N

CMake Build Configuration

TRANSP ORT OP TIONS

BUILD_BT_SUPPOR

T
ON/OFF

BlueZ (packages:

libbluetooth3,

libbluetooth-dev,

bluez-tools)

Enable/Disable

bluetooth transport

support via BlueZ

BUILD_USB_SUPPO

RT
ON/OFF

libusb (packages:

libusb-1.0-0-dev,

libudev-dev)

Enable/Disable

USB transport

support via libusb

BUILD_CLOUD_APP

_SUPPORT
ON/OFF

Boost (included in

project)

Enable/Disable SDL

Cloud application

support via boost

websocket

transport

FEATU RE SU P P ORT OP TIONS

https://github.com/smartdevicelink/sdl_core/blob/master/CMakeLists.txt

O P T I O N V A L U E (S) D E P E N D E N C I E S D E S C R I P T I O N

EXTENDED_MEDIA

_MODE
ON/OFF

GStreamer,

PulseAudio

(packages: libpulse-

dev)

Enable/Disable

audio pass thru via

PulseAudio mic

recording. When

this option is

disabled, Core will

emulate audio

pass thru by

sending a looped

audio file.

ENABLE_SECURITY ON/OFF
OpenSSL (packages:

libssl-dev)

Enable/Disable

support for secured

SDL protocol

services

EXTENDED_POLIC

Y
HTTP N/A

HTTP (simplified)

Policy flow. OnSy
stemRequest is

sent with HTTP

RequestType to

initiate a policy

table update. The

HMI is not involved

in the PTU process

in this mode,

meaning that

policy table

encryption is not

supported.

O P T I O N V A L U E (S) D E P E N D E N C I E S D E S C R I P T I O N

EXTENDED_POLIC

Y
PROPRIETARY N/A

Default Policy flow,

PROPRIETARY

RequestType.

Simplified policy

feature set (no user

consent,

encryption/decrypti

on only available

via HMI)

EXTENDED_POLIC

Y

EXTERNAL_PROPRIET

ARY

packages: python-pip,

python-dev (If using

the included sample

policy manager, which

is automatically

started by core.sh
by default)

Full Policy flow,

PROPRIETARY

RequestType. Full-

featured policies,

along with support

for handling

encryption/decrypti

on via external

application

DEV ELOP MENT/DEBU G OP TIONS

O P T I O N V A L U E (S) D E P E N D E N C I E S D E S C R I P T I O N

ENABLE_LOG ON/OFF
log4cxx (included in

project)/boost logger

Enable/Disable

logging tool. Logs

are stored in <sdl_
build_dir>/bin/S
martDeviceLink
Core.log.

LOGGER_NAME LOG4CXX
log4cxx (included in

project)

Build with the

apache log4cxx

logger. Log

properties can be

configured in <sdl
_build_dir>/bin/
log4cxx.propert
ies

LOGGER_NAME BOOST boost logger

Build with the

boost logger

library. Log

properties can be

configured in <sdl
_build_dir>/bin/
boostlogconfig.
ini

BUILD_TESTS ON/OFF
GTest (packages:

libgtest-dev)

Build unit tests (run

with make test)

USE_COTIRE ON/OFF N/A

Option to use cotire

to speed up the

build process when

BUILD_TESTS is

ON.

https://github.com/sakra/cotire

O P T I O N V A L U E (S) D E P E N D E N C I E S D E S C R I P T I O N

After installing the appropriate dependencies for your build configuration, you can run cm

ake with your chosen options.

Begin by creating a build folder outside of SDL Core source folder, for example:

cd ..
mkdir sdl_build
cd sdl_build

From the build folder you created, run cmake {path_to_sdl_core_source_folder} with any

flags that you want to change in the format of -D<option-name>=<value> , for example:

cmake ../sdl_core

From there, you can build and install the project, run the following commands in your build

folder:

USE_GOLD_LD ON/OFF N/A

Option to use gold

linker in place of

gnu ld to speed up

the build process.

ENABLE_SANITIZE ON/OFF N/A

Option to compile

with -fsanitize=a
ddress for fast

memory error

detection

Building

make install-3rd_party
make install_python_dependencies
make install

For a faster build, you can run the last command with the -j flag, which will enable

multithreaded building:

make -j `nproc` install

Once SDL Core is compiled and installed, you can start it using the provided start script in

the newly created bin folder under your build folder directory

cd bin/
./start.sh

If you get a linking error when running Core, the following command may be needed to

resolve it:

sudo ldconfig

In addition, you can run SDL Core as a background process using the provided daemon

script. This is useful for controlling the lifecycle of Core when creating automated scripts

for your system.

To start SDL Core in the background:

Start SDL Core

./core.sh start

To restart SDL Core while it is running in the background:

./core.sh restart

To stop SDL Core while it is running in the background:

./core.sh stop

To kill any lingering instances of SDL Core (including those that were not started using the

script):

./core.sh kill

The following steps can be used to build the develop branch of SDL Core from scratch

with the EXTERNAL_PROPRIETARY policy mode enabled:

If Core was built with EXTENDED_POLICY=EXTERNAL_PROPRIETARY , the

core.sh script will automatically start the provided sample policy manager

along with Core. To disable this, run the daemon script as such:

./core.sh <command> false

NOT E

Example - EXTERNAL_PROPRIETARY
build

To perform a completely clean build after previously building SDL Core,

delete the existing build folder before running these steps:

rm -rf sdl_build

NOT E

The following commands only need to be run on the first installation of the project

sudo apt-get install git cmake build-essential sqlite3 libsqlite3-dev libssl-dev
libssl1.1 libusb-1.0-0-dev libudev-dev libgtest-dev libbluetooth3 libbluetooth-dev bluez-
tools libpulse-dev python3-pip python3-setuptools python3-wheel python
git clone https://github.com/smartdevicelink/sdl_core

cd sdl_core
git checkout develop
git pull
git submodule init
git submodule update

cd ..
mkdir sdl_build
cd sdl_build
cmake ../sdl_core -DEXTENDED_POLICY=EXTERNAL_PROPRIETARY
make install-3rd_party
make install_python_dependencies
make -j3 install

First Time Setup

Configuration

Installation

INI Configuration

The INI file, located at build/src/appMain/smartDeviceLink.ini after you compile and

install SDL, is where runtime options can be configured for your instance of SDL Core.

Descriptions for each of these configurations are found in the file itself.

The INI file is structured as follows:

[section1_name]

; property1 description
property1_name = property1_value
; property2 description
property2_name = property2_value
...

[section2_name]

; property1 description
property1_name = property1_value
; property2 description
property2_name = property2_value
...

...

HMI - Settings relating to the HMI connection, including server and port information.

MEDIA MANAGER - Settings related to media features (audio/video streaming and

audio pass thru). Several of these options are described in more detail in the

Sections

As the guides progress, some of these sections will be discussed in greater

detail.

NOT E

https://github.com/smartdevicelink/sdl_core/blob/master/src/appMain/smartDeviceLink.ini

Audio/Video Streaming Guide.

GLOBAL PROPERTIES - Settings to define default values to set when ResetGlobalPro

perties is sent by a mobile application.

FILESYSTEM RESTRICTIONS - Settings to define limits for file operations by

applications in the NONE HMI Level.

AppInfo - Settings for where to store application info for resumption purposes.

Security Manager - Only used when built with ENABLE_SECURITY=ON. Settings to

define how Core establishes secure services, as well as which services need to be

protected.

Policy - Options for policy table storage and usage.

TransportManager - Configuration options for each transport adapter, including

system information to be sent to SDL applications.

CloudAppConnections - Only used when built with

BUILD_CLOUD_APP_SUPPORT=ON. Settings for connecting to cloud applications.

ProtocolHandler - SDL Protocol-level options, including the protocol version used by

Core.

SDL5 - SDL Protocol options which were introduced with protocol version 5, allows

for specifying invidividual MTUs by service type.

ApplicationManager - Miscellaneous settings related to application handling.

Resumption - Options regarding application resumption data storage and handling.

TransportRequiredForResumption - Options for restricting HMI level resumption

based on app type and transport (defined in SDL-0149).

LowBandwidthTransportResumptionLevel - Extended options for restricting

resumption, where exceptions can be defined for the rules in TransportRequiredForR

esumption (defined in SDL-0149).

MultipleTransports - Settings related to the Multiple Transports feature, allowing an

application to connect over two transports at the same time (defined in SDL-0141).

ServicesMap - Settings for restricting Audio and Video services by transport, to be

used in conjunction with the MultipleTransports section (defined in SDL-0141).

AppServices - Configuration options related to the app services feature (defined in

SDL-0167).

RCModuleConsent - Settings regarding storage of RC module consent records.

Modifying the configuration

https://sdl-devportal-media-production.s3.amazonaws.com/feature-documentation/audio-and-video-streaming/
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0149-mt-registration-limitation.md
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0149-mt-registration-limitation.md
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0141-multiple-transports.md
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0141-multiple-transports.md
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0167-app-services.md

To modify the runtime configurations for your instance of SDL Core:

1. Modify the build/src/appMain/smartDeviceLink.ini file

2. Re-run make install in the build directory

The Multiple Transports feature allows apps connected to SDL Core to start another

connection over a different transport for certain services. For example, an app connected

over Bluetooth can use WiFi as a Secondary Transport for video streaming. This guide will

walk you through how to configure the Multiple Transports feature using the smartDevice

Link.ini file.

Modify the following lines in smartDeviceLink.ini .

To enable Multiple Transports in Core:

[MultipleTransports]
...
MultipleTransportsEnabled = true

SDL must be started/re-started after the smartDeviceLink.ini file is

modified for changes to take effect.

NOT E

Setting Up Multiple Transports

Initial Setup

To set the available Secondary Transport types for a given Primary Transport:

[MultipleTransports]
...
SecondaryTransportForBluetooth = WiFi
;SecondaryTransportForUSB =
;SecondaryTransportForWiFi =

Modify the services map in smartdeviceLink.ini to restrict video and audio streaming

services to specific transport types.

[ServicesMap]
...
AudioServiceTransports = TCP_WIFI
VideoServiceTransports = TCP_WIFI, AOA_USB

Transports are listed in preferred order

If a transport is not listed, then the service is not allowed to run on that transport

If the AudioServiceTransports/VideoServiceTransports line is omitted, the

corresponding service will be allowed to run on the Primary Transport

The values which can be used in the SecondaryTransportFor configuration

are WiFi , Bluetooth and USB

NOT E

Audio and Video Streaming

Secondary Transport Types

S T R I N G T Y P E D E S C R I P T I O N

For more information on how the Multiple Transports feature works, see the Feature

Documentation.

IAP_BLUETOOTH Bluetooth iAP over Bluetooth

IAP_USB_HOST_MODE USB
iAP over USB, and the phone

is running as host

IAP_USB_DEVICE_MODE USB
iAP over USB, and the phone

is running as device

IAP_USB USB

iAP over USB, and Core

cannot distinguish between

Host Mode and Device Mode

IAP_CARPLAY WiFi iAP over Carplay wireless

SPP_BLUETOOTH Bluetooth
Bluetooth SPP, either legacy

SPP or SPP multiplexing

AOA_USB USB Android Open Accessory

TCP_WIFI WiFi TCP connection over Wi-Fi

Resources

SDL Core and HMI
Communication

https://sdl-devportal-media-production.s3.amazonaws.com/feature-documentation/multiple-transports

WebSocket is the primary means of communicating with the SDL Core component from

the vehicle. In a basic example, an HTML5 HMI would use a native WebSocket library to

communicate with SDL Core.

The HMI Adapter must:

For opening a WebSocket connection, a handshake must be performed.

Connecting HMI to SDL

Be installed on the same vehicle HU OS where SDL Core is installed, or
the HMI must be able to be networked to SDL Core and address it via a
static IP address.
Create and initialize components which are defined in the HMI_API
specification for the version of SDL Core which is running on the vehicle
HU. (For example: BasicCommunication, UI, Buttons, VR, TTS, Navigation,
VehicleInfo, RC, AppService)
Establish a separate WebSocket connection with SDL Core for each of
components defined in the HMI_API specification.
Use the appropriate corresponding connection when sending responses
and notifications to any connected component.

MUS T

Handshake

connectToSDL() {
 this.socket = new WebSocket("ws://localhost:8087")
 this.socket.onopen = this.onopen.bind(this)
 this.socket.onclose = this.onclose.bind(this)
 this.socket.onmessage = this.onmessage.bind(this)
}

1. Client/Server relationship

SDL Core is the Server
The HMI is the Client

2. Host

SDL Core is listening on 127.0.0.1:8087 by default
The IP and port are configurable in SDL Core's smartDeviceLink.ini file

3. WebSocket Protocol Version 13 is used by SDL Core

NOT E

Example: Connecting to SDL Core with Javascript

SDL Core accepts multiple WebSocket clients and the HMI can choose to

connect each interface to SDL Core via individual WebSocket connections.

NOT E

Component Registration

The HMI must register each component which can communicate with SDL Core using the

following RPC format.

K E Y V A L U E I N F O

Example Request:

{
 "jsonrpc": "2.0",
 "id": 100,
 "method": "MB.registerComponent",
 "params": {
 "componentName": "BasicCommunication"
 }
}

REQUEST

id A multiple of 100 (100, 200, 300, ...)

jsonrpc
"2.0" - constant for all messages between SDL

Core and the HMI

method

"MB.registerComponent" - the request is

assigned to SDL Core's MessageBroker where

the component name will be associated with

the socket ID. Further, SDL Core will send

messages related to the named component

over the corresponding connection

componentName

The name of the component being registered.

Must correspond to the appropriate component

name described in the current guidelines.

The possible componentNames are:

BasicCommunication - Generic interface containing RPCs related to HMI

management. Functionality includes managing the app and device lists, opening and

closing apps, SDL life cycle updates, getting system info, and system requests. This

interface also contains some other one off RPCs like DialNumber and GetSystemTi

me.

UI - Interface responsible for RPC events and information made visible to the user.

Functionality includes getting the display capabilities, changing the app template,

managing the in app menus, popups, touch events, and changing the language. It

also includes the PerformAudioPassThru RPC used to capture user's speech.

Buttons - Interface responsible for RPC events and information related to hard and

soft buttons in the vehicle. Includes OnButtonPress and OnButtonEvent.

VR - Interface responsible for RPC events and information related to voice

recognition. Functionality includes managing voice commands, creating a PerformIn

teraction with voice commands, and notifying SDL Core when a voice recognition

session begins and ends.

TTS - Interface responsible for RPC events and information related to text to speech

capabilities. Functionality includes speaking text to users, cancelling spoken text,

and notifying SDL Core when a text to speech session begins and ends.

Navigation - Interface responsible for RPC events and information related to

navigation, such as audio and video streaming or interacting with the embedded

navigation system by updating way points and the turn list. Includes StartStream and

GetWayPoints.

VehicleInfo - Interface responsible for RPC events and information related to vehicle

data. Functionality includes retrieving the current diagnostic codes and messages,

and reading vehicle type and data.

RC - Interface responsible for RPC events and information related to the Remote

Control Feature. This includes interacting with interior vehicle data such as seat,

light, or radio settings within the vehicle.

AppService - Interface responsible for RPC events and information related to the

App Services Feature. This includes publishing and activating an app service, getting

app service data, performing an app service interaction, and getting app service

consent or records.

RESPONSE

https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0065-remote-control.md
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0167-app-services.md

SDL provides a JSON Response

K E Y V A L U E I N F O

Example Response:

{
 "id": 100,
 "jsonrpc": "2.0",
 "result": 1000
}

Once the components are registered, the HMI must notify SDL Core that it is ready to

begin further communication using the BasicCommunication.OnReady notification.

Upon receipt of the OnReady notification, SDL Core will begin checking the availability of

the different HMI components via a chain of requests:

UI.IsReady - The display availability

VR.IsReady - The voice recognition module availability

TTS.IsReady - The text to speech module availability

Navigation.IsReady - Navigation engine availability

VehicleInfo.IsReady - Indicates whether vehicle information can be collected and

provided

RC.IsReady - Indicates whether vehicle RC modules are present and ready to

communicate with SDL Core

id The value from the corresponding request

result
Value of id multiplied by 10. HMI can treat this

as a successful registration

Component Readiness Requests

https://smartdevicelink.com/en/docs/hmi/master/basiccommunication/onready/

S EQU EN C E D IA GRA M

IsReady Sequence

In the case of a WebSocket connection, RPCs to each of the components

are sent within a separate WebSocket connection.

NOT E

View Diagram

Communicating the current version of the HMI integration (CCPU) is needed for SDL Core

to know when to request an update to the HMI's capabilities that may have changed since

the previous software version. Core will not mark the HMI as cooperating until this

response is sent by the HMI.

Example Response:

{
 "jsonrpc": "2.0",
 "id": rpc.id,
 "result": {
 "method": "BasicCommunication.GetSystemInfo",
 "code": 0,
 "ccpu_version": "0.0.1",
 "language": "EN-US",
 "wersCountryCode": "WAEGB",
 }
}

The HMI must also register for notifications individually using the following RPC format.

If the response to any of the component IsReady requests contains {"avail

able": false} , SDL Core will no longer communicate with that component.

NOT E

Respond to
BasicCommunication.GetSystemInfo

Registering for Notifications

{
 "jsonrpc": "2.0",
 "id": -1,
 "method": "MB.subscribeTo",
 "params": {
 "propertyName": <NotificationName>
 }
}

"propertyName" is the name of the notification the HMI will receive from Core. Some

examples include:

Buttons.OnButtonSubscription

BasicCommunication.OnAppRegistered

BasicCommunication.OnAppUnregistered

Navigation.OnVideoDataStreaming

SDL.OnStatusUpdate

Core's MessageBroker will not route notifications to the HMI unless the notifications are

subscribed to.

The HMI must:

Register its components
Send the OnReady notification
Respond to each of the IsReady RPCs
Register for the notifications it would like to receive

The above steps should only occur once per life cycle of SDL Core

MUS T

Communicating with SDL Core

This section describes the message structure for communication between your HMI and

SDL Core.

From this point forward the actors for exchanging messages will be considered:

- Client - can send requests and notifications

- Server - can provide responses to requests from a Client and send notifications

An RPC call is represented by sending a Request object to a Server. The Request object

has the following properties

P R O P E R T Y D E S C R I P T I O N

Request

id

An identifier established by the Client. This

value must be of unsigned int type in the

frames of communication between your HMI

and SDL Core. The value should never be null. If

"id" is not included the message is assumed to

be a notification and the receiver should not

respond.

jsonrpc

A string specifying the version of JSON RPC

protocol being used. Must be exactly "2.0"

currently in all versions of SDL Core.

method

A String containing the information of the

method to be invoked. The format is [compo
nentName].[methodName] .

params

A structured object that holds the parameter

values to be used during the invocation of the

method. This property may be omitted.

{
 "id": 125,
 "jsonrpc": "2.0",
 "method": "Buttons.GetCapabilities"
}

{
 "id": 92,
 "jsonrpc": "2.0",
 "method": "UI.Alert",
 "params": {
 "alertStrings": [
 {
 "fieldName": "alertText1",
 "fieldText": "WARNING"
 },
 {
 "fieldName": "alertText2",
 "fieldText": "Adverse Weather Conditions Ahead"
 }
],
 "duration": 4000,
 "softButtons": [
 {
 "type": "TEXT",
 "text": "OK",
 "softButtonID": 697,
 "systemAction": "STEAL_FOCUS"
 }
],
 "appID": 8218
 }
}

Example Requests

REQU EST WITH NO PARAMETERS

REQU EST WITH PARAMETERS

A notification is a Request object without an id property. For all the other properties, see

the Request section above.

The receiver should not reply to a notification, i.e. no response object needs to be returned

to the client upon receipt of a notification.

{
 "jsonrpc": "2.0",
 "method": "UI.OnReady"
}

Notification

Example Notifications

NOTIFIC ATION WITH NO PARAMETERS

NOTIFIC ATIONS WITH PARAMETERS

{
 "jsonrpc": "2.0",
 "method": "BasicCommunication.OnAppActivated",
 "params": {
 "appID": 6578
 }
}

{
 "jsonrpc": "2.0",
 "method": "Buttons.OnButtonPress",
 "params": {
 "mode": "SHORT",
 "name": "OK"
 }
}

On receipt of a request message, the server must reply with a Response. The Response is

expressed as a single JSON Object with the following properties.

Response

An RPC must be sent in result format for its parameters to be passed to

mobile.

MUS T

P R O P E R T Y D E S C R I P T I O N

{
 "id": 167,
 "jsonrpc": "2.0",
 "result": {
 "code": 0,
 "method": "UI.Alert"
 }
}

id

Required property which must be the same as

the value of the associated request object. If

there was an error in detecting the id in the

request object, this value must be null.

jsonrpc Must be exactly "2.0"

result

The result property must contain a method
field which is the same as the corresponding

request and a corresponding result code should

be sent in the result property. The result

property may also include additional properties

as defined in the HMI API.

Example Responses

RESP ONSE WITH NO PARAMETERS

RESP ONSE WITH PARAMETERS

https://smartdevicelink.com/en/docs/hmi/master/common/enums/#result
https://github.com/smartdevicelink/sdl_core/blob/master/src/components/interfaces/HMI_API.xml

{
 "id": 125,
 "jsonrpc": "2.0",
 "result": {
 "capabilities" : [
 {
 "longPressAvailable" : true,
 "name" : "PRESET_0",
 "shortPressAvailable" : true,
 "upDownAvailable" : true
 },
 {
 "longPressAvailable" : true,
 "name" : "TUNEDOWN",
 "shortPressAvailable" : true,
 "upDownAvailable" : true
 }
],
 "presetBankCapabilities": {
 "onScreenPresetsAvailable" : true
 },
 "code" : 0,
 "method" : "Buttons.GetCapabilities"
 }
}

The error object has the following members:

Error Response

An RPC must be sent in error format for its message to be passed to mobile.

MUS T

P R O P E R T Y D E S C R I P T I O N

{
 "id": 103,
 "jsonrpc": "2.0",
 "error": {
 "code": 13,
 "message": "One of the provided IDs is not valid",
 "data": {
 "method": "VehicleInfo.GetDTCs"
 }
 }
}

id

Required to be the same as the value of "id" in

the corresponding Request object. If there was

an error in detecting the id of the request object,

then this property must be null.

jsonrpc Must be exactly "2.0"

error

The error field must contain a code field with

the result code value that indicates the error

type that occurred, a data field with the meth
od from the original request, and optionally a

message field containing the string that

provides a short description of the error.

Examples

RESP ONSE WITH ERROR

https://smartdevicelink.com/en/docs/hmi/master/common/enums/#result

{
 "id": 103,
 "jsonrpc": "2.0",
 "error": {
 "code": 21,
 "message": "Requested image was not found.",
 "data": {
 "method": "UI.Alert"
 }
 }
}

As of SDL Core 7.0, SDL Core has the ability to cache certain HMI capabilities and restore

them each ignition cycle. On the first time SDL Core is started, or when the HMI's CCPU

version changes, SDL Core will request the following messages to the HMI:

UI.GetLanguage

UI.GetSupportedLanguage

UI.GetCapabilities

RC.GetCapabilities

VR.GetLanguage

VR.GetSupportedLanguages

VR.GetCapabilities

TTS.GetLanguage

TTS.GetSupportedLanguages

TTS.GetCapabilities

Buttons.GetCapabilities

VehicleInfo.GetVehicleType

RESP ONSE WITH WARNINGS AND MESSAGE

Required Get Capability Responses

Greater detail about each of these HMI RPCs can be found in the HMI API Reference

Documentation.

Before starting the development of the SDL HMI user interface, there are a few RPC

prerequisites that are required.

The minimum prerequisites to connect your SDL compatible user interface are:

1. Establish an HMI websocket connection to SDL Core.

2. Register the following components: BasicCommunication, Buttons, and UI.

3. Send the BasicCommunication.OnReady notification to SDL Core.

4. Respond to the IsReady request for each registered component.

5. Subscribe to the following Core notifications:

BasicCommunication.OnAppRegistered

BasicCommunication.OnAppUnregistered

BasicCommunication.OnPutFile

Buttons.OnButtonSubscription

When there are changes to the list of registered apps, Core will send a BasicCommunicati

on.UpdateAppList RPC request to the HMI. This request contains an array of information

If your HMI implementation registers a component (UI, RC, VR, etc), the HMI

must respond to the applicable capability requests from Core.

NOT E

Creating the HMI UI Component

Creating the App List

https://smartdevicelink.com/en/docs/hmi/master/overview/

for all connected and pending applications. The HMI should use the information provided

in this request to update its internal app list state and app list display.

For each app listed in the UpdateAppList request, the HMI's app list view should show a

button that includes the app's name and icon.

If an app is disconnected or unregistered, Core will send an UpdateAppList request to

the HMI with that application omitted from the app list array. The HMI should make sure

its app list is always up to date, and only show applications that were included in the most

recent UpdateAppList request.

Activating an Application

User Selection

When the user selects an application from the app list, a request should be made to bring

this app to the foreground (this is called "activating" the application). The first step

required by the HMI when an application is selected is to send a SDL.ActivateApp

request to Core. When Core responds with a successful SDL.ActivateApp response, the

HMI can switch views from the app list to the app's default template.

If the SDL.ActivateApp response returns with the parameter isPermissionsConsentNee

ded = true , the HMI should send a SDL.GetListOfPermissions request. This happens

when the activating app requires permissions that the user must provide consent for. For

example, if an app wants to access vehicle data, an SDL policy configuration might require

the user to provide consent before the app can collect this information.

After receiving the list of permissions for the app, the HMI should show the user the Per

missionItem name and status for each requested permission. If available, the HMI should

also show a consent prompt that contains a user friendly message describing what the

user is agreeing to. The user should have the ability to enable or disable each permission

item. If any permission changes are made by the user, these updates should be

communicated to Core via the SDL.OnAppPermissionConsent notification.

The default template for an app should be used if the app has not requested

to use a specific template via the UI.Show.templateConfiguration

parameter.

The default template for media apps is MEDIA , and the default template for

all other apps is NON-MEDIA .

You can check if a given app is a media application using that app's isMedia

Application parameter, sent in the BasicCommunication.UpdateAppList

request.

NOT E

User Consent

If an app is disconnected from SDL Core and reconnects within a specified time limit, Core

will try to resume the app into the same HMI state the app was in before it was

disconnected. The HMI should be prepared to handle a BasicCommunication.ActivateAp

p request from SDL Core, in which case the HMI should return the app into the requested

state (or respond with an error if unable to). For example, if the requested HMI level is F

ULL , the HMI should activate the app and put that app's template into view.

Refer to the following resumption sequence diagram

S EQU EN C E D IA GRA M

Resumption after ignition cycle

Permissions are managed by SDL Core's policy table. Refer to the SDL

Overview Policy Guide.

OEM defined consent prompts can be retrieved from the policy table via a B

asicCommunication.GetUserFriendlyMessage RPC.

NOT E

Resumption

View Diagram

https://smartdevicelink.com/en/guides/sdl-overview-guides/policies/overview/
https://smartdevicelink.com/en/guides/sdl-overview-guides/policies/policy-fields/#consumer-friendly-messages

When an app wants to display information on the head unit, the HMI will receive a UI.Sho

w request. The UI.Show request provides the HMI with the text, soft button information,

and images an app has requested to display. The HMI should store the information in

these requests for when an app is activated and put into full. UI.Show requests are not

always sent when an app is activated and in view.

The following graphic shows what should happen when the HMI receives new text field

and graphic information:

BasicCommunication.ActivateApp is used differently than the previously

described SDL.ActivateApp , but the two can be easily confused.

SDL.ActivateApp is a request originating from the HMI and should be sent

when the user selects an app to activate.

BasicCommunication.ActivateApp is a request originating from SDL Core

to move an app into a specific state. It is generally received by the HMI

during app resumption.

NOT E

Displaying Information

The HMI should merge the information in UI.Show requests with existing

show information received for an app.

For example, if the HMI receives a request with the text parameter mainfiel

d1 and a second request with the text parameter mainfield2 , the HMI

should display both mainfield1 and mainfield2 .

If an app wants to clear a text field that it sent in a previous UI.Show

request, SDL Core will send the HMI a request with that parameter's value

set to an empty string ("").

NOT E

Media Layout Elements

Apps which use the MEDIA template have access to a few specific UI elements that are

not available to non-media apps.

The following buttons can only be subscribed to by media apps and are generally only

available in the MEDIA template layout:

PLAY_PAUSE

SEEKLEFT

SEEKRIGHT

TUNEUP

TUNEDOWN

Media apps have access to the media timer UI element via the UI.SetMediaClockTimer

request. Similar to the UI.Show request, the HMI should keep track of the timer state for

each app separately and display the appropriate state of the timer when the app is brought

to the foreground. The HMI should react to the UI.SetMediaClockTimer request

depending on the value of the updateMode parameter:

COUNTUP: Begin counting up from startTime at the specified countRate, stopping

at endTime if provided

COUNTDOWN: Begin counting down from startTime at the specified countRate,

stopping at endTime if provided

PAUSE: Pause the existing timer at the current state, if running

RESUME: Resume the previously paused timer starting from its paused state,

counting at the specified countRate

CLEAR: Clear the existing timer state, displaying the element as it was before the

media timer was first set

Prior to RPC Spec version 5.0, the OK button name (which is available to all

apps) was used by media apps for play/pause toggling.

With the release of version 5.0, the PLAY_PAUSE button name was

introduced, allowing the HMI to have a separate OK and PLAY_PAUSE

button for media apps.

NOT E

The following graphic shows what should happen when the HMI receives a UI.SetMediaCl

ockTimer request with each of these updateMode values:

A Softbutton received from a UI.Show request should be displayed when the app is

displaying a template. A template can have a max of 8 Softbuttons . These buttons can

Implementing Soft Buttons

As of Core 8.0.0 it is important to include CUSTOM_BUTTON in the

response to Buttons.GetCapabilities so that an app may subscribe to soft

buttons.

NOT E

be of type TEXT , IMAGE , or BOTH .

The following graphic displays how Softbuttons in a UI.Show request can be displayed:

The HMI should keep an internal state of SoftButtons received by UI.Show requests,

similar to how text fields and graphics are stored. Each SoftButton has a unique ID

which must be saved by the HMI. These IDs are used in any messages sent to SDL Core

when a user interacts with a SoftButton .

The actions expected of the HMI when the user selects a SoftButton are:

HMI sends a notification UI.OnButtonEvent with buttonEventMode = DOWN when

the user presses a button.

HMI sends a notification UI.OnButtonEvent with buttonEventMode = UP when the

user releases a button.

HMI sends a notification UI.OnButtonPress with buttonPressMode = SHORT or LON

G, depending on how long the user holds the button in a down state.

SDL Core can request the HMI to change an app's template using a UI.Show request.

The following graphic demonstrates switching templates while maintaining the same text,

buttons, and graphic:

Not all HMIs support the ability to detect a button press duration, or

differentiate between an up and down button event. In this case the HMI

should make sure its ButtonCapabilities are accurately sent to Core via the

ButtonCapabilities parameter in UI.GetCapabilities .

More on HMI capabilities.

NOT E

Switching Templates

In order to specify the template to be displayed, the UI.Show request uses the template

Configuration parameter, which includes a string for the requested layout.

Using UI.Show is the preferred method because the request can be used to change the

layout of the screen and the screen contents in a single request. This helps prevent lag

and screen flashing when an app wants to change an app template.

An SDL app should only request to view templates that are supported in the HMI

Capabilities. The HMI may return a failed response to Core in the event an unsupported

template is requested.

More on HMI capabilities.

Supported Template Views

A reference list for all supported template views can be found here. This list shows

screenshots of the 15 supported template views and how their text, graphic, and soft

button components are arranged.

The defined strings for each template can be found in the PredefinedLayout enum in the

Mobile API RPC Specification.

Each application is able to maintain a list of menu commands through SDL. This in-app

menu should be made accessible from an app's template view. Please note the example

placement of the menu icon in the top right of the screenshot below.

Creating the App Menu

https://smartdevicelink.com/en/guides/sdl-overview-guides/user-interface/supported-templates/
https://smartdevicelink.com/en/guides/sdl-overview-guides/rpc-spec/#predefinedlayout

The contents of the app's menu are populated by the RPC UI.AddCommand . Each UI.Ad

dCommand received corresponds to an individual menu item. When the user selects a

menu item via the UI, the HMI should send a UI.OnCommand notification. It is best

practice to exit the menu after a user makes a selection from the list of commands.

There are some minor customization options available for the app menu. An HMI can

choose to implement the app menu in a tile view, list view, or both. If an app has a

preference for a type of menu layout, the HMI will receive a UI.SetGlobalProperties

request from SDL Core containing this preference in the menuLayout field.

SDL also supports nested submenus which can be created using the RPC UI.AddSubMen

u . If this request does not contain a parentID parameter (or parentID is 0) then the

submenu should be made accessible by the top level menu. If the request contains a par

entID , the new submenu should be added as an item to the submenu who's menuID

matches the incoming parentID .

Menu commands that are populated by UI.AddCommand with a parentID value should

be added as a menu item to the submenu who's menuID matches the incoming parentI

If the user chooses to open the menu, the HMI must send a UI.OnSystemC

ontext notification with the SystemContext enum: MENU . After the user

exits the menu, another UI.OnSystemContext notification must be sent

with the SystemContext value: MAIN .

NOT E

Several menu items can have the same menuName. It is the app developer's

responsibility to make commands clear to the user and not confusing in the

case that several commands are given the same name.

NOT E

D .

If the HMI is in a driver distraction mode, the HMI should show a maximum

of "N" menu items in a given menu, as defined by the value of the menuLen

gth driver distraction capability.

If the HMI is in a driver distraction mode, the HMI must restrict the user

from accessing nested submenus beyond "N" levels deep, as defined by the

value of the subMenuDepth driver distraction capability.

NOT E

L IST MENU EXAMP L E

TIL ES MENU EXAMP L E

SDL enables the ability to dynamically load menu items and icons to improve system

performance. In some cases an app may submit a large number of menu commands, sub

menus, and icons. Processing these assets can use a large amount of system resources.

To help mitigate performance issues, the HMI can choose when to request resources, at

which time the app can update SDL Core with the missing menu contents.

UI.OnUpdateFile is used to request missing menu icons, and UI.OnUpdateSubMenu is

used to request missing sub menu contents. These notifications can be sent to SDL Core

when the user is in close proximity to the menu items. For example, if the user opens a

menu that contains a list of submenus, the HMI may then request those submenus are

populated via AddCommand requests from mobile. Additionally, if the HMI implements a

paginated menu, the HMI may request all icons for the menu items that are on the next

page.

The HMI is free to manage these resources and delete them in case of memory issues. If

the commands or icons are needed in the future, the HMI can send the appropriate

Dynamic Menu Updating

notifications to request the menu contents be updated repeatedly from the SDL

application.

There are several RPCs which are used to display a popup or an overlay to the user.

Alert is used to display a simple popup that can contain an image, text, and buttons.

SubtleAlert is used to display a notification-style popup that can contain an image, text,

and buttons.

Implementing Popups

UI.Alert

UI.SubtleAlert

PerformInteraction is used to display a popup with contents which are displayed in a

similar way to the app menu.

UI.PerformInteraction

PerformInteraction has multiple layout types, including an on screen keyboard. SDL

currently supports the following keyboard layouts:

QWERTY

QWERTZ

AZERTY

NUMERIC

The on screen keyboard may be configured by the app to allow masking inputs and allow

an app to configure special characters. These keyboard capabilities are optional and the

HMI should communicate its capabilities to SDL Core via the KeyboardCapabilities

Struct.

Slider is used to display a popup that allows the user to enter a value via a slider input.

UI.Slider

ScrollableMessage is used to display a popup which shows a long message to the user

that requires scrolling.

It is common for an SDL UI to be integrated into an existing OEM's UI. In order for SDL

Core to work well with a head unit that has other embedded components, the HMI should

make use of the BasicCommunication.OnEventChanged notification. This notification

allows connected SDL applications to receive updates about their HMI status when a user

interacts with other components like the embedded navigation or radio.

UI.ScrollableMessage

It is important that the HMI sends SDL Core a UI.OnSystemContext

notification when displaying and closing a popup. A systemContext value

of ALERT is used when UI.Alert or UI.SubtleAlert is active, HMI_OBSC

URED is used for all other popups.

NOT E

Navigating Through the IVI

For example, if an SDL media application is active and is playing audio, then the user

switches the audio source to the embedded radio, the HMI should send SDL Core a Basic

Communication.OnEventChanged notification with eventName = AUDIO_SOURCE and i

sActive = true . This HMI notification will let the media application know that it no longer

has control of the audio source.

If the user selects the media app as the audio source again, the HMI should send the

same BasicCommunication.OnEventChanged notification, but with isActive = false .

This will indicate to SDL Core that the application has regained control of the audio.

The following gif and sequence diagram demonstrate the behavior of switching between

an SDL media app and the embedded IVI audio.

S EQU EN C E D IA GRA M

OnEventChanged Sequence Diagram

View Diagram

There are several ways that the HMI should communicate its UI capabilities to SDL Core.

When first connecting the HMI to SDL Core, SDL Core will send a UI.GetCapabilities

request (a similar GetCapabilities request is sent for every interface). The HMI's response

should include accurate information relating to its supported display capabilities, audio

pass through capabilities, soft button capabilities, and various other system capabilities

(See UI.GetCapabilities).

It is likely that the UI capabilities will be different for each template view, therefore it is

important for the HMI to send updates about its capabilities to SDL Core. For example, if

an app requests a new template configuration, after switching to that view the HMI must

send an OnSystemCapabilityUpdated notification for "systemCapabilityType": "DISPLAY

S" .

As an example, if SDL Core requests to change the layout to the MEDIA template, the O

nSystemCapabilitiesUpdated notification parameters may look something like this (taken

from the Generic HMI):

Defining the UI Capabilities

https://smartdevicelink.com/en/docs/hmi/master/ui/getcapabilities/#parameters_1
https://github.com/smartdevicelink/generic_hmi

{
 "appID":"1234",
 "systemCapability":{
 "systemCapabilityType":"DISPLAYS",
 "displayCapabilities":{
 "displayName":"GENERIC_HMI",
 "windowTypeSupported":[
 {
 "type":"MAIN",
 "maximumNumberOfWindows":1
 }
],
 "windowCapabilities":[
 {
 "windowID":0,
 "textFields":[
 {
 "name":"mainField1",
 "characterSet":"UTF_8",
 "width":500,
 "rows":1
 },
 {
 "name":"mainField2",
 "characterSet":"UTF_8",
 "width":500,
 "rows":1
 },
 {
 "name":"mainField3",
 "characterSet":"UTF_8",
 "width":500,
 "rows":1
 },
 {
 "name":"statusBar",
 "characterSet":"UTF_8",
 "width":500,
 "rows":1
 },
 {
 "name":"mediaClock",
 "characterSet":"UTF_8",
 "width":500,
 "rows":1
 },
 {
 "name":"mediaTrack",
 "characterSet":"UTF_8",
 "width":500,
 "rows":1
 },

 {
 "name":"templateTitle",
 "characterSet":"UTF_8",
 "width":50,
 "rows":1
 },
 {
 "name":"alertText1",
 "characterSet":"UTF_8",
 "width":500,
 "rows":1
 },
 {
 "name":"alertText2",
 "characterSet":"UTF_8",
 "width":500,
 "rows":1
 },
 {
 "name":"alertText3",
 "characterSet":"UTF_8",
 "width":500,
 "rows":1
 },
 {
 "name":"subtleAlertText1",
 "characterSet":"TYPE2SET",
 "width":500,
 "rows":1
 },
 {
 "name":"subtleAlertText2",
 "characterSet":"TYPE2SET",
 "width":500,
 "rows":1
 },
 {
 "name":"subtleAlertSoftButtonText",
 "characterSet":"TYPE2SET",
 "width":50,
 "rows":1
 },
 {
 "name":"menuName",
 "characterSet":"UTF_8",
 "width":500,
 "rows":1
 },
 {
 "name":"secondaryText",
 "characterSet":"UTF_8",
 "width":500,
 "rows":1
 },

 {
 "name":"tertiaryText",
 "characterSet":"UTF_8",
 "width":500,
 "rows":1
 },
 {
 "name":"menuTitle",
 "characterSet":"UTF_8",
 "width":500,
 "rows":1
 },
 {
 "name": "menuCommandSecondaryText",
 "characterSet": "UTF_8",
 "width": 500,
 "rows": 1
 },
 {
 "name": "menuCommandTertiaryText",
 "characterSet": "UTF_8",
 "width": 500,
 "rows": 1
 },
 {
 "name": "menuSubMenuSecondaryText",
 "characterSet": "UTF_8",
 "width": 500,
 "rows": 1
 },
 {
 "name": "menuSubMenuTertiaryText",
 "characterSet": "UTF_8",
 "width": 500,
 "rows": 1
 }
],
 "imageFields":[
 {
 "name":"choiceImage",
 "imageTypeSupported":[
 "GRAPHIC_PNG"
],
 "imageResolution":{
 "resolutionWidth":40,
 "resolutionHeight":40
 }
 },
 {
 "name":"softButtonImage",
 "imageTypeSupported":[
 "GRAPHIC_PNG"
],
 "imageResolution":{

 "resolutionWidth":50,
 "resolutionHeight":50
 }
 },
 {
 "name":"softButtonImage",
 "imageTypeSupported":[
 "GRAPHIC_PNG"
],
 "imageResolution":{
 "resolutionWidth":50,
 "resolutionHeight":50
 }
 },
 {
 "name":"menuIcon",
 "imageTypeSupported":[
 "GRAPHIC_PNG"
],
 "imageResolution":{
 "resolutionWidth":40,
 "resolutionHeight":40
 }
 },
 {
 "name":"cmdIcon",
 "imageTypeSupported":[
 "GRAPHIC_PNG"
],
 "imageResolution":{
 "resolutionWidth":150,
 "resolutionHeight":150
 }
 },
 {
 "name":"appIcon",
 "imageTypeSupported":[
 "GRAPHIC_PNG"
],
 "imageResolution":{
 "resolutionWidth":50,
 "resolutionHeight":50
 }
 },
 {
 "name":"graphic",
 "imageTypeSupported":[
 "GRAPHIC_PNG"
],
 "imageResolution":{
 "resolutionWidth":360,
 "resolutionHeight":360
 }
 },

 {
 "name":"alertIcon",
 "imageTypeSupported":[
 "GRAPHIC_PNG"
],
 "imageResolution":{
 "resolutionWidth":225,
 "resolutionHeight":225
 }
 },
 {
 "name":"subtleAlertIcon",
 "imageTypeSupported":[
 "GRAPHIC_PNG"
],
 "imageResolution":{
 "resolutionWidth":40,
 "resolutionHeight":40
 }
 }
 {
 "name": "menuCommandSecondaryImage",
 "imageTypeSupported": [
 "GRAPHIC_BMP",
 "GRAPHIC_JPEG",
 "GRAPHIC_PNG"
],
 "imageResolution": {
 "resolutionWidth": 65,
 "resolutionHeight": 65
 }
 },
 {
 "name": "menuSubMenuSecondaryImage",
 "imageTypeSupported": [
 "GRAPHIC_BMP",
 "GRAPHIC_JPEG",
 "GRAPHIC_PNG"
],
 "imageResolution": {
 "resolutionWidth": 65,
 "resolutionHeight": 65
 }
 }
],
 "imageTypeSupported":[
 "DYNAMIC",
 "STATIC"
],
 "templatesAvailable":[
 "DEFAULT",
 "MEDIA",
 "NON-MEDIA",
 "LARGE_GRAPHIC_WITH_SOFTBUTTONS",

 "LARGE_GRAPHIC_ONLY",
 "GRAPHIC_WITH_TEXTBUTTONS",
 "TEXTBUTTONS_WITH_GRAPHIC",
 "TEXTBUTTONS_ONLY",
 "TEXT_WITH_GRAPHIC",
 "GRAPHIC_WITH_TEXT",
 "DOUBLE_GRAPHIC_WITH_SOFTBUTTONS"
],
 "buttonCapabilities":[
 {
 "shortPressAvailable":true,
 "longPressAvailable":false,
 "upDownAvailable":false,
 "name":"OK"
 },
 {
 "shortPressAvailable":true,
 "longPressAvailable":false,
 "upDownAvailable":false,
 "name":"PLAY_PAUSE"
 },
 {
 "shortPressAvailable":true,
 "longPressAvailable":false,
 "upDownAvailable":false,
 "name":"SEEKLEFT"
 },
 {
 "shortPressAvailable":true,
 "longPressAvailable":false,
 "upDownAvailable":false,
 "name":"SEEKRIGHT"
 }
],
 "softButtonsCapabilities":[
 {
 "shortPressAvailable":true,
 "longPressAvailable":false,
 "upDownAvailable":false,
 "imageSupported":true,
 "textSupported":true
 },
 {
 "shortPressAvailable":true,
 "longPressAvailable":false,
 "upDownAvailable":false,
 "imageSupported":true,
 "textSupported":true
 }
],
 "menuLayoutsAvailable":[
 "LIST",
 "TILES"
],

 "keyboardCapabilities": {
 "maskInputCharactersSupported": true,
 "supportedKeyboards": [
 {
 "keyboardLayout": "QWERTY",
 "numConfigurableKeys": 10
 },
 {
 "keyboardLayout": "QWERTZ",
 "numConfigurableKeys": 10
 },
 {
 "keyboardLayout": "AZERTY",
 "numConfigurableKeys": 10
 },
 {
 "keyboardLayout": "NUMERIC",
 "numConfigurableKeys": 0
 }
]
 }
 }
]
 }
 }
}

The purpose of this guide is to explain how vehicle data items can be exposed to app

developers through the HMI.

Vehicle data can be exposed to app developers by creating a VehicleInfo component

within your HMI. To communicate with this component, you will first need to register it

with the message broker and respond to the VehicleInfo.IsReady message from SDL

(see the Component Readiness Requests section for more information).

Vehicle Data

RPCs

https://smartdevicelink.com/en/guides/core/integrating-your-hmi/sdl-core-and-hmi-communication/#component-readiness-requests

Below are descriptions for the primary RPCs used by the VehicleInfo component of SDL.

More information regarding this component is available in the VehicleInfo section of the

HMI Documentation.

Description:

A request from Core to retrieve specific vehicle data items from the system.

Example Request:

{
 "id": 123,
 "jsonrpc": "2.0",
 "method": "VehicleInfo.GetVehicleData",
 "params" : {
 "speed" : true
 }
}

Example Response:

{
 "id": 123,
 "jsonrpc": "2.0",
 "result" : {
 "speed" : 100
 }
}

Description:

VehicleInfo.GetVehicleData

VehicleInfo.SubscribeVehicleData

https://smartdevicelink.com/en/docs/hmi/master/overview/

A request from Core to receive periodic updates for specific vehicle data items from the

system.

Example Request:

{
 "id": 123,
 "jsonrpc": "2.0",
 "method": "VehicleInfo.SubscribeVehicleData",
 "params" : {
 "speed" : true
 }
}

Example Response:

{
 "id": 123,
 "jsonrpc": "2.0",
 "result" : {
 "speed" : {
 "dataType" : "VEHICLEDATA_SPEED",
 "resultCode" : "SUCCESS"
 }
 }
}

Description:

A request from Core to stop receiving periodic updates for specific vehicle data items

from the system.

Example Request:

VehicleInfo.UnsubscribeVehicleData

{
 "id": 123,
 "jsonrpc": "2.0",
 "method": "VehicleInfo.UnsubscribeVehicleData",
 "params" : {
 "speed" : true
 }
}

Example Response:

{
 "id": 123,
 "jsonrpc": "2.0",
 "result" : {
 "speed" : {
 "dataType" : "VEHICLEDATA_SPEED",
 "resultCode" : "SUCCESS"
 }
 }
}

Description:

A notification from the HMI indicating that one or more of the subscribed vehicle data

items were updated.

Example Notification:

{
 "jsonrpc": "2.0",
 "method": "VehicleInfo.OnVehicleData",
 "result" : {
 "speed" : 100
 }
}

VehicleInfo.OnVehicleData

Below is a list of all of the vehicle data items which are available via SDL as of Release

6.1.0 of SDL Core. New vehicle data items are proposed regularly via the SDL Evolution

process.

Available Vehicle Data Items

https://github.com/smartdevicelink/sdl_core/releases/tag/6.1.0
https://github.com/smartdevicelink/sdl_evolution

N A M E R E S U LT T Y P E D E S C R I P T I O N

accPedalPosition Float

Accelerator pedal position

(as a number from 0 to 100

representing percentage

depressed)

beltStatus Common.BeltStatus
The status of each of the

seat belts in the vehicle

bodyInformation Common.BodyInformation

The body information for the

vehicle, including

information such as ignition

status and door status

climateData Common.ClimateData
Describes the climate status

within the vehicle.

cloudAppVehicleID String
Parameter used by cloud

apps to identify a head unit

deviceStatus Common.DeviceStatus

The device status, including

information such as signal

and battery strength

driverBraking
Common.VehicleDataEventStat

us

The status of the brake

pedal

electronicParkBrakeStatus
Common.ElectronicParkBrakeS

tatus

The status of the park brake

as provided by Electric Park

Brake (EPB) system

engineOilLife Float

The estimated percentage of

remaining oil life of the

engine

https://smartdevicelink.com/en/docs/hmi/master/common/structs/#beltstatus
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#bodyinformation
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#climatedata
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#devicestatus
https://smartdevicelink.com/en/docs/hmi/master/common/enums/#vehicledataeventstatus
https://smartdevicelink.com/en/docs/hmi/master/common/enums/#electronicparkbrakestatus

N A M E R E S U LT T Y P E D E S C R I P T I O N

engineTorque Float

Torque value for the engine

(in N*m) on non-diesel

variants

externalTemperature Float
The external temperature in

degrees celsius

fuelLevel_State
Common.ComponentVolumeSt

atus

The status value

corresponding to the general

fuel level in the tank

fuelLevel Float
The fuel level in the tank (as

a percentage value)

fuelRange Common.FuelRange Array

The estimate range in KM

the vehicle can travel based

on fuel level and

consumption. Contains

information on all fuel

sources available to the

vehicle (eg. GASOLINE and

BATTERY for hybrid

vehicles).

gearStatus Common.GearStatus
The current status of the

gear shifter.

gps Common.GPSData
Location data from the

onboard GPS in the vehicle

handsOffSteering Boolean

Indicates whether the driver's

hands are off the steering

wheel.

https://smartdevicelink.com/en/docs/hmi/master/common/enums/#componentvolumestatus
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#fuelrange
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#gearstatus
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#gpsdata

N A M E R E S U LT T Y P E D E S C R I P T I O N

headLampStatus Common.HeadLampStatus
The current status of each of

the head lamps

instantFuelConsumption Float

The instantaneous fuel

consumption of the vehicle

in microlitres

odometer Integer
The odometer value in

kilometers

prndl Common.PRNDL

The current status of the

gear shifter. This parameter

is deprecated and it is now

covered in gearStatus .

rpm Integer
The number of revolutions

per minute of the engine

seatOccupancy Common.SeatOccupancy

Describes the occupancy,

belted status, and location

for each seat in the vehicle.

speed Float
The vehicle speed in

kilometers per hour

stabilityControlsStatus
Common.StabilityControlsStat

us

Describes the ignition switch

stability.

steeringWheelAngle Float
The current angle of the

steering wheel (in degrees)

tirePressure Common.TireStatus
Status information for each

of the vehicle's tires

https://smartdevicelink.com/en/docs/hmi/master/common/structs/#headlampstatus
https://smartdevicelink.com/en/docs/hmi/master/common/enums/#prndl
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#seatoccupancy
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#stabilitycontrolsstatus
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#tirestatus

N A M E R E S U LT T Y P E D E S C R I P T I O N

Starting with SDL Core version 6.0.0, custom vehicle data items can be defined via the

policy table. See SDL-0173 for the full proposal details. These items are structured in a

similar manner to the Mobile API and contained in the vehicle_data section of the policy

table.

In addition to custom items, this feature can be used to expose other vehicle data items

that were introduced to the project in later versions. This can be useful when the software

version on the head unit cannot be updated easily. If a vehicle data item is added into the

project, the definition of this item will be included in the policy table by default. Any vehicle

data items which are defined in Core's local Mobile API will be ignored from the policy

table, but newer items will be interpreted as custom items. This allows apps to use these

data items normally if they are exposed by the head unit, even when they were not initially

supported.

turnSignal Common.TurnSignal
The current state of the turn

signal indicator

vin String
Vehicle identification

number

windowStatus Common.WindowStatus Array

Describes the status of each

window for each

door/liftgate etc.

wiperStatus Common.WiperStatus
The current status of the

wipers

Custom Vehicle Data Items

Example Entry

https://github.com/smartdevicelink/sdl_core/releases/tag/6.0.0
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0173-Read-Generic-Network-Signal-data.md
https://github.com/smartdevicelink/rpc_spec/blob/master/MOBILE_API.xml
https://smartdevicelink.com/en/docs/hmi/master/common/enums/#turnsignal
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#windowstatus
https://smartdevicelink.com/en/docs/hmi/master/common/enums/#wiperstatus

"vehicle_data": {
 "schema_version": "1.0.0",
 "schema_items": [
 ...
 {
 "name": "customString",
 "key": "KEY_CUSTOM_STRING",
 "minlength": 0,
 "maxlength": 100,
 "type": "String",
 "mandatory": false
 },
 {
 "name": "customInt",
 "key": "KEY_CUSTOM_INT",
 "minvalue": 0,
 "maxvalue": 100,
 "type": "Integer",
 "mandatory": false
 },
 {
 "name": "customFloat",
 "key": "KEY_CUSTOM_FLOAT",
 "minvalue": 0.0,
 "maxvalue": 100.0,
 "type": "Float",
 "mandatory": false
 },
 {
 "name": "customBool",
 "key": "KEY_CUSTOM_BOOL",
 "type": "Boolean",
 "mandatory": false
 },
 {
 "name": "customArray",
 "key": "KEY_CUSTOM_ARRAY",
 "type": "String",
 "array": true,
 "minsize": 0,
 "maxsize": 100,
 "mandatory": false
 },
 {
 "name": "customStruct",
 "params": [
 {
 "name": "customStructVal",
 "key": "KEY_CUSTOM_STRUCT_VAL",
 "type": "String",
 "mandatory": true
 },

 {
 "name": "customStructVal2",
 "key": "KEY_CUSTOM_STRUCT_VAL2",
 "minvalue": 0,
 "maxvalue": 100,
 "type": "Integer",
 "mandatory": true
 },
 {
 "name": "customDeprecatedVal",
 "key": "KEY_CUSTOM_DEPRECATED_VAL",
 "minvalue": 0,
 "maxvalue": 100,
 "type": "Integer",
 "mandatory": true,
 "until": "7.0"
 },
 {
 "name": "customDeprecatedVal",
 "key": "KEY_CUSTOM_DEPRECATED_VAL",
 "minvalue": 0,
 "maxvalue": 100,
 "type": "Integer",
 "mandatory": true,
 "deprecated": true,
 "since": "7.0"
 }
],
 "key": "KEY_CUSTOM_STRUCT",
 "type": "Struct",
 "mandatory": false
 }
]
}

name : Is the vehicle data item in question. e.g. gps, speed etc. SDL core would use

this as the vehicle data param for requests from the app and to validate policies

permissions.

type : Is the return data type of the vehicle data item. It can either be a generic SDL

data type (Integer, String, Float, Boolean, Struct) or an enumeration defined in Mobile

API XML. For a vehicle data item that has sub-params, this would be Struct.

key : Is a reference for the OEM Network Mapping table which defines signal

attributes for this vehicle data items. OEMs may use this table to differentiate

between various vehicle and SW configurations. SDL core will pass along this

Custom Data Fields

reference to HMI, and then HMI would be responsible to resolve this reference using

the Vehicle Data Mapping table (see Vehicle Data Mapping File).

array : A boolean value used to specify if the vehicle data item/param response is an

array, rather than a single value of the given type.

mandatory : A boolean value used to specify if the vehicle data param is mandatory

to be included in response for the overall vehicle data item.

params : A recursive list of sub-params for a vehicle data item, see example above

(customStruct) for structure definition.

since, until : String values related to API versioning which are optional per vehicle

data item.

removed, deprecated : Boolean values related to API versioning which are optional

per vehicle data item.

minvalue, maxvalue : Integer/Float values which are used for controlling the bounds

of number values (Integer, Float).

minsize, maxsize : Integer values which are used for controlling the bounds of array

values (where array is true).

minlength, maxlength : Integer values which are used for controlling the bounds of

String values.

Custom vehicle data requests have a separate structure to normal vehicle data requests.

While normal vehicle data items are requested using the key structure of "<name>: true" ,

name is required for top level vehicle data items while type, key &
mandatory are required fields for vehicle data & sub-params. However
array can be omitted, in which case array defaults to false.
Custom/OEM Specific vehicle data parameters that are not a part of the
rpc spec should not have any version related tags included (since, until,
removed, deprecated). These vehicle data parameters would not be able
to have the same versioning system as the rpc spec, since any version
number supplied would not be the version associated with any known
public rpc spec.

NOT E

Custom Vehicle Data Requests

custom items are constructed using the key field and can have a nested structure (when

requesting Struct items). For example, when requesting all of the vehicle data items which

are defined above, the HMI would receive the following message:

{
 "id" : 139,
 "jsonrpc" : "2.0",
 "method" : "VehicleInfo.GetVehicleData",
 "params" : {
 "KEY_CUSTOM_STRING": true,
 "KEY_CUSTOM_INT": true,
 "KEY_CUSTOM_FLOAT": true,
 "KEY_CUSTOM_BOOL": true,
 "KEY_CUSTOM_ARRAY": true,
 "KEY_CUSTOM_STRUCT": {
 "KEY_CUSTOM_STRUCT_VAL": true,
 "KEY_CUSTOM_STRUCT_VAL2": true,
 "KEY_CUSTOM_DEPRECATED_VAL": true
 }
 }
}

Since these keys may not be immediately known by the HMI, a vehicle data mapping file

can be used to connect these keys to actual readable values from the vehicle. The HMI

primarily uses this file to convert CAN data values into an SDL-compatible format. The

location where this file is hosted can be specified in the policy table in the module_confi

g.endpoints.custom_vehicle_data_mapping field (see Policy Endpoints). The format of

this file is OEM-defined.

Vehicle Data Mapping File

EXAMP L E FORMAT

https://smartdevicelink.com/en/guides/sdl-overview-guides/policies/policy-fields/#endpoints

{
 "version":"0.0.1",
 "date":"01-01-2020",
 "vehicleDataTable": [
 {
 "CGEA1.3c":{
 "defaultPowertrain": {
 "vehicleData": [
]
 },
 "PHEV":{
 "vehicleData":[
 {
 "key":"OEM_REF_FUELLEVEL",
 "type":"Integer",
 "minFrequency":200,
 "maxLatency":10,
 "messageName":"Cluster_Info3",
 "messageID":"0x434",
 "signalName":"FuelLvl_Pc_Dsply",
 "transportChannel":"HS3",
 "resolution":0.109,
 "offset":-5.2174
 }
]
 }
 }
 }
]
}

In order for the HMI to determine when this file needs to be updated, this file

can be assigned a version via the module_config.endpoint_properties.custo

m_vehicle_data_mapping.version field. The HMI can retrieve this field using

the SDL.GetPolicyConfigurationData RPC.

NOT E

Reading Raw CAN Data

https://smartdevicelink.com/en/docs/hmi/master/sdl/getpolicyconfigurationdata/

In addition to complex vehicle data items, the vehicle data mapping file can also be used

to make some CAN values directly readable via a String value:

{
 "name":"messageName",
 "type":"String",
 "key":"OEM_REF_MSG",
 "array":true,
 "mandatory":false,
 "since":"X.x",
 "maxsize":100,
 "params":[]
}

{
 "messageName": "AB 04 D1 9E 84 5C B8 22"
}

Before continuing, follow the Install and Run Guide for SDL Core if you have not already

done so.

P OL IC Y DEFINITION

HMI RESP ONSE

Initial Configuration

SDL Core Setup

https://sdl-devportal-media-production.s3.amazonaws.com/getting-started/install-and-run/

The Generic HMI and SDL HMI both support streaming audio and some video formats in

the browser using ffmpeg to transcode the video to VP8 WEBM or audio to WAV.

Instructions to install the required dependencies can be found in the HMI README:

SDL HMI Dependencies

Generic HMI Dependencies

Prior to starting the HMI, you will need to run the backend server component (./deploy_se

rver.sh in the HMI directory) which handles the transcoding process.

To stream without ffmpeg transcoding, or to stream a format that ffmpeg does not

support, you can forgo starting the backend server and use gstreamer to consume your

audio/video stream.

It is easier to determine which gstreamer video sink will work in your environment by

testing with a static file. This can be done by downloading this file and trying the following

command.

Common values for sink:

ximagesink (x visual environment sink)

xvimagesink (xv visual environment sink)

cacasink (ascii art sink)

HMI Setup

Once you start a video stream it will take a few seconds for the transcoding

session to begin. Your video stream should appear in the browser within

about 10 seconds.

NOT E

GSTREAMER Setup

https://github.com/smartdevicelink/generic_hmi
https://github.com/smartdevicelink/sdl_hmi
https://github.com/smartdevicelink/sdl_hmi/tree/master#dependencies
https://github.com/smartdevicelink/generic_hmi/tree/master#dependencies
https://support.apple.com/library/APPLE/APPLECARE_ALLGEOS/HT1425/sample_iPod.m4v.zip

gst-launch-1.0 filesrc location=/path/to/h264/file ! decodebin ! videoconvert ! <sink>
sync=false

If you're streaming video over TCP, you can point gstreamer directly to your phone's

stream using

gst-launch-1.0 tcpclientsrc host=<Device IP Address> port=3000 ! decodebin !
videoconvert ! <sink> sync=false

In the Core build folder, open bin/smartDeviceLink.ini and ensure the following values

are set:

VideoStreamConsumer = pipe
AudioStreamConsumer = pipe

After you start SDL Core, cd into the bin/storage directory and there should be a file

named "video_stream_pipe". Use the gst-launch command that worked for your

environment and set file source to the video_stream_pipe file. You should see “setting

pipeline to PAUSED” and “Pipeline is PREROLLING”.

Pipe Streaming

Configuration (smartDeviceLink.ini)

GStreamer Commands

RAW H.264 V IDEO

gst-launch-1.0 filesrc location=$SDL_BUILD_PATH/bin/storage/video_stream_pipe !
decodebin ! videoconvert ! xvimagesink sync=false

gst-launch-1.0 filesrc location=$SDL_BUILD_PATH/bin/storage/video_stream_pipe !
"application/x-rtp-stream" ! rtpstreamdepay ! "application/x-rtp,media=
(string)video,clock-rate=90000,encoding-name=(string)H264" ! rtph264depay !
"video/x-h264, stream-format=(string)avc, alignment=(string)au" ! avdec_h264 !
videoconvert ! ximagesink sync=false

gst-launch-1.0 filesrc location=$SDL_BUILD_PATH/bin/storage/audio_stream_pipe !
audio/x-raw,format=S16LE,rate=16000,channels=1 ! pulsesink

In the Core build folder, open bin/smartDeviceLink.ini and ensure the following values

are set:

H.264 V IDEO OV ER RTP

RAW P C M AU DIO

Socket Streaming

Configuration (smartDeviceLink.ini)

; Socket ports for video and audio streaming
VideoStreamingPort = 5050
AudioStreamingPort = 5080
...
VideoStreamConsumer = socket
AudioStreamConsumer = socket

gst-launch-1.0 souphttpsrc location=http://127.0.0.1:5050 ! decodebin ! videoconvert !
xvimagesink sync=false

gst-launch-1.0 souphttpsrc location=http://127.0.0.1:5050 ! "application/x-rtp-stream"
! rtpstreamdepay ! "application/x-rtp,media=(string)video,clock-rate=90000,encoding-
name=(string)H264" ! rtph264depay ! "video/x-h264, stream-format=(string)avc,
alignment=(string)au" ! avdec_h264 ! videoconvert ! ximagesink sync=false

gst-launch-1.0 souphttpsrc location=http://127.0.0.1:5080 ! audio/x-
raw,format=S16LE,rate=16000,channels=1 ! pulsesink

GStreamer Commands

RAW H.264 V IDEO

H.264 V IDEO OV ER RTP

RAW P C M AU DIO

This section describes how Core manages the streaming states of mobile applications.

Only one application may stream video at a time, but audio applications may stream while

in the LIMITED state with other applications.

When an app is moved to HMI level FULL :

All non-streaming applications go to HMI level BACKGROUND

All apps with the same App HMI Type go to BACKGROUND

Streaming apps with a different App HMI Type that were in FULL go to LIMITED

When an app is moved to HMI level LIMITED :

All non-streaming applications keep their HMI level

All applications with a different App HMI Type keep their HMI level

Applications with the same App HMI Type go to BACKGROUND

iOS Video Streaming Guide

Android Video Streaming Guide

Video Streaming States

Additional Resources

Livio provides an example video streaming android application.

NOT E

App Service Guidelines

https://smartdevicelink.com/en/guides/iOS/video-streaming-for-navigation-apps/introduction/
https://smartdevicelink.com/en/guides/android/video-streaming-for-navigation-apps/introduction/
https://github.com/livio/sdl_video_streaming_android_sample

This page gives a detailed look at the App Service feature in SDL Core, as well as how

applications and IVI systems can integrate with the feature. For a general overview of App

Services, see the App Services Overview Guide.

A B B R E V I A T I O N M E A N I N G

There are currently four RPCs related to app services which are available to ASCs and

must be supported by every ASP. This section will describe the function of each of these

RPCs, as well as the responsibilities of the ASP when they are used.

Direction: ASP -> Core

This request is sent by the ASP to initially create the service. This is where the service's

manifest is defined, which includes the type of data provided by the service as well as

what RPCs can be handled by the service.

S EQU EN C E D IA GRA M

PublishAppService

Terms and Abbreviations

ASP App Service Provider

ASC App Service Consumer

RPC Remote Procedure Call

App Service RPCs

PublishAppService

https://smartdevicelink.com/en/guides/sdl-overview-guides/app-services/

Direction: ASC -> Core -> ASP

The ASC can send this request to retrieve the latest app service data for a specific service

type, Core will forward this request to the active service of the specified type. The ASP

receiving this message is expected to respond to this message with its most recent

service data.

S EQU EN C E D IA GRA M

GetAppServiceData

GetAppServiceData

An ASP can receive this message only when its service is active.

NOT E

View Diagram

Direction: ASP -> Core -> ASC

This notification is used to communicate updates in the app service data for a service to

any ASC subscribers. The message is sent by an ASP any time that there are any

significant changes to its service data while it is active or when its service becomes

active. Core will forward this message to any ASCs that have subscribed to data for this

service type.

S EQU EN C E D IA GRA M

OnAppServiceData

An ASP must send this message only when its service is active.

MUS T

View Diagram

OnAppServiceData

Direction: ASC -> Core -> ASP

This request can be sent by an ASC to perform a service-specific function on an ASP

(using the ASP's specific service ID). The API for such interactions must be defined by the

ASP separately.

PerformAppServiceInteraction

An ASP can receive this message regardless of whether its service is active,

since it is directed at a specific service.

NOT E

View Diagram

S EQU EN C E D IA GRA M

PerformAppServiceInteraction

The App Services feature was designed to offer the same capabilities to the embedded IVI

systems that are available to mobile devices. For example, the IVI's built-in radio could

The ASP receiving this message must either process it and respond with SU

CCESS or return an error response if the interaction was not successful.

MUS T

IVI App Service Integration

View Diagram

publish a MEDIA type App Service, and the embedded navigation system could publish a

NAVIGATION type App Service.

The HMI may also act as an ASC. For example, the HMI could create a "weather widget"

that subscribes to the published WEATHER App Service. The "weather widget" could then

display weather information from the user's preferred weather service. See the App

Services Overview Guide for more details on how app service data can be integrated in the

IVI system by acting as an ASC.

The IVI can be configured as an ASC or ASP using a set of RPCs in the HMI API's AppSer

vice interface (which mirror the APIs used for mobile app services):

AppService.PublishAppService

AppService.UnpublishAppService

AppService.GetAppServiceData

AppService.OnAppServiceData

AppService.PerformAppServiceInteraction

It is recommended that an OEM integrates App Services with their embedded navigation

system to allow for a better SDL navigation experience with 3rd party applications.

If a 3rd party navigation app and the embedded navigation system are registered as

navigation app services, SDL Core will be able to notify the different navigation solutions

which system is activated by the user. This will prevent the possibility of two or more

navigation solutions from giving the driver instructions at the same time.

Embedded Navigation Guidelines

A navigation ASP must stop its "in-progress" trip (if applicable) when it is

notified by SDL Core that their navigation service is no longer active.

MUS T

IVI-Specific RPC Messages

https://smartdevicelink.com/en/guides/sdl-overview-guides/app-services/#consuming-app-service-data-on-the-module

There are a few additional RPCs in the AppService interface which are needed to

integrate an IVI system with the App Services feature, regardless of whether the system

acts as an ASP or ASC (more information available in the HMI Integration Guidelines):

AppService.GetAppServiceRecords

This message can be sent by the embedded IVI system to retrieve the App

Service records for all published services, similar to the GetSystemCapability

(APP_SERVICES) message available in the Mobile API. The system is

expected to use this information for populating any menus within the HMI

relating to App Services.

AppService.AppServiceActivation

This message can be sent by the embedded IVI system to activate a specific

service or set it as the default service for its type (usually by request of the

user).

AppService.GetActiveServiceConsent

This message is sent to the embedded IVI system whenever an ASC tries to

activate an App Service (generally through PerformAppServiceInteraction).

The system is expected to display a prompt in the HMI for the user to provide

consent to activate this service, and must respond with the activate field

populated by the user's response to this prompt.

There are a number of existing RPCs which are allowed to be handled by an ASP based on

service type. This feature does not apply to embedded ASPs, as messages are routed to

the embedded system by default.

MEDIA

ButtonPress with the following values for buttonName

OK

PLAY_PAUSE

SEEKLEFT

SEEKRIGHT

RPC Passing

https://smartdevicelink.com/en/docs/hmi/master/appservice/getactiveserviceconsent/

TUNEUP

TUNEDOWN

SHUFFLE

REPEAT

WEATHER

N/A

NAVIGATION

SendLocation

GetWayPoints

When RPC passing is performed with a request which relates to several components

(such as ButtonPress), not all uses of this RPC will be intended for a given app service. As

such, an ASP must indicate when they are unable to process a specific instance of an RPC

by responding with an UNSUPPORTED_REQUEST response code. This informs Core that

it should pass this specific request to another component or app service that handles this

RPC.

This "Waterfall" flow used by Core during RPC passing is defined as follows:

1. App1 sends an RPC request to Core

2. Core checks if there is an active service which handles this RPC's function ID

(ignoring any services which have already received this message)

If found, go to step 3

If not found, go to step 4

3. Core passes the raw message to the chosen ASP, waits for a response

If the request times out before receiving a response, return to step 2

If the ASP responds with result code UNSUPPORTED_REQUEST (indicating

that it cannot handle some part of the request), return to step 2

If the ASP responds with a normal result code, go to step 5

4. Core handles the RPC normally, generates a response

5. Core sends the RPC response to App1

Flow

When Core passes an RPC to an ASP according to its handledRPCs list, it performs no

additional processing on the message. This means that there is no guarantee that this

message is valid according to the RPC Spec. This approach is taken specifically for

forward-compatibility reasons, in case the ASP supports a newer version of the RPC Spec

than Core (which could include breaking changes). As a consequence, the ASP will need

to perform validation on this message itself.

Validation steps for existing passthrough RPCs:

1. Validate bounds and types of existing parameters against the RPC spec

2. Verify that mandatory parameters are present

3. For ButtonPress, verify that the buttonName is correctly tied to the moduleType

With regards to permission handling during RPC passing:

For RPCs which are known to Core (determined by its RPC spec version), they are

checked normally against the policy table. As such, the ASP can assume in this

case that the app specifically has permissions to use the this RPC in its current HMI

level.

For RPCs unknown to Core, an ASC needs to be granted specific permissions by the

OEM (more details here) to send this message, even if it is handled by the ASP.

Before App Services were introduced, SDL applications could only send points of interest

to the vehicle's embedded navigation by using the SendLocation RPC. The App Services

feature allows an SDL app to send this same information to the active SDL navigation app

instead.

Through RPC Passing, a SendLocation RPC request can be handled by a navigation

application instead of the vehicle's navigation system. Specifically, if there is a navigation

app (ASP) which can handle SendLocation and another SDL app (ASC) sends this

message to SDL Core, it will be routed to the navigation app automatically.

Validation

Policies

Example Use Case - Sending a POI to a Navigation
Provider

https://smartdevicelink.com/en/guides/sdl-overview-guides/policies/app-policies/#app-service-fields

1. Proper permissions must be granted to the navigation ASP in SDL Core's policy

table.

The application acting as the ASP must have permissions to send a PublishAp

pService RPC.

The application's permissions must have a "NAVIGATION" object key in the

"app_services" object.

The "NAVIGATION" object must have the functionID of SendLocation listed as

a handled RPC.

{ // example sdl_preloaded_pt.json entry
 ...
 "app_policies": {
 "<provider_app_id>": {
 "keep_context": false,
 "steal_focus": false,
 "priority": "NONE",
 "default_hmi": "NONE",
 "groups": [
 "Base-4", "AppServiceProvider"
],
 "RequestType": [],
 "RequestSubType": [],
 "app_services": {
 "NAVIGATION": {
 "handled_rpcs": [{"function_id": 39}]
 }
 }
 }
 }
}

1. The application acting as the navigation ASP must register its navigation

capabilities as an app service with SDL Core via the PublishAppService RPC. The

AppServiceManifest included in the request must include the function ID for Send

Location (39) in the handledRPCs array.

2. The ASP's app service must be active. This can happen a number of different ways.

ASP P REREQU ISITES

If there is no other active navigation service, SDL Core will make an app

service active when it is published.

If there are multiple navigation app services, SDL Core will set an app's

navigation service to active whenever the app is in HMI_LEVEL::FULL.

An ASC can request to make a specific service active via the PerformAppServi

ceInteraction RPC.

Proper SendLocation permissions must be granted to the ASC in SDL Core's policy

table.

Example sdl_preloaded_pt.json entry:

{
 ...
 "app_policies": {
 "<consumer_app_id>": {
 "keep_context": false,
 "steal_focus": false,
 "priority": "NONE",
 "default_hmi": "NONE",
 "groups": [
 "Base-4", "SendLocation"
],
 "RequestType": [],
 "RequestSubType": [],
 }
 }
}

An ASC sends a SendLocation RPC request to SDL Core.

SDL Core checks if there is an active ASP that can handle the SendLocation RPC.

SDL Core sends an outgoing SendLocation request to the active navigation ASP.

ASC P REREQU ISITES

U SE C ASE SOL U TION RP C FLOW

The ASP handles the request, sets its navigation destination to the requested POI,

and responds with a success to SDL Core.

SDL Core receives the response and recognizes the message is part of an RPC

Passing action. SDL Core passes the response to the navigation ASC that originated

the SendLocation request.

S EQU EN C E D IA GRA M

Example SendLocation RPC Passing

General Description

View Diagram

The Multiple Transports feature allows apps connected to SDL Core to start another

connection over a different transport for certain services. For example, an app connected

over Bluetooth can use WiFi as a Secondary Transport for video streaming. This guide will

give an overview of the process which is used to establish a Secondary Transport

connection. See SDL-0141 - Supporting Simultaneous Multiple Transports for more details

on the original feature proposal.

After the proxy is connected to Core, it initiates another connection over a different

transport.

Core tells the proxy which transport can be used as Secondary Transport.

The services that are allowed on the Secondary Transport are specified by Core.

There are three protocol control frames which are used in the implementation of Multiple

Transports.

Payload Example:

{
 ...
 "audioServiceTransports" : [1, 2],
 "videoServiceTransports" : [1, 2],
 "secondaryTransports" : ["TCP_WIFI"]
}

Implementation

RPC and Hybrid services only run on the Primary Transport

NOT E

StartService ACK

https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0141-multiple-transports.md

Core responds to the proxy's StartService request with additional parameters audioServ

iceTransports , videoServiceTransports and secondaryTransports .

The secondaryTransports parameter contains an array of the allowed Secondary

Transports for the current Primary Transport.

audioServiceTransports and videoServiceTransports describe which services are

allowed to run on which transports (Primary=1, Secondary=2, or both). The proxy

uses this information and starts services only on allowed transports.

This response is constructed by Core using the configurations defined in the SDL INI

file, described in this guide.

Since RPC and Hybrid services always run on Primary Transport, only Video and

Audio services are configurable.

Payload Example:

{
 "tcpIpAddress" : "192.168.1.1",
 "tcpPort" : 12345
}

Core sends a TransportEventUpdate notification to the proxy to provide additional

information required to connect over the TCP transport when it is available.

If the tcpIpAddress field is empty, the Secondary Transport is unavailable and the

proxy will not send a RegisterSecondaryTransport request.

Using the information in the StartService ACK and TransportEventUpdate frames, the

proxy sends a RegisterSecondaryTransport request over the Secondary Transport with

the same session ID as the Primary Transport.

TransportEventUpdate

RegisterSecondaryTransport

https://sdl-devportal-media-production.s3.amazonaws.com/getting-started/multiple-transports-configuration

If Core sends back a RegisterSecondaryTransport ACK, the proxy can start services

over the Secondary Transport.

S EQU EN C E D IA GRA M

Start Service (WiFi as Secondary Transport)

Operation Examples

View Diagram

S EQU EN C E D IA GRA M

Start Video/Audio service (Over Secondary Transport)

View Diagram

S EQU EN C E D IA GRA M

Start Video/Audio service (No transport available)

View Diagram

S EQU EN C E D IA GRA M

Backwards Compatibility (New Proxy/Old Core)

View Diagram

S EQU EN C E D IA GRA M

Backwards Compatibility (Old Proxy/New Core)

View Diagram

S EQU EN C E D IA GRA M

TransportEventUpdate (Secondary Transport unavailable)

View Diagram

This guide will explain how to use Remote Control within SDL. The guide will cover...

Relevant proposals

Relevant structs

Relevant RPCs

Modules and their components

Consent rules

Limiting permissions with policies

Resumption

Remote Control Guide

0071: Remote Control Baseline

0099: New Remote Control Modules and Parameters

0105: Remote Control - Seat

0106: Remote Control - OnRCStatus notification

0160: Remote Control - Radio Parameter Update

0165: Remote Control - More Light Names and Status Values

0172: Remote Control - OnRCStatus Allowed Parameter

0181: Remote Control - When RC Disabled, Apps Keep HMI Level

0213: Remote Control - Radio and Climate Parameter Update

0221: Remote Control - Allow Multiple Modules per Module Type

The remote control capabilities struct contains a capabilities struct for each different

remote control type.

Each capabilities struct is used to inform an app of what is available to be controlled.

RadioControlCapabilities

ClimateControlCapabilities

SeatControlCapabilities

AudioControlCapabilities

LightControlCapabilities

HMISettingsControlCapabilities

ButtonCapabilities

The module data struct contains information used to identify a module type, and the

control data associated with that module.

Each control data struct is used to observe or change the attributes of a specific module

type.

REL EVANT EV OL U TION P ROP OSAL S

Relevant Structs

RemoteControlCapabilities

ModuleData

https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0071-remote-control-baseline.md
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0099-new-remote-control-modules-and-parameters.md
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0105-remote-control-seat.md
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0106-remote-control-onRcStatus-notification.md
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0160-rc-radio-parameter-update.md
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0165-rc-lights-more-names-and-status-values.md
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0172-onRcStatus-allowed.md
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0181-keep-rc-app-hmi-level-when-disable-rc.md
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0213-rc-radio-climate-parameter-update.md
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0221-multiple-modules.md
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#radiocontrolcapabilities
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#climatecontrolcapabilities
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#seatcontrolcapabilities
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#audiocontrolcapabilities
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#lightcontrolcapabilities
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#hmisettingscontrolcapabilities
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#buttoncapabilities
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#remotecontrolcapabilities
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#moduledata

RadioControlData

ClimateControlData

SeatControlData

AudioControlData

LightControlData

HMISettingsControlData

ModuleInfo

The module information struct is used for identifying the module and for determining who

can control it.

Grid

The grid struct is used to generically describe the space within a vehicle.

After the BC.IsReady notification is received, SDL will send out an IsReady request for

each interface. The response to this RPC just includes the boolean parameter available

indicating if the HMI supports that interface and would like to continue to interact with it.

View IsReady in the HMI Documentation

Once SDL has received a positive IsReady response it will send a GetCapabilities

request to the HMI. The HMI should respond with a RemoteControlCapabilities

parameter for SDL to store and use later when a mobile application sends a GetSystemC

apability request. This will overwrite the capabilities SDL loaded from the hmi_capabiliti

es.json configuration file.

View GetCapabilities in the HMI Documentation

Relevant RPCs

IsReady

GetCapabilities

GetSystemCapability

https://smartdevicelink.com/en/docs/hmi/master/common/structs/#radiocontroldata
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#climatecontroldata
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#seatcontroldata
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#audiocontroldata
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#lightcontroldata
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#hmisettingscontroldata
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#moduleinfo
https://smartdevicelink.com/en/docs/hmi/master/common/structs/#grid
https://smartdevicelink.com/en/docs/hmi/master/rc/isready
https://smartdevicelink.com/en/docs/hmi/master/rc/getcapabilities

This RPC is the starting point for an app using remote control features, it will tell you what

is available to be controlled within the vehicle. GetSystemCapability is not specific to

Remote Control, but a generic function used to retrieve the capabilities of multiple

different modules within SDL such as navigation, video streaming or app services.

However, when GetSystemCapability is called with the capability type of REMOTE_CONT

ROL , it will return the RemoteControlCapabilities object which in turn contains objects

describing the capabilities of each remote control module present in the vehicle. These

capabilities objects will contain properties like heatedMirrorsAvailable to indicate if a

vehicle is equipped with heated mirrors, or supportedLights to inform SDL of which

lights are available to be controlled.

View GetSystemCapability in the RPC Spec

GetInteriorVehicleData is used to request information about a specific module. This RPC,

provided a module is specified by moduleType and moduleId , will return the status of

the requested remote-control module. This RPC can also be used to subscribe to updates

of a module's status via the subscribe parameter. If this non-mandatory parameter is set

to true, the head unit will register OnInteriorVehicleData notifications for the requested

module. Conversely, if this parameter is set to false, the head unit will unregister OnInteri

orVehicleData notifications for the requested module.

View GetInteriorVehicleData in the RPC Spec or the HMI Documentation

GetInteriorVehicleData

If an application sends GetInteriorVehicleData (subscribe=true,

moduleType=MODULE1), but the application is already subscribed on

MODULE1 module type, SDL will respond with a WARNINGS resultCode

because of the double subscription.

NOT E

OnInteriorVehicleData

https://github.com/smartdevicelink/rpc_spec#getsystemcapability
https://github.com/smartdevicelink/rpc_spec#getinteriorvehicledata
https://smartdevicelink.com/en/docs/hmi/master/rc/getinteriorvehicledata/

OnInteriorVehicleData is a notification sent out by the HMI when an update is made to a

remote control module. An app can subscribe to these notifications via

GetInteriorVehicleData. This RPC will come with a ModuleData structure identifying the

changed module and containing the control data object with the new state.

View OnInteriorVehicleData in the RPC Spec or the HMI Documentation

SetInteriorVehicleData is used to set the values of a remote control module by passing in

a ModuleData structure. The moduleType and moduleId fields are used to identify the

targeted module, and the changes in the respective control data object are applied to that

module.

View SetInteriorVehicleData in the RPC Spec or the HMI Documentation

OnRemoteControlSettings is used to notify SDL when passengers of a vehicle change the

remote control settings via the HMI. This includes allowing or disallowing Remote Control

or changing the access mode that will be used for resource allocation.

View OnRemoteControlSettings in the HMI Documentation

OnRCStatus is a notification sent out by SDL when an update is made to a remote control

module's availability. When SDL either allocates a module to an app, or deallocates it from

an app, SDL will send OnRCStatus to both the application and the HMI. This notification

contains two lists, one describing the modules that are allocated to the application and

the other describing the free modules that can be accessed by the application. This

notification also contains an allowed parameter, which indicates to apps whether or not

Remote Control is currently allowed. If allowed is false, both module lists will be empty.

View OnRCStatus in the RPC Spec or the HMI Documentation

SetInteriorVehicleData

OnRemoteControlSettings

OnRCStatus

GetInteriorVehicleDataConsent

https://github.com/smartdevicelink/rpc_spec#oninteriorvehicledata
https://smartdevicelink.com/en/docs/hmi/master/rc/oninteriorvehicledata
https://github.com/smartdevicelink/rpc_spec#setinteriorvehicledata
https://smartdevicelink.com/en/docs/hmi/master/rc/setinteriorvehicledata
https://smartdevicelink.com/en/docs/hmi/master/rc/onremotecontrolsettings
https://github.com/smartdevicelink/rpc_spec#onrcstatus
https://smartdevicelink.com/en/docs/hmi/master/rc/onrcstatus

GetInteriorVehicleDataConsent is a request used to reserve remote control modules. If a

module does not allow multiple access, only the application that requested consent first

will be able to interact with that module. Otherwise, if the module does allow multiple

access, the rules specified in the Consent section) apply. This request requires a module

Type and an array of moduleId s to identify the target modules. Core will reply with an

array of booleans indicating the consent for each requested moduleId where true signals

allowed and vice versa.

View GetInteriorVehicleDataConsent in the RPC Spec or the HMI Documentation

ReleaseInteriorVehicleDataModule is a request used to free a remote control module

once an application is finished interacting with it. This request requires a moduleType

and moduleId to identify the target module.

View ReleaseInteriorVehicleDataModule in the RPC Spec

SetGlobalProperties is a request sent by a mobile app to inform SDL of a user's location

within the vehicle. The request includes a userLocation parameter which contains a grid.

The location of a user is important for SDL to know so it can determine whether or not a

user is within a module's service area.

View SetGlobalProperties in the RPC Spec or the HMI Documentation

The climate module consists of climate sub-modules represented by a ClimateControlCa

pabilities object. Each sub-module exposes many aspects of a car's climate controls,

such as setting the desired temperature or turning on the heated windshield.

ReleaseInteriorVehicleDataModule

SetGlobalProperties

Remote Control Modules

Climate

https://github.com/smartdevicelink/rpc_spec#getinteriorvehicledataconsent
https://smartdevicelink.com/en/docs/hmi/master/rc/getinteriorvehicledataconsent
https://github.com/smartdevicelink/rpc_spec#releaseinteriorvehicledatamodule
https://github.com/smartdevicelink/rpc_spec#setglobalproperties
https://smartdevicelink.com/en/docs/hmi/master/rc/setglobalproperties

The radio module consists of radio sub-modules represented by a RadioControlCapabilit

ies object. Each sub-module exposes many aspects of a car's radio controls, such as

setting the desired frequency and band the radio is operating on.

The seat module consists of seat sub-modules represented by a SeatControlCapabilities

object. Each sub-module exposes many aspects of a car's seat controls, such as setting

the back tilt angle and the massage mode.

The audio module consists of audio sub-modules represented by a AudioControlCapabili

ties object. Each sub-module exposes many aspects of a car's audio controls, such as

setting the volume or modifying the equalizer settings.

The light module does not contain any sub-modules but instead has an array of LightCapa

bilities objects, each identified by a LightName . This module exposes the ability to

modify attributes such as the brightness and color of each light.

The HMI settings module does not contain any sub-modules and is represented by an HM

ISettingsControlCapabilities object. This module exposes the ability to set the desired

temperature and distance units as well as toggle the display mode of the HMI between

night and day.

Button is an interesting remote control component because it is not a remote control

module. RemoteControlCapabilities includes an array of ButtonCapabilities structs

which describe either a physical button or a softbutton. A mobile app may send a Button

Radio

Seat

Audio

Light

HMI Settings

Button

Press RPC with the ButtonName and moduleId from any of these ButtonCapabilities

to perform an action on another remote control module.

The behavior of module allocation in SDL Core is shown in the following table:

Consent

The driver is always considered to be within the service area.

SDL will assume actions performed by the driver are consented to by the

driver.

Resources can only be acquired by apps in HMI level full.

NOT E

U S E R
L O C A T I O N

A L L O W
M U LT I P L E
A C C E S S

R E Q U E S T E D
M O D U L E
S TA T E

A C C E S S
M O D E

S D L
A C T I O N

"free" indicates no application currently holds the requested resource

"in use" indicates that an application currently holds the requested resource

"busy" indicates at least one RC RPC request is currently executing and has yet to

finish

You can take a look at the Remote Control section of the policies guide to see how

remote control permissions are defined.

out of service

area
any any any disallow

in service

area
any free any allow

in service

area
false in use any disallow

in service

area
true in use auto allow allow

in service

area
true in use auto deny disallow

in service

area
true in use ask driver ask driver

REQU ESTED MODU L E STATE

Policies

https://smartdevicelink.com/en/guides/sdl-overview-guides/policies/app-policies/#remote-control-fields

During the data resumption process, SDL sends GetInteriorVehicleData(subscribe=true)

requests to the HMI and stores data received from the HMI in a cache.

If during resumption the HMI responds with error to a GetInteriorVehicleData request or

responds with SUCCESS to a GetInteriorVehicleData but with parameter isSubscribed=

false , SDL reverts already subscribed data and fails resumption for related application(s),

removing information about this subscription.

For more information about how SDL handles resumption, you can take a look at the

Application Data Resumption guide.

0207: RPC Message Protection

This guide will cover the basic setup required to enable and utilize RPC Encryption within

SDL Core. For more information about the feature, please take a look at the RPC

Encryption Overview Guide.

Resumption

Interior Vehicle Data Subscriptions

RPC Encryption

REL EVANT EV OL U TION P ROP OSAL S

Introduction

Encryption Setup

https://smartdevicelink.com/en/guides/sdl-overview-guides/resumption
https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0207-rpc-message-protection.md
https://smartdevicelink.com/en/guides/sdl-overview-guides/security/rpc-encryption/

Create private key:

openssl genrsa -out client.key 2048

Create CSR:

Create Public Certificate:

openssl x509 -hash -req -in client.req -signkey client.key -out client.cert -days 10000

Copy client.key and client.cert into your SDL Core build/bin directory. Delete any

existing key, cert/crt, or pem files.

In your build/bin directory run:

c_rehash .

openssl req -new -key client.key -out client.req -subj
'/C=US/ST=MI/L=Detroit/O=SDL/OU=HeadUnit/CN=client/emailAddress=sample@sdl

Generate Self Signed Certificate

Configure SDL Core

IN I F IL E MODIFIC ATIONS

Set the certificate and key file path for SDL in smartDeviceLink.ini . The INI

Configuration has more information about the properties in the INI file.

; Certificate and key path to pem file
CertificatePath = client.cert
KeyPath = client.key

If you are using self signed certificates set VerifyPeer to false.

; Verify Mobile app certificate (could be used in both SSLMode Server and Client)
VerifyPeer = false

The policy table can be modified to enforce encryption on certain RPCs. These

modifications can be made in your sdl_preloaded_pt.json before launching Core or by

updating the policy table while Core is running via a PTU

Add "encryption_required": true to a functional group in the functional_groupings

section

P OL IC Y TABL E MODIFIC ATIONS

https://smartdevicelink.com/en/guides/core/getting-started/ini-configuration/
https://smartdevicelink.com/en/guides/sdl-overview-guides/policies/overview/#policy-table-updates

...
 "functional_groupings": {
 ...
 "EncryptedRPCs": {
 "encryption_required" : true,
 "rpcs":{
 "AddCommand": {
 "hmi_levels": ["BACKGROUND",
 "FULL",
 "LIMITED"]
 },
 "Alert": {
 "hmi_levels": ["BACKGROUND",
 "FULL",
 "LIMITED"]
 },
 ...
 }
 },
 ...
 }
...

Add "encryption_required": true to an application in the app_policies section

...
 "app_policies": {
 ...
 "appId": {
 "keep_context": false,
 "steal_focus": false,
 "priority": "NONE",
 "default_hmi": "NONE",
 "groups": ["Base-4", "EncryptedRPCs"],
 "RequestType": [],
 "RequestSubType": [],
 "encryption_required": true
 },
 ...
 }
...

J S ON EXA MPL E

Below is a possible policy table configuration requiring an app to use encryption for a

specific functional group.

 "functional_groupings": {
 "EncryptedAddCommand": {
 "encryption_required" : true,
 "rpcs":{
 "AddCommand": {
 "hmi_levels": ["BACKGROUND",
 "FULL",
 "LIMITED"]
 }
 }
 },
 ...
 },
 ...
 "app_policies": {
 "<PUT_APP_ID_HERE>": {
 "keep_context": false,
 "steal_focus": false,
 "priority": "NONE",
 "default_hmi": "NONE",
 "groups": ["Base-4", "EncryptedAddCommand"],
 "RequestType": [],
 "RequestSubType": [],
 "encryption_required": true
 },
 ...
 }

Android Encryption Guide

iOS Encryption Guide

Additional Resources

Service Status Update

https://smartdevicelink.com/en/guides/android/other-sdl-features/encryption/
https://smartdevicelink.com/en/guides/ios/other-sdl-features/encryption/

This guide will explain how the BasicCommunication.OnServiceUpdate RPC is used

within SDL Core. At a high level, this RPC is used by SDL Core to inform the HMI of the

status of the system or what steps to take in case of an error. For example, when a mobile

navigation application is activated and sends a request to start a Video Service, a series

of steps are taken: getting the system time, performing a policy table update, and finally

decrypting and validating certificates. SDL Core sends BC.OnServiceUpdate notifications

to the HMI throughout each of these steps to provide information on the status of the

system. These notifications may cause the HMI to display a popup providing this status

information in a readable format to the user, or inform the user of what steps to take in

case of an error.

The OnServiceUpdate notification has three parameters:

This parameter is mandatory and will contain a value from the ServiceType enum,

indicating the type of service that this update is for:

VIDEO

AUDIO

RPC

This parameter is not mandatory and will be a value from the ServiceEvent enum,

indicating the status of the StartService request:

REQUEST_RECEIVED

REQUEST_ACCEPTED

REQUEST_REJECTED

General Description

Parameters

serviceType

serviceEvent

This parameter is not mandatory and will be a member of the ServiceStatusUpdateReaso

n enum, indicating the type of error that occurred while attempting to start the service:

PTU_FAILED

the system was unable to get a required Policy Table Update

INVALID_CERT

the security certificate was invalid or expired

INVALID_TIME

the system was unable to get a valid SystemTime from the HMI

PROTECTION_ENFORCED

the system configuration (ini file) requires a service to be protected, but the

app attempted to start an unprotected service

PROTECTION_DISABLED

the system started an unprotected service when the app requested a protected

service

This parameter is not mandatory but will be included with each request after the Register

AppInterface message for this application has been received.

More documentation on the message flow for BC.OnServiceUpdate and its parameters

can be found in the HMI Integration Guidelines.

To better understand how the OnServiceUpdate notification is propagated within SDL

Core, please take a look at the following Sequence Diagrams:

reason

appID

Flow Diagrams

https://smartdevicelink.com/en/docs/hmi/master/basiccommunication/onserviceupdate/

S EQU EN C E D IA GRA M

OnServiceUpdate Handshake Flow

S EQU EN C E D IA GRA M

OnServiceUpdate Invalid Certificate

View Diagram

View Diagram

S EQU EN C E D IA GRA M

OnServiceUpdate GetSystemTime Failed

S EQU EN C E D IA GRA M

OnServiceUpdate Policy Table Update Failed

View Diagram

View Diagram

Smart Objects are a recursive custom dynamic data structure within SDL Core which can

be used to easily store and manipulate complex data. Developers can use Smart Objects

to create containers for most primitive types, as well as arrays and maps.

The current implementation of Smart Objects contains definitions that allow it to store the

following data types: bool, int, long, double, char, string (both as char* and std::string),

array, and map.

The ns_smart_device_link::ns_smart_objects::CSmartObject class also defines a set of

methods that can be used to represent the stored object value as a desired type.

Example Usage:

Smart Objects

Usage

ns_smart_device_link::ns_smart_objects::SmartObject obj;

obj[0] = 1;

obj[1] = true;

obj[2] = 'a';

obj[3] = 3.14;

int i = obj[0].asInt();

bool b = obj[1].asBool();

char c = obj[2].asChar();

double d = obj[3].asDouble();

Smart Objects also include a validation/normalization mechanism called a Schema, which

is similarly structured to the Mobile/HMI API XML schemas. This object allows the client

to validate any existing Smart Object data structure. The process of validation includes

both type and value validation for the Smart Object.

To validate a Smart Object, a Schema needs to be applied to it. To "apply" a Schema

means that the Schema will modify the object to "normalize" its data. Applying the

Schema can be done by using the ns_smart_device_link::ns_smart_objects::CSmartSche

ma::applySchema method. Internally, the apply method for a Schema triggers the apply

method of every Schema Item within the object, and currently only modifies enum Schema

Items. When this method is called on a enum Schema Item, it will try to convert the string

representation of the object to one the item's predefined enum values.

The validation of a specific Smart Object can be triggered by using the ns_smart_device_li

nk::ns_smart_objects::CSmartSchema::validate method. Internally, the validate method

triggers the respective validate method for each Schema Item in the object in order to

perform validation.

Validation

To "unapply" modifications done by the apply step, the Schema's ns_smart_device_link::ns

_smart_objects::CSmartSchema::unapplySchema method can be used. This reverts all

enum values back to their string representations.

Every Schema is constructed using objects called Schema Items. Each Schema Item

defines the type of a specific data structure as well as any restrictions for that structure's

values.

In order to create a new Schema (a new object of class ns_smart_device_link::ns_smart_

objects::CSmartSchema), you must first must define all of the required Schema Items for

this object. These Schema Items can have a recursive tree structure, and each node and

leaf of that tree defines structural rules for some part of the Smart Object data structure.

Schema Items are represented as class hierarchy. The base class for all Schema Items is

the ns_smart_device_link::ns_smart_objects::ISchemaItem class. This base class

defines a generic validation interface for all Schema Items.

To define special elements which always fail or succeed the validation step, there

are two special Schema Items: ns_smart_device_link::ns_smart_objects::CAlwaysT

rueSchemaItem or ns_smart_device_link::ns_smart_objects::CAlwaysFalseSchem

aItem .

ns_smart_device_link::ns_smart_objects::CBoolSchemaItem is used for boolean

values and has no parameters, meaning that it only verifies that the Smart Object

contains an actual boolean value.

ns_smart_device_link::ns_smart_objects::TNumberSchemaItem is a template

Schema Item that can be used for both integer and floating point values. In addition

to simple type verification, it is possible to set an optional min and max value range

for this item.

ns_smart_device_link::ns_smart_objects::TEnumSchemaItem is used to verify any

custom client-defined enum. It is constructed using a list of these custom enum

values.

ns_smart_device_link::ns_smart_objects::CStringSchemaItem is used to verify a

string value. In addition to simple type verification, it is possible to set an optional

min and max string length for this item.

ns_smart_device_link::ns_smart_objects::CArraySchemaItem provides validation

for an array containing values with another Schema Item. It can be used to verify an

array with optional size bounds.

Schema Structure

ns_smart_device_link::ns_smart_objects::CObjectSchemaItem is used to verify a

map structure. Each Schema Item of this type includes a list of child Schema Items

with associated keys. All other Schema Item types make up the leaf nodes of the

validation tree for this Schema Item.

After the creation of all required Schema Items, it is then possible to create a Schema.

A Schema can be initialized not only by raw root Schema Item, but also by special

abstraction called a Member (defined by the ns_smart_device_link::ns_smart_objects::SM

ember class). So every root item (ns_smart_device_link::ns_smart_objects::CObjectSche

maItem) firstly should be wrapped as Member. This wrapping process is also used to set

the "mandatory" property for each Member. After each Member has been constructed, the

root Schema Item is then used to construct the final Schema.

Currently all Schemas are generated by the InterfaceGenerator tool. The Schema for an

SDL mobile message has following structure:

message
 |
 -- params
 | |
 | -- function_id
 | |
 | -- message_type
 | |
 | -- correlation_id
 | |
 | -- protocol_version
 | |
 | -- protocol_type
 |
 -- msg_params
 |
 -- (function-specific leaf item)
 ...

Schema Construction Example

namespace messageType {
/**
 * @brief Enumeration messageType.
 *
 *
 * Enumeration linking message types with function types in WiPro protocol.
 * Assumes enumeration starts at value 0.
 *
 */
enum eType {
 /**
 * @brief INVALID_ENUM.
 */
 INVALID_ENUM = -1,

 /**
 * @brief request.
 */
 request = 0,

 /**
 * @brief response.
 */
 response = 1,

 /**
 * @brief notification.
 */
 notification = 2
};
} // messageType
...
namespace FunctionID {
/**
 * @brief Enumeration FunctionID.
 *
 * Enumeration linking function names with function IDs in SmartDeviceLink
protocol. Assumes enumeration starts at value 0.
 */
enum eType {
 /**
 * @brief INVALID_ENUM.
 */
 INVALID_ENUM = -1,

 /**
 * @brief RESERVED.
 */
 RESERVED = 0,

 /**
 * @brief RegisterAppInterfaceID.

 */
 RegisterAppInterfaceID = 1,
 ...
};
} // FunctionID
...
// Struct member success.
//
// true if successful; false, if failed
std::shared_ptr<ISchemaItem> success_SchemaItem =
CBoolSchemaItem::create(TSchemaItemParameter<bool>());

// Struct member resultCode.
//
// See Result
std::shared_ptr<ISchemaItem> resultCode_SchemaItem =
TEnumSchemaItem<Result::eType>::create(resultCode_allowed_enum_subset_values
 TSchemaItemParameter<Result::eType>());

// Struct member info.
//
// Provides additional human readable info regarding the result.
std::shared_ptr<ISchemaItem> info_SchemaItem =
CStringSchemaItem::create(TSchemaItemParameter<size_t>(1),
TSchemaItemParameter<size_t>(1000), TSchemaItemParameter<std::string>());

Members schema_members;
schema_members["success"] = SMember(success_SchemaItem, true, "1.0.0", "",
false, false);
schema_members["resultCode"] = SMember(resultCode_SchemaItem, true, "1.0.0", "",
false, false);
schema_members["info"] = SMember(info_SchemaItem, false, "1.0.0", "", false, false);

Members params_members;
params_members[ns_smart_device_link::ns_json_handler::strings::S_FUNCTION_ID]
= SMember(TEnumSchemaItem<FunctionID::eType>::create(function_id_items), true);
params_members[ns_smart_device_link::ns_json_handler::strings::S_MESSAGE_TYPE
 =
SMember(TEnumSchemaItem<messageType::eType>::create(message_type_items),
true);
params_members[ns_smart_device_link::ns_json_handler::strings::S_PROTOCOL_VER
 = SMember(TNumberSchemaItem<int>::create(), true);
params_members[ns_smart_device_link::ns_json_handler::strings::S_PROTOCOL_TYP
 = SMember(TNumberSchemaItem<int>::create(), true);
params_members[ns_smart_device_link::ns_json_handler::strings::S_CORRELATION_I
 = SMember(TNumberSchemaItem<int>::create(), true);

Members root_members_map;
root_members_map[ns_smart_device_link::ns_json_handler::strings::S_MSG_PARAMS
 = SMember(CObjectSchemaItem::create(schema_members), true);
root_members_map[ns_smart_device_link::ns_json_handler::strings::S_PARAMS] =
SMember(CObjectSchemaItem::create(params_members), true);
return CSmartSchema(CObjectSchemaItem::create(root_members_map));

What is a WebEngine app?

What is the new transport that WebEngine apps use?

A WebEngine app is a web application that runs within the vehicle. This is made possible

by an OEM hosted "app store" which distributes approved "app bundles." The HMI will

decompress these app bundles and launch the entrypoint which will use the SDL

JavaScript (JS) library to interact with SDL Core.

App bundles are zip compressed archives containing the following files:

manifest.js is a javascript file that exports the following application properties:

entrypoint

A relative path within the bundle to the HTML file that will be launched by the

HMI

This HTML file must include the manifest.js file as a script

appIcon

A relative path to the app icon within the app bundle

appId

WebEngine Application Guide

WebEngine Apps

MANIFEST.JS

The policyAppId of this application

appName

The app name that should be displayed in the app store or in the app list

category

The primary appHMIType of the WebEngine application

additionalCategories

Additional appHMITypes of the WebEngine application

locales

A map of other languages to alternate names and icons

appVersion

The current version of the application

minRpcVersion

The minimum supported RPC spec version

minProtocolVersion

The minimum supported protocol spec version

sdl.js contains the SDL JS library used to interact with SDL Core.

All other HTML / JS files used to run the application.

SDL .JS

OTHER SU P P ORTING JAVASC RIP T F IL ES

Example Application

To see an example WebEngine application, take a look at the example in the javascript

suite on GitHub.

In order for a WebEngine application to appear on the SDL app list, the HMI must notify

SDL Core about newly installed WebEngine applications by sending a BasicCommunicati

on.SetAppProperties . The properties sent in this request will be stored in Core's policy

table and the information will stay persistent between ignition cycles.

When the user activates a WebEngine application, the HMI will use information from the

manifest.js to launch the entrypoint HTML (our development HMIs do this by creating an

invisible iframe). Here, the app will begin execution on the head unit and eventually call Re

gisterAppInterface . When the HMI receives an OnAppRegistered notification signalling

that the WebEngine app has successfully registered, the HMI should then send Core an A

ctivateApp request.

In order to support the WebEngine feature, a WebSocket server transport was added to

SDL Core. This contrasts to the WebSocket client transport in SDL Core that is used by

Java Cloud applications. When the HMI launches a WebEngine application, it will provide

Core's hostname and port as query parameters to the entrypoint of the WebEngine

application. This transport supports both secure and non-secure WebSocket

communication, which is also determined by a query parameter passed to the entrypoint

HTML file of the WebEngine application.

Launching a WebEngine App

Not all parameters in the AppProperties struct apply to WebEngine Apps.

WebEngine Apps should omit endpoint and authToken .

NOT E

WebSocket Server Transport

https://github.com/smartdevicelink/sdl_javascript_suite/tree/develop/examples/webengine/hello-sdl

These are the accepted values for the sdl-transport-role parameter:

ws-server

ws-client

wss-server

wss-client

tcp-server

tcp-client

Example URL with query parameters: file://somewhere/HelloSDL/index.html?sdl-host=loc

alhost&sdl-port=12345&sdl-transport-role=wss-server

WebSocket server transport will only run if either all three of these are valid or if none are

provided:

WSServerCertificatePath (path to WebSocket server certificate)

WSServerKeyPath (path to WebSocket server private key path)

WSServerCACertificatePath (path to CA certificate)

If all three are provided, SDL Core will use WebSocket Secure, otherwise, Core will use

regular WebSocket communication. These values can be set in the smartDeviceLink.ini

configuration file.

Please refer to the following diagram which describes the hierarchy of transport

components for the WebSocket Server transport adapter.

S EQU EN C E D IA GRA M

WebSocket Server Hierarchy

SEC U RED WEBSOC KET C ONNEC TIONS

WEBSOC KET SERV ER C OMP ONENT HIERARC HY

Please refer to the following diagram that describes the initialization sequence when SDL

Core is started.

S EQU EN C E D IA GRA M

WebSocket Server Connection Sequence

WEBSOC KET SERV ER IN IT SEQU ENC E

View Diagram

This guide will explain how transports work in SDL Core. We will highlight the

responsibilities of each interface as well as look at some examples of transports already

implemented in SDL Core. First let's take a look at Figure 1, a diagram showing the

Transport Programming Guide

View Diagram

hierarchy of the main transport components and then we will work our way down the

diagram describing each component.

S EQU EN C E D IA GRA M

Figure 1: Transport Overview

The Transport Manager is responsible for routing commands and messages between the

transport adapters and other major components in SDL Core. A Transport Manager can

contain any number of Transport Adapters, each of which is responsible for handling

communication via one type of transport, such as TCP or Bluetooth. The Transport

Manager also contains data necessary to handle its responsibilities, such as a mapping of

each device to the Transport Adapter it uses to communicate. Other components within

SDL Core are also able to register a Transport Manager Listener with the manager, which

will receive events from the Transport Manager. The default Transport Manager follows

the singleton pattern, but this is not necessary if you would like to use a custom solution.

Transport Manager

View Diagram

This diagram describing how data is transferred within the Protocol Layer can help you

understand the responsibilities of the Transport Manager.

S EQU EN C E D IA GRA M

Figure 2: Protocol Layer Data Transfer

TRANSP ORT MANAGER RESP ONSIBIL ITIES

View Diagram

This diagram describing how data is transferred within the Transport Layer can help you

understand the responsibilities of the Transport Manager.

S EQU EN C E D IA GRA M

Figure 3: Transport Layer Data Transfer

View Diagram

S EQU EN C E D IA GRA M

Figure 4: Transport Manager UML Diagram

TRANSP ORT MANAGER INHERITANC E STRU C TU RE

View Diagram

Each Transport Adapter is responsible for one specific type of connection, such as TCP or

Bluetooth. Similar to Transport Managers, other components in Core are able to register a

Transport Adapter Listener with a Transport Adapter to later receive events from the

Classes named like *Impl only represent implementations of the abstract

sub classes and may not be named the same in the SDL Core project.

UML Refresher

Aggregation: Solid line with open diamond
Composition: Solid line with filled diamond
Inheritance: Dotted line with open arrow
Dependency: Dotted line with two prong arrow

NOT E

Transport Adapter

Adapter such as OnConnectDone . The Transport Adapter will contain the code to

connect and disconnect devices, as well as send and receive data. Depending on the

transport type, a transport adapter may implement sub-components, called workers, such

as a Device Scanner, a Client Connection Listener, or a Server Connection Factory.

Currently, Transport Adapters are registered with the Transport Manager within the

TransportManagerDefault::Init method; you can add code here to include your custom

Transport Adapter. Depending on your implementation, most of the functionality of the

Transport Adapter will likely live in the workers. Two big functions that will for sure need

to be implemented in a Transport Adapter are Store() and Restore() which are used to save

and resume the state of the Adapter when there is an unexpected disconnect or SDL Core

is restarted. In the case of the TCP Transport Adapter, the Store() function will save a list

of devices' names and addresses, along with the applications each device was running and

their corresponding port number. When resuming, Restore() will reconnect to the devices

saved in the last state and resumes communication with the applications on each device.

https://github.com/smartdevicelink/sdl_core/blob/master/src/components/transport_manager/src/transport_manager_default.cc#L105
https://github.com/smartdevicelink/sdl_core/blob/master/src/components/transport_manager/src/tcp/tcp_transport_adapter.cc

// tcp_transport_adapter.cc
// Code has been heavily simplified and whitespace has been added for readability.

void TcpTransportAdapter::Store() const {
 Json::Value devices_dictionary;

 for (Device* tcp_device : GetDeviceList()) {
 if (!tcp_device) { continue; } // device could have been disconnected

 Json::Value device_dictionary;
 device_dictionary["name"] = tcp_device->name();
 device_dictionary["address"] = tcp_device->in_addr();

 Json::Value applications_dictionary;
 for (ApplicationHandle app_handle : tcp_device->GetApplicationList()) {
 if (FindEstablishedConnection(tcp_device->unique_device_id(),
 app_handle)) {
 int port = tcp_device->GetApplicationPort(app_handle);
 if (port != -1) { // don't want to store incoming applications
 applications_dictionary.append(std::string(port));
 }
 }
 }

 if (!applications_dictionary.empty()) {
 device_dictionary["applications"] = applications_dictionary;
 devices_dictionary.append(device_dictionary);
 }
 }

 Json::Value& dict = last_state().get_dictionary();
 dict["TransportManager"]["TcpAdapter"]["devices"] = devices_dictionary;
}

S EQU EN C E D IA GRA M

Figure 5: Transport Adapter UML Diagram

TRANSP ORT ADAP TER INHERITANC E STRU C TU RE

Classes named like *Impl only represent implementations of the abstract

sub classes and may not be named the same in the SDL Core project.

UML Refresher

Aggregation: Solid line with open diamond
Composition: Solid line with filled diamond
Inheritance: Dotted line with open arrow
Dependency: Dotted line with two prong arrow

NOT E

Transport Adapter Workers

View Diagram

The Client Connection Listener implements receiving a connection that is originated by a

device. This will typically wait for connection from a device, then establish that

connection, finally alerting the Transport Manager via the Transport Manager Listener of

the newly connected device and app IDs. The TCP transport adapter has a good example

implementation of a Client Connection Listener.

The Server Connection Factory implements a connection that is originated from Core. For

example, Core reaches out to a predefined web address to start a cloud websocket

application. This type of communication requires that the Transport Adapter knows of the

device and application in advance. When this connection is created, the Transport Adapter

will alert the Transport Manager of the new devices and applications in a similar fashion

to other workers. USB and Bluetooth are additional examples that implement this sub-

component.

The Device Scanner is responsible for scanning for new devices to connect with. When a

device is found, this worker is responsible for alerting the Transport Adapter, as well as

alerting the Transport Manager via the Transport Adapter Listener. Next, the Transport

Manager will instruct the Transport Adapter to connect with the devices. The Bluetooth

Transport Adapter has a great example implementation of the Device Scanner that search

for bluetooth services advertising the SDL bluetooth UUID.

Depending on what your type of transport is, whether Core will be the server or the client,

you will likely implement either the Client Connection Listener or the Server Connection

Factory.

Using the TCP Transport Adapter as an example for a client connection listener

implementation, let's take a look at Init() .

C L IENT C ONNEC TION L ISTENER

https://github.com/smartdevicelink/sdl_core/blob/master/src/components/transport_manager/src/tcp/tcp_client_listener.cc
https://github.com/smartdevicelink/sdl_core/blob/master/src/components/transport_manager/src/usb/usb_connection_factory.cc
https://github.com/smartdevicelink/sdl_core/blob/master/src/components/transport_manager/src/bluetooth/bluetooth_connection_factory.cc
https://github.com/smartdevicelink/sdl_core/blob/master/src/components/transport_manager/src/bluetooth/bluetooth_device_scanner.cc
https://github.com/smartdevicelink/sdl_core/blob/master/src/components/transport_manager/src/tcp/tcp_client_listener.cc

// tcp_client_listener.cc
// Code has been simplified and whitespace has been added for readability.
// Thank you to Sho Amano for the helpful comments.

TransportAdapter::Error TcpClientListener::Init() {
 thread_stop_requested_ = false;

 if (!IsListeningOnSpecificInterface()) {
 // Network interface is not specified. We will listen on all interfaces
 // using INADDR_ANY. If socket creation fails, we will treat it an error.
 socket_ = CreateIPv4ServerSocket(port_);
 if (-1 == socket_) {
 LOG("Failed to create TCP socket");
 return TransportAdapter::FAIL;
 }
 } else {
 // Network interface is specified and we will listen only on the interface.
 // In this case, the server socket will be created once
 // NetworkInterfaceListener notifies the interface's IP address.
 LOG("TCP server socket will listen on " << designated_interface_
 << " once it has an IPv4 address.");
 }

 if (!interface_listener_->Init()) {
 if (socket_ >= 0) {
 close(socket_);
 socket_ = -1;
 }
 return TransportAdapter::FAIL;
 }

 initialized_ = true;
 return TransportAdapter::OK;
}

The Init() function is called one time to prepare the Transport Adapter for its work. If the

initialization work within this function succeeds, initialized_ should be set to true. In the

case of the TCP Client Listener, the Init() method will create the socket and initialize the

interface listener. It is worth noting that the interface listener is specific to the TCP Client

Listener and contains the lower level code to accept TCP connections such as the

socket() and bind() syscalls. A similar component is not necessary. The opposite of Init()

is the Terminate() method which handles shutting down the transport adapter. On the TCP

Client Listener, this involves destroying the socket and de-initializing the interface listener.

// tcp_client_listener.cc
// Code has been simplified and whitespace has been added for readability.

TransportAdapter::Error TcpClientListener::StartListening() {
 if (started_) {
 LOG("TransportAdapter::BAD_STATE. Listener has already been started");
 return TransportAdapter::BAD_STATE;
 }

 if (!interface_listener_->Start()) {
 return TransportAdapter::FAIL;
 }

 if (!IsListeningOnSpecificInterface()) {
 TransportAdapter::Error ret = StartListeningThread();
 if (TransportAdapter::OK != ret) {
 LOG("Tcp client listener thread start failed");
 interface_listener_->Stop();
 return ret;
 }
 }

 started_ = true;
 LOG("Tcp client listener has started successfully");
 return TransportAdapter::OK;
}

The next set of functions to implement are StartListening() and ResumeListening(), which

are fairly similar, both setting started_ to true when they are ready to send and receive

data. In the case of the TCP Client Listener, ResumeListening initializes the interface

listener, and starts the listening thread. StartListening follows a very similar pattern of

behavior but calls Start() on the interface listener instead of Init().

// tcp_client_listener.cc
// Code has been simplified and whitespace has been added for readability.

TransportAdapter::Error TcpClientListener::StopListening() {
 if (!started_) {
 LOG("TcpClientListener is not running now");
 return TransportAdapter::BAD_STATE;
 }

 interface_listener_->Stop();

 StopListeningThread();

 started_ = false;
 LOG("Tcp client listener was stopped successfully");
 return TransportAdapter::OK;
}

The StopListening() and SuspendListening() functions do about the opposite, both stop

the TCP Client Listener delegate thread and then set started_ to false. The difference

between the two functions on the TCP Client Listener is that StopListening() will also stop

the Platform Specific Network Interface Listener's delegate thread. When

SuspendListening() is called, SDL will not be able to create new connections, but existing

connections are still able to communicate data. StopListening() will also kill

communication with existing connections.

The Server Connection Factory has the method CreateConnection() which, provided with a

device UID and application handle, creates a connection to the application, and then

should call ConnectionCreated() on the Transport Adapter.

SERV ER C ONNEC TION FAC TORY

// bluetooth_connection_factory.cc
// Code has been simplified and whitespace has been added for readability.

TransportAdapter::Error BluetoothConnectionFactory::CreateConnection(
 const DeviceUID& device_uid, const ApplicationHandle& app_handle) {
 auto connection = std::make_shared<BluetoothSocketConnection>(
 device_uid, app_handle, controller_);
 controller_->ConnectionCreated(connection, device_uid, app_handle);

 TransportAdapter::Error error = connection->Start();
 if (TransportAdapter::OK != error) {
 LOG("Bluetooth connection::Start() failed with error: "
 << error);
 }

 return error;
}

The TCP Transport Adapter does not use a device scanner because it waits for incoming

connections. We will use the Bluetooth Transport Adapter’s Device Scanner as an example

here.

The Init() function is called once and is responsible for preparing for the life-cycle of your

device scanner. Here, the bluetooth device scanner will start the device scanner worker

thread. This worker thread will either scan for devices repeatedly or only when requested

via a conditional variable. This behavior is determined by the second and third parameters

to the constructor, a boolean auto_repeat_search and an integer auto_repeat_pause_se

c . If auto_repeat_search is set to false, the device scanner will only scan when

instructed to, otherwise it will scan every auto_repeat_pause_sec seconds.

DEV IC E SC ANNER

https://github.com/smartdevicelink/sdl_core/blob/master/src/components/transport_manager/src/bluetooth/bluetooth_device_scanner.cc

// bluetooth_device_scanner.cc
// Code has been simplified and whitespace has been added for readability.

void BluetoothDeviceScanner::Terminate() {
 shutdown_requested_ = true;

 if (thread_) {
 {
 sync_primitives::AutoLock auto_lock(device_scan_requested_lock_);
 device_scan_requested_ = false;
 device_scan_requested_cv_.NotifyOne();
 }

 LOG("Waiting for bluetooth device scanner thread termination");
 thread_->stop();
 LOG("Bluetooth device scanner thread stopped");
 }
}

The Terminate() function is called when Core begins shutting down. It will be responsible

for telling the worker thread to finish up.

In the case of the bluetooth device scanner, the destructor will join the thread that was

started in Init() and cleanup after it.

// bluetooth_device_scanner.cc
// Code has been simplified and whitespace has been added for readability.

TransportAdapter::Error BluetoothDeviceScanner::Scan() {
 if (!IsInitialised() || shutdown_requested_) {
 LOG("BAD_STATE");
 return TransportAdapter::BAD_STATE;
 }

 if (auto_repeat_pause_sec_ == 0) {
 return TransportAdapter::OK;
 }

 sync_primitives::AutoLock auto_lock(device_scan_requested_lock_);
 if (!device_scan_requested_) {
 LOG("Requesting device Scan");
 device_scan_requested_ = true;
 device_scan_requested_cv_.NotifyOne();
 } else {
 return TransportAdapter::BAD_STATE;
 }

 return TransportAdapter::OK;
}

// bluetooth_device_scanner.cc
// Code has been simplified and whitespace has been added for readability.

void BluetoothDeviceScanner::UpdateTotalDeviceList() {
 std::vector<Device*> devices;
 devices.insert(devices.end(),
 paired_devices_with_sdl_.begin(), paired_devices_with_sdl_.end());
 devices.insert(devices.end(),
 found_devices_with_sdl_.begin(), found_devices_with_sdl_.end());

 controller_->SearchDeviceDone(devices);
}

The Scan() function returns an error code, not the actual results of the scan. When the

scanning is complete, all devices (existing and newly found) will be passed to the

Transport Adapter via the function SearchDeviceDone(). In the Bluetooth device scanner,

the Scan() function will signal to the scanning thread that a device scan was requested.

S EQU EN C E D IA GRA M

New Device Connection

Operation Examples

View Diagram

S EQU EN C E D IA GRA M

Connection Close Command

View Diagram

Creating a connection with Core acting as the server means that the connection is

initiated by a device trying to connect to Core. In the case of the TCP Transport Adapter,

Creating a Connection

Core as the Server

this all begins with a device connecting to Core on port 12345. The TCP Connection

Listener's loop waits for a new connection to its socket before adding that device to the

device list (if it doesn't already exist) and adding the new application to the app list. Once

the application has registered and the HMI has received the updated app list, selecting the

TCP application in the HMI shall prompt it to activate.

Creating a connection with Core acting as the client means that the connection is initiated

by Core. This means that Core must know in advance how to create the connection. In the

case of Cloud applications, their endpoints and names are stored in the policy table

enabling them to immediately be included in the app list. When a user activates an

application in the HMI, Core will open a web socket connection to the endpoint defined in

the policy table and the app may start the RPC service.

Sending data to a device is initiated by the SendMessageToMobile method on the RPC

Service. This method will post the message to the Protocol Handler and end up in SendM

essageToMobileApp . This method will, depending on the size of the message, call Send

SingleFrameMessage or SendMultiFrameMessage which will place the messages in the

messages to mobile queue. Another thread within the Protocol Handler processes

messages from this queue and eventually passes them to SendMessageToDevice on the

transport manager. This again adds the messages to a queue that another thread on the

Transport Manager drains, passing the message to the Transport Adapter corresponding

to the active Connection. Finally, SendData on the Transport Adapter which does the

actual sending of the raw data. It is good to note that in some of the existing Transport

Adapters, the code to actually transmit data is in SendData on the Connection object,

and the Transport Adapter SendData call will be forwarded to SendData on the

Connection object.

Core as the Client

Sending and Receiving Data

Sending

Receiving

The code to receive data will vary depending on the method of transport; in the case of the

TCP Transport Adapter, the Socket Connection thread loops checking if data has been

sent to its socket before calling recv and converting the read buffer to a raw message.

When a Transport Adapter finishes receiving incoming message(s) it will emit the event

OnReceivedDone. This event will be propagated to the Transport Manager Listeners

including the Protocol Handler who will add the message(s) to the messages from mobile

queue which is processed by another thread within the Protocol Handler.

These events are generated by a Transport Adapter and forwarded to a Transport Adapter

Listener who will in turn post the event to the Transport Manager who will finally raise the

event to the Transport Manager Listeners. The only exception is OnSendFail, which is not

forwarded from the Transport Manager to the Transport Manager Listeners.

OnSearchDone

Indicates that a device search has completed. In the case of the USB Transport Adapter,

this event is emitted by the Device Scanner after a scan has completed.

OnSearchFail

Indicates that a device search has encountered an error. In the case of the Bluetooth

Transport Adapter, this event is emitted by the Device Scanner when Core fails to correctly

interact with the bluetooth hardware.

OnDeviceListUpdated

Indicates that the list of connected devices has been updated. This event will be emitted

when AddDevice , RemoveDevice or SearchDeviceDone is called on the transport

adapter.

OnFindNewApplicationsRequest

Events

Transport Adapter Events

Indicates that SDL Core should begin to check for new applications on newly connected

devices. This event is emitted by the Bluetooth Device Scanner once it has connected to

new devices and updated the device list.

OnConnectDone

Indicates that a connection has been established. The Transport Manager will then add the

connection to the connection list if it has not already been added. In the case of the cloud

websocket transport adapter, this event is emitted once the connection handshake is

completed.

OnDisconnectDone

Indicates that disconnecting from an application has completed and prompts the

Transport Manager to remove the connection from the connection list. In the case of the

websocket Transport Adapter, this event is emitted after the delegate threads for the

connection have been stopped.

OnSendDone

Indicates that a Transport Adapter has finished sending the messages in its queue. Upon

receipt of this event the Transport Manager will check if the connection is slated for

shutdown and disconnect it if so.

OnSendFail

Indicates that a Transport Adapter failed to send a message properly. This could prompt

the transport manager to take action that would reconcile the errors. This event is not

currently raised to the Transport Manager Listeners.

OnReceivedDone

Indicates that a Transport Adapter has successfully received a message. The received

data is eventually passed to Transport Manager Listeners which will process that data.

OnReceivedFail

Indicates that a Transport Adapter has failed to properly receive a message.

OnUnexpectedDisconnect

Indicates that a device has been unexpectedly disconnected. This event could be emitted

in the case of a device being disconnected or a connection being aborted. This event will

prompt the Transport Manager to remove the disconnected connection.

OnTransportSwitchRequested

Indicates that a transport switch has been requested. This will prompt the Transport

Manager to begin transport switching.

OnTransportConfigUpdated

Indicates that the Transport Config has been updated. This will prompt the Protocol

Handler (a Transport Manager Listener) to check for updates to things like the TCP

listening address and port.

OnConnectPending

Indicates that a connection is pending. The Transport Manager will then add the

connection to the connection list if it has not already been added. In the case of the cloud

websocket transport adapter, this event is emitted once a connection configuration is

known to SDL Core, but before the connection is actually established.

OnConnectionStatusUpdated

Indicates that the status of one or more connections has been updated, and SDL Core

should send an UpdateAppList RPC to the HMI. This will be emitted by the Transport

Adapter during device connection and also when a device is disconnected.

These events are created in the Transport Manager and only raised to the Transport

Manager Listeners.

OnDeviceAdded and OnDeviceRemoved

These two events are fired when UpdateDeviceList is called on the Transport Manager.

One OnDeviceAdded event will be dispatched for each new device in the list and one

OnDeviceRemoved will be dispatched for each device that is no longer in the list.

OnDeviceFound

Transport Manager Listener Events

When UpdateDeviceMapping is called on the Transport Manager, it ensures all devices

from a Transport Adapter's device list are accounted for in the device to adapter map.

OnDeviceFound will be raised for any new devices that weren't previously in the device to

adapter map.

OnDeviceSwitchingStart

When TryDeviceSwitch is called on the Transport Manager following an

OnTransportSwitchRequested event, the OnDeviceSwitchingStart event is raised with both

the bluetooth and USB device UIDs.

This page will describe internal structure and detailed design of Resume controller

S EQU EN C E D IA GRA M

Figure 1: ResumeController Overview

Resume Controller

View Diagram

The resume controller's responsibility is to handle the resumption responsibilities of SDL.

There are 2 resumption types :

Classes named like *Impl only represent implementations of the abstract

sub classes and may not be named the same in the SDL Core project.

UML Refresher

Aggregation: Solid line with open diamond
Composition: Solid line with filled diamond
Inheritance: Dotted line with open arrow
Dependency: Dotted line with two prong arrow

NOT E

Resume Controller

HMI state resumption

Data resumption

The resume controller does both.

In the case of unexpected disconnect SDL should store an application's HMI state for the

next 3 ignition cycles.

On next application registration SDL should restore last saved application HMI state.

ResumptionData is responsible for application data restoring.

ResumeCtrlImpl is responsible for HMI state restoring.

ResumeCtrlImpl will remove application hmi_state info from resumption data after 3

ignition cycles.

On each shutdown ResumeCtrlImpl will increment ign_off_count value for each

application.

On App registration ResumeCtrl::StartResumptionOnlyHMILevel or ResumeCtrlImpl::Sta

rtResumption will put application in a queue for resumption.

Internal timer in ResumeCtrlImpl will restore application hmi_state in several seconds

(configured by ApplicationManagerSettings::app_resuming_timeout)

In the case where another application has already registered, the StateController will take

care of resolving any HMI state conflicts.

SDL restores application data if an application sends the appropriate hashID in the

RegisterAppInterface request. This hash updates after each data change.

SDL stores resumption data either in json or in database, this option is configurable via INI

file UseDBForResumption=false field in [Resumption] section.

ResumeControllerImpl requests app data from ResumptionData class and provides it to

ResumptionDataProcessor

ResumptionDataProcessor is responsible for restoring application data and provides the

result to RegisterAppInterface via a callback.

HMI state resumption

Data resumption

S EQU EN C E D IA GRA M

Figure 2: Resumption data sequence Overview

ResumptionData class is used to represent resumption data agnostic to data storage.

ResumptionData provides app resumption data in the Smart Object representation.

S EQU EN C E D IA GRA M

Figure 2: Resumption data classes

ResumptionData

View Diagram

View Diagram

There are 2 implementations of resumption data :

* ResumptionDataJson

* ResumptionDataDB

ResumptionData does not contain active components : timers, reactions, callbacks, etc

...

It is responsible for data storage.

ResumptionDataProcessor is responsible for restoring resumption data and tracking its

status.

ResumptionDataProcessor

View Diagram

Main public function for resumptions is ResumptionDataProcessor::Restore :

 /**
 * @brief Running resumption data process from saved_app to application.
 * @param application Application which will be resumed
 * @param saved_app Application specific section from backup file
 * @param callback Function signature to be called when
 * data resumption will be finished
 */
 void Restore(app_mngr::ApplicationSharedPtr application,
 smart_objects::SmartObject& saved_app,
 ResumeCtrl::ResumptionCallBack callback);

ResumeCtrl::ResumptionCallBack callback is a function that should be called after data

resumption :

typedef std::function<void(mobile_apis::Result::eType result_code,
 const std::string& info)> ResumptionCallBack;

Some resumption data should be restored in the Application class itself.

Some resumption data should be stored in plugins : ApplicationExtensions.

Some resumption data requires sending HMI requests.

ResumptionDataProcessor is inherited from EventObserver to track responses.

If all responses are successful ResumptionDataProcessor will call callback(SUCCESS)

If some of the data failed to restore, ResumptionDataProcessor will revert already

restored data and call callback(ERROR_CODE, info) .

The requirements are available in proposal 0190: Handle response from HMI during

resumption data

RegisterAppInterface will wait for the callback to send a response to a mobile application.

AppExtension

https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0190-resumption-data-error-handling.md

Application extension contains following methods for resumption :

 /**
 * @brief SaveResumptionData method called by SDL when it saves resumption
 * data.
 * @param resumption_data data reference to data, that will be appended by
 * plugin
 */
 virtual void SaveResumptionData(
 smart_objects::SmartObject& resumption_data) = 0;

 /**
 * @brief ProcessResumption Method called by SDL during resumption.
 * @param resumption_data list of resumption data
 */
 virtual void ProcessResumption(
 const smart_objects::SmartObject& resumption_data) = 0;

 /**
 * @brief RevertResumption Method called by SDL during revert resumption.
 * @param subscriptions Subscriptions from which must discard
 */
 virtual void RevertResumption(
 const smart_objects::SmartObject& subscriptions) = 0;

Only an application's extension have an access to active data, data send and data revert

process.

Each application extension uses its own plugin to manipulate with functionality.

SaveResumptionData will fill passed resumption_data for saving to ResumptionData .

Example from VehicleInfoAppExtension:

SDLRPCPlugin& plugin_;
...
void VehicleInfoAppExtension::SaveResumptionData(
 smart_objects::SmartObject& resumption_data) {
 resumption_data[strings::application_vehicle_info] =
 smart_objects::SmartObject(smart_objects::SmartType_Array);
 int i = 0;
 for (const auto& subscription : subscribed_data_) {
 resumption_data[strings::application_vehicle_info][i++] = subscription;
 }
}

ProcessResumption will send appropriate HMI requests, and change internal SDL state

according to provided resumption_data . All HMI responses will be transferred to Resum

ptionDataProcessor

Example from SDLWaypointAppExtension:

SDLRPCPlugin& plugin_;
...
void SDLWaypointAppExtension::ProcessResumption(
 const smart_objects::SmartObject& saved_app) {
 ...
 const bool subscribed_for_way_points =
 saved_app[strings::subscribed_for_way_points].asBool();
 if (subscribed_for_way_points_so) {
 plugin_.ProcessResumptionSubscription(app_, *this);
 }
}

On each request sent to HMI Plugin will call resumption_data_processor->SubscribeOnRe

sponse .

This will inform ResumptionDataProcessor that it should wait for a response before

finishing resumption and sending RAI response to mobile.

RevertResumption will send the appropriate HMI requests to revert provided subscripti

ons .

If multiple applications are trying to restore the same subscription, SDL should send the

only first subscription to HMI. If the first subscription was failed and the application

received RESUME_FAILED result code, for the second application SDL should also try to

restore the subscription.

Resumption of Subscriptions

For the waiting subscription result, SDL uses the ExtensionPendingResumptionHandler

class.

Each plugin contains its own ExtensionPendingResumptionHandler for subscriptions

resumption.

S EQU EN C E D IA GRA M

ExtensionPendingResumptionHandler overview

For subscriptions resumption plugin calls ExtensionPendingResumptionHandler::HandleR

esumptionSubscriptionRequest(app_extension, application)

ExtensionPendingResumptionHandler sends requests to HMI for all subscriptions

available in app_extension and tracks responses with the on_event method inherited

from EventObserver .

In the case some subscription request to the HMI was already sent but the response was

not received yet, ExtensionPendingResumptionHandler will not send an additional

request to HMI but store internally that appropriate subscription resumption is "frozen".

When the response is received from the HMI, SDL will manage both resumptions

according to response data.

For "frozen" resumptions ExtensionPendingResumptionHandler will raise an event so that

ResumeDataProcessor will receive this event and understand it as response from HMI.

View Diagram

S EQU EN C E D IA GRA M

Subscriptions restore sequence :

View Diagram

OnResumptionRevert is used to trigger the next frozen resumption if no requests are

currently waiting for a response.

Secure communication in SDL Core is provided by the Security Manager interface,

implemented in Core as the SecurityManagerImpl.

Under the hood the Security Manager uses OpenSSL to complete handshakes and

encrypt/decrypt data. All OpenSSL operations are abstracted away by the Crypto Manager -

which provides a factory for SSL Context objects, the ability to update certificates from

Certificate Authorities and SSL error reporting. The SSL Context objects created by the

Crypto Manager can be used to establish SSL connections, as well as to encrypt or

decrypt data. Events within the Security Manager will be propagated to any Security

Manager Listeners that register with the Security Manager. The Protocol Handler

implementation in Core implements the SecurityManagerListener interface in order to

send protocol layer responses to handshakes.

When a handshake has been completed, the OnHandshakeDone is called on each

registered SecurityManagerListener . This function is called with two parameters: the

connection key, and a HandshakeResult enum value (one of Fail, Success, CertExpired,

etc.)

Security Manager Guide

What is the Security Manager?

What events are generated?

ONHANDSHAKEDONE

ONC ERTIF IC ATEU P DATEREQU IRED

https://github.com/smartdevicelink/sdl_core/blob/master/src/components/security_manager/src/security_manager_impl.cc
https://github.com/smartdevicelink/sdl_core/blob/master/src/components/security_manager/src/crypto_manager_impl.cc
https://github.com/smartdevicelink/sdl_core/blob/master/src/components/protocol_handler/src/protocol_handler_impl.cc
https://github.com/smartdevicelink/sdl_core/blob/master/src/components/include/security_manager/security_manager_listener.h
https://github.com/smartdevicelink/sdl_core/blob/master/src/components/include/security_manager/ssl_context.h#L68

When a handshake is initiated and the connection does not have a valid certificate, OnCer

tificateUpdateRequired will be called on each registered SecurityManagerListener. This

could be either because no certificate was supplied for the connection or because the

certificate is expired.

If the Security Manager fails to get the system time from the HMI, OnGetSystemTimeFail

ed will be called on each registered SecurityManagerListener.

If the Security Manager fails to decrypt a certificate, OnCertDecryptFailed will be called

on each registered SecurityManagerListener.

If a PTU fails, each registered SecurityManagerListener is notified with the OnPTUFailed

event.

To further understand the relationship between the components of the security manager,

please take a look at this UML diagram.

S EQU EN C E D IA GRA M

ONGETSYSTEMTIMEFAIL ED

ONC ERTDEC RYP TFAIL ED

ONP TU FAIL ED

Sequence Diagrams

SEC U RITY MANAGER C OMP ONENT HIERARC HY

https://github.com/smartdevicelink/sdl_core/blob/master/src/components/include/security_manager/security_manager_listener.h
https://github.com/smartdevicelink/sdl_core/blob/master/src/components/include/security_manager/security_manager_listener.h
https://github.com/smartdevicelink/sdl_core/blob/master/src/components/include/security_manager/security_manager_listener.h

Security Manager UML

To understand how the security manager is initialized, please take a look at this flow

diagram.

S EQU EN C E D IA GRA M

Security Manager Initialization

SEC U RITY MANAGER IN ITIAL IZATION

View Diagram

View Diagram

To understand what the security manager does to start an encrypted service after it has

been initialized, please take a look at this flow diagram.

S EQU EN C E D IA GRA M

Security Manager Add Encrypted Service

SEC U RITY MANAGER ADD ENC RYP TED SERV IC E

SEC U RITY MANAGER DEC RYP T

View Diagram

To understand how the Security Manager decrypts data, please take a look at this flow

diagram.

S EQU EN C E D IA GRA M

Security Manager Decryption

To understand how the Security Manager encrypts data, please take a look at this flow

diagram.

S EQU EN C E D IA GRA M

Security Manager Encryption

SEC U RITY MANAGER ENC RYP T

View Diagram

By default, SDL Core uses the log4cxx framework for logging.

By implementing logger abstraction, SDL now provides the capability to replace the

log4cxx logger with any other logging package-such as boost or syslog.

S EQU EN C E D IA GRA M

High Level Design

SDL Logger

View Diagram

View Diagram

https://logging.apache.org/log4cxx/latest_stable/

Logger macros use the Logger interface for sending messages to the External Logger.

The Logger interface contains only methods required by any SDL component to perform

logging :

instance() - singleton access

PushLog(LogMessage)

IsEnabledFor(LogLevel)

DeInit()

Flush()

All components have access to the Logger interface and use it for logging.

NOT E

Logger Interface

Logger Implementation

Logger interface is implemented by LoggerImpl .

LoggerImpl uses the message loop thread to proxy log messages to a third party

(external) logger.

LoggerImpl owns ThirdPartyLoggerInterface and controls it's lifetime.

LoggerImpl provides implementation of the singleton pattern.

The message loop thread is needed to avoid significant performance degradation at run

time as logging calls are blocking calls and might take a significant amount of time. Logg

erImpl::PushLog is a non-blocking call. It will put the log message into the queue and

returns immediately.

If ThirdPartyLoggerInterface supports non blocking threaded logging, minor changes in

LoggerImpl can be made with use_message_loop_thread = false .

Logger is the only singleton class in SDL. The singleton pattern is required to access the

logger instance from any component.

Message loop thread in SDLLogger

Logger singleton

Logger::instance() provides singleton by Logger interface. So SDL

components do not have information about the logger implementation and

the specific external logger.

NOT E

Logger singleton with plugins

SDL plugins are shared libraries, so the Logger singleton could not be implemented with

a Mayers singleton. A Mayers singleton would create an SDL logger instance for each

plugin.

The idea is to pass a singleton pointer to each plugin during creation so that plugins can

initialize the Logger::instance pointer with the instance received from SDL core.

// ilogger.h
static Logger& instance(Logger* pre_init = nullptr);

...
// logger_impl.cc
Logger& Logger::instance(Logger* pre_init) {
 static Logger* instance_ = nullptr;
 if (pre_init) {
 assert(instance_ == nullptr);
 instance_ = pre_init;
 }
 assert(instance_);
 return *instance_;
}

pre_init is nullptr by default, so all components will access instance_ static pointer

for logging.

The main() function will need to create a LoggerImpl object and call Logger::instance

(logger implementation object) ;

extern "C" PluginType* Create(Logger* logger_singleton_instance) {
 Logger::instance(logger_instance);
 return new PluginType();
}

SINGL ETON INSTANC E IMP L EMENTATION

P L U GIN IMP L EMENTATION

SDL Core will pass a pointer to the logger singleton to the plugin so that the plugin shared

library can initialize Logger::instance with the same pointer as the core portion.

Each source file creates logger_ variable via macro SDL_CREATE_LOG_VARIABLE .

This variable is actually a string with the component name of the logger.

Some logger implementations (like log4cxx) may have separate severity or destination

rules for each component.

SDL implements all info required for log message :

LogLevel enum

Location info struct : location in the code

TimePoint

S EQU EN C E D IA GRA M

Detailed Design

Logger detailed design

View Diagram

LoggerInitializer specifies the interface required for main() to initialize the logger but is

not required for any other SDL components.

LoggerInitializer::Init takes the third party logger implementation as an argument.

- Init(std::unique_ptr<ThirdPartyLoggerInterface>&& third_party)

ThirdPartyLoggerInterface describes interfaces that should be implemented by the

external logger adapter.

This interface should be inherited by external logger implementations.

To use another (not log4cxx) logger, you should:

Create a class which inherits from the ThirdPartyLoggerInterface class

LoggerInitializer interface

ThirdPartyLogger interface

Implementing another logger

AnotherOneLoggerImpl : ThirdPartyLoggerInterface {
 void Init() override;
 void DeInit() override;
 void IsEnabledFor(LogLevel) override;
 void PushLog(const LogMessage& log_message) override;

 void SomeCustomMethod(parameters);
}

Create an instance of the third party logger implementation(AnotherOneLoggerImpl)

in main() and set it up for LoggerImpl.

// main.cpp
int main(argc, argv) {
 auto external_logger_ = std::make_unique<AnotherOneLoggerImpl>();
 external_logger_->SomeCustomMethod(argv);
 auto sdl_logger_instance_ = new LoggerImpl(std::move(external_logger_));
 Logger::instance(sdl_logger_instance_);
 sdl_logger_instance_->Init(std::move(external_logger_));
 // Futher application code may use Logger::instance() for logging

 delete sdl_logger_instance_;
}

Logger::instance does not own the logger instance. The main function is

responsible for the sdl_logger_instance_ life-cycle.

NOT E

Migrating SDL Core 6.1 to 7.0

The 7.0 release had a number of changes and additions to the HMI API that will require

updates to your SDL Core integration in your head unit.

The minimum environment requirements have changed for Ubuntu 18. GCC Version 7.5.x

is now recommended over the previously recommended GCC Version 7.3.x.

The url parameter in the HMI API and RPC Spec has removed its max length

requirement.

The parameter appID has been removed from VehicleInfo.UnsubscribeVehicleData

request to the HMI.

Character sets TYPE2SET , TYPE5SET , CID1SET , and CID2SET have been

deprecated. These character sets only had proprietary significance and HMIs can now

choose from the following character sets:

ASCII

ISO_8859_1

UTF_8

This unimplemented RPC has been marked as deprecated and should be removed in the

next major version change of SDL Core.

Environment Update

Breaking Changes

Newly Deprecated

Deprecated Character Sets

Deprecated HMI RPC: OnFindApplications

Vehicle Data parameters fuelLevel and fuelLevel_state have been deprecated. Please

make updates to use expanded vehicle data struct FuelRange .

<struct name="FuelRange">
 <param name="type" type="Common.FuelType" mandatory="false"/>
 <param name="range" type="Float" minvalue="0" maxvalue="10000"
mandatory="false">
 <description>
 The estimate range in KM the vehicle can travel based on fuel level and
consumption.
 </description>
 </param>
 <param name="level" type="Float" minvalue="-6" maxvalue="1000000"
mandatory="false">
 <description>The relative remaining capacity of this fuel type (percentage).
</description>
 </param>
 <param name="levelState" type="Common.ComponentVolumeStatus"
mandatory="false">
 <description>The fuel level state</description>
 </param>
 <param name="capacity" type="Float" minvalue="0" maxvalue="1000000"
mandatory="false">
 <description>The absolute capacity of this fuel type.</description>
 </param>
 <param name="capacityUnit" type="Common.CapacityUnit" mandatory="false">
 <description>The unit of the capacity of this fuel type such as liters for gasoline or
kWh for batteries.</description>
 </param>
</struct>

Vehicle Data parameter prndl has been deprecated. Please make updates to use the new

vehicle data struct GearStatus .

Deprecated Vehicle Data

<struct name="GearStatus">
 <param name="userSelectedGear" type="Common.PRNDL" mandatory="false">
 <description>Gear position selected by the user i.e. Park, Drive,
Reverse</description>
 </param>
 <param name="actualGear" type="Common.PRNDL" mandatory="false">
 <description>Actual Gear in use by the transmission</description>
 </param>
 <param name="transmissionType" type="Common.TransmissionType"
mandatory="false">
 <description>Tells the transmission type</description>
 </param>
</struct>

FuelRange was expanded to replace fuelLevel and fuelLevel_state parameters

New vehicle data type: GearStatus to replace prndl parameter

New vehicle data type: StabilityControlStatus

New vehicle data type: WindowStatus

New vehicle data type: HandsOffSteering

It is not required to implement all vehicle data types. If a type is unsupported by your

headunit, please be sure to respond to SDL Core with result UNSUPPORTED_RESOURCE

if an unsupported request has been made.

SDL Core 7.0 adds extended capabilities to the app menu. SDL Core now supports nested

submenus, dynamic menus, and menu browsing limitations while driver distraction mode

is enabled.

Additions

Vehicle Data

HMI UI Additions

MENU C HANGES

Nested Submenus:

An app can now request to add a submenu to another submenu by specifying a parentID .

This did not require any new parameters on the HMI side. HMIs should be updated to

process parentID in an AddSubMenu request. This param was previously only reserved

for AddCommands .

<function name="AddSubMenu" messagetype="request">
...
 <param name="menuParams" type="Common.MenuParams" mandatory="true">
 <description>Position, parentID, and name of menu to be added.</description>
 </param>
...

Dynamic Menus:

Two new RPCs were added to HMI API: UI.OnUpdateFile and UI.OnUpdateSubmenu.

UI.OnUpdateFile request allows the HMI to request images from an SDL connected app

when needed in an effort to reduce the amount of data an app needs to save on the head

unit. UI.OnUpdateSubmenu request allows the HMI to dynamically request when submenu

information is populated by the app. This functionality helps reduce the system load when

an app first connects as the app is not required to load all menu contents onto the head

unit immediately.

<function name="OnUpdateFile" messagetype="notification">
 <description>For the HMI to tell Core that a file needs to be retrieved from the app.
</description>
 <param name="appID" type="Integer" mandatory="true">
 <description>ID of application related to this RPC.</description>
 </param>
 <param name="fileName" type="String" maxlength="255" mandatory="true">
 <description>File reference name.</description>
 </param>
</function>

<function name="OnUpdateSubMenu" messagetype="notification">
 <description>For the HMI to tell Core that a submenu needs
updating</description>

 <param name="appID" type="Integer" mandatory="true">
 <description>ID of application related to this RPC.</description>
 </param>

 <param name="menuID" type="Integer" minvalue="0" maxvalue="2000000000"
mandatory="true">
 <description>This menuID must match a menuID in the current menu
structure</description>
 </param>

 <param name="updateSubCells" type="Boolean" mandatory="false">
 <description>If not set, assume false. If true, the app should send AddCommands
with parentIDs matching the menuID. These AddCommands will then be attached to
the submenu and displayed if the submenu is selected.</description>
 </param>
</function>

Dynamic menus are optional, and the HMI's ability to support this feature is designated by

the DynamicUpdateCapabilities struct.

<struct name="DynamicUpdateCapabilities">
 <param name="supportedDynamicImageFieldNames" type="ImageFieldName"
array="true" mandatory="false" minsize="1">
 <description>An array of ImageFieldName values for which the system supports
sending OnFileUpdate notifications. If you send an Image struct for that image field
with a name without having uploaded the image data using PutFile that matches that
name, the system will request that you upload the data with PutFile at a later point
when the HMI needs it. The HMI will then display the image in the appropriate field. If
not sent, assume false.</description>
 </param>

 <param name="supportsDynamicSubMenus" type="Boolean" mandatory="false">
 <description>If true, the head unit supports dynamic sub-menus by sending
OnUpdateSubMenu notifications. If true, you should not send AddCommands that
attach to a parentID for an AddSubMenu until OnUpdateSubMenu is received with the
menuID. At that point, you should send all AddCommands with a parentID that match
the menuID. If not set, assume false.</description>
 </param>
</struct>

Driver Distraction Limitations:

An HMI integration may choose to limit the amount of data available to the user when

driver distraction is enabled. These limations include setting a limit on the number of

menu items shown to the user in a given view, as well as setting a limit on how deep a

user can drill down into nested submenus. This HMI capability is communicated to SDL

Core and connected apps via the DriverDistractionCapability struct.

Setting these limits does not change the behavior of SDL Core. It is up to the HMI's

integration to honor the designated limits and control how much information is available

to the user.

<struct name="DriverDistractionCapability">
 <param name="menuLength" type="Integer" mandatory="false">
 <description>The number of items allowed in a Choice Set or Command menu
while the driver is distracted</description>
 </param>
 <param name="subMenuDepth" type="Integer" minvalue="1" mandatory="false">
 <description>The depth of submenus allowed when the driver is distracted. e.g.
3 == top level menu -> submenu -> submenu; 1 == top level menu only</description>
 </param>
</struct>

SubtleAlert RPC was added as a less intrusive UI notification when compared to the Al

ert RPC. The OnSubtleAlertPressed notification was also added as a way for mobile

apps to be aware of and optionally take action when a user clicks on a SubtleAlert

notification.

NEW U I C OMP ONENT: SU BTL E AL ERT

<function name="SubtleAlert" messagetype="request">
 <description>Request from SDL to show a subtle alert message on the display.
</description>
 <param name="alertStrings" type="Common.TextFieldStruct" mandatory="true"
array="true" minsize="0" maxsize="2">
 <description>Array of lines of alert text fields. See TextFieldStruct. Uses
subtleAlertText1, subtleAlertText2.</description>
 </param>
 <param name="alertIcon" type="Common.Image" mandatory="false">
 <description>
 Image to be displayed for the corresponding alert. See Image.
 If omitted, no (or the default if applicable) icon should be displayed.
 </description>
 </param>
 <param name="duration" type="Integer" mandatory="false" minvalue="3000"
maxvalue="10000">
 <description>Timeout in milliseconds.</description>
 </param>
 <param name="softButtons" type="Common.SoftButton" mandatory="false"
minsize="0" maxsize="2" array="true">
 <description>App defined SoftButtons</description>
 </param>
 <param name="alertType" type="Common.AlertType" mandatory="true">
 <description>Defines if only UI or BOTH portions of the Alert request are being
sent to HMI Side</description>
 </param>
 <param name="appID" type="Integer" mandatory="true">
 <description>ID of application requested this RPC.</description>
 </param>
 <param name="cancelID" type="Integer" mandatory="false">
 <description>
 An ID for this specific alert to allow cancellation through the
`CancelInteraction` RPC.
 </description>
 </param>
</function>

<function name="SubtleAlert" messagetype="response">
 <param name="tryAgainTime" type="Integer" mandatory="false" minvalue="0"
maxvalue="2000000000">
 <description>Amount of time (in milliseconds) that SDL must wait before
resending an alert. Must be provided if another system event or overlay currently has
a higher priority than this alert.</description>
 </param>
</function>

<function name="OnSubtleAlertPressed" messagetype="notification">
 <description>
 Sent when the alert itself is touched (outside of a soft button). Touching (or
otherwise selecting) the alert should open the app before sending this notification.
 </description>
 <param name="appID" type="Integer" mandatory="true">

 <description>ID of application that is related to this RPC.</description>
 </param>
</function>

A new WEB_VIEW AppHMIType and template layout was added which will allow apps

to render a template-independent view in a browser environment with JavaScript and

HTML.

<enum name="AppHMIType">
 <description>Enumeration listing possible app types.</description>
...
 <element name="WEB_VIEW" />
</enum>

This AppHMIType must be explicitly specified in an app's policy table entry for SDL Core

to allow it to be used.

Policy Table Entry:

...
"app_policies": {
 "webengine_appID": {
+ "AppHMIType": ["WEB_VIEW"],
 "keep_context": false,
 "steal_focus": false,
 "priority": "NONE",
 "default_hmi": "NONE",
 "groups": [
 "Base-4"
],
 "RequestType": [],
 "RequestSubType": []
 },
...

Webengine Projection Support

This parameter was added to the HMI API to align better with the Mobile API.

<function name="GetCapabilities" messagetype="response">
 <param name="displayCapabilities" type="Common.DisplayCapabilities"
mandatory="true">
 <description>Information about the capabilities of the display: its type, text field
supported, etc. See DisplayCapabilities. </description>
 </param>
 <param name="audioPassThruCapabilities"
type="Common.AudioPassThruCapabilities" mandatory="true"/>
 <param name="hmiZoneCapabilities" type="Common.HmiZoneCapabilities"
mandatory="true"/>
 <param name="softButtonCapabilities" type="Common.SoftButtonCapabilities"
minsize="1" maxsize="100" array="true" mandatory="false">
 <description>Must be returned if the platform supports on-screen SoftButtons.
</description>
 </param>
 <param name="hmiCapabilities" type="Common.HMICapabilities"
mandatory="false">
 <description>Specifies the HMI’s capabilities. See HMICapabilities.
</description>
 </param>
 <param name="systemCapabilities" type="Common.SystemCapabilities"
mandatory="false">
 <description>Specifies system capabilities. See
SystemCapabilities</description>
 </param>
+ <param name="pcmStreamCapabilities"
type="Common.AudioPassThruCapabilities" mandatory="false"/>
</function>

The 7.1 release had a number of changes and additions to the HMI API that will require

updates to your SDL Core integration in your head unit.

New UI.GetCapabilities parameter:
pcmStreamCapabilities

Migrating SDL Core 7.0 to 7.1

The default supported version was changed to Ubuntu 20. Recommended GCC Version

9.3.x.

Support was added for OpenSSL 1.1, we recommend updating your version of the library

accordingly.

Along with support for OpenSSL 1.1, a configurable SecurityLevel field was added to the

INI file. This value can be customized depending on the security requirements of your

system (see the OpenSSL documentation for a description of each security level)

RPC request and response for EncodedSyncPData has been marked as deprecated.

RPC notification OnEncodedSyncPData has been marked as deprecated.

TextFieldName element mediaClock has been marked as deprecated.

Show RPC param mediaClock has been marked as deprecated.

RegisterAppInterface parameters vehicleType and systemSoftwareVersion has

been marked as deprecated. Please make updates to use the parameters from the S

tartService ACK protocol message.

The function DynamicApplicationData::IsSubMenuNameAlreadyExist has been

marked as deprecated and should be removed in the next major version change of

SDL Core. Please make updates to remove all uses of the function.

The function ApplicationManagerImpl::OnAppStreaming(uint32_t, protocol_handler::

ServiceType, const Application::StreamingState) has been marked as deprecated

and should be removed in the next major version change of SDL Core. Please make

Environment Update

Newly Deprecated

Deprecated SyncPData RPCs

Deprecated UI params

Deprecated Functions

https://www.openssl.org/docs/man1.1.0/man3/SSL_CTX_get_security_level.html

updates to use the new function signature ApplicationManagerImpl::OnAppStreami

ng(uint32_t, protocol_handler::ServiceType, bool) .

The function ProtocolHandlerImpl::NotifySessionStarted(const SessionContext&, s

td::vector<std::string>&, const std::string) has been marked as deprecated and

should be removed in the next major version change of SDL Core. Please make

updates to use the new function signature ProtocolHandlerImpl::NotifySessionStart

ed(SessionContext&, std::vector<std::string>&, const std::string) .

The function file_system::ConvertPathForURL has been marked as deprecated and

should be removed in the next major version change of SDL Core. Please make

updates to remove all uses of the function.

Vehicle Data parameter externalTemperature has been deprecated. Please make

updates to use the new vehicle data struct climateData .

Vehicle Data parameters driverDoorAjar , passengerDoorAjar , rearLeftDoorAjar

and rearRightDoorAjar have been deprecated. Please make updates to use the new

doorStatuses parameter.

BodyInformation was expanded to replace driverDoorAjar, passengerDoorAjar, rear

LeftDoorAjar and rearRightDoorAjar parameters.

New vehicle data type: climateData to replace externalTemperature parameter.

New vehicle data type: seatOccupancy.

It is not required to implement all vehicle data types. If a type is unsupported by your

headunit, please be sure to respond to SDL Core with the result UNSUPPORTED_RESOUR

CE if an unsupported request has been made.

Deprecated Vehicle Data

Additions

Vehicle Data

HMI UI Additions

A media app now has the ability to specify a custom playback rate (ex. 125% speed) when

setting the media playback timer and progress bar.

Added new parameter countRate to the SetMediaClockTimer RPC

<function name="SetMediaClockTimer" functionID="SetMediaClockTimerID"
messagetype="request" since="1.0">
 <description>Sets the initial media clock value and automatic update method.
</description>

 <!-- New Parameter -->
 <param name="countRate" type="Float" minvalue="0.1" maxvalue="100.0"
defvalue="1.0" mandatory="false">
 <description>
 The value of this parameter is the amount that the media clock timer will
advance per 1.0 seconds of real time.

 Values less than 1.0 will therefore advance the timer slower than real-time,
while values greater than 1.0 will advance the timer faster than real-time.

 e.g. If this parameter is set to `0.5`, the timer will advance one second per two
seconds real-time, or at 50% speed. If this parameter is set to `2.0`, the timer will
advance two seconds per one second real-time, or at 200% speed.
 </description>
 </param>
</function>

A media app now has the ability to change the indicators for the SEEKLEFT and SEEKR

IGHT buttons to show either time skip buttons or track skip buttons.

Added new parameters forwardSeekIndicator and backSeekIndicator to the SetMedi

aClockTimer RPC.

C U STOM P L AYBAC K RATES FOR SETMEDIAC LOC KTIMER

MEDIA SKIP INDIC ATORS

<enum name="SeekIndicatorType">
 <element name="TRACK">
 <element name="TIME">
</enum>

<struct name="SeekStreamingIndicator">
 <description>
 The seek next / skip previous subscription buttons' content
 </description>

 <param name="type" type="SeekIndicatorType" mandatory="true" />
 <param name="seekTime" type="Integer" minvalue="1" maxvalue="99"
mandatory="false">
 <description>If the type is TIME, this number of seconds may be present
alongside the skip indicator. It will indicate the number of seconds that the currently
playing media will skip forward or backward.</description>
 </param>
</struct>

<function name="SetMediaClockTimer" messagetype="request">
 <!-- Additions -->
 <param name="forwardSeekIndicator" type="SeekStreamingIndicator"
mandatory="false" />
 <param name="backSeekIndicator" type="SeekStreamingIndicator"
mandatory="false" />
</function>

SDL Core 7.1 adds extended capabilities to the AddSubMenu and AddCommand RPCs.

Both AddSubmenu and AddCommand now have additional optional textfields as well

as an optional secondary image.

AddSubmenu:

MAIN MENU U I U P DATES

<function name="AddSubMenu" functionID="AddSubMenuID"
messagetype="request">
 <description>Adds a sub menu to the in-application menu.</description>

 <!-- New Parameters -->
 <param name="secondaryText" maxlength="500" type="String" mandatory="false">
 <description>Optional secondary text to display</description>
 </param>
 <param name="tertiaryText" maxlength="500" type="String" mandatory="false">
 <description>Optional tertiary text to display</description>
 </param>
 <param name="secondaryImage" type="Image" mandatory="false">
 <description>Optional secondary image struct for sub-menu cell</description>
 </param>
</function>

AddCommand:

<function name="AddCommand" functionID="AddCommandID"
messagetype="request">
 <description>
 Adds a command to the in application menu.
 Either menuParams or vrCommands must be provided.
 </description>

 <!-- New Parameters -->
 <param name="secondaryImage" type="Image" mandatory="false">
 <description>Optional secondary image struct for menu cell</description>
 </param>
</function>

<struct name="MenuParams" since="1.0">
 <!-- New Parameters -->
 <param name="secondaryText" maxlength="500" type="String" mandatory="false">
 <description>Optional secondary text to display</description>
 </param>
 <param name="tertiaryText" maxlength="500" type="String" mandatory="false">
 <description>Optional tertiary text to display</description>
 </param>
</struct>

Prior to SDL Core 7.1, choice set choices and menu commands were required to have

unique primary text. SDL Core 7.1 removes this restriction.

SDL Core 7.1 adds a new NUMERIC keyboard layout and new enhancements to allow

apps to mask entered characters and change special characters shown on the keyboard

layout.

SDL Core 7.1 adds the ability to share vehicle type information before sending the Register

App interface request. This will enable SDL adopters to provide exclusive apps to their

users depending on vehicle type

The vehicle type information parameters have been added to the BSON payload of the Sta

rtServiceACK protocol message

BROADENING C HOIC E U NIQU ENESS

KEYBOARD ENHANC EMENTS

OEM exclusive apps support

TA G N A M E T Y P E D E S C R I P T I O N

The vehicle type information parameters (vehicleType and systemSoftwareVersion) in

RegisterAppInterface have been deprecated in favor of these additions

Added new parameter preferredFPS to the VideoStreamingCapability struct.

make String Vehicle make

model String Vehicle model

modelYear String Vehicle model year

trim String Vehicle trim

systemSoftwareVersion String
Vehicle system software

version

systemHardwareVersion String
Vehicle system hardware

version

Video streaming capability updates

P REFERRED FP S

<struct name="VideoStreamingCapability" since="4.5">
 <description>Contains information about this system's video streaming
capabilities.</description>
 ...
 <!-- new param -->
 <param name="preferredFPS" type="Integer" minvalue="0" maxvalue="2147483647"
mandatory="false">
 <description>The preferred frame rate per second of the head unit. The mobile
application / app library may take other factors into account that constrain the frame
rate lower than this value, but it should not perform streaming at a higher frame rate
than this value.</description>
 </param>
</struct>

SDL Core 7.1 adds the ability for an application to update its video streaming capabilities

during the ignition cycle. This will allow SDL to handle uses cases that require dynamic

resolution switching (Picture-in-Picture, preview, split-screen, etc.)

Added new parameter additionalVideoStreamingCapabilities to the VideoStreaming

Capability struct.

<struct name="VideoStreamingCapability" since="4.5">
 <!-- Existing params -->
 <param name="additionalVideoStreamingCapabilities"
type="VideoStreamingCapability" array="true" minvalue="1" maxvalue="100"
mandatory="false" since="7.1">
 </param>
</struct>

Added new RPC notification OnAppCapabilityUpdated which can be sent by an app,

as well as related structs AppCapability and AppCapabilityType.

U P DATING V IDEO STREAMING C APABIL ITIES DU RING
IGNITION C YC L E

<function name="OnAppCapabilityUpdated" functionID="OnAppCapabilityUpdatedID"
messagetype="notification" since="7.1">
 <description>A notification to inform SDL Core that a specific app capability has
changed.</description>
 <param name="appCapability" type="AppCapability" mandatory="true">
 <description>The app capability that has been updated</description>
 </param>
</function>

<struct name="AppCapability" since="7.1">
 <param name="appCapabilityType" type="AppCapabilityType" mandatory="true">
 <description>Used as a descriptor of what data to expect in this struct. The
corresponding param to this enum should be included and the only other param
included.</description>
 </param>
 <param name="videoStreamingCapability" type="VideoStreamingCapability"
mandatory="false">
 <description>Describes supported capabilities for video streaming
</description>
 </param>
</struct>

<enum name="AppCapabilityType" since="7.1">
 <description>Enumerations of all available app capability types</description>
 <element name="VIDEO_STREAMING"/>
</enum>

SDL Core 8.0.0 no longer supports Ubuntu 16. Supported versions of SDL Core are Ubuntu

18.04 and Ubuntu 20.04.

Migrating SDL Core 7.1 to 8.0

Environment Updates

Ubuntu Versions

SDL Core 8.0.0 dropped support for libssl1.0. Developers should install libssl-dev instead

of libssl1.0-dev .

ENABLE_HMI_PTU_DECRYPTION was removed from the build configuration. Behaviors

defined by ON/OFF options are now both supported without the need for this build flag.

The default logger is still using LOG4CXX but the option is now available to use Boost for

the logger. When porting SDL Core to different Linux environments, the LOG4CXX logger

was known to cause dependency issues. Boost is offered as an alternative logger in

hopes of making porting SDL Core to different environments easier.

set(LOGGER_NAME "LOG4CXX" CACHE STRING "Logging library to use (BOOST,
LOG4CXX)")

SSL Versions

Updates to CMAKE Build
Configuration

Removed Flag ENABLE_HMI_PTU_DECRYPTION

Boost Logger

Updates to Configuration File
smartDeviceLink.ini

DefaultTimeoutCompensation

This parameter was added to the smartDeviceLink.ini configuration to compensate for

transfer and processing time of requests. This value is added to the DefaultTimeout

parameter when calculating the RPC request timeout. Previously, specific requests such

as Alert were hardcoded to extend their default timeout, now timeout compensation is

configurable and applied to all requests.

; Extra time to compensate default timeout due to external delays
DefaultTimeoutCompensation = 1000

The default parameter AppIconsFolder was updated to use a directory named “icons”.

This value used to be “storage”.

; Specify a dedicated folder, as old files in this folder can be automatically removed
AppIconsFolder = icons

SDL Core 8.0.0 no longer automatically subscribes to CUSTOM_BUTTON . If an HMI

supports soft buttons, it must include an entry for CUSTOM_BUTTON in its button

capabilities in order for mobile to receive OnButtonPress and OnButtonEvent

notifications.

Icons Storage Folder

HMI Behavior Changes

Avoid Custom Button Subscription in Case HMI
Incompatibility

OnEventChanged (PHONE_CALL)

The behavior of the PHONE_CALL event was changed to only affect the audioStreamin

gState of an app. Rather than automatically deactivating the active app, SDL Core will

now only change the audioStreamingState of all apps to NOT_AUDIBLE when BC.OnEv

entChanged(PHONE_CALL, active=true) is sent, leaving each app's hmiLevel unchanged.

This allows the HMI to start a phone call in the background without leaving the app

screen, if desired.

The HMI can still control the hmiLevel of the app during a phone call event by sending B

C.OnAppDeactivated(appID) and BC.OnAppActivated(appID) where appropriate.

Buttons.OnButtonSubscription notification was replaced by Buttons.SubscribeButton

request and response.

<function name="SubscribeButton" messagetype="request">
 <description>
 Subscribes to buttons.
 </description>

 <param name="appID" type="Integer" mandatory="true">
 <description>The ID of the application requesting this button subscription.
</description>
 </param>

 <param name="buttonName" type="ButtonName" mandatory="true">
 <description>Name of the button to subscribe.</description>
 </param>
</function>

<function name="SubscribeButton" messagetype="response"> </function>

HMI API Updates

Buttons.SubscribeButton

Buttons.UnsubscribeButton

Buttons.UnsubscribeButton request and response were added to allow SDL Core to

request that the HMI unsubscribes an application from a specific button.

<function name="UnsubscribeButton" messagetype="request">
 <description>
 Unsubscribes from buttons.
 </description>

 <param name="appID" type="Integer" mandatory="true">
 <description>The ID of the application requesting this button unsubscription.
</description>
 </param>

 <param name="buttonName" type="ButtonName" mandatory="true">
 <description>Name of the button to unsubscribe.</description>
 </param>
 </function>

<function name="UnsubscribeButton" messagetype="response"></function>

UI.OnResetTimeout and TTS.OnResetTimeout were removed in place of using a

broader RPC, BasicCommunication.OnResetTimeout .

This updated OnResetTimeout RPC can be used across all interfaces for all request

functions.

The parameters in the notification have also changed:

- The parameter requestID is used instead of appID to identify which specific request

should have its timeout extended.

- The parameter methodName should include the interface name and the RPC. For

example: ”TTS.Speak” .

- The parameter resetPeriod allows the HMI to specify how long Core should delay the

application request’s timeout.

Restructuring OnResetTimeout

<interface name="BasicCommunication">
...
<function name="OnResetTimeout" messagetype="notification" since="X.Y">
 <description>
 HMI must send this notification to SDL for method instance for which timeout
needs to be reset
 </description>
 <param name="requestID" type="Integer" mandatory="true">
 <description>
 Id between HMI and SDL which SDL used to send the request for method in
question, for which timeout needs to be reset.
 </description>
 </param>
 <param name="methodName" type="String" mandatory="true">
 <description>
 Name of the function for which timeout needs to be reset
 </description>
 </param>
 <param name="resetPeriod" type="Integer" minvalue="0" maxvalue="1000000"
mandatory="false">
 <description>
 Timeout period in milliseconds, for the method for which timeout needs to be
reset.
 If omitted, timeout would be reset by defaultTimeout specified in
smartDeviceLink.ini
 </description>
 </param>
</function>
…
</interface>

The 8.1 release had a few changes to the HMI API that will require updates to your SDL

Core integration in your head unit.

Migrating SDL Core 8.0 to 8.1

API changes

With the release of SDL Core 8.1, the UI.SetDisplayLayout RPC has been removed from

the HMI API.

...
- <function name="SetDisplayLayout" messagetype="request">
- <description>This RPC is deprecated. Use Show RPC to change layout.
</description>
- <param name="displayLayout" type="String" maxlength="500" mandatory="true">
- <description>
- Predefined or dynamically created screen layout.
- Currently only predefined screen layouts are defined.
- </description>
- </param>
- <param name="appID" type="Integer" mandatory="true">
- <description>ID of application related to this RPC.</description>
- </param>
- <param name="dayColorScheme" type="Common.TemplateColorScheme"
mandatory="false"></param>
- <param name="nightColorScheme" type="Common.TemplateColorScheme"
mandatory="false"></param>
- </function>

- <function name="SetDisplayLayout" messagetype="response">
- <description>This RPC is deprecated. Use Show RPC to change layout.
</description>
- <param name="displayCapabilities" type="Common.DisplayCapabilities"
mandatory="false">
- <description>See DisplayCapabilities</description>
- </param>
- <param name="buttonCapabilities" type="Common.ButtonCapabilities"
minsize="1" maxsize="100" array="true" mandatory="false">
- <description>See ButtonCapabilities</description >
- </param>
- <param name="softButtonCapabilities" type="Common.SoftButtonCapabilities"
minsize="1" maxsize="100" array="true" mandatory="false">
- <description>If returned, the platform supports on-screen SoftButtons; see
SoftButtonCapabilities.</description >
- </param>
- <param name="presetBankCapabilities" type="Common.PresetBankCapabilities"
mandatory="false">
- <description>If returned, the platform supports custom on-screen Presets; see
PresetBankCapabilities.</description >
- </param>
- </function>
...

Removal of UI.SetDisplayLayout

When an app sends a SetDisplayLayout request, SDL now transforms it into a UI.Show

request (with the templateConfiguration parameter set based on the parameters defined

in the SetDisplayLayout request) and forwards it to the HMI. The UI.SetDisplayLayout

implementation was also removed from the SDL HMI and Generic HMI. However,

developers may decide to keep their implementation to support older versions of SDL

Core.

The duplicate parameter FileName was removed from the BasicCommunication.OnPut

File RPC in the HMI API

<function name="OnPutFile" messagetype="notification" >
 <description>
 Notification that is sent to HMI when a mobile application uploads a file
 </description>
 ...
- <param name="FileName" type="String" maxlength="255" mandatory="true">
- <description>File reference name.</description>
- </param>

 <param name="syncFileName" type="String" maxlength="255" mandatory="true">
 <description>File reference name.</description>
 </param>
 <param name="fileType" type="Common.FileType" mandatory="true">
 <description>Selected file type.</description>
 </param>
...

The parameter was unused. SDL Core uses syncFileName in the notification sent to the

HMI.

Removal of duplicate parameter from
BasicCommunication.OnPutFile

Core behavior changes

Reject PROPRIETARY/HTTP SystemRequests when PTU
is not in progress

https://github.com/smartdevicelink/sdl_hmi/pull/664
https://github.com/smartdevicelink/generic_hmi/pull/499

With the release of 8.1, SDL Core will now reject incoming PROPRIETARY / HTTP

SystemRequests when a policy table update (PTU) is not in progress and if an application

not selected for the PTU sends the request.

This was identified as a security flaw since it would allow any application to trigger a PTU.

For more information please see proposal 0337.

For more detailed documentation on SDL Core, please visit the Doxygen webpage!

Here are a few of the most common questions new developers have around the SDL Core

project.

Currently the SDL Core repo is built for Ubuntu 20.04 as our default environment.

The most common errors come from dependencies issues. Ensure your system has all

the required packages to compile the project. Try running the commands in the

dependencies section of the Getting Started guide.

Doxygen Inline Documentation

SDL Core FAQ

What OS should I use to get started?

I'm getting a lot of compilation errors,
how do I get past them?

https://github.com/smartdevicelink/sdl_evolution/blob/master/proposals/0337-reject-proprietary-http-systemrequests-when-ptu-not-in-progress.md#motivation
http://sdl-core-doxygen-documentation.s3.amazonaws.com/index.html
https://sdl-devportal-media-production.s3.amazonaws.com/getting-started/install-and-run/#dependencies

There is no official port at the moment, so individual investigation will need to be done.

Even though SDL is designed to work on most Linux systems, modifications might need to

be made to the project to get it to work with your setup.

The DISALLOWED result code is related to the RPC not being authorized in SDL Core's

local policy table. Policy permissions for an app are added either in the preloaded policy

table or through a policy table update.

The Policies Overview page provides general information about policies - explaining what

they are used for, how the policy table gets updated, and how these updates are triggered.

Policy Table Fields and App Policies go into more detail about the policy table structure

and how to correctly add policy permissions for an application.

If you are not running SDL Core for the first time, SDL Core will use the existing policy

table database(policy.sqlite) which is stored in the build folder under bin/storage/ . To

make SDL Core parse the preloaded policy table again you have to delete the existing

policy table database. In the bin folder run:

 rm storage/policy.sqlite

Can I use SDL on Android OS?

Why are my RPC requests being
DISALLOWED by SDL?

Changes I made to my preloaded
policy table aren't reflected in SDL
Core; what should I do?

https://smartdevicelink.com/en/guides/sdl-overview-guides/rpc-spec/#result
https://github.com/smartdevicelink/sdl_core/blob/master/src/appMain/sdl_preloaded_pt.json
https://smartdevicelink.com/en/guides/sdl-overview-guides/policies/overview/#policy-table-updates
https://smartdevicelink.com/en/guides/sdl-overview-guides/policies/overview/
https://smartdevicelink.com/en/guides/sdl-overview-guides/policies/policy-fields/
https://smartdevicelink.com/en/guides/sdl-overview-guides/policies/app-policies/

You can enable/disable certain features by modifying the CMakeLists.txt file. The CMake

Build Configuration section contains a list of features which can be included/excluded for

a build.

The SmartDeviceLink.ini file located in your build/src/appMain directory is where

runtime options can be configured for your instance of SDL Core. The INI Configuration

page has more information about individual runtime options.

The default SDL Core repo actually performs an SDP on loop. Because SDP queries are a

resource intensive operation it can cause the audio coming from the phone to become

very choppy. This can be fixed by doing the following:

First, navigate to this line that reads:

 : TransportAdapterImpl(new BluetoothDeviceScanner(this, true, 0),

Change it to:

Can I build SDL with/without certain
features (such as logging or build
tests)?

What options can I modify in SDL
without having to rebuild?

I'm experiencing choppy audio
through Bluetooth; what should I do?

https://github.com/smartdevicelink/sdl_core/blob/master/CMakeLists.txt
https://sdl-devportal-media-production.s3.amazonaws.com/getting-started/install-and-run/#cmake-build-configuration
https://github.com/smartdevicelink/sdl_core/blob/master/src/appMain/smartDeviceLink.ini
https://sdl-devportal-media-production.s3.amazonaws.com/getting-started/ini-configuration
https://github.com/smartdevicelink/sdl_core/blob/master/src/components/transport_manager/src/bluetooth/bluetooth_transport_adapter.cc#L61

 : TransportAdapterImpl(new BluetoothDeviceScanner(this, false, 0),

That will cause the SDP queries to not be performed by default. This means you will need

to create a way to perform SDP queries using an event trigger. So in the HMI

implementation you will need to tie an event (button press or voice command) to sending

the following RPC message to the Core service:

 return ({
 'jsonrpc': '2.0',
 'method': 'BasicCommunication.OnStartDeviceDiscovery'
 })

Timing is dependent on the OEM or Supplier implementing SDL, and also dependent on

factors such as OS, hardware, etc.

What is the integration time of SDL in
an infotainment system?

