SKH!

JavaSE Guides

Document current as of 11/18/2025 03:05 PM.

Installation

In order to build your app on a SmartDeviceLink (SDL) Core, the SDL software
development kit (SDK) must be installed in your app. The following steps will guide you
through adding the SDL SDK to your workspace and configuring the environment.

O NOTE

v

The SDL SDK is currently supported on Java 7 (1.7) and above.

Install SDL SDK

Each SDL JavaSE library release is published to MavenCentral. By adding a few lines in
their app's gradle script, developers can compile with the latest SDL JavaSE release.

To gain access to the MavenCentral repository, make sure your app's build.gradle file

includes the following:

https://github.com/smartdevicelink/sdl_java_suite
https://sdl-devportal-media-production.s3.amazonaws.com/

repositories {
google()

mavenCentral()

}

Gradle Build

To compile with a release of SDL JavaSE, include the following line in your app's build.gr
adle file,

dependencies {
implementation 'com.smartdevicelink:sdl_java_se:{version}'

}

and replace {version} with the desired release version in format of x.x.x . The list of
releases can be found here.

Examples

To compile release 5.7.0, use the following line:

dependencies {

implementation ‘com.smartdevicelink:sdl_java_se:5.7.0'

}

To compile the latest minor release of major version 5, use:

dependencies {

implementation 'com.smartdevicelink:sdl_java_se:5.+'

}

https://github.com/smartdevicelink/sdl_java_suite/releases

To Find more information on installation, read our README.

SDK Configuration

1. Get an App Id

An app id is required for production level apps. The app id gives your app special
permissions to access vehicle data. If your app does not need to access vehicle data, a
dummy app id (i.e. creating a fake id like "1234") is sufficient during the development
stage. However, you must get an app id before releasing the app to the public.

To obtain an app id, sign up at smartdevicelink.com.

Integration Basics

In this guide, we exclusively use IntelliJ. We are going to set-up a bare-bones application
SO you get started using SDL.

O NOTE

The SDL Java library supports Java 7 and above.

SmartDevicelLink Service

https://github.com/smartdevicelink/sdl_java_suite
https://www.smartdevicelink.com/

A SmartDeviceLink Service should be created to manage the lifecycle of the SDL session.
The SdIService should build and start an instance of the SdIManager which will
automatically connect with a head unit when available. This SdIManager will handle

sending and receiving messages to and from SDL after it is connected.

Create a new service and name it appropriately, for this guide we are going to call it SdIS
ervice .

Implementing SDL Manager

In order to correctly connect to an SDL enabled head unit developers need to implement
methods for the proper creation and disposing of an SdIManager in our SdIService .

NOTE

An instance of SdIManager cannot be reused after it is closed and properly
disposed of. Instead, a new instance must be created. Only one instance of

SdIManager should be in use at any given time.

O MUST

SdIManagerListener method: onSysteminfoReceived auto generates in
Android Studio to returns false. This will cause your app to not connect. You
must change it to true or implement logic to check system info to see if you
wish for your app to connect to that system.

SdiService {

//The manager handles communication between the application and SDL
SdIManager sdIManager = null;

(BaseTransportConfig config){
buildSdIManager(config);

}

void 0«
if(sdIManager != null){
sdIManager.start();
}
}

void 04
if (sdIManager != null) {
sdIManager.dispose();
sdIManager = null;

}
}

/...

void (BaseTransportConfig transport) {

if (sdIManager == null) {

// The app type to be used
Vector<AppHMIType> appType = new Vector<>();
appType.add(AppHMIType.MEDIA);

// The manager listener helps you know when certain events that pertain to
the SDL Manager happen
SdIManagerListener listener = new SdiManagerListener() {

@Override
void (SdiIManager sdiManager) {
// After this callback is triggered the SdIManager can be used to interact
with the connected SDL session (updating the display, sending RPCs, etc)

}

@Override
void (SdIManager sdIManager) {
}

@Override
void (SdIManager sdIManager, String info, Exception e) {
}

@Override
LifecycleConfigurationUpdate

(Language language, Language hmilLanguage) {

return null;

}

@Override
boolean (Systeminfo systeminfo) {
// Check the Systeminfo object to ensure that the connection to the
device should continue
return true;

%

// Create App Icon, this is set in the SdIManager builder
SdlArtwork applcon = new SdlArtwork(ICON_FILENAME,
FileType.GRAPHIC_PNG, ICON_PATH, true);

// The manager builder sets options for your session

SdIManager.Builder builder = new SdiManager.Builder(APP_ID, APP_NAME,
listener);

builder.setAppTypes(appType);

builder.setTransportType(transport);

builder.setApplcon(applcon);

sdIManager = builder.build();

sdIManager.start();

09, MUST

The sdlManager must be shutdown properly if this class is shutting down

in the respective method using the method sdIManager.dispose() .

OPTIONAL SDLMANAGER BUILDER PARAMETERS
APP ICON

This is a custom icon for your application. Please refer to Adaptive Interface Capabilities

foricon sizes.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/displaying-a-user-interface/adaptive-interface-capabilities/

builder.setApplcon(applcon);

APP TYPE

The app type is used by car manufacturers to decide how to categorize your app. Each car
manufacturer has a different categorization system. For example, if you set your app type
as media, your app will also show up in the audio tab as well as the apps tab of Ford’s
SYNC® 3 head unit. The app type options are: default, communication, media (i.e.
music/podcasts/radio), messaging, navigation, projection, information, and social.

Vector<AppHMIType> appHMITypes = new Vector<>();
appHMITypes.add(AppHMIType.MEDIA);

builder.setAppTypes(appHMITypes);

SHORT APP NAME

This is a shortened version of your app name that is substituted when the full app name
will not be visible due to character count constraints. You will want to make this as short

as possible.

builder.setShortAppName(shortAppName);

TEMPLATE COLORING

You can customize the color scheme of your initial template on head units that support
this feature using the builder . For more information, see the Customizing the Template

guide section.

SDLSECURITY

Some OEMs may want to encrypt messages passed between your SDL app and the head
unit. If this is the case, when you submit your app to the OEM for review, they will ask you
to add a security library to your SDL app. See the Encryption section.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/customizing-look-and-functionality/customizing-the-template/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/other-sdl-features/encryption/

FILE MANAGER CONFIGURATION

The file manager configuration allows you to configure retry behavior for uploading files

and images. The default configuration attempts one re-upload, but will fail after that.

FileManagerConfig fleManagerConfig = new FileManagerConfig();
fileManagerConfig.setArtworkRetryCount(2);

fileManagerConfig.setFileRetryCount(2);

builder.setFileManagerConfig(fileManagerConfig);

LANGUAGE

The desired language to be used on display/HMI of connected module can be set.

builder.setLanguage(Language.EN_US);

LISTENING FOR RPC NOTIFICATIONS AND EVENTS

You can listen for specific events using SdIManager 's builder setRPCNotificationListen
ers . The following example shows how to listen for HMI Status notifications. Additional
listeners can be added for specific RPCs by using their corresponding FunctionID in
place of the ON_HMI_STATUS in the following example and casting the RPCNotificatio
n object to the correct type.

Map<FunctionID, OnRPCNotificationListener> onRPCNotificationListenerMap = new
HashMap<>();
onRPCNotificationListenerMap.put(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnHMIStatus onHMIStatus = (OnHMIStatus) notification;

if (onHMIStatus.getHmilLevel() == HMILevel. HMI_FULL &&
onHMIStatus.getFirstRun()){

// first time in HMI Full
}
}

i
builder.setRPCNotificationListeners(onRPCNotificationListenerMap);

You can also use addOnRPCNotificationListener when creating an SdIManagerListener
object. The following example shows how to set up the listener in the onStart() method
of an SdIManagerListener object.

@Override
void 0 {
// HMI Status Listener
sdIManager.addOnRPCNotificationListener(FunctionIlD.ON_HMI_STATUS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnHMIStatus onHMIStatus = (OnHMIStatus) notification;
if (onHMIStatus.getWindowID() != null && onHMIStatus.getWindowID() !=
PredefinedWindows.DEFAULT_WINDOW.getValue()) {
return;
}

if (onHMIStatus.getHmilLevel() == HMILevel. HMI_FULL &&
onHMIStatus.getFirstRun()) {
// first time in HMI Full
}

}
D
}

HASH RESUMPTIONS

Set a hashID for your application that can be used over connection cycles (i.e. loss of
connection, ignition cycles, etc.).

builder.setResumeHash(hashlID);

DETERMINING SDL SUPPORT

You have the ability to determine a minimum SDL protocol and a minimum SDL RPC
version that your app supports. You can also check the connected vehicle type and

disconnect if the vehicle module is not supported. We recommend not setting these
values until your app is ready for production. The OEMs you support will help you

configure correct values during the application review process.

BLOCKING BY VERSION

If a head unit is blocked by protocol version, your app icon will never appear on the head
unit's screen. If you configure your app to block by RPC version, it will appear and then
quickly disappear. So while blocking with minimumProtocolVersion is preferable, mini
mumRPCVersion allows you more granular control over which RPCs will be present.

builder.setMinimumProtocolVersion(new Version(

builder.setMinimumRPCVersion(new Version(

BLOCKING BY VEHICLE TYPE

If you are blocking by vehicle type and you are connected over RPC v7.1+, your app icon
will never appear on the head unit's screen. If you are connected over RPC v7.0 or below, it
will appear and then quickly disappear. To implement this type of blocking, you need to set
up the SDLManagerListener . You will then implement logic in onSystemInfoReceived
method and return true if you want to continue the connection and false if you wish to
disconnect.

Main Class

Now that the basic connection infrastructure is in place, we should add methods to start
the SdlService when our application starts. In main(String[] args) in your main class,

you will create and start an instance of the SdlService class.

You will also need to fill in what port the app should listen on for an incoming web socket
connection.

Main {

Thread thread;
SdIService sdlService;

void (String[] args) {

Main main = new Main();
main.startSdlService();

void 04

thread = new Thread(new Runnable() {

@Override
void run() {

sdiService = new SdlService(new WebSocketServerConfig(PORT, -1));
sdIService.start();

}
b
thread.start();

Where to Go From Here

You should now be able to connect to a head unit or emulator. For more guidance on
connecting, see Connecting to an Infotainment System. To start building your app, learn
about designing your interface. Please also review the best practices for building an SDL
app.

Connecting to an Infotainment
System

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/getting-started/connecting-to-an-infotainment-system/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/displaying-a-user-interface/main-screen-templates/
https://smartdevicelink.com/en/guides/sdl-overview-guides/best-practices/display-information/

In order to view your SDL app, you must connect your device to a head unit that supports
SDL Core. If you do not have access to a head unit, we recommend using the Manticore
web-based emulator for testing how your SDL app reacts to real-world vehicle events, on-

screen interactions and voice recognition.

Your SDL embedded app will only work with head units that support RPC Spec v5.1+.

Configuring the Connection

Generic SDL Core

To connect to your app to a local Ubuntu SDL Core-based emulator you need to know the
IP address of the machine that is running the cloud app. If needed, running ifconfig in the

terminal will give you the current network configuration information.

POLICY TABLE CONFIGURATION

Once you know the IP address, you need to set the websocket endpoint and app nickna
mes for your SDL app in the policy table under the "app_policies" section. This will let
Core know where your instance of the SDL app is running. The websocket endpoint needs

to include both the IP address and port: ws://<ip address>:<port>/ .

A
"keep_context": false,
"steal_focus": false,
"priority": ,
"default_hmi"; ,
"groups”: [],
"RequestType": [],

"RequestSubType": [l,
"hybrid_app_preference":
"endpoint":

"enabled": true,
"auth_token": ",
"cloud_transport_type":
"nicknames": [

https://smartdevicelink.com/resources/manticore/
https://github.com/smartdevicelink/sdl_core
https://smartdevicelink.com/en/guides/sdl-server/api-reference-documentation/policy-table/application-policies

NOTE

The <app name> value in "nicknames"” must match the app name value

used in Integration Basics when implementing the SDL manager.

For more information about policy tables please visit the Policy Table guide.

Manticore

If you are using Manticore, the app connection information can be easily added in the
settings tab of the Manticore web page. Please note that Manticore needs to access your
machine's IP address in order to be able to start a websocket connection with your app. If
you are hosting the app on your local machine, you may need to do extra setup to make

your machine publicly accessible.

https://smartdevicelink.com/en/guides/sdl-server/api-reference-documentation/policy-table/overview
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/getting-started/integration-basics-java/#implementing-sdl-manager

Bl AddCloud cr Embedded App

App Authentication Token

App Nicknames

Add Nickname

Send Cloud App to Cora

Running the SDL App

Once you have a configured instance of Core running, you should see your SDL app hame
appear in a box on HMI. However, nothing will happen when you tap on the box until you

build and run your SDL app.

SDL Example App

Once your SDL app is running, either locally in an IDE or on a server, you will be able to
launch the SDL app by clicking on the app icon in the HMI.

APPS SDL Example App

SmartDeviceLink (SDL) Example App

This is the main screen of your SDL app. If you get to this point, your SDL app is working.

Adapting to the Head Unit
Language

Since a head unit can support multiple languages, you may want to add support for more
than one language to your SDL app. The SDL library allows you to check which language is
currently used by the head unit. If desired, the app's name and the app's text-to-speech
(TTS) name can be customized to reflect the head unit's current language. If your app
name is not part of the current lexicon, you should tell the VR system how a native
speaker will pronounce your app name by setting the TTS name using phonemes from
either the Microsoft SAPI phoneme set or from the LHPLUS phoneme set.

https://en.wikipedia.org/wiki/Phoneme

Setting the Default Language

The initial configuration of the SdlManager requires a default language when setting the

Builder . If not set, the SDL library uses American English (EN_US) as the default
language. The connection will fail if the head unit does not support the language setin
the Builder . The RegisterAppinterface response RPC will return INVALID_DATA as the
reason for rejecting the request.

What if My App Does Not Support the Head Unit
Language?

If your app does not support the current head unit language, you should decide on a default
language to use in your app. All text should be created using this default language.
Unfortunately, your VR commands will probably not work as the VR system will not

recognize your users' pronunciation.

Checking the Current Head Unit Language

After starting the SDLManager you can check the sdIManager.getRegisterApplinterfaceR
esponse() property for the head unit's language and hmiDisplayLanguage . The langu
age property gives you the current VR system language; hmiDisplayLanguage the
current display text language.

Language headUnitLanguage =
sdIManager.getRegisterApplinterfaceResponse().getLanguage();

Language headUnitHMILanguage =
sdIManager.getRegisterApplinterfaceResponse().getHmiDisplayLanguage();

Updating the SDL App Name

To customize the app name for the head unit's current language, implement the following

steps:

1. Set the default language inthe Builder .
2. Implement the sdlManagerListener 's managerShouldUpdateLifecycle(Language la

nguage, Language hmilLanguage) method. If the module's current HMI language or

voice recognition (VR) language is different from the app's default language, the
listener will be called with the module's current HMI and/or VR language. Returna L

ifecycleConfigurationUpdate with the new appName and/or ttsName .

@Override
LifecycleConfigurationUpdate (Language
language, Language hmilLanguage) {
boolean isNeedUpdate = false;
String appName = APP_NAME;
String ttsName = APP_NAME;
switch (language) {
case ES_MX:
isNeedUpdate = true;
ttsName = APP_NAME_ES;
break;
case FR_CA:
isNeedUpdate = true;
ttsName = APP_NAME_FR;
break;
default:
break;
}

switch (hmiLanguage) {
case ES_MX:
isNeedUpdate = true;
appName = APP_NAME_ES;
break;
case FR_CA:
isNeedUpdate = true;
appName = APP_NAME_FR;
break;
default:
break;
}

if (isNeedUpdate) {
Vector<TTSChunk> chunks = new Vector<>(Collections.singletonList(new
TTSChunk(ttsName, SpeechCapabilities. TEXT)));
return new LifecycleConfigurationUpdate(appName, null, chunks, null);
} else {
return null;

}
}

Understanding Permissions

While creating your SDL app, remember that just because your app is connected to a head
unit it does not mean that the app has permission to send the RPCs you want. If your app
does not have the required permissions, requests will be rejected. There are three

important things to remember in regards to permissions:

1. You may not be able to send a RPC when the SDL app is closed, in the background,
or obscured by an alert. Each RPC has a set of hmiLevels during which it can be
sent.

2. For some RPCs, like those that access vehicle data or make a phone call, you may
need special permissions from the OEM to use. This permission is granted when
you submit your app to the OEM for approval. Each OEM decides which RPCs it will
restrict access to, so it is up you to check if you are allowed to use the RPC with the
head unit.

3. Some head units may not support all RPCs.

HMI Levels

When your app is connected to the head unit you will receive notifications when the SDL
app's HMI status changes. Your app can be in one of four different hmiLevel s:

The user has not yet opened your app, or the
NONE yetop y pp
app has been killed.

The user has opened your app, but is currently
BACKGROUND
in another part of the head unit.

This level only applies to media and navigation
apps (i.e. apps with an appType of MEDIA
or NAVIGATION). The user has opened your

app, but is currently in another part of the head

LIMITED

unit. The app can receive button presses from

the play, seek, tune, and preset buttons.

FULL Your app is currently in focus on the screen.

Be careful with sending user interface related RPCs in the NONE and BACKGROUND
levels; some head units may reject RPCs sent in those states. We recommended that you
wait until your app's hmilLevel enters FULL to set up your app's Ul.

To get more detailed information about the state of your SDL app check the current
system context. The system context will let you know if a menu is open, a VR session is
in progress, an alert is showing, or if the main screen is unobstructed. You can find more
information about the system context below.

Monitoring the HMI Level

Monitoring HMI Status is possible through an OnHMIStatus notification that you can
subscribe to via the SdIManager.Builder 's setRPCNotificationListeners .

Map<FunctionID, OnRPCNotificationListener> onRPCNotificationListenerMap = new
HashMap<>();
onRPCNotificationListenerMap.put(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnHMIStatus onHMIStatus = (OnHMIStatus) notification;

if (onHMIStatus.getHmilLevel() == HMILevel. HMI_FULL &&
onHMIStatus.getFirstRun()){
// first time in HMI Full
}

}
i
builder.setRPCNotificationListeners(onRPCNotificationListenerMap);

Permission Manager

The PermissionManager allows developers to easily query whether specific RPCs are
allowed or not in the current state of the app. It also allows a listener to be added for
RPCs or their parameters so that if there are changes in their permissions, the app will be
notified.

Checking Current Permissions of a Single RPC

boolean allowed =
sdIManager.getPermissionManager().isRPCAllowed(FunctionIlD.SHOW);

// You can also check if a permission parameter is allowed

boolean parameterAllowed =
sdIManager.getPermissionManager().isPermissionParameterAllowed(FunctionID.GET
GetVehicleData.KEY_RPM);

Checking Current Permissions of a Group of RPCs

You can also retrieve the status of a group of RPCs. First, you can retrieve the permission

status of the group of RPCs as a whole: whether or not those RPCs are all allowed, all

disallowed, or some are allowed and some are disallowed. This will allow you to know, for
example, if a feature you need is allowed based on the status of all the RPCs needed for
the feature.

List<PermissionElement> permissionElements = new ArrayList<>();
permissionElements.add(new PermissionElement(FunctionID.SHOW, null));
permissionElements.add(new PermissionElement(FunctionID.GET_VEHICLE_DATA,
Arrays.asList(GetVehicleData.KEY_RPM, GetVehicleData.KEY_SPEED)));

int groupStatus =
sdIManager.getPermissionManager().getGroupStatusOfPermissions(permissionElem

switch (groupStatus) {

case PermissionManager.PERMISSION_GROUP_STATUS_ALLOWED:
// Every permission in the group is currently allowed
break;

case PermissionManager.PERMISSION_GROUP_STATUS_DISALLOWED:
// Every permission in the group is currently disallowed
break;

case PermissionManager.PERMISSION_GROUP_STATUS_MIXED:
// Some permissions in the group are allowed and some disallowed
break;

case PermissionManager.PERMISSION_GROUP_STATUS_UNKNOWN:
// The current status of the group is unknown
break;

The previous snippet will give a quick generic status for all permissions together.
However, if you want to get a more detailed result about the status of every permission or
parameter in the group, you can use the getStatusOfPermissions method.

List<PermissionElement> permissionElements = new ArrayList<>();
permissionElements.add(new PermissionElement(FunctionID.SHOW, null));
permissionElements.add(new PermissionElement(FunctionID.GET_VEHICLE_DATA,
Arrays.asList(GetVehicleData.KEY_RPM, GetVehicleData.KEY_AIRBAG_STATUS)));

Map<FunctionID, PermissionStatus> status =
sdIManager.getPermissionManager().getStatusOfPermissions(permissionElements);

if (status.get(FunctionID.GET_VEHICLE_DATA).getIsRPCAIllowed()){

// GetVehicleData RPC is allowed
}

if
(status.get(FunctionID.GET_VEHICLE_DATA).getAllowedParameters().get(GetVehicle
{

// rpm parameter in GetVehicleData RPC is allowed

}

Observing Permissions

If desired, you can set a listener for a group of permissions. The listener will be called
when the permissions for the group changes. If you want to be notified when the
permission status of any of RPCs in the group change, set the groupType to PERMISSIO
N_GROUP_TYPE_ANY . If you only want to be notified when all of the RPCs in the group
are allowed, or go from allowed to some/all not allowed, set the groupType to PERMISS
ION_GROUP_TYPE_ALL_ALLOWED .

List<PermissionElement> permissionElements = new ArrayList<>();
permissionElements.add(new PermissionElement(FunctionID.SHOW, null));
permissionElements.add(new PermissionElement(FunctionID.GET_VEHICLE_DATA,
Arrays.asList(GetVehicleData.KEY_RPM, GetVehicleData.KEY_AIRBAG_STATUS)));

UUID listenerld =
sdIManager.getPermissionManager().addListener(permissionElements,
PermissionManager.PERMISSION_GROUP_TYPE_ANY, new
OnPermissionChangelListener() {
@Override

void (@NonNull Map<FunctionID, PermissionStatus>

updatedPermissionStatuses, @NonNull int updatedGroupStatus) {
if

(updatedPermissionStatuses.get(FunctionID.GET_VEHICLE_DATA).getlsRPCAllowed(

{
// GetVehicleData RPC is allowed

}

if
(updatedPermissionStatuses.get(FunctionID.GET_VEHICLE_DATA).getAllowedParam
{
// rpm parameter in GetVehicleData RPC is allowed
}
}
});

Stopping Observation of Permissions

When you set up the listener, you will get a unique id back. Use this id to unsubscribe to

the permissions at a later date.

sdIManager.getPermissionManager().removeListener(listenerld);

Additional HMI State Information

If you want more detail about the current state of your SDL app you can monitor the audio

playback state as well as get notifications when something blocks the main screen of

your app.

Audio Streaming State

The Audio Streaming State informs your app whether or not the driver will be able to hear
your app's audio. It will be either AUDIBLE , NOT_AUDIBLE , or ATTENUATED .

You will get these notifications when an alert pops up, when you start recording the in-car
audio, when voice recognition is active, when another app takes audio control, when a
navigation app is giving directions, etc.

Any audio you are playing will be audible to the

AUDIBLE
user
Some kind of audio mixing is occurring
between what you are playing, if anything, and
ATTENUATED Y playing U J
some system level audio or navigation
application audio.
Your streaming audio is not audible. This could
NOT_AUDIBLE

occur during a VRSESSION System Context.

sdIManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {

OnHMIStatus status = (OnHMIStatus) notification;
AudioStreamingState streamingState = status.getAudioStreamingState();

}
N

System Context

The System Context informs your app if there is potentially a blocking HMI component
while your app is still visible. An example of this would be if your application is open and
you display an alert. Your app will receive a system context of ALERT whileitis

presented on the screen, followed by MAIN when it is dismissed.

No user interaction is in progress that could be

MAIN
blocking your app's visibility.
VRSESSION Voice recognition is currently in progress.
MENU A menu interaction is currently in-progress.
The app's display HMl is being blocked by
HMI_OBSCURED either a system or other app's overlay (another
app's alert, for instance).
ALERT An alert that you have sent is currently visible.

sdIManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {

OnHMIStatus status = (OnHMIStatus) notification;
SystemContext systemContext = status.getSystemContext();
}
i

Checking Supported Features

New features are always being added to SDL, however, you or your users may be
connecting to modules that do not support the newest features. If your SDL app attempts

to use an unsupported feature your request will be ignored by the module.

When you are implementing a feature you should always assume that some modules your
users connect to will not support the feature or that the user may have disabled
permissions for this feature on their head unit. The best way to deal with unsupported
features is to check if the feature is available before attempting to use it and to handle

error responses.

Checking the System Capability Manager

The easiest way to check if a feature is supported is to query the library's System
Capability Manager. For more details on how get this information, please see the Adaptive

Interface Capabilities guide.

Handling RPC Error Responses

When you are trying to use a feature, you can watch for an error response to the RPC
request you sent to the module. If the response contains an error, you may be able to
check the result enum to determine if the feature is disabled. If the response that comes
back is of the type GenericResponse , the module doesn't understand your request.

request.setONRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (Iresponse.getSuccess()) {
// The request was not successful, check the response.getResultCode() and
response.getinfo() for more information.

} else {
// The request was successful
}
}

i
sdIManager.sendRPC(request);

Checking if a Feature is Supported by Version

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/displaying-a-user-interface/adaptive-interface-capabilities/

When you connect successfully to a head unit, SDL will automatically negotiate the
maximum SDL RPC version supported by both the module and your SDL SDK. If the feature
you want to support was added in a version less than or equal to the version returned by
the head unit, then your head unit may support the feature. Remember that the module may
still disable the feature, or the user may still have disabled permissions for the feature in
some cases. It's best to check if the feature is supported through the System Capability
Manager first, but you may also check the negotiated version to know if the head unit was
built before the feature was designed.

Throughout these guides you may see headers that contain text like "RPC 6.0+". That
means that if the negotiated version is 6.0 or greater, then SDL supports the feature but
the above caveats may still apply.

Example Apps

This guide takes you through the steps needed to get the sample project, Hello Sdl,
connected a module.

First, make sure you download or clone the latest release from GitHub. It is a project
within the SDL Java Suite root directory. Then, open the Hello Sdl project in IntelliJ IDEA.

Connecting to an Infotainment
System

To connect the sample app to the infotainment system, please follow the instructions in
the Connecting to an Infotainment System guide.

Adaptive Interface Capabilities

https://github.com/smartdevicelink/sdl_java_suite
https://github.com/smartdevicelink/sdl_java_suite/tree/master/javaSE/hello_sdl_java
https://www.jetbrains.com/idea/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/getting-started/connecting-to-an-infotainment-system/

Since each car manufacturer has different user interface style guidelines, the number of
lines of text, soft and hard buttons, and images supported will vary between different types
of head units. The system will send information to your app about its capabilities for
various user interface elements. You should use this information to create the user
interface of your SDL app.

You can access these properties on the sdlManager.getSystemCapabilityManager()
instance.

System Capability Manager
Properties

SystemCapabilityType.DISP
LAYS

SystemCapabilityType.HMI_
ZONE

SystemCapabilityType.SPEE
CH

SystemCapability Type.VOIC
E_RECOGNITION

SystemCapabilityType.AUDI
O_PASSTHROUGH

Specifies display related
information. The primary
display will be the first element
within the array. Windows
within that display are different
places that the app could be
displayed (such as the main
app window and various

widget windows).

Specifies HMI Zones in the
vehicle. There may be a HMI
available for back seat
passengers as well as front

seat passengers.

Contains information about
TTS capabilities on the SDL
platform. Platforms may
support text, SAPI phonemes,
LH PLUS phonemes, pre-

recorded speech, and silence.

Currently only available in the
SDL_iOS and SDL JavaScript

libraries

The voice-recognition
capabilities of the connected
SDL platform. The platform
may be able to recognize
spoken text in the current

language.

Describes the sampling rate,
bits per sample, and audio

types available.

RPC v6.0+

RPC v1.0+

RPC v1.0+

RPC v3.0+

RPC v1.0+

RPC v2.0+

SystemCapabilityType.PCM_
STREAMING

SystemCapabilityType.HMI

SystemCapabilityType.APP_
SERVICES

SystemCapabilityType.NAVI
GATION

SystemCapabilityType.PHO
NE_CALL

SystemCapabilityType.VIDE
O_STREAMING

SystemCapabilityType.REM
OTE_CONTROL

SystemCapabilityType.SEAT
_LOCATION

Describes different audio type
configurations for the audio
PCM stream service, e.g.
{8kHz38-bit,PCM}.

Returns whether or not the app
can support built-in navigation

and phone calls.

Describes the capabilities of
app services including what
service types are supported and

the current state of services.

Describes the built-in vehicle

navigation system's APls.

Describes the built-in phone
calling capabilities of the IVI

system.

Describes the abilities of the
head unit to video stream

projection applications.

Describes the abilities of an
app to control built-in aspects

of the IVI system.

Describes the positioning of

each seat in a vehicle

Deprecated Properties

RPC v4.1+

RPC v3.0+

RPC v5.1+

RPC v4.5+

RPC v4.5+

RPC v4.5+

RPC v4.5+

RPC v6.0+

The following properties are deprecated on SDL Android 4.10 because as of RPC v6.0 they

are deprecated. However, these properties will still be filled with information. When

connected on RPC <6.0, the information will be exactly the same as what is returned in the

RegisterAppinterfaceResponse and SetDisplayLayoutResponse . However, if connected

on RPC >6.0, the information will be converted from the newer-style display information,

which means that some information will not be available.

SystemCapabilityType.DISPLAY

SystemCapabilityType.BUTTON

SystemCapabilityType.SOFTBUTTON

SystemCapabilityType.PRESET_BANK

Image Specifics

Information about the HMI display. This
includes information about available
templates, whether or not graphics are
supported, and a list of all text fields and the
max number of characters allowed in each text
field.

A list of available buttons and whether the
buttons support long, short and up-down

presses.

A list of available soft buttons and whether the
button support images. Also, information
about whether the button supports long, short

and up-down presses.

If returned, the platform supports custom on-

screen presets.

Images may be formatted as PNG, JPEG, or BMP. You can find which image types and

resolutions are supported using the system capability manager.

Since the head unit connection is often relatively slow (especially over Bluetooth), you

should pay attention to the size of your images to ensure that they are not larger than they

need to be. If an image is uploaded that is larger than the supported size, the image will be
scaled down by Core.

ImageField field =
sdIManager.getSystemCapabilityManager().getDefaultMainWindowCapability().getImz

ImageResolution resolution = field.getimageResolution();

EXAMPLE IMAGE SIZES

Below is a table with example image sizes. Check the SystemCapabilityManager for the
exact image sizes desired by the system you are connecting to. The connected system
should be able to scale down larger sizes, but if the image you are sending is much larger
than desired, then performance will be impacted.

softButtonim

age

choicelmage

choiceSecon

darylmage

vrHelpltem

menulcon

cmdlcon

Show

Createlnteractio

nChoiceSet

Createlnteractio

nChoiceSet

SetGlobalProper

ties

SetGlobalProper

ties

AddCommand

Image shown on
softbuttons on 70x70px

the base screen

Image shown in

the manual part

of an

performinteracti

70x70px

on either big

(ICON_ONLY) or

small

(LIST_ONLY)

Image shown on
the right side of
an entry in
(LIST_ONLY)

performinteracti

35x35px

on

Image shown
during voice 35x35px

interaction

Image shown on
the “More..” 35x35px

button

Image shown for
commands in

35x35px
the "More..."

menu

png, jpg, bmp

png, jpg, bmp

png, jpg, bmp

png, jpg, bmp

png, jpg, bmp

png, jpg, bmp

Image shown as

Icon in the
applcon SetApplcon 70x70px png, jpg, bmp
"Mobile Apps"

menu

Image shown on
graphic Show the base screen 185x185px png, jpg, bmp

as cover art

Querying and Subscribing System
Capabilities

Capabilities that can be updated can be queried and subscribed to using the SystemCapa
bilityManager .

Determining Support for System Capabilities

You should check if the head unit supports your desired capability before subscribing to or
updating the capability.

boolean navigationSupported =

sdIManager.getSystemCapabilityManager().isCapabilitySupported(SystemCapability T

Manual Querying for System Capabilities

Most head units provide features that your app can use: making and receiving phone calls,
an embedded navigation system, video and audio streaming, as well as supporting app
services. To pull information about this capability, use the SystemCapabilityManager to

guery the head unit for the desired capability. If a capability is unavailable, the query will
return null .

sdIManager.getSystemCapabilityManager().getCapability(SystemCapability Type. APP_
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
AppServicesCapabilities servicesCapabilities = (AppServicesCapabilities)
capability;
}

@Override
void (String info) {
// Handle Error

}
}, false);

Subscribing to System Capabilities (RPC v5.1+)

In addition to getting the current system capabilities, it is also possible to subscribe for
updates when the head unit capabilities change. Since this information must be queried

from Core you must implement the OnSystemCapabilityListener .

NOTE

If supportsSubscriptions == false , you can still subscribe to capabilities,
however, you must manually poll for new capability updates using getCapab
ility(type, listener, forceUpdate) with forceUpdate setto true . All
subscriptions will be automatically updated when that method returns a new

value.

The DISPLAYS type can be subscribed on all SDL versions.

CHECKING IF THE HEAD UNIT SUPPORTS SUBSCRIPTIONS

boolean supportsSubscriptions =

sdIManager.getSystemCapabilityManager().supportsSubscriptions();

SUBSCRIBE TO A CAPABILITY

sdIManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SystemC
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
AppServicesCapabilities servicesCapabilities = (AppServicesCapabilities)
capability;
}

@Override
void (String info) {
// Handle Error
}
b

Main Screen Templates

Each head unit manufacturer supports a set of user interface templates. These templates
determine the position and size of the text, images, and buttons on the screen. Once the
app has connected successfully with an SDL enabled head unit, a list of supported
templates is available on sdIManager.getSystemCapabilityManager().getDefaultMainWind
owCapability().getTemplatesAvailable() .

Change the Template

To change a template at any time, use ScreenManager.changeLayout() . This guide
requires SDL Java Suite version 5.0. If using an older version, use the SetDisplaylLayout
RPC.

NOTE

When changing the layout, you may get an error or failure if the update is
"superseded.” This isn't technically a failure, because changing the layout has
not yet been attempted. The layout or batched operation was cancelled
before it could be completed because another operation was requested. The
layout change will then be inserted into the future operation and completed
then.

TemplateConfiguration templateConfiguration = new
TemplateConfiguration().setTemplate(PredefinedLayout. GRAPHIC_WITH_TEXT.toStrir

sdIManager.getScreenManager().changelLayout(templateConfiguration, new
CompletionListener() {
@Override
void (boolean success) {

if (success) {
DebugTool.loginfo(TAG,

} else {
DebugTool.loginfo(TAG,

}
}
D

Template changes can also be batched with text and graphics updates:

sdIManager.getScreenManager().beginTransaction();
sdIManager.getScreenManager().setTextField1();
sdIManager.getScreenManager().changelLayout(templateConfiguration, new
CompletionListener() {
@Override
void (boolean success) {
// This listener will be ignored, and will use the CompletionListener sent in
commit.

}

3
sdIManager.getScreenManager().setPrimaryGraphic(sdlArtwork);
sdIManager.getScreenManager().commit(new CompletionListener() {
@Override
void (boolean success) {
if (success) {

DebugTool.loginfo(TAG,
}
}
)

When changing screen layouts and template data (for example, to show a weather hourly
data screen vs. a daily weather screen), it is recommended to encapsulate these updates
into a class or method. Doing so is a good way to keep SDL Ul changes organized. A fully-
formed example of this can be seen in the example weather app. Below is a generic

example.

Screen Change Example Code

This example code creates an interface that can be implemented by various "screens” of
your SDL app. This is a recommended design pattern so that you can separate your code
to only involve the data models you need. This is just a simple example and your own

needs may be different.

Screen Change Example Interface

All screens will need to have access to the ScreenManager object and a function to

display the screen. Therefore, it is recommended to create a generic interface for all

https://github.com/SmartDeviceLink-Examples/example_weather_app_android

screens to follow. For the example below, the CustomSDLScreen protocol requires an
initializer with the parameters SDLManager and a showScreen method.

CustomSdIScreen {
SdIManager sdIManager;

(SdIManager sdiManager) {
this.sdIManager = sdlIManager;

void 04
// stub

Screen Change Example Implementations

The following example code shows a few implementations of the example screen
changing protocol. A good practice for screen classes is to keep screen data in a view
model. Doing so will add a layer of abstraction for exposing public properties and
commands to the screen.

For the example below, the HomeScreen class will inherit the CustomSDLScreen
interface and will have a property of type HomeDataViewModel . The screen manager will
change its text fields based on the view model's data. In addition, the home screen will

also create a navigation button to open the ButtonSDLScreen when pressed.

HomeSdIScreen CustomSdIScreen {
ButtonSdIScreen buttonScreen;
// An example of your data model that will feed data to the SDL screen's Ul
HomeDataViewModel homeDataViewModel;

(SdIManager sdIManager) {
(sdIManager);

buttonScreen = new ButtonSdlScreen(sdiManager);
homeDataViewModel = new HomeDataViewModel();

void 0{
// Batch Updates
sdIManager.getScreenManager().beginTransaction();
// Change template to Graphics With Text and Soft Buttons
TemplateConfiguration templateConfiguration = new
TemplateConfiguration().setTemplate(PredefinedLayout. GRAPHIC_WITH_TEXT.toStrir

sdIManager.getScreenManager().changeLayout(templateConfiguration, new
CompletionListener() {
@Override
void (boolean success) {}

});

// Assign text fields to view model data
sdIManager.getScreenManager().setTextField1(homeDataViewModel.getText1());
sdIManager.getScreenManager().setTextField2(homeDataViewModel.getText2());
sdIManager.getScreenManager().setTextField3(homeDataViewModel.getText3());

sdIManager.getScreenManager().setTextField4(homeDataViewModel.getText4());
// Create and assign a button to navigate to the ButtonSdIScreen
SoftButtonState textState = new SoftButtonState(
, null);

SoftButtonObject navigationButton = new SoftButtonObject(
Collections.singletonList(textState), textState.getName(), new
SoftButtonObject.OnEventListener() {

@Override
void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
buttonScreen.showScreen();

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {

}
D

sdIManager.getScreenManager().setSoftButtonObjects(Collections.singletonList(navi

sdIManager.getScreenManager().commit(new CompletionListener() {
@Override

void (boolean success) {}

The ButtonSDLScreen follows the same patterns as the HomeSDLScreen but has
minor implementation differences. The screen's view model ButtonDataViewModel
contains properties unique to the ButtonSDLScreen such as text fields and an array of
soft button objects. It also changes the template configuration to tiles only.

ButtonSdIScreen CustomSdIScreen {
ButtonDataViewModel buttonDataViewModel;

(SdIManager sdIManager) {
(sdIManager);

buttonDataViewModel = new ButtonDataViewModel();
}

void 0«
sdIManager.getScreenManager().beginTransaction();
TemplateConfiguration templateConfiguration = new

TemplateConfiguration().setTemplate(PredefinedLayout. TILES_ONLY.toString());
sdIManager.getScreenManager().changelLayout(templateConfiguration, new
CompletionListener() {
@Override

void (boolean success) {}
i

sdIManager.getScreenManager().setSoftButtonObjects(buttonDataViewModel.getButt

sdIManager.getScreenManager().commit(new CompletionListener() {
@Override

void (boolean success) {}

Available Templates

There are fifteen standard templates to choose from, however some head units may only
support a subset of these templates. The following examples show how templates will
appear on the Generic HMI and Ford's SYNC® 3 HMI.

MEDIA

Odometer Data: 30 km

SmartDevicelLink (SDL)

MEDIA (WITH A PROGRESS BAR)

https://github.com/smartdevicelink/generic_hmi
https://developer.ford.com/

Livio Music

John Prine

Linda Goes to Mars

NON-MEDIA

APPS SDL Example App

SmartDeviceLink (SDL) Example App

GRAPHIC WITH TEXT

SDL Example App

SmartDevicelLink (SDL)
Example App

Odometer Data: 30 km

App — SDL — Car

TEXT WITH GRAPHIC

SDL Example App

SmartDevicelink (SDL)

Example App

Odometer Data: 30 km

App — SDL — Car

TILES ONLY

SDL Example App

GRAPHIC WITH TILES

2:96 10°

TILES WITH GRAPHIC

GRAPHIC WITH TEXT AND SOFT BUTTONS

3:02 10°

TEXT AND SOFT BUTTONS WITH GRAPHIC

3:04 10°

J0F N

A

Audio Climate Phone Nav

GRAPHIC WITH TEXT BUTTONS

SDL Example App

DOUBLE GRAPHIC WITH SOFT BUTTONS

SDL Example App

TEXT BUTTONS WITH GRAPHIC

SDL Example App

TEXT BUTTONS ONLY

SDL Example App

LARGE GRAPHIC WITH SOFT BUTTONS

SDL Example App

LARGE GRAPHIC ONLY

SDL Example App

Template Text

You can easily display text, images, and buttons using the ScreenManager . To update the
Ul, simply give the manager your new data and (optionally) sandwich the update between
the manager's beginTransaction() and commit() methods.

Text Fields

The text displayed in a single-line display, or in

textField1

the upper display line of a multi-line display

The text displayed on the second display line of
textField2

a multi-line display

The text displayed on the third display line of a
textField3

multi-line display

The text displayed on the bottom display line of
textField4

a multi-line display

The text displayed in the in the track field; this
mediaTrackTextField
field is only valid for media applications

The text justification for the text fields; the text
textAlignment
alignment can be left, center, or right

textField1Type The type of data provided in textField1
textField2Type The type of data provided in textField2
textField3Type The type of data provided in textField3
textField4Type The type of data provided in textField4
title The title of the displayed template

Showing Text
T

sdIManager.getScreenManager().beginTransaction();

sdIManager.getScreenManager().setTextField1();

sdIManager.getScreenManager().setTextField2();

sdIManager.getScreenManager().commit(new CompletionListener() {
@Override

void (boolean success) {
DebugTool.loginfo(TAG, + success);
}
)

Removing Text

To remove text from the screen simply set the screen manager property to null .

sdIManager.getScreenManager().setTextField1(null);

sdIManager.getScreenManager().setTextField2(null);

Template Images

You can easily display text, images, and buttons using the ScreenManager . To update the
Ul, simply give the manager your new data and (optionally) sandwich the update between
the manager's beginTransaction() and commit() methods.

Image Fields

) — The primary image in a template that supports
primaryGraphic
images

The second image in a template that supports

secondaryGraphic
multiple images

Showing Images

Creating an SDLArtwork

Create an SdlArtwork object which can be manually uploaded or set into the ScreenMa
nager and automatically uploaded. An SdlArtwork includes information about whether

the image should be persisted between vehicle startups, whether the image is a template
image and should be re-colored, and more.

SdlArtwork sdlArtwork = new SdlArtwork(, FileType.GRAPHIC_PNG,

, true);

Setting Primary Graphic

sdIManager.getScreenManager().beginTransaction();

sdIManager.getScreenManager().setPrimaryGraphic(sdlArtwork);

sdIManager.getScreenManager().commit(new CompletionListener() {
@Override

void (boolean success) {
DebugTool.loginfo(TAG, + success);

}
D

Removing Images

To remove an image from the screen you just need to set the screen manager property to

null .

sdIManager.getScreenManager().setPrimaryGraphic(null);

Overwriting Images

When a file is to be uploaded to the module, the library checks if a file with the same name
has already been uploaded to module and skips the upload if it can. For cases where an
image by the same name needs to be re-uploaded, the SdlArtwork / SdlIFile 's overwrit
e property should be used. Setting overwrite to true before passingthe imagetoa Sc
reenManager method such as setPrimaryGraphic() and setSecondaryGraphic() will
force the image to be re-uploaded. This includes methods such as preloadChoices()

where the arguments passed in contain images.

4 NOTE
Please note that many production modules on the road do not refresh the
HMI with the new image if the file name has not changed. If you want the
image to refresh on the screen immediately, we suggest using two image
names and toggling back and forth between the names each time you update

the image.

This issue may also extend to menus, alerts, and other Ul features even if
they're not on-screen at the time. Because of these issues, we do not
recommend that you try to overwrite an image. Instead, you can delete an
image file using the SdIFileManager and re-upload it once the deletion

completes, or you may use a different file name.

Templating Images (RPC v5.0+)

Templated images are tinted by Core so the image is visible regardless of whether your
user has set the head unit to day or night mode. For example, if a head unit is in night
mode with a dark theme (see Customizing the Template section for more details on how
to customize theme colors), then your templated images will be displayed as white. In the
day theme, the image will automatically change to black.

Soft buttons, menu icons, and primary / secondary graphics can all be templated. Images
that you wish to template must be PNGs with a transparent background and only one color
for the icon. Therefore, templating is only useful for things like icons and not for images
that must be rendered in a specific color.

Templated Images Example

In the screenshots below, the shuffle and repeat icons have been templated. In night mode,
the icons are tinted white and in day mode the icons are tinted black.

NIGHT MODE

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/customizing-look-and-functionality/customizing-the-template/

Livio Music

John Prine

Linda Goes to Mars

DAY MODE

APPS Livio Music

k3

JHN PRINE

John Prine

Linda Goes to Mars

00:01:59 / 00:03:06

SdlArtwork image = new SdIArtwork(, FileType.GRAPHIC_PNG,

image, true);
image.setTemplatelmage(true);

Static Icons

Static icons are pre-existing images on the remote system that you may reference and use
in your own application. Each OEM will design their own custom static icons but you can
get an overview of the available icons from the icons designed for the open source
Generic HMI. Static icons are fully supported by the screen manager via an SdlArtwork
initializer. Static icons can be used in primary and secondary graphic fields, soft button

image fields, and menu icon fields.

https://smartdevicelink.com/en/guides/sdl-overview-guides/user-interface/static-icons/

SdlArtwork staticlconArt = new SdlArtwork(StaticiconName.ALBUM);

Template Custom Buttons

You can easily create and update custom buttons (called Soft Buttons in SDL) using the S
creenManager . To update the Ul, simply give the manager your new data and (optionally)
sandwich the update between the manager's beginTransaction() and commit()

methods.

Soft Button Fields

An array of buttons. Each template supports a
softButtonObjects
different number of soft buttons

Creating Soft Buttons

To create a soft button using the ScreenManager , you only need to create a custom
name for the button and provide the text for the button's label and/or an image for the
button's icon. If your button cycles between different states (e.g. a button used to set the
repeat state of a song playlist can have three states: repeat-off, repeat-one, and repeat-all),

you can create all the states on initialization.

There are three different ways to create a soft button: with only text, with only an image, or
with both text and an image. If creating a button with an image, we recommend that you

template the image so its color works well with both the day and night modes of the head
unit. For more information on templating images please see the Template Images guide.

Text Only Soft Buttons

APPS SDL Example App

SmartDevicelLink (SDL) Swift Example App

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/displaying-a-user-interface/template-images/

SoftButtonState textState1 = new SoftButtonState(

, null);
SoftButtonState textState2 = new SoftButtonState(,

, null);
List<SoftButtonState> stateList1 = Arrays.asList(textState1, textState2);
SoftButtonObject softButtonObject1 = new SoftButtonObject(
stateList1, textState1.getName(), new SoftButtonObject.OnEventListener() {

@Override
void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
softButtonObject.transitionToNextState();

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
}
3

SoftButtonState textState3 = new SoftButtonState(
, null);
SoftButtonObject softButtonObject2 = new SoftButtonObject(
Collections.singletonList(textState3), textState1.getName(), new
SoftButtonObject.OnEventListener() {
@Override
void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
}
3

sdIManager.getScreenManager().beginTransaction();
sdIManager.getScreenManager().setSoftButtonObjects(Arrays.asList(softButtonObjec
softButtonObject?2));
sdIManager.getScreenManager().commit(new CompletionListener() {

@Override

void (boolean success) {
DebugTool.loginfo(TAG, + success);

}

});

Image Only Soft Buttons

You can use the SystemCapabilityManager to check if the HMI supports soft buttons
with images. If you send image-only buttons to a HMI that does not support images, then
the library will not send the buttons as they will be rejected by the head unit. If all your soft
buttons have text in addition to images, the library will send the text-only buttons if the

head unit does not support images.

APPS SDL Example App

SmartDevicelLink (SDL) Swift Example App

List<SoftButtonCapabilities> softButtonCapabilitiesList =
sdIManager.getSystemCapabilityManager().getDefaultMainWindowCapability().getSo1

boolean imageSupported = (IsoftButtonCapabilitiesList.isEmpty()) ?
softButtonCapabilitiesList.get(0).getimageSupported() : false;

Once you know that the HMI supports images in soft buttons you can create and send the
image-only soft buttons.

SoftButtonState imageState1 = new SoftButtonState(
sdlArtwork1);
SoftButtonState imageState2 = new SoftButtonState(
sdlArtwork?2);
SoftButtonObject softButtonObject1 = new SoftButtonObject(
Arrays.asList(imageState1, imageState2), imageState1.getName(), new
SoftButtonObject.OnEventListener() {

@Override

void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
softButtonObject.transitionToNextState();

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
}
3

SoftButtonState imageState3 = new SoftButtonState(
sdlArtwork3);
SoftButtonObject softButtonObject2 = new SoftButtonObject(
Collections.singletonList(imageState3), imageState3.getName(), new
SoftButtonObject.OnEventListener() {

@Override

void (SoftButtonObject softButtonObject, OnButtonPress

onButtonPress) {

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
}
3

sdIManager.getScreenManager().beginTransaction();
sdIManager.getScreenManager().setSoftButtonObjects(Arrays.asList(softButtonObjec
softButtonObject?2));
sdIManager.getScreenManager().commit(new CompletionListener() {

@Override

void (boolean success) {
DebugTool.loginfo(TAG, + success);

}

});

Image and Text Soft Buttons

APPS SDL Example App

SmartDevicelink (SDL) Swift Example App

SoftButtonState textAndimageState1 = new SoftButtonState(
, sdlArtwork1);
SoftButtonState textAndimageState2 = new SoftButtonState(
, sdlArtwork?2);
SoftButtonObject softButtonObject1 = new SoftButtonObject(
Arrays.asList(textAndimageState1, textAndimageState?2),
textAndimageState1.getName(), new SoftButtonObject.OnEventListener() {
@Override
void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
softButtonObject.transitionToNextState();

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
}
3

SoftButtonState textAndimageState3 = new SoftButtonState(
, sdlArtwork3);
SoftButtonObject softButtonObJeth = new SoftButtonObject(
Collections.singletonList(textAndimageState3), textAndimageState3.getName(), new
SoftButtonObject.OnEventListener() {
@Override
void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
}
3

sdIManager.getScreenManager().beginTransaction();
sdIManager.getScreenManager().setSoftButtonObjects(Arrays.asList(softButtonObjec
softButtonObject?2));
sdIManager.getScreenManager().commit(new CompletionListener() {

@Override

void (boolean success) {
DebugTool.loginfo(TAG, + success);

}

});

Highlighting a Soft Button

When a button is highlighted its background color will change to indicate that it has been
selected.

HIGHLIGHT ON

12:01 10°

HIGHLIGHT OFF

12:03 10°

Off
J N A thy
Audio Climate Phone Nav Settings

SoftButtonState softButtonState1 = new SoftButtonState(

, sdlArtwork);
softButtonState1.setHighlighted(true);
SoftButtonState softButtonState2 = new SoftButtonState(

, sdlArtwork);
softButtonState2.setHighlighted(false);
SoftButtonObject softButtonObject = new SoftButtonObject(
Arrays.asList(softButtonState1, softButtonState2), softButtonState1. getName() new
SoftButtonObject.OnEventListener() {

@Override

void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
softButtonObject.transitionToNextState();

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {

}
D

Updating Soft Button States

When the soft button state needs to be updated, simply tell the SoftButtonObject to
transition to the next state. If your button states do not cycle in a predictable order, you
can also tell the soft button which state to transition to by passing the stateName of the

new soft button state.

SoftButtonState state1 = new SoftButtonState(
, sdlArtwork);

SoftButtonState state2 = new SoftButtonState(
, sdlArtwork);

SoftButtonObject softButtonObject = new SoftButtonObject(
Arrays.asList(state1, state2), state1.getName(), new
SoftButtonObject.OnEventListener() {
@Override
void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
}
});

sdIManager.getScreenManager().beginTransaction();
sdIManager.getScreenManager().setSoftButtonObjects(Collections.singletonList(sofi

sdIManager.getScreenManager().commit(new CompletionListener() {
@Override
void (boolean success) {
DebugTool.loginfo(TAG, + success);
}
i

// Transition to a new state

SoftButtonObject retrievedSoftButtonObject =
sdIManager.getScreenManager().getSoftButtonObjectByName(
retrievedSoftButtonObject.transitionToNextState();

Deleting Soft Buttons

To delete soft buttons, simply pass the screen manager a new array of soft buttons. To
delete all soft buttons, simply pass the screen manager an empty array.

sdIManager.getScreenManager().setSoftButtonObjects(Collections.EMPTY_LIST);

Using RPCs

You can also send soft buttons manually using the Show RPC. Note that if you do so,
you must not mix the ScreenManager soft buttons and manually sending the Show
RPC. Additionally, the ScreenManager takes soft button ids 0 - 10000. Ensure that if you

use custom RPCs, that the soft button ids you use are outside of this range.

Template Subscription Buttons

This guide shows you how to subscribe and react to "subscription” buttons. Subscription
buttons are used to detect when the user has interacted with buttons located in the car's
center console or steering wheel. A subscription button may also show up as part of your
template, however, the text and/or image used in the button is determined by the template
and is (usually) not customizable.

In the screenshot below, the pause, seek left and seek right icons are subscription
buttons. Once subscribed to, for example, the seek left button, you will be notified when
the user selects the seek left button on the HMI or when they select the seek left button

on the car's center console and/or steering wheel.

]

APPS Livio Music .

John Prine

Linda Goes to Mars

German Afternoons

00:01:59 / 00:03:086

Types of Subscription Buttons

There are three general types of subscriptions buttons: audio related buttons only used for
media apps, navigation related buttons only used for navigation apps, and general buttons,
like preset buttons and the OK button, that can be used with all apps. Please note that if
your app type is not MEDIA or NAVIGATION , your attempt to subscribe to media-only
or navigation-only buttons will be rejected.

Ok

Preset 0-9

Search

Play / Pause

Seek left

Seek right

Tune up

Tune down

Center Location

Zoom In

Zoom Out

Pan Up

Pan Up-Right

Pan Right

Pan Down-Right

Pan Down

All

All

All

Media only

Media only

Media only

Media only

Media only

Navigation only

Navigation only

Navigation only

Navigation only

Navigation only

Navigation only

Navigation only

Navigation only

v1.0+

v1.0+

v1.0+

v5.0+

v1.0+

v1.0+

v1.0+

v1.0+

v6.0+

v6.0+

v6.0+

v6.0+

v6.0+

v6.0+

v6.0+

v6.0+

Pan Down-Left Navigation only v6.0+

Pan Left Navigation only v6.0+
Pan Up-Left Navigation only v6.0+
Toggle Tilt Navigation only v6.0+
Rotate Clockwise Navigation only v6.0+
Rotate Counter-Clockwise Navigation only v6.0+
Toggle Heading Navigation only v6.0+

Subscribing to Subscription Buttons

You can easily subscribe to subscription buttons using the ScreenManager . Simply tell
the manager which button to subscribe and you will be notified when the user selects the
button.

Subscribe with a Listener

Once you have subscribed to the button, the listener will be called when the button has
been selected. If there is an error subscribing to the button the error message will be
returned in the error parameter.

OnButtonListener playPauseButtonListener = new OnButtonListener() {
@Override
void (ButtonName buttonName, OnButtonPress buttonPress) {

}

@Override
void (ButtonName buttonName, OnButtonEvent buttonEvent) {

}

@Override
void (String info) {
%

sdIManager.getScreenManager().addButtonListener(ButtonName.PLAY_PAUSE,
playPauseButtonListener);

Unsubscribing from Subscription
Buttons

To unsubscribe to a subscription button, simply tell the ScreenManager which button
name and listener object to unsubscribe.

sdIManager.getScreenManager().removeButtonListener(ButtonName.PLAY_PAUSE,

playPauseButtonListener);

Media Buttons

The play/pause, seek left, seek right, tune up, and tune down subscribe buttons can only be
used if the app type is MEDIA . Depending on the OEM, the subscribed button could show

up as an on-screen button in the MEDIA template, work as a physical button on the car

console or steering wheel, or both. For example, Ford's SYNC® 3 HMI will add the
play/pause, seek right, and seek left soft buttons to the media template when you
subscribe to those buttons. However, those buttons will also trigger when the user uses

the seek left / seek right buttons on the steering wheel.

If desired, you can change the style of the play/pause button image between a play, stop,
or pause icon by updating the audio streaming indicator, and you can also set the style of
the next/previous buttons between a track or time seek style. See the Media Clock guide

for more information.

O NOTE

Before library v.4.7 and RPC v5.0, Ok and PlayPause were combined into
Ok . Subscribingto Ok will, in v4.7+, also subscribe you to PlayPause .
This means that for the time being, you should not simultaneously subscribe
to Ok and PlayPause . In a future major version, this will change. For now,
only subscribe to either Ok or PlayPause and the library will execute the

right action based on the connected head unit.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/displaying-a-user-interface/media-clock/

sdIManager.getScreenManager().addButtonListener(ButtonName.PLAY_PAUSE, new
OnButtonListener() {
@Override
void (ButtonName buttonName, OnButtonPress buttonPress) {
switch (buttonPress.getButtonPressMode()) {
case SHORT:
// The user short pressed the button
case LONG:
// The user long pressed the button

}
}

@Override
void (ButtonName buttonName, OnButtonEvent buttonEvent) { }

@Override
void (String info) {
// There was an error subscribing to the button
}
});

Preset Buttons

All app types can subscribe to preset buttons. Depending on the OEM, the preset buttons
may be added to the template when subscription occurs. Preset buttons can also be
physical buttons on the console that will notify the subscriber when selected. An OEM
may support only template buttons or only hard buttons or they may support both
template and hard buttons. The screenshot below shows how the Ford SYNC® 3 HMI
displays the preset buttons on the HMI.

4:35 10°

Preset 2

Checking if Preset Buttons are Supported

You can check if a HMI supports subscribing to preset buttons, and if so, how many preset
buttons are supported, by checking the system capability manager.

Integer numOfCustomPresetsAvailable =

sdIManager.getSystemCapabilityManager().getDefaultMainWindowCapability().getNui

Subscribing to Preset Buttons

OnButtonListener onButtonListener = new OnButtonListener() {
@Override
void (ButtonName buttonName, OnButtonPress buttonPress) {
switch (buttonName) {
case PRESET_1:
// The user short or long pressed the preset 1 button
break;
case PRESET_2:
// The user short or long pressed the preset 2 button
break;
}
}

@Override
void (ButtonName buttonName, OnButtonEvent buttonEvent) { }

@Override
void (String info) {
// There was an error subscribing to the button

%

sdIManager.getScreenManager().addButtonListener(ButtonName.PRESET_1,
onButtonListener);
sdIManager.getScreenManager().addButtonListener(ButtonName.PRESET_2,
onButtonListener);

Navigation Buttons

Head units supporting RPC v6.0+ may support subscription buttons that allow your user to
drag and scale the map using hard buttons located on car's center console or steering
wheel. Subscriptions to navigation buttons will only succeed if your app's type is NAVIG
ATION . If subscribing to these buttons succeeds, you can remove any buttons of your
own from your map screen. If subscribing to these buttons fails, you can display buttons

of your own on your map screen.

Subscribing to Navigation Buttons

sdIManager.getScreenManager().addButtonListener(ButtonName.NAV_PAN_UP, new
OnButtonListener() {
@Override
void (ButtonName buttonName, OnButtonPress buttonPress) {
switch (buttonPress.getButtonPressMode()) {
case SHORT:
// The user short pressed the button
case LONG:
// The user long pressed the button

}
}

@Override
void (ButtonName buttonName, OnButtonEvent buttonEvent) { }

@Override
void (String info) {
// There was an error subscribing to the button
}
i

Main Menu

You have two different options when creating menus. One is to simply add items to the
default menu available in every template. The other is to create a custom menu that pops
up when needed. You can find more information about these popups in the Popup Menus
section. This guide will cover using the default menu / menu button.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/displaying-a-user-interface/popup-menus/

O NOTE

Every template has a main menu button. The position of this button varies
between templates and cannot be removed from the template. Some OEMs
may format certain templates to not display the main menu button if you

have no menu items (such as the navigation map view).

Setting the Menu Layout (RPC v6.0+)

On some newer head units, you may have the option to display menu items as a grid of
tiles instead of the default list layout. To determine if the head unit supports the tiles
layout, check the SystemCapabilityManager 's getDefaultMainWindowCapability().getMe
nuLayoutsAvailable() property after successfully connecting to the head unit. To set the
menu layout using the screen manager, you will need to set the ScreenManager.menuCon

figuration property.

LIST MENU LAYOUT

SDL Example App &

Acceleration Pedal Position

Airbag Status

Belt Status

Body Information

Cluster Mode Status

GRID MENU LAYOUT

SDL Example App ©

% “%

Acceleration Pedal

Position Airbag Status

% %

Cluster Mode Status

%

Belt Status

%

Device Status

Body Information

MenuLayout mainMenulLayout = MenulLayout.TILES;

MenulLayout submenuLayout = MenulLayout.LIST;

MenuConfiguration menuConfiguration = new MenuConfiguration(mainMenuLayout,
submenuLayout);
sdIManager.getScreenManager().setMenuConfiguration(menuConfiguration);

Adding Menu Items

The best way to create and update your menu is to the use the Screen Manager API. The
screen manager contains two menu related properties: menu , and voiceCommands .
Setting an array of MenuCell s into the menu property will automatically set and update
your menu and submenus, while setting an array of VoiceCommand s into the voiceCom

mands property allows you to use "hidden" menu items that only contain voice

recognition data. The user can then use the IVI system's voice engine to activate this
command even though it will not be displayed within the main menu.

To find out more information on how to create voiceCommands see the related

documentation.

SDL Example App =

Speak App Name

@ Cet All Vehicle Data

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/speech-and-audio/setting-up-voice-commands/

NOTE

Head units supporting RPC v7.1+ may support displaying secondaryText , t
ertiaryText , and secondaryArtwork . This gives the user a richer experience
by displaying more data. Attempting to set this data on head units that do
not support RPC 7.1+ will result in that data not being displayed to the user.

To determine if the head unit supports displaying these fields, you can check
the SystemCapabilityManager 's getDefaultMainWindowCapability().getTex
tFields() / getDefaultMainWindowCapability().getimageFields() properties
after successfully connecting to the head unit. Then check those arrays for

objects with the related text / image field names.

// Create the menu cell
MenucCell cell = new MenuCell(, , , null, null,
Collections.singletonList(), new MenuSelectionListener() {
@Override
void (TriggerSource trigger) {

// Menu item was selected, check the “triggerSource™ to know if the user used
touch or voice to activate it

// Handle the Cell's Selection

}
D

sdIManager.getScreenManager().setMenu(Collections.singletonList(cell));

Adding Submenus

Adding a submenu is as simple as adding subcells to a MenuCell . The submenu is
automatically displayed when selected by the user. Currently menus only support one layer
of subcells. In RPC v6.0+ it is possible to set individual submenus to use different layouts
such as tiles or lists.

// Create the inner menu cell
MenuCell innerCell = new MenuCell(, , ,
null, null,Collections.singletonList(), new MenuSelectionListener() {
@Override
void (TriggerSource trigger) {
// Menu item was selected, check the “triggerSource™ to know if the user used
touch or voice to activate it
// Handle the cell's selection
}

D

// Create and set the submenu cell
MenuCell cell = new MenuCell(,
MenuLayout.LIST, null, null, Collections. smgletonLlst(lnnerCeII))

sdIManager.getScreenManager().setMenu(Collections.singletonList(cell));

Menu Item Artwork

Artworks will be automatically handled when using the screen manager API. First, a "non-
artwork" menu will be displayed, then, when the artworks have finished uploading, the
"artwork-ified" menu will be displayed. If you are doing this manually with RPCs, you will
have to upload artworks using the file manager yourself and send the correct menu when
they are ready.

Deleting and Changing Menu Items

The screen manager will intelligently handle deletions for you. If you want to show new
menu items, simply set a new array of menu cells. If you want to have a blank menu, set
an empty array. On supported systems, the library will calculate the optimal adds / deletes
to create the new menu. If the system doesn't support this sort of dynamic updating, the
entire list will be removed and re-added.

If you are doing this manually, you must use the DeleteCommand and DeleteSubMenu
RPCs, passing the cmdID s you wish to delete.

Duplicate Menu Titles

Starting with SDL v5.1+ menu cells and sub-menu cells no longer require unique titles in
order to be presented. For example, if you are trying to display points of interest as a list
you can now have multiple locations with the same name but are not the same location.
You cannot present multiple cells that are exactly the same. They must have some

property that makes them different, such as secondaryText or an artwork.

RPC V7.1+ CONNECTIONS

The titles on the menu will be displayed as provided even if there are duplicate titles.

BACK Hello Sdl »

Gas Station

Gas Station

Gas Station

Grocery Store

Grocery Store

RPC V7.0 AND BELOW CONNECTIONS

The titles on the menu will have a number appended to them when there are duplicate
titles.

BACK Hello Sdl »

Gas Station

Gas Station (2)

Gas Station (3)

Grocery Store

Grocery Store (2)

Using RPCs

The AddCommand RPC can be used to add items to the root menu or to a submenu.
Each AddCommand RPC must be sent with a unique id, a voice-recognition command,
and a set of menu parameters. The menu parameters include the menu name, the position
of the item in the menu, and the id of the menu item’s parent. If the menu item is being
added to the root menu, then the parent id is 0. If it is being added to a submenu, then the

parent id is the submenu’s id.

To create a submenu using RPCs, you must use a AddSubMenu RPC with a unique id.
When a response is received from the SDL Core, check if the submenu was added

successfully. If it was, send an AddCommand RPC for each item in the submenu.

O NOTE

You should not mix usage of the ScreenManager menu features and menu
RPCs described above. You must use either one system or the other, but not
both.

Popup Menus

SDL supports modal menus. The user can respond to the list of menu options via touch,
voice (if voice recognition is supported by the head unit), or by keyboard input to search or
filter the menu.

There are several UX considerations to take into account when designing your menus. The
main menu should not be updated often and should act as navigation for your app. Popup

menus should be used to present a selection of options to your user.

Presenting a Popup Menu

Presenting a popup menu is similar to presenting a modal view to request input from your
user. It is possible to chain together menus to drill down, however, it is recommended to
do so judiciously. Requesting too much input from a driver while they are driving is

distracting and may result in your app being rejected by OEMs.

Present as Icon A grid of buttons with images

A grid of buttons with images along with a

search field in the HMI

Present Searchable as Icon

Present as List A vertical list of text

A vertical list of text with a search field in the

HMI

Present Searchable as List

Creating Cells

A ChoiceCell is similarto a RecyclerView without the ability to configure your own UI.
We provide several properties on the ChoiceCell to set your data, but the layout itself is

determined by the manufacturer of the head unit.

NOTE

On many systems, including VR commands will be exponentially slower than
not including them. However, including them is necessary for a user to be
able to respond to your prompt with their voice.

ChoiceCell cell = new ChoiceCell(, Collections.singletonList(), null);

ChoiceCell fullCell = new ChoiceCell(, ,
, Collections.singletonList(), image1Artwork, image2Artwork);

Preloading Cells

If you know the content you will show in the popup menu long before the menu is shown
to the user, you can "preload" those cells in order to speed up the popup menu
presentation at a later time. Once you preload a cell, you can reuse it in multiple popup

menus without having to send the cell content to Core again.

sdIManager.getScreenManager().preloadChoices(Arrays.asList(cell, fullCell), new
CompletionListener() {
@Override
void (boolean b) {

// code

}
D

Presenting a Menu

To show a popup menu to the user, you must present the menu. If some or all of the cells
in the menu have not yet been preloaded, calling the present API will preload the cells
and then present the menu once all the cells have been uploaded. Calling present
without preloading the cells can take longer than if the cells were preloaded earlier in the
app's lifecycle especially if your cell has voice commands. Subsequent menu
presentations using the same cells will be faster because the library will reuse those cells
(unless you have deleted them).

MENU - LIST

Tertiary Text Q

Tertiary Text GD

Tertiary Text GD

MENU - ICON

O NOTE

When you preload a cell, you do not need to maintain a reference to it. If you
reuse a cell with the same properties that has already been preloaded (or
previously presented), the cell will automatically be reused.

CREATING A CHOICE SET

In order to present a menu, you must bundle together a bunch of ChoiceCell s into an Ch
oiceSet .

O NOTE

If the ChoiceSet contains an invalid set of ChoiceCell s, presentingthe C
hoiceSet will fail. This can happen, for example, if you have duplicate title
text or if some, but not all choices have voice commands.

Some notes on various parameters (full documentation is available as APl documentation
on this website):

e Title: This is the title of the menu when presented

e Listeners: You must implement this listener interface to receive callbacks based on
the user's interaction with the menu

e Layout: You may present your menu as a set of tiles (like a GridView) or a list (like

a RecyclerView). If you are using tiles, it's recommended to use artworks on each
item.

ChoiceSet choiceSet = new ChoiceSet(, Arrays.asList(cell, fullCell),
new ChoiceSetSelectionListener() {
@Override
void (ChoiceCell choiceCell, TriggerSource triggerSource,
int rowIndex) {
// You will be passed the “cell’ that was selected, the manner in which it was
selected (voice or text), and the index of the cell that was passed.

// handle selection

}

@Override
void (String error) {
// handle error
}
});

PRESENTING THE MENU WITH A MODE

Finally, you will present the menu. When you do so, you must choose a mode to present
it in. If you have no vrCommands on the choice cell you should choose manualOnly . If

vrCommands are available, you may choose voiceRecognitionOnly or both .

You may want to choose this based on the trigger source leading to the menu being
presented. For example, if the menu was presented via the user touching the screen, you
may want to use a mode of manualOnly or both , but if the menu was presented via
the user speaking a voice command, you may want to use a mode of voiceRecognition
Only or both .

It may seem that the answer is to always use both . However, remember that you must
provide vrCommand s on all cells to use both , which is exponentially slower than not
providing vrCommand s (this is especially relevant for large menus, but less important
for smaller ones). Also, some head units may not provide a good user experience for bot
h.

INTERACTION MODE DESCRIPTION

Manual only Interactions occur only through the display

Interactions occur only through text-to-speech
VR only
and voice recognition

Interactions can occur both manually or
through VR

Both

MENU - MANUAL ONLY MODE

First Choice

Tertiary Text Q
Secondary Text

Second Choice

Tertiary Text
Secondary Text @

@ Third Choice

Tertiary Text
Secondary Text @

A

Nav

i W

Audio Climate Phone

MENU - VOICE ONLY MODE

19 Select an item from the menu

First Choice
Second Choice

Third Choice

sdIManager.getScreenManager().presentChoiceSet(choiceSet,
InteractionMode.MANUAL_ONLY);

Presenting a Searchable Menu

In addition to presenting a standard menu, you can also present a "searchable” menu, that
is, @ menu with a keyboard input box at the top. For more information on implementing the
keyboard callbacks, see the Popup Keyboards guide.

MENU WITH SEARCH

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/displaying-a-user-interface/popup-keyboards/

Select an item from the menu_ X

First Choice Tertiary Text
—7 Secondary Text "!"

Second Choice Tertiary Text @
Secondary Text

Third Choice Tertiary Text
-7 Secondary Text ®

g 0 N A

Audio Climate Phone Nav

sdIManager.getScreenManager().presentSearchableChoiceSet(choiceSet,

InteractionMode.MANUAL_ONLY, keyboardListener);

Deleting Cells

You can discover cells that have been preloaded on sdlManager.getScreenManager().getP
reloadedChoices() . You may then pass an array of cells to delete from the remote
system. Many times this is not necessary, but if you have deleted artwork used by cells,

for example, you should delete the cells as well.

sdIManager.getScreenManager().deleteChoices(<List of choices to delete>);

Dismissing the Popup Menu (RPC v6.0+)

You can dismiss a displayed choice set before the timeout has elapsed by sendinga Can
cellnteraction request. If you presented the choice set using the screen manager, you can

dismiss the choice set by calling cancel onthe ChoiceCell object that you presented.

4 NOTE
If connected to older head units that do not support this feature, the cancel
request will be ignored, and the choice set will persist on the screen until the
timeout has elapsed or the user dismisses it by making a selection.

choiceSet.cancel();

Duplicate Cell Titles

Starting with SDL v5.1+ choice cells no longer require unique titles in order to be
presented. For example, if you are trying to display points of interest as a list you can now
have multiple locations with the same name but are not the same location. You cannot
present multiple cells that are exactly the same. They must have some property that
makes them different, such as secondaryText or an artwork.

RPC V7.1+ CONNECTIONS

The titles on the choice set will be displayed as provided even if there are duplicate titles.

BACK Hello Sdl

Gas Station

Gas Station

Gas Station

Grocery Store

Grocery Store

RPC V7.0 AND BELOW CONNECTIONS

The titles on the choice set will have a number appended to them when there are duplicate
titles.

BACK Hello Sdl

Gas Station

Gas Station (2)

Gas Station (3)

Grocery Store

Grocery Store (2)

Using RPCs

If you don't want to use the ScreenManager , you can do this manually using the Choice ,
CreatelnteractionChoiceSet , and Performinteraction . You will need to create
Choice s, bundle them into CreatelnteractionChoiceSet s. As this is no longer a

recommended course of action, we will leave it to you to figure out how to manually do it.

Note that if you do manually create a Performinteraction and want to set a cancel id, the
ScreenManager takes cancel ids 0- 10000. Any cancel id you set must be outside of that

range.

Popup Keyboards

Presenting a keyboard or a popup menu with a search field requires you to implement the
KeyboardListener . Note that the initialText inthe keyboard case often acts as
"placeholder text" and not as true initial text.

Presenting a Keyboard

You should present a keyboard to users when your app contains a "search’ field. For
example, in a music player app, you may want to give the user a way to search for a song
or album. A keyboard could also be useful in an app that displays nearby points of interest,

or in other situations.

O NOTE

Keyboards are unavailable for use in many countries when the driver is
distracted. This is often when the vehicle is moving above a certain speed,
such as 5 miles per hour. This will be automatically managed by the system.
Your keyboard may be disabled or an error returned if the driver is distracted.

SDL Example App

W Mask Input

backspace

< enter

int cancelld = sdIManager.getScreenManager().presentKeyboard('Initial text", null,
keyboardListener);

Implementing the Keyboard Listener

Using the KeyboardListener involves implementing several methods:

KeyboardListener keyboardListener = new KeyboardListener() {
@Override
void (String inputText, KeyboardEvent event) {
switch (event) {
case ENTRY_VOICE:
// The user decided to start voice input, you should start an AudioPassThru
session if supported
break;
case ENTRY_SUBMITTED:
// The user submitted some text with the keyboard
break;
default:
break;

}
}

@Override
void (KeyboardEvent event) {
switch (event) {
case ENTRY_CANCELLED:
// The user cancelled the keyboard interaction
break;
case ENTRY_ABORTED:
// The system aborted the keyboard interaction
break;
default:
break;
}
}

@Override
void (String currentinputText,
KeyboardAutocompleteCompletionListener
keyboardAutocompleteCompletionListener) {
// Check the input text and return a list of autocomplete results

keyboardAutocompleteCompletionListener.onUpdatedAutoCompleteList(updatedAut

}

@Override
void (String currentinputText,
KeyboardCharacterSetCompletionListener
keyboardCharacterSetCompletionListener) {
// Check the input text and return a set of characters to allow the user to enter

}

@Override
void (KeyboardEvent event, String
currentinputText) {
// This is sent upon every event, such as keypresses, cancellations, and aborting

}

@Override
void (KeyboardEvent event) {
switch (event) {
case INPUT_KEY_MASK_ENABLED:
// The user enabled input key masking
break;
case INPUT_KEY_MASK_DISABLED:

// The user disabled input key masking
break;

default:
break;

Configuring Keyboard Properties

You can change default keyboard properties by updating sdiManager.getScreenManager().
setKeyboardConfiguration() . If you want to change the keyboard configuration for only
one keyboard session and keep the default keyboard configuration unchanged, you can
pass a single-use KeyboardProperties to presentKeyboard() .

KEYBOARD LANGUAGE

You can modify the keyboard language by changing the keyboard configuration's languag
e . For example, you can set an EN_US keyboard. It will default to EN_US if not
otherwise set.

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
.setLanguage(Language.EN_US);

sdIManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

LIMITED CHARACTER LIST

You can modify the keyboard to enable only some characters by responding to the update
CharacterSetWithinput listener method or by changing the keyboard configuration before

displaying the keyboard. For example, you can enable only "a", "b", and "c" on the
keyboard. All other characters will be greyed out (disabled).

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
.setLimitedCharacterList(Arrays.asList("a", "b", "c"));

sdIManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

AUTOCOMPLETE LIST

You can modify the keyboard to allow an app to pre-populate the text field with a list of
suggested entries as the user types by responding to the updateAutocompleteWithinput
listener method or by changing the keyboard configuration before displaying the keyboard.
For example, you can display recommended searches "test1", "test2", and "test3" if the
user types "tes".

NOTE

A list of autocomplete results is only available on RPC 6.0+ connections. On

connections < RPC 6.0, only the first item will be available to the user.

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
.setAutoCompleteList(Arrays.asList())));

sdIManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

KEYBOARD LAYOUT

You can modify the keyboard layout by changing the keyboard configuration's keyboardL
ayout . For example, you can set a NUMERIC keyboard. It will defaultto QWERTY if not
otherwise set.

NOTE

The numeric keyboard layout is only available on RPC 7.1+. See the section

Checking Keyboard Capabilities to determine if this layout is available.

SDL Example App

backspace

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
.setKeyboardLayout(KeyboardLayout. NUMERIC);

sdIManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

INPUT MASKING (RPC 7.1+)

You can modify the keyboard to mask the entered characters by changing the keyboard
configuration's masklInputCharacters .

SDL Example App

< enter

backspace

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
.setKeyboardLayout(KeyboardLayout. NUMERIC)
.setMasklInputCharacters(KeyboardinputMask.ENABLE_INPUT_KEY_MASK);

sdIManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

CUSTOM KEYS (RPC 7.1+)

Each keyboard layout has a number of keys that can be customized to your app's needs.

For example, you could set two of the customizable keys in QWERTY layout to be "!" and
"?" as seen in the image below. The available number and location of these custom keys is
determined by the connected head unit. See the section Checking Keyboard Capabilities to

determine how many custom keys are available for any given layout.

SDL Example App

W Mask Input

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
.setKeyboardLayout(KeyboardLayout.QWERTY)
.setCustomKeys(Arrays.asList("!", "?"));

sdIManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

Checking Keyboard Capabilities (RPC v7.1+)

Each head unit may support different keyboard layouts and each layout can support a
different number of custom keys. Head units may not support masking input. If you want
to know which keyboard features are supported on the connected head unit, you can

check the KeyboardCapabilities :

WindowCapability windowCapability =
sdIManager.getSystemCapabilityManager().getDefaultMainWindowCapability();
KeyboardCapabilities keyboardCapabilities =
windowCapability.getKeyboardCapabilities();

// List of layouts and number of custom keys supported by each layout
List<KeyboardLayoutCapability> keyboardLayouts =
keyboardCapabilities.getSupportedKeyboards();

// Boolean represents whether masking is supported or not
boolean masklnputSupported =
keyboardCapabilities.getMaskInputCharactersSupported();

Dismissing the Keyboard (RPC v6.0+)

You can dismiss a displayed keyboard before the timeout has elapsed by sending a Canc
elinteraction request. If you presented the keyboard using the screen manager, you can
dismiss the choice set by calling dismissKeyboard with the cancellD that was returned

(if one was returned) when presenting.

NOTE

If connected to older head units that do not support this feature, the cancel
request will be ignored, and the keyboard will persist on the screen until the

timeout has elapsed or the user dismisses it by making a selection.

sdIManager.getScreenManager().dismissKeyboard(cancelld);

Using RPCs

If you don't want to use the ScreenManager , you can do this manually using the Perform
Interaction RPC request. As this is no longer a recommended course of action, we will
leave it to you to figure out how to manually do it.

Note that if you do manually create a Performinteraction and want to set a cancel id, the
ScreenManager takes cancel ids 0 - 10000. Any cancel id you set must be outside of that

range.

Alerts and Subtle Alerts

SDL supports two types of alerts: a large popup alert that typically takes over the whole

screen and a smaller subtle alert that only covers a small part of screen.

Checking if the Module Supports
Alerts

Your SDL app may be restricted to only being allowed to send an alert when your app is
open (i.e. the hmilLevel is non- NONE) or when it is the currently active app (i.e. the h
miLevel is FULL). Subtle alert is a new feature (RPC v7.0+) and may not be supported on

all modules.

boolean isAlertAllowed =

sdIManager.getPermissionManager().isRPCAllowed(FunctionID.ALERT);
boolean isSubtleAlertAllowed =
sdIManager.getPermissionManager().isRPCAllowed(FunctionID.SUBTLE_ALERT);

Alerts

An alert is a large pop-up window showing a short message with optional buttons. When
an alert is activated, it will abort any SDL operation that is in-progress, except the already-
in-progress alert. If an alert is issued while another alert is still in progress the newest
alert will wait until the current alert has finished.

Depending on the platform, an alert can have up to three lines of text, a progress indicator

(e.g. a spinning wheel or hourglass), and up to four soft buttons.

ALERT WITH NO SOFT BUTTONS

SDL Example App

NOTE

If no soft buttons are added to an alert some modules may add a default
"cancel” or "close" button.

ALERT WITH SOFT BUTTONS

SDL Example App

Button text Button 2 Text

Creating the AlertView

Use the AlertView to set all the properties of the alert you want to present.

NOTE

An AlertView must contain at least either text , secondaryText or audi
o forthe alert to be presented.

TEXT

AlertView.Builder builder = new AlertView.Builder();
builder.setText();

builder.setSecondaryText();
builder.setAudio(AlertAudioData);
AlertView alertView = builder.build();

BUTTONS

alertView.setSoftButtons(List<SoftButtonObject>);

ICON

An alert can include a custom or static (built-in) image that will be displayed within the
alert.

SDL Example App

You pushed the soft button!

alertView.setlcon(SdlArtwork);

TIMEOUTS

An optional timeout can be added that will dismiss the alert when the duration is over.
Typical timeouts are between 3 and 10 seconds. If omitted, a default of 5 seconds is used.

// 5 seconds

alertView.setTimeout(5);

PROGRESS INDICATOR

Not all modules support a progress indicator. If supported, the alert will show an
animation that indicates that the user must wait (e.g. a spinning wheel or hourglass, etc).
If omitted, no progress indicator will be shown.

alertView.setShowWaitIndicator(true);

TEXT-TO-SPEECH

An alert can also speak a prompt or play a sound file when the alert appears on the
screen. This is done by creating an AlertAudioData object and setting it in the AlertView

NOTE

On Manticore, using alerts with audio (Text-To-Speech or Tones) work best
in Google Chrome, Mozilla Firefox, or Microsoft Edge. Alerts with audio

does not work in Apple Safari at this time.

AlertAudioData alertAudioData = new AlertAudioData(

alertView.setAudio(alertAudioData);

AlertAudioData can also play an audio file.

https://smartdevicelink.com/resources/manticore/

AlertAudioData alertAudioData = new AlertAudioData(sdIFile);

alertView.setAudio(alertAudioData);

You can also play a combination of audio files and text-to-speech strings. The audio will
be played in the order you add them to the AlertAudioData object.

AlertAudioData alertAudioData = new AlertAudioData(sdlIFile);
List<String> textToSpeech = new ArrayList<>();
textToSpeech.add();
alertAudioData.addSpeechSynthesizerStrings(textToSpeech);

PLAY TONE

To play a notification sound when the alert appears, set playTone to true .

AlertAudioData alertAudioData = new AlertAudioData(
alertAudioData.setPlayTone(true);

Showing the Alert

AlertView alertView = builder.build();
sdIManager.getScreenManager().presentAlert(alertView, new
AlertCompletionListener() {
@Override
void (boolean success, Integer tryAgainTime) {

if(success){

// Alert was presented successfully
}
}
)

Canceling/Dismissing the Alert

You can cancel an alert that has not yet been sent to the head unit.

On systems with RPC v6.0+ you can dismiss a displayed alert before the timeout has
elapsed. This feature is useful if you want to show users a loading screen while
performing a task, such as searching for a list for nearby coffee shops. As soon as you
have the search results, you can cancel the alert and show the results.

NOTE

If connected to older head units that do not support this feature, the cancel
request will be ignored, and the alert will persist on the screen until the

timeout has elapsed or the user dismisses the alert by selecting a button.

NOTE

Canceling the alert will only dismiss the displayed alert. If the alert has
audio, the speech will play in its entirety even when the displayed alert has
been dismissed. If you know you will cancel an alert, consider setting a
short audio message like "searching" instead of "searching for coffee shops,

please wait."

alertView.cancel();

Using RPCs

You can also use RPCs to present alerts. You need to use the Alert RPC to do so. Note
that if you do so, you must avoid using soft button ids 0 - 10000 and cancel ids 0 - 10000
because these ranges are used by the ScreenManager .

Subtle Alerts (RPC v7.0+)

A subtle alert is a notification style alert window showing a short message with optional
buttons. When a subtle alert is activated, it will not abort other SDL operations that are in-
progress like the larger pop-up alert does. If a subtle alert is issued while another subtle
alert is still in progress the newest subtle alert will simply be ignored.

Touching anywhere on the screen when a subtle alert is showing will dismiss the alert. If
the SDL app presenting the alert is not currently the active app, touching inside the subtle
alert will open the app.

Depending on the platform, a subtle alert can have up to two lines of text and up to two
soft buttons.

O NOTE

Because SubtleAlert is not currently supported in the ScreenManager ,
you need to be careful when setting soft buttons or cancel ids to ensure that
they do not conflict with those used by the ScreenManager . The ScreenM
anager takes soft button ids 0 - 10000 and cancel ids 0 - 10000. Ensure that
if you use custom RPCs that the soft button ids and cancel ids are outside
of this range.

SUBTLE ALERT WITH NO SOFT BUTTONS

SUBTLE ALERT WITH SOFT BUTTONS

Button Text

Button 2 Text

Creating the Subtle Alert

The following steps show you how to add text, images, buttons, and sound to your subtle
alert. Please note that at least one line of text or the "text-to-speech’ chunks must be set
in order for your subtle alert to work.

TEXT

SubtleAlert subtleAlert = new SubtleAlert()
.setAlertText1()

.setAlertText2()
.setCancellD(cancelld);

BUTTONS

// Soft buttons

int softButtonld = 10001; // Set it to any unique ID
SoftButton okButton = new SoftButton(SoftButtonType.SBT_TEXT, softButtonld);
okButton.setText("OK");

// Set the softbuttons(s) to the subtle alert
subtleAlert.setSoftButtons(Collections.singletonList(okButton));

// This listener is only needed once, and will work for all of soft buttons you send
with your subtle alert
sdIManager.addOnRPCNotificationListener(FunctionID.ON_BUTTON_PRESS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnButtonPress onButtonPress = (OnButtonPress) notification;
if (onButtonPress.getCustomButtonID() == softButtonld){
DebugTool.loginfo(TAG,);
}
}
3

ICON

A subtle alert can include a custom or static (built-in) image that will be displayed within
the subtle alert. Before you add the image to the subtle alert, make sure the image is
uploaded to the head unit using the FileManager . Once the image is uploaded, you can

show the alert with the icon.

@ You pushed the soft button!

subtleAlert.setAlerticon(new Image(, ImageType.DYNAMIC));

TIMEOUTS

An optional timeout can be added that will dismiss the subtle alert when the duration is
over. Typical timeouts are between 3 and 10 seconds. If omitted, a default of 5 seconds is
used.

subtleAlert.setDuration(5000);

TEXT-TO-SPEECH

A subtle alert can also speak a prompt or play a sound file when the subtle alert appears

on the screen. This is done by setting the ttsChunks parameter.

subtleAlert.setTtsChunks(Collections.singletonList(new TTSChunk(

SpeechCapabilities. TEXT)));

The ttsChunks parameter can also take a file to play/speak. For more information on
how to upload the file please refer to the Playing Audio Indications guide.

TTSChunk ttsChunk = new TTSChunk(sdIFile.getName(), SpeechCapabilities.FILE);

subtleAlert.setTtsChunks(Collections.singletonList(ttsChunk));

Showing the Subtle Alert

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/speech-and-audio/playing-audio-indications/

// Handle RPC response
subtleAlert.setONRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()){

DebugTool.logInfo(TAG,)i
}
}

i
sdIManager.sendRPC(subtleAlert);

Checking if the User Dismissed the Subtle Alert

If desired, you can be notified when the user tapped on the subtle alert by registering for
the OnSubtleAlertPressed notification.

sdIManager.addOnRPCNotificationListener(FunctionID.ON_SUBTLE_ALERT_PRESSED
new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {

// The subtle alert was pressed
}
i

Dismissing the Subtle Alert

You can dismiss a displayed subtle alert before the timeout has elapsed.

NOTE

Canceling the subtle alert will only dismiss the displayed alert. If you have
set the ttsChunk property, the speech will play in its entirety even when the
displayed subtle alert has been dismissed. If you know you will cancel a
subtle alert, consider setting a short ttsChunk .

There are two ways to dismiss a subtle alert. The first way is to dismiss a specific subtle
alert using a unique cancellD assigned to the subtle alert. The second way is to dismiss

whichever subtle alert is currently on-screen.

DISMISSING A SPECIFIC SUBTLE ALERT

// “cancellD" is the ID that you assigned when creating and sending the alert
Cancellnteraction cancellnteraction = new
Cancellnteraction(FunctionlD.SUBTLE_ALERT.getld(), cancellD);
cancellnteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {

if (response.getSuccess()X

DebugTool.loginfo(TAG,
}
}
});

sdIManager.sendRPC(cancellnteraction);

DISMISSING THE CURRENT SUBTLE ALERT

Cancellnteraction cancellnteraction = new
Cancellnteraction(FunctionID.SUBTLE_ALERT.getld());
cancellnteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {

if (response.getSuccess()){
DebugTool.loginfo(TAG,

}

}
D

sdIManager.sendRPC(cancellnteraction);

Media Clock

The media clock is used by media apps to present the current timing information of a
playing media item such as a song, podcast, or audiobook.

The media clock consists of three parts: the progress bar, a current position label and a
remaining time label. In addition, you may want to update the play/pause button icon to
reflect the current state of the audio or the media forward / back buttons to reflect if it will
skip tracks or time.

NOTE

Media clock operations require the HMI status to be FULL . More
information on how to monitor the HMI status can be found in the

Understanding Permissions guide.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/getting-started/understanding-permissions/#hmi-levels

NOTE

Ensure your app has an appType of media and you are using the media
template before implementing this feature.

APPS Livio Music

SN PRENE:

John Prine

Linda Goes to Mars

Counting Up

In order to count up using the timer, you will need to set a start time that is less than the
end time. The "bottom end" of the media clock will always start at 0:00 and the "top end"
will be the end time you specified. The start time can be set to any position between 0 and
the end time. For example, if you are starting a song at 0:30 and it ends at 4:13 the
media clock timer progress bar will start at the 0:30 position and start incrementing up

automatically every second until it reaches 4:13 . The current position label will start
counting upwards from 0:30 and the remaining time label will start counting down from
3:43 . When the end is reached, the current time label will read 4:13 , the remaining time

label will read 0:00 and the progress bar will stop moving.

The play / pause indicator parameter is used to update the play / pause button to your
desired button type. This is explained below in the section "Updating the Audio Indicator”

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().countUpFromStartTimelnterval (30, 253,

AudioStreaminglindicator.PAUSE);
sdIManager.sendRPC(mediaClock);

Counting Down

Counting down is the opposite of counting up (I know, right?). In order to count down using
the timer, you will need to set a start time that is greater than the end time. The timer bar
moves from right to left and the timer will automatically count down. For example, if
you're counting down from 10:00 to 0:00 , the progress bar will be at the leftmost

position and start decrementing every second until it reaches 0:00 .

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().countDownFromStartTimelnterval (600, 0,

AudioStreamingindicator.PAUSE);
sdIManager.sendRPC(mediaClock);

Pausing & Resuming

When pausing the timer, it will stop the timer as soon as the request is received and
processed. When a resume request is sent, the timer begins again at the paused time as

soon as the request is processed. You can update the start and end times using a pause
command to change the timer while remaining paused.

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().pauseWithPlayPauselndicator(AudioStreamingindicator.PLAY)

sdIManager.sendRPC(mediaClock);

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().resumeWithPlayPauselndicator(AudioStreamingindicator.PAU!

sdIManager.sendRPC(mediaClock);

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().updatePauseWithNewStartTimelnterval (60, 240,
AudioStreamingIndicator.PLAY);

sdIManager.sendRPC(mediaClock);

Clearing the Timer

Clearing the timer removes it from the screen.

SetMediaClockTimer mediaClock = new

SetMediaClockTimer().clearWithPlayPauselndicator(AudioStreamingindicator.PLAY);
sdIManager.sendRPC(mediaClock);

Setting the Play / Pause Button Style
(RPC v5.0+)

The audio indicator is, essentially, the play / pause button. You can tell the system which
icon to display on the play / pause button to correspond with how your app works. For
example, if audio is currently playing you can update the play/pause button to show the
pause icon. On older head units, the audio indicator shows an icon with both the play and
pause indicators and the icon can not be updated.

For example, a radio app will probably want two button states: play and stop. A music app,
in contrast, will probably want a play and pause button. If you don't send any audio
indicator information, a play / pause button will be displayed.

Setting The Media Forward / Back
Button Style (RPC v7.1+)

As of RPC v7.1, you can set the style of the media forward / back buttons to show icons
for skipping time (in seconds) forward and backward instead of skipping tracks. The
skipping time style is common in podcast & audiobook media apps.

When you set the skip indicator style, you can set type TRACK , which is the default style
that shows "skip forward" and "skip back" indicators. This is the only style available on
RPC < 7.1 connections. You can also set the new type TIME , which will allow you to set
the number of seconds and display indicators for skipping forward and backward in time.

Track Style

APPS Livio Music

JHLN PRENE:

John Prine

Linda Goes to Mars

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().countUpFromStartTimelnterval(0, 300,
AudioStreaminglndicator.PAUSE);

SeekStreaminglndicator trackStyle = new
SeekStreaminglindicator(SeekIndicatorType. TRACK);
mediaClock.setForwardSeeklIndicator(trackStyle);
mediaClock.setBackSeekIndicator(trackStyle);
sdIManager.sendRPC(mediaClock);

Time Style

Livio Music

John Prine

Linda Goes To Mars

00:02:12 /00:03:08

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().countUpFromStartTimelnterval(0, 300,
AudioStreaminglndicator.PAUSE);
SeekStreaminglindicator seek45Style = new
SeekStreaminglndicator(SeekIndicatorType.TIME);
seek45Style.setSeekTime(45);
SeekStreaminglndicator seek10Style = new
SeekStreamingindicator(SeekIndicatorType.TIME);
seek10Style.setSeekTime(10);
mediaClock.setForwardSeekIndicator(seek45Style);
mediaClock.setBackSeekIndicator(seek10Style);
sdIManager.sendRPC(mediaClock);

Adding Custom Playback Rate (RPC
v7.1+)

Many audio apps that support podcasts and audiobooks allow the user to adjust the audio
playback rate.
As of RPC v7.1, you can set the rate that the audio is playing at to ensure the media clock

accurately reflects the audio.

For example, a user can play a podcast at 125% speed or at 75% speed.

//Play Audio at 50% or half speed

SetMediaClockTimer mediaClockSlow = new
SetMediaClockTimer().countUpFromStartTimelnterval (30, 253,
AudioStreamingIndicator.PAUSE);
mediaClockSlow.setCountRate(0.5f);
sdIManager.sendRPC(mediaClockSlow);

//Play Audio at 200% or double speed

SetMediaClockTimer mediaClockFast = new
SetMediaClockTimer().countUpFromStartTimelnterval (30, 253,
AudioStreaminglindicator.PAUSE);
mediaClockFast.setCountRate(2.0f);
sdIManager.sendRPC(mediaClockFast);

NOTE

CountRate has a default value of 1.0, and the CountRate will be reset to
1.0if any SetMediaClockTimer request does not have the parameter set.
To ensure that you maintain the correct CountRate in your application
make sure to set the parameter in all SetMediaClockTimer requests
(including when sending a RESUME request).

Slider

A Slider creates a full screen or pop-up overlay (depending on platform) that a user can
control. There are two main Slider layouts, one with a static footer and one with a
dynamic footer.

O NOTE

The slider will persist on the screen until the timeout has elapsed or the user
dismisses the slider by selecting a position or canceling.

A slider popup with a static footer displays a single, optional, footer message below the
slider Ul. A dynamic footer can show a different message for each slider position.

Slider Ul

DYNAMIC SLIDER IN POSITION 1

10°

i ¢ A

Audio Climate Phone Nav

DYNAMIC SLIDER IN POSITION 2

10°

Creating the Slider

Slider slider = new Slider();

Ticks

The number of selectable items on a horizontal axis.

// Must be a number between 2 and 26
slider.setNumTicks(5);

Position

The initial position of slider control (cannot exceed numTicks).

// Must be a number between 1 and 26
slider.setPosition(1);

Header

The header to display.

// Max length 500 chars

slider.setSliderHeader(

Static Footer

The footer will have the same message across all positions of the slider.

// Max length 500 chars

slider.setSliderFooter(Collections.singletonList(

Dynamic Footer

This type of footer will have a different message displayed for each position of the slider.
The footer is an optional parameter. The footer message displayed will be based off of the
slider's current position. The footer array should be the same length as numTicks
because each footer must correspond to a tick value. Or, you can pass null to have no
footer at all.

// Array length 1 - 26, Max length 500 chars

slider.setSliderFooter(Arrays.asList(

Cancel ID

An ID for this specific slider to allow cancellation through the Cancellnteraction RPC.
The ScreenManager takes cancel ids 0- 10000, so ensure any cancel id that you set is
outside of that range.

slider.setCancellD(10045);

Show the Slider

slider.setONnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {
SliderResponse sliderResponse = (SliderResponse) response;
DebugTool.loginfo(TAG, +

sliderResponse.getSliderPosition());
}
}

i
sdIManager.sendRPC(slider);

Dismissing a Slider (RPC v6.0+)

You can dismiss a displayed slider before the timeout has elapsed by dismissing either a
specific slider or the current slider.

NOTE

If connected to older head units that do not support this feature, the cancel
request will be ignored, and the slider will persist on the screen until the
timeout has elapsed or the user dismisses by selecting a position or
canceling.

Dismissing a Specific Slider

// “cancellD" is the ID that you assigned when creating the slider
Cancellnteraction cancellnteraction = new
Cancellnteraction(FunctionID.SLIDER.getld(), cancellD);
cancellnteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {

if (response.getSuccess(){
DebugTool.loginfo(TAG,);
}

}
D

sdIManager.sendRPC(cancellnteraction);

Dismissing the Current Slider

Cancellnteraction cancellnteraction = new
Cancellnteraction(FunctionID.SLIDER.getld());
cancellnteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {

if (response.getSuccess()){

DebugTool.loginfo(TAG,);
}
}
)}

sdIManager.sendRPC(cancellnteraction);

Scrollable Message

A ScrollableMessage creates an overlay containing a large block of formatted text that
can be scrolled. It contains a body of text, a message timeout, and up to eight soft
buttons. To display a scrollable message in your SDL app, you simply send a ScrollableM
essage RPC request.

9 NOTE

The message will persist on the screen until the timeout has elapsed or the
user dismisses the message by selecting a soft button or cancelling (if the
head unit provides cancel Ul).

Scrollable Message Ul

qJ0F N A

Audio Climate Phone Nav

Creating the Scrollable Message

Currently, you can only create a scrollable message view to display on the screen using
RPCs.

NOTE

The ScreenManager uses soft button ids 0 — 10000. Ensure that if you use
custom RPCs—such as this one—that the soft button ids you use are
outside of this range (i.e. > 10000).

// Create Message To Display
String scrollableMessageText =

// Create SoftButtons
SoftButton softButton1 = new SoftButton(SoftButtonType.SBT_TEXT, 10001);
softButton1.setText();

SoftButton softButton2 = new SoftButton(SoftButtonType.SBT_TEXT, 10002);
softButton2.setText();

// Create SoftButton Array
List<SoftButton> softButtonList = Arrays.asList(softButton1, softButton2);

// Create ScrollableMessage Object

ScrollableMessage scrollableMessage = new ScrollableMessage()
.setScrollableMessageBody(scrollableMessageText)
.setTimeout(50000)
.setSoftButtons(softButtonList);

// Set cancelld
scrollableMessage.setCancellD(cancelld);

// Send the scrollable message
sdIManager.sendRPC(scrollableMessage);

To listen for OnButtonPress events for SoftButton s, we need to add a listener that
listens for their Id's:

sdIManager.addOnRPCNotificationListener(FunctionID.ON_BUTTON_PRESS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnButtonPress onButtonPress = (OnButtonPress) notification;
switch (onButtonPress.getCustomButtonID()){
case 10001:
DebugTool.loginfo(TAG,
break;
case 10002
DebugTool.loginfo(TAG,
break;

Dismissing a Scrollable Message
(RPC v6.0+)

You can dismiss a displayed scrollable message before the timeout has elapsed. You can
dismiss a specific scrollable message, or you can dismiss the scrollable message that is
currently displayed.

NOTE
If connected to older head units that do not support this feature, the cancel
request will be ignored, and the scrollable message will persist on the

screen until the timeout has elapsed or the user dismisses the message by
selecting a button.

Dismissing a Specific Scrollable Message

// “cancellD" is the ID that you assigned when creating and sending the alert
Cancellnteraction cancellnteraction = new
Cancellnteraction(FunctionID.SCROLLABLE_MESSAGE.getld(), cancellD);
cancellnteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()){

DebugTool.loginfo(TAG,

}
}
D

sdIManager.sendRPC(cancellnteraction);

Dismissing the Current Scrollable Message

Cancellnteraction cancellnteraction = new
Cancellnteraction(FunctionID.SCROLLABLE_MESSAGE.getld());
cancellnteraction.setOnRPCResponseListener(new OnRPCResponselListener() {
@Override
void (int correlationld, RPCResponse response) {

if (response.getSuccess())

DebugTool.loginfo(TAG,
}
}
i

sdIManager.sendRPC(cancellnteraction);

Customizing the Template

You have the ability to customize the look and feel of the template. How much
customization is available depends on the RPC version of the head unit you are connected
with as well as the design of the HMI.

Customizing Template Colors (RPC
v5.0+)

You can customize the color scheme of your app using template coloring APIs.

Customizing the Default Layout

You can change the template colors of the initial template layout in the lifecycleConfigur

ation .

APPS SDL Example App

SmartDevicelink (SDL) Obj-C Example App

// Set color schemes

RGBColor green = new RGBColor(126, 188, 121);
RGBColor white = new RGBColor(249, 251, 254);
RGBColor grey = new RGBColor(186, 198, 210);
RGBColor darkGrey = new RGBColor(57, 78, 96);

TemplateColorScheme dayColorScheme = new TemplateColorScheme()
.setBackgroundColor(white)
.setPrimaryColor(green)
.setSecondaryColor(grey);
builder.setDayColorScheme(dayColorScheme);

TemplateColorScheme nightColorScheme = new TemplateColorScheme()
.setBackgroundColor(white)
.setPrimaryColor(green)
.setSecondaryColor(darkGrey);
builder.setNightColorScheme(nightColorScheme);

NOTE

You may only change the template coloring once per template; that is, you
cannot call changelLayout , SetDisplayLayout or Show for the template
you are already on and expect the color scheme to update.

Customizing Future Layouts

You can change the template color scheme when you change layouts. This guide requires
SDL Java Suite version 5.0. If using an older version, use SetDisplayLayout (any RPC
version) or Show (RPC v6.0+) request.

// Set color schemes

RGBColor green = new RGBColor(126, 188, 121);
RGBColor white = new RGBColor(249, 251, 254);
RGBColor grey = new RGBColor(186, 198, 210);
RGBColor darkGrey = new RGBColor(57, 78, 96);

TemplateColorScheme dayColorScheme = new TemplateColorScheme()
.setBackgroundColor(white)
.setPrimaryColor(green)
.setSecondaryColor(grey);

TemplateColorScheme nightColorScheme = new TemplateColorScheme()
.setBackgroundColor(white)
.setPrimaryColor(green)
.setSecondaryColor(darkGrey);

TemplateConfiguration templateConfiguration = new TemplateConfiguration()
.setTemplate(PredefinedLayout. GRAPHIC_WITH_TEXT.toString())
.setDayColorScheme(dayColorScheme)
.setNightColorScheme(nightColorScheme);

sdIManager.getScreenManager().changelLayout(templateConfiguration, new
CompletionListener() {
@Override
void (boolean success) {
if (success) {
// Color set with template change
} else {
// Color and template not changed
}

}
N

Customizing the Menu Title and Icon

You can also customize the title and icon of the main menu button that appears on your
template layouts. The menu icon must first be uploaded with a specific name through the
file manager; see the Uploading Images section for more information on how to upload

your image.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/other-sdl-features/uploading-images/

// The image must be uploaded before referencing the image name here
SetGlobalProperties setGlobalProperties = new SetGlobalProperties()
.setMenuTitle()
.setMenulcon(image);

setGlobalProperties.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()){
// Success
}
}
});
sdIManager.sendRPC(setGlobalProperties);

Customizing the Keyboard (RPC
v3.0+)

If you present keyboards in your app — such as in searchable interactions or another
custom keyboard — you may wish to customize the keyboard for your users. The best way
to do this is through the ScreenManager . For more information presenting keyboards,
see the Popup Keyboards section.

Setting Keyboard Properties

You can modify the language of the keyboard to change the characters that are displayed.

KeyboardProperties keyboardProperties = new KeyboardProperties()
.setLanguage(Language.HE_IL) // Set to Israeli Hebrew
.setKeyboardLayout(KeyboardLayout.AZERTY); // Set to AZERTY

sdIManager.getScreenManager().setKeyboardConfiguration(keyboardProperties);

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/displaying-a-user-interface/popup-keyboards/

Other Properties

While there are other keyboard properties available on KeyboardProperties , these will be
overridden by the screen manager. The keypressMode must be a specific configuration
for the screen manager's callbacks to work properly. The limitedCharacterList , autoCo
mpleteText , and autoCompleteList will be set on a per-keyboard basis when calling sdl
Manager.getScreenManager.presentKeyboard(...) , should custom keyboard properties be
set.

Customizing Help Prompts

On some head units it is possible to display a customized help menu or speak a custom
command if the user asks for help while using your app. The help menu is commonly used
to let users know what voice commands are available, however, it can also be customized
to help your user navigate the app or let them know what features are available.

Configuring the Help Menu

You can customize the help menu with your own title and/or menu options. If you don't

customize these options, then the head unit's default menu will be used.

If you wish to use an image, you should check the sdlIManager.getSystemCapabilityMana
ger().getDefaultMainWindowCapability().getimageFields(); for an imageField.name of vr
Helpltem to see if that image is supported. If vrHelpltem is in the imageFields array,
then it can be used. You will then need to upload the image using the file manager before
using it in the request. See the Uploading Images section for more information.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/other-sdl-features/uploading-images/

SetGlobalProperties setGlobalProperties = new SetGlobalProperties();
setGlobalProperties.setVrHelpTitle();

VrHelpltem item1 = new VrHelpltem(,1);
item1.setlmage(image); / a previously uploaded image or null

VrHelpltem item2 = new VrHelpltem(, 2);
item2.setlmage(image); / a previously uploaded image or null

setGlobalProperties.setVrHelp(Arrays.asList(item1, item?2));
setGlobalProperties.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
// The help menu is updated

}
i
sdIManager.sendRPC(setGlobalProperties);

Configuring the Help Prompt

On head units that support voice recognition, a user can request assistance by saying
"Help." In addition to displaying the help menu discussed above a custom spoken text-to-
speech response can be spoken to the user.

SetGlobalProperties setGlobalProperties = new SetGlobalProperties();
setGlobalProperties.setHelpPrompt(Collections.singletonList(new TTSChunk(
, SpeechCapabilities. TEXT)));
setGlobalProperties.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {

// The help prompt is updated
} else {

// Handle Error
}

}
i
sdIManager.sendRPC(setGlobalProperties);

Configuring the Timeout Prompt

If you display any sort of popup menu or modal interaction that has a timeout — such as
an alert, interaction, or slider — you can create a custom text-to-speech response that will

be spoken to the user in the event that a timeout occurs.

SetGlobalProperties setGlobalProperties = new SetGlobalProperties();
setGlobalProperties.setTimeoutPrompt(Collections.singletonList(new
TTSChunk(, SpeechCapabilities. TEXT)));
setGlobalProperties.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {

// The timeout prompt is updated
} else {

// Handle Error
}

}

i
sdIManager.sendRPC(setGlobalProperties);

Clearing Help Menu and Prompt
Customizations

You can also reset your customizations to the help menu or spoken prompts. To do so,
you will send a ResetGlobalProperties RPC with the fields that you wish to clear.

// Reset the help menu

ResetGlobalProperties resetGlobalProperties = new
ResetGlobalProperties(Arrays.asList(GlobalProperty. VRHELPITEMS,
GlobalProperty.VRHELPTITLE));

// Reset the menu icon and title

ResetGlobalProperties resetGlobalProperties = new
ResetGlobalProperties(Arrays.asList(GlobalProperty. MENUICON,
GlobalProperty. MENUNAME));

// Reset spoken prompts
ResetGlobalProperties resetGlobalProperties = new
ResetGlobalProperties(Arrays.asList(GlobalProperty. HELPPROMPT,

GlobalProperty. TIMEOUTPROMPT));

// To send any one of these, use the typical format:
resetGlobalProperties.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {
// The global properties are reset
} else {
// Handle Error
}

}

i
sdIManager.sendRPC(resetGlobalProperties);

Playing Spoken Feedback

Since your user will be driving while interacting with your SDL app, speech phrases can
provide important feedback to your user. At any time during your app's lifecycle you can
send a speech phrase using the Speak request and the head unit's text-to-speech (TTS)

engine will produce synthesized speech from your provided text.

When using the Speak RPC, you will receive a response from the head unit once the
operation has completed. From the response you will be able to tell if the speech was
completed, interrupted, rejected or aborted. It is important to keep in mind that a speech

request can interrupt another ongoing speech request. If you want to chain speech

requests you must wait for the current speech request to finish before sending the next
speech request.

O NOTE
On Manticore, spoken feedback works best in Google Chrome, Mozilla
Firefox, or Microsoft Edge. Spoken feedback does not work in Apple Safari
at this time.

Creating the Speak Request

The speech request you send can simply be a text phrase, which will be played back in
accordance with the user's current language settings, or it can consist of phoneme
specifications to direct SDL's TTS engine to speak a language-independent, speech-
sculpted phrase. It is also possible to play a pre-recorded sound file (such as an MP3)
using the speech request. For more information on how to play a sound file please refer to
Playing Audio Indications.

Getting the Supported Speech Capabilities

Once you have successfully connected to the module, you can access supported speech
capabilities properties on the sdIManager.getSystemCapabilityManager() instance.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/speech-and-audio/playing-audio-indications/
https://smartdevicelink.com/resources/manticore/

sdIManager.getSystemCapabilityManager().getCapability(SystemCapability Type.SPEE
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
List<SpeechCapabilities> speechCapabilities = (List<SpeechCapabilities>)
capability;
}

@Override
void (String info) {
// Handle error

}
}, false);

Below is a list of commonly supported speech capabilities.

Text Text phrases
SAPI Phonemes Microsoft speech synthesis API
File A pre-recorded sound file

Creating Different Types of Speak Requests

Once you know what speech capabilities are supported by the module, you can create the
speak requests.

TEXT PHRASE

TTSChunk ttsChunk = new TTSChunk(, SpeechCapabilities. TEXT);

List<TTSChunk> ttsChunkList = Collections.singletonList(ttsChunk);
Speak speak = new Speak(ttsChunkList);

SAPI PHONEMES PHRASE

TTSChunk ttsChunk = new TTSChunk(
SpeechCapabilities.SAPI_PHONEMES);

]

List<TTSChunk> ttsChunkList = Collections.singletonList(ttsChunk);
Speak speak = new Speak(ttsChunkList);

Sending the Speak Request

speak.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
SpeakResponse speakResponse = (SpeakResponse) response;
if (IspeakResponse.getSuccess()){
switch (speakResponse.getResultCode()){

case DISALLOWED:

DebugTool.loginfo(TAG,
);

break;

case REJECTED:
DebugTool.loginfo(TAG,
break;

case ABORTED:
DebugTool.loginfo(TAG,

);

break;

default:
DebugTool.loginfo(TAG,

}

return;

}
DebugTool.loginfo(TAG,

}
)
sdIManager.sendRPC(speak);

Playing Audio Indications (RPC
v5.0+)

You can pass an uploaded audio file's name to TTSChunk , allowing any API that takes a
text-to-speech parameter to pass and play your audio file. A sports app, for example, could
play a distinctive audio chime to notify the user of a score update alongside an Alert
request.

NOTE

On Manticore, audio indications work best in Google Chrome, Mozilla
Firefox, or Microsoft Edge. Audio indications do not work in Apple Safari at
this time.

Uploading the Audio File

The first step is to make sure the audio file is available on the remote system. To upload
the file use the FileManager .

SdIFile audioFile = new SdIFile(, FileType.AUDIO_MPS, fileUri, true);
sdIManager.getFileManager().uploadFile(audioFile, new CompletionListener() {
@Override

void (boolean success) {

For more information about uploading files, see the Uploading Files guide.

Using the Audio File

Now that the file is uploaded to the remote system, it can be used in various RPCs, such
as Speak , Alert,and AlertManeuver . To use the audio file in an alert, you simply need

to construct a TTSChunk referring to the file's name.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/other-sdl-features/uploading-files/
https://smartdevicelink.com/resources/manticore/

Alert alert = new Alert()
.setAlertText1()
.setAlertText2()
.setDuration(5000)

.setTtsChunks(Arrays.asList(new TTSChunk(
SpeechCapabilities.FILE)));
sdIManager.sendRPC(alert);

Setting Up Voice Commands

Voice commands are global commands available anywhere on the head unit to users of
your app. Once the user has opened your SDL app (i.e. your SDL app has left the HMI state
of NONE) they have access to the voice commands you have setup. Your app will be
notified when a voice command has been triggered even if the SDL app has been
backgrounded.

NOTE

v

The head unit manufacturer will determine how these voice commands are

triggered, and some head units will not support voice commands.

NOTE

On Manticore, voice commands are viewed and activated by a tab in the right
hand section, not through a microphone.

https://smartdevicelink.com/resources/manticore/

You have the ability to create voice command shortcuts to your Main Menu cells which we
highly recommended that you implement. Global voice commands should be created for
functions that you wish to make available as voice commands that are not available as
menu cells. We recommend creating global voice commands for common actions such

as the actions performed by your Soft Buttons.

Creating Voice Commands

To create voice commands, you simply create and set VoiceCommand objects to the v

oiceCommands List on the screen manager.

VoiceCommand voiceCommand = new
VoiceCommand(Collections.singletonList(
VoiceCommandSelectionListener() {
@Override
void 0 {
// Handle the VoiceCommand's Selection
}
b

sdIManager.getScreenManager().setVoiceCommands(Collections.singletonList(voice

Unsupported Voice Commands

The library automatically filters out empty strings and whitespace-only strings from a
voice command's list of strings. For example, if a voice command has the following list

values: ["","CommandA", ", "Command A"] the library will filter it to: ["CommandA", "Co

mmand A"] .

If you provide a list of voice commands which only contains empty string and whitespace-
only strings across all of the voice commands, the upload request will be aborted and the
previous voice commands will remain available.

Duplicate Strings in Voice Commands

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/displaying-a-user-interface/main-menu/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/displaying-a-user-interface/template-custom-buttons/

DUPLICATES BETWEEN DIFFERENT COMMANDS

Voice commands that are sent with duplicate strings in different voice commands, such
as:

Command1: ["Command A",

Command B'"],

Command2: ["Command B", "Command C"],

Command3: ["Command D", "Command E"]

Then the manager will abort the upload request. The previous voice commands will
remain available.

DUPLICATES IN THE SAME COMMAND

If any individual voice command contains duplicate strings, they will be reduced to one.

For example, if the voice commands to be sent are:

Command1: ["Command A",

Command A", "Command B"],

Command D"]

Command2: ["Command C",

Then the manager will strip the duplicates to:

Command1: ['Command A",

Command B'],
Command D"]

Command2: ["Command C",

Deleting Voice Commands

To delete previously set voice commands, you just have to set an empty List to the voice

Commands List on the screen manager.

sdIManager.getScreenManager().setVoiceCommands(Collections.

<VoiceCommand>emptyList());

NOTE
Setting voice command strings composed only of whitespace characters

will be considered invalid (e.g. "") and your request will be aborted by the

module.

Using RPCs

If you wish to do this without the aid of the screen manager, you can create AddComman
d objects without the menuParams parameter to create global voice commands.

Getting Microphone Audio

Capturing in-car audio allows developers to interact with users by requesting raw audio
data provided to them from the car's microphones. In order to gather the raw audio from

the vehicle, you must leverage the PerformAudioPassThru RPC.

SDL does not support automatic speech cancellation detection, so if this feature is
desired, it is up to the developer to implement. The user may press an "OK" or "Cancel"
button, the dialog may timeout, or you may close the dialog with EndAudioPassThru .

O NOTE

SDL does not support an open microphone. However, SDL is working on
wake-word support in the future. You may implement a voice command and

start an audio pass thru session when that voice command occurs.

L= |

NOTE

Manticore does not currently support the PerformAudioPassThru RPC

used for getting microphone audio.

Starting Audio Capture

Before you start an audio capture session you need to find out what audio pass thru
capabilities the module supports. You can then use that information to start an audio pass
thru session.

Getting the Supported Capabilities

You must use a sampling rate, bit rate, and audio type supported by the module. Once you
have successfully connected to the module, you can access these properties on the sdlM
anager.getSystemCapabilityManager instance.

https://smartdevicelink.com/resources/manticore/
https://smartdevicelink.com/resources/manticore/#support-notes

sdIManager.getSystemCapabilityManager().getCapability(SystemCapability Type.AUDI
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
List<AudioPassThruCapabilities> audioPassThruCapabilities =
(List<AudioPassThruCapabilities>) capability;
}

@Override
void (String info) {
// Handle Error

}
}, false);

The module may return one or multiple supported audio pass thru capabilities. Each
capability will have the following properties:

Sampling Rate samplingRate The sampling rate
Bits Per Sample bitsPerSample The sample depth in bits
Audio Type audioType The audio type

Sending the Audio Capture Request

To initiate audio capture, first construct a PerformAudioPassThru request.

TTSChunk initialPrompt = new TTSChunk(
, SpeechCapabilities. TEXT);

PerformAudioPassThru audioPassThru = new PerformAudioPassThru()
.setAudioPassThruDisplayText1()
.setAudioPassThruDisplayText2()
.setlnitialPrompt(Arrays.asList(initialPrompt))
.setSamplingRate(SamplingRate._22KHZ)

.setMaxDuration(7000)
.setBitsPerSample(BitsPerSample._16_BIT)
.setAudio Type(Audio Type.PCM)
.setMuteAudio(false);

audioPassThru.setOnRPCResponseListener(new OnRPCResponseListener() {

@Override
void (int correlationld, RPCResponse response) {
switch (response.getResultCode()) {

case SUCCESS:
// The audio pass thru ended successfully. Process the audio data

case ABORTED:
// The audio pass thru was aborted by the user. You should cancel any

usage of the audio data.

default:

// Some other error occurred. Handle the error.

sdIManager.sendRPC(audioPassThru);

RPC Builder

Ask me "What's the weather?"
or "What's 1 + 27"

Cancel

Gathering Audio Data

SDL provides audio data as fast as it can gather it and sends it to the developer in chunks.
In order to retrieve this audio data, the developer must observe the OnAudioPassThru
notification.

NOTE

This audio data is only the current chunk of audio data, so the appis in

charge of saving previously retrieved audio data.

sdIManager.addOnRPCNotificationListener(FunctionID.ON_AUDIO_PASS_THRU, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {

OnAudioPassThru onAudioPassThru = (OnAudioPassThru) notification;
byte[] dataRcvd = onAudioPassThru.getAPTData();
// Do something with current audio data
}
i

FORMAT OF AUDIO DATA

The format of audio data is described as follows:

e It does not include a header (such as a RIFF header) at the beginning.

e The audio sample is in linear PCM format.

e The audio data includes only one channel (i.e. monaural).

e For bit rates of 8 bits, the audio samples are unsigned. For bit rates of 16 bits, the
audio samples are signed and are in little-endian.

Ending Audio Capture

PerformAudioPassThru is a request that works in a different way than other RPCs. For
most RPCs, a request is followed by an immediate response, with whether that RPC was
successful or not. This RPC, however, will only send out the response when the audio pass
thru has ended.

Audio capture can be ended four ways:
1. The audio pass thru has timed out.

o If the audio pass thru surpasses the timeout duration, this request will be
ended with a resultCode of SUCCESS. You should handle the audio pass thru
as though it was successful.

2. The audio pass thru was closed due to user pressing "Cancel" (or other head-unit
provided cancellation button).

o If the audio pass thru was displayed, and the user pressed the "Cancel" button,
you will receive a resultCode of ABORTED. You should ignore the audio pass
thru.

3. The audio pass thru was closed due to user pressing "Done" (or other head-unit

provided completion button).

o If the audio pass thru was displayed and the user pressed the "Done" button,
you will receive a resultCode of SUCCESS. You should handle the audio pass
thru as though it was successful.

4. The audio pass thru was ended due to a request from the app for it to end.

o If the audio pass thru was displayed, but you have established on your own
that you no longer need to capture audio data, you can send an EndAudioPass
Thru RPC. You will receive a resultCode of SUCCESS. Depending on the
reason that you sent the EndAudioPassThru RPC, you can choose whether or
not to handle the audio pass thru as though it were successful. See Manually

Stopping Audio Capture below for more details.

Manually Stopping Audio Capture

To force stop audio capture, simply send an EndAudioPassThru request. Your PerformA
udioPassThru request will receive response with a resultCode of SUCCESS when the
audio pass thru has ended.

EndAudioPassThru endAudioPassThru = new EndAudioPassThru();
endAudioPassThru.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess())) {
// There was an error sending the end audio pass thru
return;

}

// The end audio pass thru was sent successfully

}
N

sdIManager.sendRPC(endAudioPassThru);

Handling the Response

To process the response received from an ended audio capture, make sure that you are
listening to the PerformAudioPassThru response. If the response has a successful
result, all of the audio data for the audio pass thru has been received and is ready for
processing.

Batch Sending RPCs

There are two ways to send multiple requests to the head unit: concurrently and
sequentially. Which method you should use depends on the type of RPCs being sent.
Concurrently sent requests might finish in a random order and should only be used when
none of the requests in the group depend on the response of another, such as when
subscribing to several hard buttons. Sequentially sent requests only send the next request
in the group when a response has been received for the previously sent RPC. Requests
should be sent sequentially when you need to know the result of a previous request before
sending the next, like when sending the several different requests needed to create a
menu.

Both methods have optional listener that is specific to them, the OnMultipleRequestListe
ner . This listener will provide more information than the normal OnRPCResponseListen
er .

Sending Concurrent Requests

When you send multiple RPCs concurrently, it will not wait for the response of the previous
RPC before sending the next one. Therefore, there is no guarantee that responses will be
returned in order, and you will not be able to use information sent in a previous RPC for a
later RPC.

SubscribeButton subscribeButtonLeft = new
SubscribeButton(ButtonName.SEEKLEFT);
SubscribeButton subscribeButtonRight = new
SubscribeButton(ButtonName.SEEKRIGHT);
sdiManager.sendRPCs(Arrays.asList(subscribeButtonLeft, subscribeButtonRight),
new OnMultipleRequestListener() {

@Override

void (int remainingRequests) {

}

@Override
void

}

@Override
void (int correlationld, RPCResponse response) {

Sending Sequential Requests

Requests sent sequentially are sent in a set order. The next request is only sent when a

response has been received for the previously sent request.

The code example below shows how to create a perform interaction choice set. When
creating a perform interaction choice set, the Performinteraction RPC can only be sent
after the CreatelnteractionChoiceSet RPC has been registered by Core, which is why the

requests must be sent sequentially.

int choiceld = 111, choiceSetld = 222;
Choice choice = new Choice(choiceld,);
CreatelnteractionChoiceSet createlnteractionChoiceSet = new
CreatelnteractionChoiceSet(choiceSetld, Collections.singletonList(choice));
Performinteraction performinteraction = new Performinteraction(
InteractionMode.MANUAL_ONLY, Collections.singletonList(choiceSetld));
sdIManager.sendSequentialRPCs(Arrays.asList(createlnteractionChoiceSet,
performinteraction), new OnMultipleRequestListener() {

@Override

void (inti){

}

@Override
void

}

@Override
void (int i, RPCResponse rpcResponse) {

Retrieving Vehicle Data

You can use the GetVehicleData and SubscribeVehicleData RPC requests to get
vehicle data. Each vehicle manufacturer decides which data it will expose and to whom
they will expose it. Please check the response from Core to find out which data you will
have permission to access. Additionally, be aware that the user may have the ability to
disable vehicle data access through the settings menu of their head unit. It may be

possible to access vehicle data when the hmilLevel is NONE (i.e. the user has not

opened your SDL app) but you will have to request this permission from the vehicle

manufacturer.

9 NOTE
You will only have access to vehicle data that is allowed to your appName
and appld combination. Permissions will be granted by each OEM
separately. See Understanding Permissions for more details.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/getting-started/understanding-permissions/

Acceleration
Pedal

Position

Airbag Status

Belt Status

Body

Information

Climate Data

accPedalPositio

n

airbagStatus

beltStatus

bodyInformatio

n

climateData

Accelerator
pedal position
(percentage

depressed)

Status of each

of the airbagsin
the vehicle: yes,
no, no event, not

supported, fault

The status of
each of the seat
belts: no, yes,
not supported,

fault, or no event

Door ajar status
for each door.
Roof status.
Trunk & hood
Status. The
Ignition status.
The ignition
stable status.
The park brake

active status

Information
about cabin
temperature,
atmospheric
pressure, and
external

temperature

RPC v7.1+

Cloud App
Vehicle Id

Cluster Mode
Status

cloudAppVehicl
elD

clusterModeStat

us

Theid for the
vehicle when

connecting to
cloud

applications

Whether or not
the power mode
is active. The
power mode
qualification
status: power
mode undefined,
power mode
evaluation in
progress, not
defined, power
mode ok. The
car mode status:
normal, factory,
transport, or
crash. The
power mode
status: key out,
key recently out,
key approved,
post accessory,
accessory, post
ignition, ignition
on, running,

crank

RPC v5.1+

Device Status

Driver

Braking

deviceStatus

driverBraking

Contains
information
about the
smartphone
device. Is voice
recognition on
or off, has a
bluetooth
connection been
established, is a
call active, is the
phonein
roaming mode,
is a text
message
available, the
battery level, the
status of the
mono and
stereo output
channels, the
signal level, the
primary audio
source, whether
ornot an
emergency call
is currently

taking place

The status of the
brake pedal: yes,
no, no event,
fault, not

supported

E-Call

Information

Electronic
Parking
Brake Status

Emergency

event

eCallinfo

electronicParkin

gBrakeStatus

emergencyEvent

Information
about the status
of an emergency

call

The status of the
electronic
parking brake.
Available states:
closed,
transition, open,

drive active, fault

The type of
emergency:
frontal, side, rear,
rollover, no
event, not
supported, fault.
Fuel cutoff
status: normal
operation, fuel is
cut off, fault. The
roll over status:
yes, no, no event,
not supported,
fault. The
maximum
changein
velocity. Whether
or not multiple
emergency
events have

occurred

RPC v5.0+

Engine Oil
Life

Engine

Torque

External

Temperature

Fuel Level

Fuel Level
State

Fuel Range

engineOQilLife

engineTorque

externalTempera

ture

fuelLevel

fuelLevel_State

fuelRange

The estimated
percentage (0% -
100%) of
remaining oil life

of the engine

Torque value for
engine (in Nm)
on non-diesel

variants

The external
temperature in

degrees celsius

The fuel level in
the tank

(percentage)

The fuel level
state: Unknown,
Normal, Low,
Fault, Alert, or

Not Supported

The estimate
range in KM the
vehicle can
travel based on
fuel level and
consumption.
As of RPC 7.0,
this also
contains Fuel
Level and Fuel
Level State

information.

RPC v5.0+

RPC v5.0+

RPC v7.1

RPC v7.0

RPC v7.0

Gear Status

GPS

Hands Off
Steering

gearStatus

gps

handsOffSteerin
g

Includes
information
about the
transmission,
the user's RPC v7.0+
selected gear,

and the actual

gear of the

vehicle.

Longitude and
latitude, current
time in UTC,
degree of
precision,
altitude,
heading, speed,
satellite data vs
dead reckoning,
and supported
dimensions of

the GPS

Status of hands
on steering

RPC v7.0+
wheels

capability

Head Lamp
Status

Instant Fuel

Consumption

My Key

Odometer

headLampStatu

S

instantFuelCons

umption

myKey

odometer

Status of the
head lamps:
whether or not
the low and high
beams are on or
off. The ambient
light sensor
status: night,
twilight 1,
twilight 2,
twilight 3,
twilight 4, day,

unknown, invalid

The
instantaneous
fuel
consumption in

microlitres

Information
about whether
or not the
emergency 911
override has

been activated

Odometer

reading in km

PRNDL

RPM

Seat

Occupancy

Speed

Stability
Control

Status

Steering
Wheel Angle

prndl

mnm

seatOccupancy

speed

stabilityControls
Status

steeringWheel A

ngle

The selected
gear thecaris
in: park, reverse,
neutral, drive,
sport, low gear,
first, second,
third, fourth,
fifth, sixth,
seventh or
eighth gear,
unknown, or

fault

The number of
revolutions per
minute of the

engine

The status of the
seats that show
whether each
seat is occupied
and belted or

not

Speed in KPH

Status of the
vehicle's stability
control and
trailer sway

control

Current angle of
the steering
wheel (in

degrees)

RPC v7.1+

RPC v7.0+

RPC v7.0

Tire Pressure

Turn Signal

VIN

Window
Status

tirePressure

turnSignal

vin

windowStatus

Tire status of
each wheel in
the vehicle:
normal, low,
fault, alert, or not
supported.
Warning light
status for the
tire pressure: off,
on, flash, or not

used

The status of the
turn signal.
Available states: RPC v5.0+
off, left, right,

both

The Vehicle
Identification

Number

An array of
window
locations and RPC v7.0+
approximate

position

The status of the
wipers: off,
automatic off,
off moving,
manual
interaction off,
manual
interaction on,
Wiper Status wiperStatus manual low,
manual high,
manual flick,
wash, automatic
low, automatic
high, courtesy
wipe, automatic
adjust, stalled,

no data exists

One-Time Vehicle Data Retrieval

To get vehicle data a single time, use the GetVehicleData RPC.

GetVehicleData vdRequest = new GetVehicleData()
.setGearStatus(true);
vdRequest.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {
GearStatus gearStatus = ((GetVehicleDataResponse)

response).getGearStatus();
DebugTool.loglnfo(+ gearStatus.toString());
} else {
DebugTool.loglnfo();
}
}

i
sdIManager.sendRPC(vdRequest);

Subscribing to Vehicle Data

Subscribing to vehicle data allows you to get notifications whenever new data is available.
You should not rely upon getting this data in a consistent manner. New vehicle data is

available roughly every second but notification timing can vary between modules.

First, you should add a notification listener for the OnVehicleData notification:

sdIManager.addOnRPCNotificationListener(FunctionID.ON_VEHICLE_DATA, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnVehicleData onVehicleDataNotification = (OnVehicleData) notification;

if (onVehicleDataNotification.getGearStatus() != null) {
DebugTool.loginfo() =
onVehicleDataNotification.getGearStatus());

}
}
D

Second, send the SubscribeVehicleData request:

SubscribeVehicleData subscribeRequest = new SubscribeVehicleData()
.setGearStatus(true);
subscribeRequest.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {
DebugTool.loginfo(
} else {
DebugTool.loginfo(

1

i
sdIManager.sendRPC(subscribeRequest);

Third, the onNotified method will be called when there is an update to the subscribed
vehicle data.

Unsubscribing from Vehicle Data

We suggest that you only subscribe to vehicle data as needed. To stop listening to
specific vehicle data use the UnsubscribeVehicleData RPC.

UnsubscribeVehicleData unsubscribeRequest = new UnsubscribeVehicleData()
.setGearStatus(true); / unsubscribe to GearStatus data
unsubscribeRequest.setONRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {
DebugTool.loginfo(

} else {
DebugTool.loginfo(

1

N

sdIManager.sendRPC(unsubscribeRequest);

OEM-Specific Vehicle Data

OEM applications can access additional vehicle data published by their systems that is
not available via the SDL vehicle data APIs. This data is accessed using the same SDL
vehicle data RPCs, but instead of requesting a certain type of SDL-specified data, you must
request data using a custom vehicle data name. The type of object returned is up to the

OEM and must be parsed manually.

NOTE

This feature is only for OEM-created applications and is not permitted for

3rd-party use.

Requesting One-Time OEM-Specific Vehicle Data

Below is an example of requesting a custom piece of vehicle data with the name OEM-X-
Vehicle-Data . To adapt this for subscriptions instead, you must look at the section
Subscribing to Vehicle Data above and adapt the example for subscribing to custom
vehicle data based on what you see in the examples below.

GetVehicleData vdRequest = new GetVehicleData()
.setOEMCustomVehicleData(, true);
vdRequest.setONRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {
Object CustomData = ((GetVehicleDataResponse)

response).getOEMCustomVehicleData(
} else {
DebugTool.loginfo(

}
}

});
sdIManager.sendRPC(vdRequest);

Remote Control Vehicle Features

The remote control framework allows apps to control modules such as climate, radio,

seat, lights, etc., within a vehicle. Newer head units can support multi-zone modules that

allow customizations based on seat location.

O NOTE
If you are using this feature in your app, you will most likely need to request
permission from the vehicle manufacturer. Not all head units support the
remote control framework and only the newest head units will support multi-
zone modules.

Why Use Remote Control?

Consider the following scenarios:

¢ A radio application wants to use the in-vehicle radio tuner. It needs the functionality
to select the radio band (AM/FM/XM/HD/DAB), tune the radio frequency or change
the radio station, as well as obtain general radio information for decision making.

e A climate control application needs to turn on the AC, control the air circulation
mode, change the fan speed and set the desired cabin temperature.

o A user profile application wants to remember users' favorite settings and apply it
later automatically when the users get into the same/another vehicle.

Supported Modules

Currently, the remote control feature supports these modules:

Climate v4.5+

Radio v4.5+
Seat v5.0+
Audio v5.0+
Light v5.0+
HMI Settings v5.0+

The following table lists which items are in each control module.

CLIMATE

Climate

Enable

Current
Cabin
Temperat

ure

Desired
Cabin
Temperat

ure

AC
Setting

AC MAX
Setting

Air
Recirculat
ion

Setting

climateEnab

le

currentTemp

erature

desiredTemp

erature

acEnable

acMaxEnabl

@

circulateAirE

nable

on, off

N/A

N/A

on, off

on, off

on, off

Get/Set/Noti

fication

Get/Notificat

ion

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Enabled to
turn on the
climate
system,
Disabled to
turn off the
climate
system. All
other climate
items need
climate
enabled to

work.

Read only,
value range
depends on
OEM

Value range
depends on
OEM

Since v6.0

Since v4.5

Since v4.5

Since v4.5

Since v4.5

Since v4.5

Auto AC
Mode
Setting

Defrost
Zone

Setting

Dual
Mode
Setting

Fan
Speed
Setting

Ventilatio
n Mode
Setting

Heated
Steering
Wheel
Enabled

Heated
Windshiel
d Enabled

Heated
Rear
Window
Enabled

autoModeEn

able

defrostZone

dualModeEn

able

fanSpeed

ventilationM

ode

heatedSteeri
ngWheelEna
ble

heatedWind
shieldEnable

heatedRear
WindowEna
ble

on, off

front, rear,

all, none

on, off

0%-100%

upper, lower,

both, none

on, off

on, off

on, off

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Since v4.5

Since v4.5

Since v4.5

Since v4.5

Since v4.5

Since v5.0

Since v5.0

Since v5.0

CONTR
oL
ITEM

Heated
Mirrors
Enabled

RADIO

RPC
ITEM
NAME

heatedMirror

sEnable

VALUE
RANGE

on, off

TYPE

Get/Set/Noti

fication

RPC

COMMEN VERSIO

TS -
CHANG
ES
Since v5.0

Radio
Enabled

Radio
Band

Radio
Frequenc

y

Radio
RDS Data

Available
HD

Channels

Available
HD
Channels
(DEPREC
ATED)

radioEnable

band

frequencyint
eger /
frequencyFr

action

rdsData

availableHd

Channels

availableHD

true, false

AM, FM, XM

0-1710,0-9

RdsData

struct

Array size 0-

8, values 0-7

1-7

(Deprecated
in v6.0) (1-3
before v5.0)

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Notificat

ion

Get/Notificat

ion

Get/Notificat

ion

Read only, all
other radio
control items
need radio
enabled to

work

Valuerange
depends on
band

Read only

Read only

Read only

Since v4.5

Since v4.5

Since v4.5

Since v4.5

Since
v6.0,
replaces
available

HDs

Since
v4.5,
updated
inv5.0,
deprecate

dinve6.0

Current
HD

Channel

Radio
Signal
Strength

Signal
Change
Threshold

Radio
State

SIS Data

SEAT

hdChannel

signalStreng
th

signalStreng

thThreshold

state

sisData

0-7 (13
before v.5.0)
(1-7 between
v.5.0-6.0)

0-100%

0-100%

Acquiring,
acquired,
multicast,

not_found

SisData

struct

Get/Set/Noti

fication

Get/Notificat

ion

Get/Notificat

ion

Get/Notificat

ion

Get/Notificat

ion

Read only

Read only

Read only

Read only

Since
v4.5,
updated
in v5.0,
updated
inv6.0

Since v4.5

Since v4.5

Since v4.5

Since v5.0

Seat
Heating
Enabled

Seat
Cooling
Enabled

Seat
Heating

level

Seat
Cooling

level

Seat

Horizonta

| Position

heatingEnab
led

coolingEnab
led

heatingLevel

coolingLevel

horizontalPo

sition

Get/Set/Noti
true, false

fication

Get/Set/Noti
true, false

fication

Get/Set/Noti
0-100%

fication

Get/Set/Noti
0-100%

fication

Get/Set/Noti
0-100%)

fication

Indicates
whether
heating is
enabled for a

seat

Indicates
whether
cooling is
enabled for a

seat

Level of the

seat heating

Level of the

seat cooling

Adjust a seat
forward/bac
kward, 0
means the
nearest
position to
the steering
wheel, 100%
means the
furthest
position
from the
steering

wheel

Since v5.0

Since v5.0

Since v5.0

Since v5.0

Since v5.0

Seat
] verticalPositi
Vertical 0-100%
on
Position
Seat-
Front frontVertical
) - 0-100%
Vertical Position
Position

Get/Set/Noti

fication

Get/Set/Noti

fication

Adjust seat
height (up or
down) in
case there is
only one
actuator for
seat height, Since v5.0
0 means the

lowest

position,

100% means

the highest

position

Adjust seat

front height

(in case

there are two
actuators for

seat height),)
SN Since v5.0
lowest

position,

100% means

the highest

position

Seat-Back
Vertical

Position

Seat Back
Tilt Angle

backVertical

Position

backTiltAngl

€

0-100%

0-100%

Get/Set/Noti

fication

Get/Set/Noti

fication

Adjust seat
back height
(in case
there are two
actuators for
seat height),
0 means the
lowest
position,
100% means
the highest

position

Backrest
recline, 0
means the
angle that
back top is
nearest to
the steering
wheel, 100%
means the
angle that
back top is
furthest from
the steering

wheel

Since v5.0

Since v5.0

Head
Support
Horizonta

| Position

Head
Support
Vertical

Position

Seat
Massagin
g Enabled

Massage
Mode

headSupport
HorizontalP

osition

headSupport
VerticalPosit

ion

massageEn
abled

massageMo
de

0-100%

0-100%

true, false

MassageMo
deData

struct

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Adjust head
support
forward/bac
kward, 0
means the
nearest
position to
the front,
100% means
the furthest
position
from the

front

Adjust head
support
height (up or
down), 0
means the
lowest
position,
100% means
the highest

position

Indicates
whether
massage is
enabled for a

seat

List of
massage
mode of

each zone

Since v5.0

Since v5.0

Since v5.0

Since v5.0

Massage
Cushion

Firmness

Seat

memory

AUDIO

massageCu
shionFirmne

SS

memory

MassageCus
hionFirmnes

s struct

SeatMemory

Action struct

Get/Set/Noti

fication

Get/Set/Noti

fication

List of
firmness of
each
massage

cushion

Seat

memory

Since v5.0

Since v5.0

Audio

Volume

Audio

Source

Keep

Context

Equalizer

Settings

volume 0%-100%
PrimaryAudi

source oSource
enum

keepContext true, false

equalizerSett EqualizerSet

ings tings struct

Get/Set/Noti

fication

Get/Set/Noti

fication

Set only

Get/Set/Noti

fication

The audio
source

volume level

Defines one
of the
available
audio

sources

Controls
whether the
HMI will keep
the current
application
context or
switch to the
default
media
Ul/APP
associated
with the

audio source

Defines the
list of
supported
channels
(band) and
their
current/desir
ed settings

on HMI

Since SDL
v5.0

Since SDL
v5.0

Since SDL
v5.0

Since SDL
v5.0

LIGHT

Light

lightState
State

HMI SETTINGS

Display

displayMode
Mode
Distance

distanceUnit
Unit
Temperat temperature
ure Unit Unit

Array of
LightState

struct

Day, Night,
Auto

Miles,

Kilometers

Fahrenheit,

Celsius

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Current
display
mode of the
HMI display

Distance
Unit used in
the HMI (for
maps/tracki
ng
distances)

Temperature
Unit used in

the HMI (for

temperature
measuring

systems)

Since SDL
v5.0

Since SDL
v5.0

Since SDL
v5.0

Since SDL
v5.0

Remote Control Button Presses

The remote control framework also allows mobile applications to send simulated button
press events for the following common buttons in the vehicle.

Climate

Radio

AC

AC MAX

RECIRCULATE

FAN UP

FAN DOWN

TEMPERATURE UP

TEMPERATURE DOWN

DEFROST

DEFROST REAR

DEFROST MAX

UPPERVENT

LOWERVENT

VOLUME UP

VOLUME DOWN

EJECT

SOURCE

SHUFFLE

REPEAT

Integration

For remote control to work, the head unit must support SDL RPC v4.4+. In addition, your
app's appHMIType mustinclude REMOTE_CONTROL .

Multiple Modules (RPC v6.0+)

Each module type can have multiple modules in RPC v6.0+. In previous versions, only one
module was available for each module type. A specific module is controlled using the
unique id assigned to the module. When sending remote control RPCs to a RPC v6.0+
head unit, the modulelnfo.moduleld must be stored and provided to control the desired
module. If no moduleld is set, the HMI will use the default module of that module type.
When connected to <6.0 systems, the modulelnfo struct will be null , and only the
default module will be available for control.

Getting Remote Control Module Information

Prior to using any remote control RPCs, you must check that the head unit has the remote
control capability. As you will encounter head units that do not support remote control, or
head units that do not give your application permission to read and write remote control

data, this check is important.

NOTE

This check can be performed once your SDL app has left the HMI state of
NONE . More information on how to monitor the HMI status can be found

in the Understanding Permissions guide.

When connected to head units supporting RPC v6.0+, you should save this information for
future use. The moduleld contained within the modulelnfo struct on each capability is

necessary to control that module.

sdIManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SystemC
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
RemoteControlCapabilities remoteControlCapabilities =
(RemoteControlCapabilities) capability;
// Save the remote control capabilities

}

@Override
void (String info) {
// Handle Error
}
});

GETTING MODULE DATA LOCATION AND SERVICE AREAS
(RPC V6.0+)

With the saved remote control capabilities struct you can get the location of the each
module and the area that it services. This will map to the grid graphic below. This
information is useful for creating a custom Ul.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/getting-started/understanding-permissions/#hmi-levels

NOTE

This data is only available when connected to SDL RPC v6.0+ systems. On
previous systems, only one module per module type was available, so the
module's location didn't matter. You will not be able to build a custom Ul for

those cases and should use a generic Ul instead.

// Get the first climate module's information
ClimateControlCapabilities firstClimateModule =
remoteControlCapabilities.getClimateControlCapabilities().get(0);

String climateModuleld = firstClimateModule.getModulelnfo().getModuleld();
Grid climateModuleLocation =
firstClimateModule.getModulelnfo().getModuleLocation();

You can also get an array of seats in the SeatLocationCapability.seats array. Each Seat
Location object within the seats array will have a grid parameter. The grid will tell

you the location of that particular seat in the vehicle (See the graphic below).

sdIManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SystemC
new OnSystemCapabilityListener() {
@Override
void (Object capability) {

SeatLocationCapability seatLocationCapability = (SeatLocationCapability)
capability;

if (seatLocationCapability.getSeats() != null &&
seatLocationCapability.getSeats().size() > 0){

List<SeatLocation> seats = seatLocationCapability.getSeats();

// Save seat location capabilities

}
}

@Override
void (String info) {
// Handle Error
}
3

The Grid

The grid system starts with the front left corner of the bottom level of the vehicle being

(col=0, row=0, level=0) . For example, assuming a vehicle manufactured for sale in the
United States with three seats in the backseat, (0, 0, 0) would be the drivers' seat. The
front passenger location would be at (2, 0, 0) and the rear middle seat would be at (1, 1,
0) . The colspan and rowspan properties tell you how many rows and columns that
module or seat takes up. The level property tells you how many decks the vehicle has
(i.e. a double-decker bus would have 2 levels).

Col+

[
i

- 1
(o,o,oju@,o,o)' |

Y -‘I

-‘r

\

I 01,0 (21,0) I

front passenger's
driver's seat: {col=0,

seat : {col=2,
row=0, level=0,

row=0, level=0,

row=0 colspan=1,
colspan=1,
rowspan=1,
rowspan=1,
levelspan=1}
levelspan=1}
rear-left seat : {col=0, rear-middle seat : rear-right seat :
row=1, level=0, {col=1, row=1, level=0, {col=2, row=1,
row=1 colspan=1, colspan=1, level=0, colspan=1,
rowspan=1, rowspan=1, rowspan=1,
levelspan=1} levelspan=1} levelspan=1}

Getting Module Data

Seat location does not affect the ability to get data from a module. Once you know you
have permission to use the remote control feature and you have moduleld s (when
connected to RPC v6.0+ systems), you can retrieve the data for any module. The following

code is an example of how to subscribe to the data of a climate module.

When connected to head units that only support RPC versions older than v6.0, there can
only be one module for each module type (e.g. there can only be one climate module, light
module, radio module, etc.), so you will not need to pass a moduleld .

SUBSCRIBING TO MODULE DATA

You can either subscribe to module data or receive it one time. If you choose to subscribe
to module data you will receive continuous updates on the vehicle data you have
subscribed to.

NOTE

Subscribing to the OninteriorVehicleData notification must be done before
sending the GetlInteriorVehicleData request.

sdIManager.addOnRPCNotificationListener(FunctionID.ON_INTERIOR_VEHICLE_DATA
new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnlnteriorVehicleData onlinteriorVehicleData = (OnInteriorVehicleData)
notification;
if (onInteriorVehicleData != null){

// NOTE: If you subscribe to multiple modules, all the data will be sent here.
You will have to

// split it out based on
“oninteriorVehicleData.getModuleData().getModuleType()® yourself.

// Code

}
}

b

After you subscribe to the InteriorVehicleDataNotification you must also subscribe to
the module you wish to receive updates for. Subscribing to a module will send a

notification when that particular module is changed.
RPC <v6.0

GetlnteriorVehicleData getinteriorVehicleData = new
GetlnteriorVehicleData(ModuleType.CLIMATE)
.setSubscribe(true);
getinteriorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
// This can now be used to retrieve data
<#Code#>

}
b
sdIManager.sendRPC(getinteriorVehicleData);

RPC v6.0+

GetlnteriorVehicleData getinteriorVehicleData = new
GetlnteriorVehicleData(ModuleType.CLIMATE)
.setModuleld(modulelD)
.setSubscribe(true);
getinteriorVehicleData.setONnRPCResponseListener(new OnRPCResponseListener() {
@Override

void (int correlationld, RPCResponse response) {
// This can now be used to retrieve data
// Code

}
});
sdIManager.sendRPC(getinteriorVehicleData);

After you subscribe to the InteriorVehicleDataNotification you must also subscribe to
the module you wish to receive updates for. Subscribing to a module will send a
notification when that particular module is changed.

GETTING ONE-TIME DATA

To get data from a module without subscribing send a GetlnteriorVehicleData request

with the subscribe flag setto false .
RPC < v6.0

GetlnteriorVehicleData interiorVehicleData = new
GetlnteriorVehicleData(ModuleType.CLIMATE);
interiorVehicleData.setOnRPCResponselListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
// This can now be used to retrieve data
// Code

}

i
sdIManager.sendRPC(interiorVehicleData);

RPC 6.0+

GetlInteriorVehicleData interiorVehicleData = new
GetInteriorVehicleData(ModuleType.CLIMATE)
.setModuleld();
interiorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override

void (int correlationld, RPCResponse response) {
// This can now be used to retrieve data
// Code

}

});
sdIManager.sendRPC(interiorVehicleData);

Setting Module Data

Not only do you have the ability to get data from these modules, but, if you have the right

permissions, you can also set module data.

SETTING THE USER'S SEAT (RPC V6.0+)

Before you attempt to take control of any module, you should have your user select their
seat location as this affects which modules they have permission to control. You may
wish to show the user a map or list of all available seats in your app in order to ask them
where they are located. See Getting Module Data Location and Service Areas for
information useful in creating a custom Ul showing module location and service area. The
following example is only meant to show you how to access the available data and not
how to build your Ul/UX.

When the user selects their seat, you must send an SetGlobalProperties RPC with the
appropriate userLocation property in order to update that user's location within the
vehicle (The default seat location is Driver).

SetGlobalProperties seatLocation = new SetGlobalProperties()
.setUserLocation(selectedSeat);

seatLocation.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override

void (int correlationld, RPCResponse response) {
// Seat location updated

}
N

sdIManager.sendRPC(seatLocation);

GETTING CONSENT TO CONTROL A MODULE (RPC V6.0+)

Some OEMs may wish to ask the driver for consent before a user can control a module.
The GetlnteriorVehicleDataConsent RPC will alert the driver in some OEM head units if
the module is not free (another user has control) and allowMultipleAccess (multiple
users can access/set the data at the same time) is true . The allowMultipleAccess
property is part of the modulelnfo in the module object.

Check the allowed property inthe GetlnteriorVehicleDataConsentResponse to see
what modules can be controlled. Note that the order of the allowed array is 1-1 with the
modulelds array you passed into the GetlInteriorVehicleDataConsent RPC.

NOTE

v

You should always try to get consent before setting any module data. If

consent is not granted you should not attempt to set any module's data.

GetinteriorVehicleDataConsent getinteriorVehicleDataConsent = new
GetlnteriorVehicleDataConsent(moduleType, modulelDs);
getinteriorVehicleDataConsent.setOnRPCResponseListener(new
OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {

GetlnteriorVehicleDataConsentResponse
getinteriorVehicleDataConsentResponse =
(GetInteriorVehicleDataConsentResponse) response;

List<Boolean> allowed =
getinteriorVehicleDataConsentResponse.getAllowances();

// Allowed is an array of true or false values

}
});
sdIManager.sendRPC(getiInteriorVehicleDataConsent);

CONTROLLING A MODULE

Below is an example of setting climate control data. It is likely that you will not need to
set all the data as in the code example below. When connected to RPC v6.0+ systems, you
must set the moduleld in SetinteriorVehicleData.setModuleData . When connected to <
v6.0 systems, there is only one module per module type, so you must only pass the type of
the module you wish to control.

When you received module information above in Getting Remote Control Module
Information on RPC v6.0+ systems, you received information on the location and servic
eArea of the module. The permission area of a module depends on that serviceArea .
The location of a module is like the seats array: it maps to the grid to tell you the
physical location of a particular module. The serviceArea maps to the grid to show how
far that module's scope reaches.

For example, a radio module usually serves all passengers in the vehicle, so its service
area will likely cover the entirety of the vehicle grid, while a climate module may only
cover a passenger area and not the driver or the back row. If a serviceArea is not
included, it is assumed that the serviceArea is the same as the module's location . If
neither is included, it is assumed that the serviceArea covers the whole area of the
vehicle. If a user is not sitting within the serviceArea 's grid , they will not receive

permission to control that module (attempting to set data will fail).
RPC < v6.0

Temperature temp = new Temperature(TemperatureUnit. FAHRENHEIT, 74.1f);

ClimateControlData climateControlData = new ClimateControlData()
.setAcEnable(true)
.setAcMaxEnable(true)
.setAutoModeEnable(false)
.setCirculateAirEnable(true)
.setCurrentTemperature(temp)
.setDefrostZone(DefrostZone.FRONT)
.setDualModeEnable(true)
.setFanSpeed(2)
.setVentilationMode(VentilationMode.BOTH)
.setDesiredTemperature(temp);

ModuleData moduleData = new ModuleData(ModuleType.CLIMATE)
.setClimateControlData(climateControlData);

SetInteriorVehicleData setInteriorVehicleData = new
SetInteriorVehicleData(moduleData);
setinteriorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
// Code

}

i
sdIManager.sendRPC(setInteriorVehicleData);

RPC 6.0+

Temperature temp = new Temperature(TemperatureUnit. FAHRENHEIT, 74.1f);

ClimateControlData climateControlData = new ClimateControlData()
.setAcEnable(true)
.setAcMaxEnable(true)
.setAutoModeEnable(false)
.setCirculateAirEnable(true)
.setCurrentTemperature(temp)
.setDefrostZone(DefrostZone.FRONT)
.setDualModeEnable(true)
.setFanSpeed(2)
.setVentilationMode(VentilationMode.BOTH)
.setDesiredTemperature(temp);

ModuleData moduleData = new ModuleData(ModuleType.CLIMATE)
.setModuleld(moduleld)
.setClimateControlData(climateControlData);

SetinteriorVehicleData setinteriorVehicleData = new
SetInteriorVehicleData(moduleData);
setInteriorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
// Code

}
});
sdIManager.sendRPC(setInteriorVehicleData);

BUTTON PRESSES

Another unique feature of remote control is the ability to send simulated button presses
to the associated modules, imitating a button press on the hardware itself. Simply specify

the module, the button, and the type of press you would like to simulate.
RPC < 6.0

ButtonPress buttonPress = new ButtonPress(ModuleType.CLIMATE,

ButtonName.EJECT, ButtonPressMode.SHORT);

buttonPress.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override

void (int correlationld, RPCResponse response) {
// Code
}

i
sdIManager.sendRPC(buttonPress);

RPC 6.0+

ButtonPress buttonPress = new ButtonPress(ModuleType.CLIMATE,
ButtonName.EJECT, ButtonPressMode.SHORT)
.setModuleld();
buttonPress.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override

void (int correlationld, RPCResponse response) {
// Code

}

i
sdIManager.sendRPC(buttonPress);

RELEASING THE MODULE (RPC V6.0+)

When the user no longer needs control over a module, you should release the module so
other users can control it. If you do not release the module, other users who would

otherwise be able to control the module may be rejected from doing so.

ReleaselnteriorVehicleDataModule releaselnteriorVehicleDataModule = new
ReleaselnteriorVehicleDataModule(<#ModuleType#>)

.setModuleld(modulelD);
releaselnteriorVehicleDataModule.setOnRPCResponseListener(new
OnRPCResponseListener() {

@Override
void (int correlationld, RPCResponse response) {
// Module Was Released
}
)

sdIManager.sendRPC(releaselnteriorVehicleDataModule);

Creating an App Service (RPC
v5.1+)

App services is a powerful feature enabling both a new kind of vehicle-to-app

communication and app-to-app communication via SDL.

App services are used to publish navigation, weather and media data (such as
temperature, navigation waypoints, or the current playlist name). This data can then be
used by both the vehicle head unit and, if the publisher of the app service desires, other
SDL apps.

Vehicle head units may use these services in various ways. One app service for each type
will be the "active" service to the module. For media, for example, this will be the media
app that the user is currently using or listening to. For navigation, it would be a navigation
app that the user is using to navigate. For weather, it may be the last used weather app, or
a user-selected default. The system may then use that service's data to perform various
actions (such as navigating to an address with the active service or to display the

temperature as provided from the active weather service).

An SDL app can also subscribe to a published app service. Once subscribed, the app will
be sent the new data when the app service publisher updates its data. To find out more
about how to subscribe to an app service check out the Using App Services guide.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/other-sdl-features/using-app-services/

Subscribed apps can also send certain RPCs and generic URI-based actions (see the
section Supporting Service RPCs and Actions below) to your service.

Currently, there is no high-level API support for publishing an app service, so you will have
to use raw RPCs for all app service related APIs.

Using an app service is covered in another guide.

App Service Types

Apps are able to declare that they provide an app service by publishing an app service
manifest. Three types of app services are currently available and more will be made
available over time. The currently available types are: Media, Navigation, and Weather. An

app may publish multiple services (one for each of the different service types) if desired.

Publishing an App Service

Publishing a service is a multi-step process. First, you need to create your app service
manifest. Second, you will publish your app service to the module. Third, you will publish
the service data using OnAppServiceData . Fourth, you must listen for data requests and
respond accordingly. Fifth, if your app service supports handling of RPCs related to your
service you must listen for these RPC requests and handle them accordingly. Sixth,
optionally, you can support URI-based app actions. Finally, if necessary, you can you
update or delete your app service manifest.

1. Creating an App Service Manifest

The first step to publishing an app service is to create an AppServiceManifest object.
There is a set of generic parameters you will need to fill out as well as service type
specific parameters based on the app service type you are creating.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/other-sdl-features/using-app-services/

AppServiceManifest manifest = new
AppServiceManifest(AppServiceType.MEDIA.toString())
.setServiceName() // Must be unique across app services.
.setServicelcon(new Image(, ImageType.DYNAMIC)) /
Previously uploaded service icon. This could be the same as your app icon.
.setAllowAppConsumers(true) / Whether or not other apps can view your data in
addition to the head unit. If set to “false’ only the head unit will have access to this

data.
.setRpcSpecVersion(new SdIMsgVersion(5,0)) / An *optional* parameter that
limits the RPC spec versions you can understand to the provided version *or below*.
.setHandledRpcs(List<FunctionID>) // If you add function ids to this *optional*
parameter, you can support newer RPCs on older head units (that don't support those
RPCs natively) when those RPCs are sent from other connected applications.
.setMediaServiceManifest(mediaManifest); // Covered Below

CREATING A MEDIA SERVICE MANIFEST

Currently, there's no information you have to provide in your media service manifest! You'll
just have to create an empty media service manifest and set it into your general app
service manifest.

MediaServiceManifest mediaManifest = new MediaServiceManifest();

manifest.setMediaServiceManifest(mediaManifest);

CREATING A NAVIGATION SERVICE MANIFEST

You will need to create a navigation manifest if you want to publish a navigation service.
You will declare whether or not your navigation app will accept waypoints. That is, if your
app will support receiving multiple points of navigation (e.g. go to this McDonalds, then
this Walmart, then home).

NavigationServiceManifest navigationManifest = new NavigationServiceManifest();

navigationManifest.setAcceptsWayPoints(true);
manifest.setNavigationServiceManifest(navigationManifest);

CREATING A WEATHER SERVICE MANIFEST

You will need to create a weather service manifest if you want to publish a weather
service. You will declare the types of data your service provides in its WeatherServiceDat
a.

WeatherServiceManifest weatherManifest = new WeatherServiceManifest()
.setCurrentForecastSupported(true)
.setMaxMultidayForecastAmount(10)

.setMaxHourlyForecastAmount(24)

.setMaxMinutelyForecastAmount(60)

.setWeatherForLocationSupported(true);
manifest.setWeatherServiceManifest(weatherManifest);

2. Publish Your Service

Once you have created your service manifest, publishing your app service is simple.

PublishAppService publishServiceRequest = new PublishAppService()
.setAppServiceManifest(manifest);
publishServiceRequest.setONRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {
// Use the response

} else {
// Error Handling

}

}

i
sdIManager.sendRPC(publishServiceRequest);

Once you have your publish app service response, you will need to store the information
provided in its appServiceRecord property. You will need the information later when you

want to update your service's data.

WATCHING FOR APP RECORD UPDATES

As noted in the introduction to this guide, one service for each type may become the
"active" service. If your service is the active service, your AppServiceRecord parameter

serviceActive will be updated to note that you are now the active service.

After the initial app record is passed to you in the PublishAppServiceResponse , you will
need to be notified of changes in order to observe whether or not you have become the
active service. To do so, you will have to observe the new SystemCapabilityType.APP_SE
RVICES using GetSystemCapability and OnSystemCapabilityUpdated .

For more information, see the Using App Services guide and go to the Getting and
Subscribing to Services section.

3. Update Your Service's Data

After your service is published, it's time to update your service data. First, you must send
an onAppServiceData RPC notification with your updated service data. RPC notifications

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/other-sdl-features/using-app-services/#getting-and-subscribing-to-services

are different than RPC requests in that they will not receive a response from the

connected head unit .

O NOTE

v

You should only update your service's data when you are the active service;
service consumers will only be able to see your data when you are the active

service.

First, you will have to create an MediaServiceData , NavigationServiceData or
WeatherServiceData object with your service's data. Then, add that service-specific data
object to an AppServiceData object. Finally, create an OnAppServiceData notification,
append your AppServiceData object, and send it.

MEDIA SERVICE DATA

MediaServiceData mediaData = new MediaServiceData()
.setMediaTitle()
.setMediaAtrtist()
.setMediaAlbum()
.setMedialmage(new Image(, ImageType.DYNAMIC))
.setPlaylistName(
.setlsExplicit(true)
.setTrackPlaybackProgress(45)
.setTrackPlaybackDuration(90)
.setQueuePlaybackProgress(45)
.setQueuePlaybackDuration(150)
.setQueueCurrentTrackNumber(2)
.setQueueTotalTrackCount(3);

AppServiceData appData = new AppServiceData()
.setServicelD(myServiceld)
.setServiceType(AppServiceType.MEDIA.toString())
.setMediaServiceData(mediaData);

OnAppServiceData onAppData = new OnAppServiceData();
onAppData.setServiceData(appData);

sdIManager.sendRPC(onAppData);

NAVIGATION SERVICE DATA

SdlArtwork navinstructionArt = new SdlArtwork(, FileType.GRAPHIC_PNG,
image, true);

sdIManager.getFileManager().uploadFile(navinstructionArt, new CompletionListener()

{
@Override
void (boolean success) {
if (success){
Coordinate coordinate = new Coordinate(42f,43f);

LocationDetails locationDetails = new LocationDetails();
locationDetails.setCoordinate(coordinate);

// Make sure the image is uploaded to the system before publishing your data

Navigationlnstruction navigationlnstruction = new
NavigationInstruction(locationDetails, NavigationAction. TURN);

navigationInstruction.setimage(navinstructionArt.getimageRPC());

DateTime dateTime = new DateTime()
.setHour(2)
.setMinute(3)
.setSecond(4);

NavigationServiceData navigationData = new
NavigationServiceData(dateTime);

navigationData.setInstructions(Collections.singletonList(navigationinstruction));

AppServiceData appData = new AppServiceData()
.setServicelD(myServiceld)
.setServiceType(AppServiceType.NAVIGATION.toString())
.setNavigationServiceData(navigationData);

OnAppServiceData onAppData = new OnAppServiceData();
onAppData.setServiceData(appData);

sdIManager.sendRPC(onAppData);
}
}
i

WEATHER SERVICE DATA

SdlArtwork weatherlmage = new SdlArtwork(, FileType.GRAPHIC_PNG,
image, true);

sdIManager.getFileManager().uploadFile(weatherimage, new CompletionListener() {
@Override
void (boolean success) {
if (success) {
// Make sure the image is uploaded to the system before publishing your data
WeatherData weatherData = new WeatherData();
weatherData.setWeatherlcon(weatherlmage.getimageRPC());

Coordinate coordinate = new Coordinate(42f, 43f);

LocationDetails locationDetails = new LocationDetails();
locationDetails.setCoordinate(coordinate);

WeatherServiceData weatherServiceData = new
WeatherServiceData(locationDetails);

AppServiceData appData = new AppServiceData()
.setServicelD(myServiceld)
.setServiceType(AppServiceType. WEATHER.toString())
.setWeatherServiceData(weatherServiceData);

OnAppServiceData onAppData = new OnAppServiceData();
onAppData.setServiceData(appData);

sdIManager.sendRPC(onAppData);
}

}
D

4. Handling App Service Subscribers

If you choose to make your app service available to other apps, you will have to handle
requests to get your app service data when a consumer requests it directly.

Handling app service subscribers is a two step process. First, you must setup listeners for
the subscriber. Then, when you get a request, you will either have to send a response to
the subscriber with the app service data or if you have no data to send, send a response

with a relevant failure result code.

LISTENING FOR REQUESTS

First, you will need to setup a listener for GetAppServiceDataRequest . Then, when you
get the request, you will need to respond with your app service data. Therefore, you will
need to store your current service data after the most recent update using OnAppService
Data (see the section Update Your Service's Data).

sdIManager.addOnRPCRequestListener(FunctionID.GET_APP_SERVICE_DATA, new
OnRPCRequestListener() {
@Override
void (RPCRequest request) {
GetAppServiceData getAppServiceData = (GetAppServiceData) request;

// Send a response

GetAppServiceDataResponse response = new GetAppServiceDataResponse();
response.setSuccess(true);
response.setCorrelationID(getAppServiceData.getCorrelationID());
response.setResultCode(Result. SUCCESS);

response.setinfo(

response.setServiceData(appServiceData);

sdIManager.sendRPC(response);

Supporting Service RPCs and Actions

5. Service RPCs

Certain RPCs are related to certain services. The chart below shows the current
relationships:

ButtonPress (OK) SendLocation

ButtonPress (SEEKLEFT) GetWayPoints
ButtonPress (SEEKRIGHT) SubscribeWayPoints
ButtonPress (TUNEUP) OnWayPointChange

ButtonPress (TUNEDOWN)

ButtonPress (SHUFFLE)

ButtonPress (REPEAT)

When you are the active service for your service's type (e.g. media), and you have declared
that you support these RPCs in your manifest (see the section Creating an App Service
Manifest), then these RPCs will be automatically routed to your app. You will have to set
up listeners to be aware that they have arrived, and you will then need to respond to those
requests.

AppServiceManifest manifest = new
AppServiceManifest(AppServiceType.MEDIA.toString());

manifest.setHandledRpcs(Collections.singletonList(FunctionID.BUTTON_PRESS.getl

sdIManager.addOnRPCRequestListener(FunctionID.BUTTON_PRESS, new
OnRPCRequestListener() {
@Override
void (RPCRequest request) {
ButtonPress buttonPress = (ButtonPress) request;

ButtonPressResponse response = new ButtonPressResponse();
response.setSuccess(true);
response.setResultCode(Result. SUCCESS);
response.setCorrelationID(buttonPress.getCorrelationID());
response.setinfo(

sdIManager.sendRPC(response);

6. Service Actions

App actions are the ability for app consumers to use the SDL services system to send
URIs to app providers in order to activate actions on the provider. Service actions are
schema-less, i.e. there is no way to define the appropriate URIs through SDL. If you already
provide actions through your app and want to expose them to SDL, or if you wish to start
providing them, you will have to document your available actions elsewhere (such as your
website).

In order to support actions through SDL services, you will need to observe and respond to
the PerformAppServicelnteraction RPC request.

// Perform App Services Interaction Request Listener
sdIManager.addOnRPCRequestListener(FunctionID.PERFORM_APP_SERVICES_INTER
new OnRPCRequestListener() {
@Override
void (RPCRequest request) {
PerformAppServicelnteraction performAppServicelnteraction =
(PerformAppServicelnteraction) request;

// 1f you have multiple services, this will let you know which of your services is
being addressed
servicelD = performAppServicelnteraction.getServicelD();

// The URI sent by the consumer. This must be something you understand
String serviceURI = performAppServicelnteraction.getServiceUri();

// A result you want to send to the consumer app.
PerformAppServicelnteractionResponse response = new
PerformAppServicelnteractionResponse()

.setServiceSpecificResult();
response.setCorrelationID(performAppServicelnteraction.getCorrelationID());
response.setinfo();
response.setSuccess(true);
response.setResultCode(Result. SUCCESS);
sdIManager.sendRPC(response);

Updating Your Published App Service

Once you have published your app service, you may decide to update its data. For example,
if you have a free and paid tier with different amounts of data, you may need to upgrade or
downgrade a user between these tiers and provide new data in your app service manifest.

If desired, you can also delete your app service by unpublishing the service.

7. Updating a Published App Service Manifest (RPC
v6.0+)

AppServiceManifest manifest = new
AppServiceManifest(AppServiceType. WEATHER.toString());
manifest.setWeatherServiceManifest(weatherServiceManifest);

PublishAppService publishServiceRequest = new PublishAppService(manifest);
sdIManager.sendRPC(publishServiceRequest);

8. Unpublishing a Published App Service Manifest (RPC
v6.0+)

UnpublishAppService unpublishAppService = new UnpublishAppService(

);
sdIManager.sendRPC(unpublishAppService);

Using App Services (RPC v5.1+)

App services is a powerful feature enabling both a new kind of vehicle-to-app

communication and app-to-app communication via SDL.

App services are used to publish navigation, weather and media data (such as
temperature, navigation waypoints, or the current playlist name). This data can then be
used by both the vehicle head unit and, if the publisher of the app service desires, other
SDL apps. Creating an app service is covered in another guide.

Vehicle head units may use these services in various ways. One app service for each type
will be the "active" service to the module. For media, for example, this will be the media
app that the user is currently using or listening to. For navigation, it would be a navigation
app that the user is using to navigate. For weather, it may be the last used weather app, or
a user-selected default. The system may then use that service's data to perform various
actions (such as navigating to an address with the active service or to display the

temperature as provided from the active weather service).

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/other-sdl-features/creating-an-app-service/

An SDL app can also subscribe to a published app service. Once subscribed, the app will
be sent the new data when the app service publisher updates its data. This guide will cover
subscribing to a service. Subscribed apps can also send certain RPCs and generic URI-
based actions (see the section Sending an Action to a Service Provider, below) to your

service.

Currently, there is no high-level API support for using an app service, so you will have to
use raw RPCs for all app service related APIs.

Getting and Subscribing to Services

Once your app has connected to the head unit, you will first want to be notified of all
available services and updates to the metadata of all services on the head unit. Second,
you will narrow down your app to subscribe to an individual app service and subscribe to
its data. Third, you may want to interact with that service through RPCs, or fourth, through

service actions.

1. Getting and Subscribing to Available Services

To get information on all services published on the system, as well as on changes to

published services, you will use the SystemCapabilityManager .

JAVA

// Grab the capability once
sdIManager.getSystemCapabilityManager().getCapability(SystemCapability Type. APP_
new OnSystemCapabilityListener() {

@Override

void (Object capability) {
AppServicesCapabilities servicesCapabilities = (AppServicesCapabilities)

capability;

}

@Override
void (String info) {
// Handle Error

}
}, false);

// Subscribe to app service capability updates
sdIManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SystemC
new OnSystemCapabilityListener() {

@Override

void (Object capability) {
AppServicesCapabilities servicesCapabilities = (AppServicesCapabilities)

capability;

}

@Override
void (String info) {
// Handle Error
}
3

CHECKING THE APP SERVICE CAPABILITY

Once you've retrieved the initial list of app service capabilities or an updated list of app
service capabilities, you may want to inspect the data to find what you are looking for.
Below is example code with comments explaining what each part of the app service
capability is used for.

JAVA

// This array contains all currently available app services on the system
List<AppServiceCapability> appServices = servicesCapabilities.getAppServices();

if (appServices!= null && appServices.size() > 0) {
for (AppServiceCapability anAppServiceCapability : appServices) {
// This will tell you why a service is in the list of updates
ServiceUpdateReason updateReason =
anAppServiceCapability.getUpdateReason();

// The app service record will give you access to a service's generated id, which
can be used to address the service directly (see below), it's manifest, used to see
what data it supports, whether or not the service is published (it always will be here),
and whether or not the service is the active service for its service type (only one
service can be active for each type)

AppServiceRecord serviceRecord =
anAppServiceCapability.getUpdatedAppServiceRecord();

}
}

2. Getting and Subscribing to a Service Type's Data

Once you have information about all of the services available, you may want to view or

subscribe to a service type's data. To do so, you will use the GetAppServiceData RPC.

Note that you will currently only be able to get data for the active service of the service
type. You can attempt to make another service the active service by using the PerformAp

pServicelnteraction RPC, discussed below in Sending an Action to a Service Provider.

JAVA

// Get service data once
GetAppServiceData getAppServiceData = new
GetAppServiceData(AppServiceType.MEDIA.toString())
.setSubscribe(true); // Subscribe to future updates if you want them
getAppServiceData.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response = null){
GetAppServiceDataResponse serviceResponse =
(GetAppServiceDataResponse) response;
MediaServiceData mediaServiceData =
serviceResponse.getServiceData().getMediaServiceData();
}
}
});
sdIManager.sendRPC(getAppServiceData);

// Unsubscribe from updates

GetAppServiceData unsubscribeServiceData = new

GetAppServiceData(AppServiceType.MEDIA.toString())
.setSubscribe(false);

sdIManager.sendRPC(unsubscribeServiceData);

Interacting with a Service Provider

Once you have a service's data, you may want to interact with a service provider by
sending RPCs or actions.

3. Sending RPCs to a Service Provider

Only certain RPCs are available to be passed to the service provider based on their service
type. See the Creating an App Service guide Supporting Service RPCs and Actions section
for a chart detailing which RPCs work with which service types. The RPC can only be sent

to the active service of a specific service type, not to any inactive service.

Sending an RPC works exactly the same as if you were sending the RPC to the head unit
system. The head unit will simply route your RPC to the appropriate app automatically.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/other-sdl-features/creating-an-app-service/#supporting-service-rpcs-and-actions

NOTE

Your app may need special permissions to use the RPCs that route to app
service providers.

ButtonPress buttonPress = new ButtonPress()
.setButtonPressMode(ButtonPressMode.SHORT)
.setButtonName(ButtonName.OK)
.setModuleType(ModuleType.AUDIO);

buttonPress.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override

void (int correlationld, RPCResponse response) {
// Use the response
}
b
sdIManager.sendRPC(buttonPress);

4. Sending an Action to a Service Provider

Actions are generic URI-based strings sent to any app service (active or not). You can also
use actions to request to the system that they make the service the active service for that
service type. Service actions are schema-less, i.e. there is no way to define the appropriate
URIs through SDL. The service provider must document their list of available actions
elsewhere (such as their website).

PerformAppServicelnteraction performAppServicelnteraction = new
PerformAppServicelnteraction(

, previousServiceld, appld);
performAppServicelnteraction.setONRPCResponseListener(new
OnRPCResponseListener() {

@Override
void (int correlationld, RPCResponse response) {
// Use the response

}
N

sdIManager.sendRPC(performAppServicelnteraction);

5. Getting a File from a Service Provider

In some cases, a service may upload an image that can then be retrieved from the module.
First, you will need to get the image name from the AppServiceData (see point 2 above).
Then you will use the image name to retrieve the image data.

WeatherServiceData weatherServiceData = appServiceData.getWeatherServiceData();
if (weatherServiceData == null || weatherServiceData.getCurrentForecast() == null ||
weatherServiceData.getCurrentForecast().getWeatherlcon() == null) {

// The image doesn't exist, exit early

return;
}
String currentForecastimageName =
weatherServiceData.getCurrentForecast().getWeatherlcon().getValue();

GetFile getFile = new GetFile(currentForecastimageName)
.setAppServiceld(serviceld);
getFile.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
GetFileResponse getFileResponse = (GetFileResponse) response;
byte[] fileData = getFileResponse.getBulkData();
SdlArtwork sdlArtwork = new SdlArtwork(fleName, FileType.GRAPHIC_PNG,
fileData, false);
// Use the sdlArtwork

}
)}
sdIManager.sendRPC(getFile);

Calling a Phone Number

The DialNumber RPC allows you make a phone call via the user's phone. In order to dial
a phone number you must be sure that the device is connected via Bluetooth (even if your
device is also connected using a USB cord) for this request to work. If the phone is not
connected via Bluetooth, you will receive a result of REJECTED from the module.

Checking Your App's Permissions

DialNumber is an RPC that is usually restricted by OEMs. As a result, a module may
reject your request if your app does not have the correct permissions. Your SDL app may
also be restricted to only being allowed to making a phone call when your app is open (i.e.
the hmilLevel is non- NONE) or when it is the currently active app (i.e. the hmiLevel is

FULL).

UUID listenerld =
sdIManager.getPermissionManager().addListener(Arrays.asList(new
PermissionElement(FunctionID.DIAL_NUMBER, null)),
PermissionManager.PERMISSION_GROUP_TYPE_ANY, new
OnPermissionChangeListener() {
@Override
void (@NonNull Map<FunctionID, PermissionStatus>
allowedPermissions, int permissionGroupStatus) {
if (permissionGroupStatus !=
PermissionManager.PERMISSION_GROUP_TYPE_ALL_ALLOWED) {
// Your app does not have permission to send the "DialNumber’ request for
its current HMI level
return;
}

// Your app has permission to send the ‘DialNumber’ request for its current HMI
level
}
b

Checking if the Module Supports
Calling a Phone Number

Since making a phone call is a newer feature, there is a possibility that some legacy
modules will reject your request because the module does not support the DialNumber
request. Once you have successfully connected to the module, you can check the
module's capabilities via the sdIManager.getSystemCapabilityManager as shown in the
example below. Please note that you only need to check once if the module supports

calling a phone number, however you must wait to perform this check until you know that
the SDL app has been opened (i.e. the hmilLevel is non- NONE).

9 NOTE
If you discover that the module does not support calling a phone number or
that your app does not have the right permissions, you should disable any
buttons, voice commands, menu items, etc. in your app that would send the
DialNumber request.

void (OnCapabilitySupportedListener
capabilitySupportedListener) {
// Check if the module has phone capabilities
if
('sdIManager.getSystemCapabilityManager().isCapabilitySupported(SystemCapability

capabilitySupportedListener.onCapabilitySupported(false);
return;

}

// Legacy modules (pre-RPC Spec v4.5) do not support system capabilities, so for
versions less than 4.5 we will assume "DialNumber' is supported if
“isCapabilitySupported()” returns true

SdIMsgVersion sdIMsgVersion =
sdIManager.getRegisterApplinterfaceResponse().getSdiIMsgVersion();

if (sdIMsgVersion == null) {

capabilitySupportedListener.onCapabilitySupported(true);
return;

}

Version rpcSpecVersion = new Version(sdiMsgVersion);

if (rpcSpecVersion.isNewerThan(new Version(4, 5, 0)) < 0) {

capabilitySupportedListener.onCapabilitySupported(true);
return;

}

// Retrieve the phone capability

sdIManager.getSystemCapabilityManager().getCapability(SystemCapability Type.PHO!
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
PhoneCapability phoneCapability = (PhoneCapability) capability;
capabilitySupportedListener.onCapabilitySupported(phoneCapability != null ?
phoneCapability.getDialNumberEnabled() : false);

}

@Override
void (String info) {
capabilitySupportedListener.onError(info);
}
}, false);

}

OnCapabilitySupportedListener {
(Boolean supported);

(String info);

Sending a DialNumber Request

Once you know that the module supports dialing a phone number and that your SDL app

has permission to send the DialNumber request, you can create and send the request.

NOTE

DialNumber strips all characters except for 0-9, *, #, ,, ;,and + .

DialNumber dialNumber = new DialNumber()
.setNumber();
dialNumber.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
Result result = response.getResultCode();
if(result.equals(Result. SUCCESS)X{
// “DialNumber’ successfully sent
}else if(result.equals(Result. REJECTED)){
// "DialNumber® was rejected. Either the call was sent and cancelled or there
is no device connected
}else if(result.equals(Result.DISALLOWED)){
// Your app is not allowed to use "DialNumber
}
}
3

sdIManager.sendRPC(dialNumber);

Dial Number Responses

The DialNumber request has three possible responses that you should expect:

1. SUCCESS - The request was successfully sent, and a phone call was initiated by the
user.
2. REJECTED - This can mean either:

o The user rejected the request to make the phone call.
o The phone is not connected to the module via Bluetooth.

3. DISALLOWED - Your app does not have permission to use the DialNumber
request.

Setting the Navigation
Destination

The SendLocation RPC gives you the ability to send a GPS location to the active

navigation app on the module.

When using the SendLocation RPC, you will not have access to any information about
how the user interacted with this location, only if the request was successfully sent. The
request will be handled by the module from that point on using the active navigation

system.

Checking Your App's Permissions

The SendLocation RPC is restricted by most OEMs. As a result, a module may reject
your request if your app does not have the correct permissions. Your SDL app may also be
restricted to only being allowed to send a location when your app is open (i.e. the hmile

vel is non- NONE) or when it is the currently active app (i.e. the hmilLevel is FULL).

UUID listenerld =
sdIManager.getPermissionManager().addListener(Arrays.asList(new
PermissionElement(FunctionlD.SEND_LOCATION, null)),
PermissionManager.PERMISSION_GROUP_TYPE_ANY, new
OnPermissionChangelListener() {
@Override
void (@NonNull Map<FunctionID, PermissionStatus>
allowedPermissions, @NonNull int permissionGroupStatus) {
if (permissionGroupStatus !=
PermissionManager.PERMISSION_GROUP_TYPE_ALL_ALLOWED) {
// Your app does not have permission to send the "SendLocation’ request for
its current HMI level
return;
}

// Your app has permission to send the "SendLocation’ request for its current
HMI level
}
)

Checking if the Module Supports
Sending a Location

Since some modules will not support sending a location, you should check if the module
supports this feature before trying to use it. Once you have successfully connected to the
module, you can check the module's capabilities via the sdIManager.getSystemCapability
Manager() as shown in the example below. Please note that you only need to check once
if the module supports sending a location, however you must wait to perform this check
until you know that the SDL app has been opened (i.e. the hmilLevel is non- NONE).

O NOTE

If you discover that the module does not support sending a location or that
your app does not have the right permissions, you should disable any
buttons, voice commands, menu items, etc. in your app that would send the

SendLocation request.

void (OnCapabilitySupportedListener
capabilitySupportedListener) {
// Check if the module has navigation capabilities
if
('sdIManager.getSystemCapabilityManager().isCapabilitySupported(SystemCapability

capabilitySupportedListener.onCapabilitySupported(false);
return;

}

// Legacy modules (pre-RPC Spec v4.5) do not support system capabilities, so for
versions less than 4.5 we will assume "SendLocation’ is supported if
“isCapabilitySupported()” returns true

SdIMsgVersion sdIMsgVersion =
sdIManager.getRegisterApplinterfaceResponse().getSdiIMsgVersion();

if (sdIMsgVersion == null) {

capabilitySupportedListener.onCapabilitySupported(true);
return;

}

Version rpcSpecVersion = new Version(sdiMsgVersion);

if (rpcSpecVersion.isNewerThan(new Version(4, 5, 0)) < 0) {

capabilitySupportedListener.onCapabilitySupported(true);
return;

}

// Retrieve the navigation capability

sdIManager.getSystemCapabilityManager().getCapability(SystemCapability Type.NAVI
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
NavigationCapability navigationCapability = (NavigationCapability) capability;
capabilitySupportedListener.onCapabilitySupported(navigationCapability !=
null ? navigationCapability.getSendLocationEnabled() : false);

}

@Override
void (String info) {
capabilitySupportedListener.onError(info);
}
}, false);

}

OnCapabilitySupportedListener {
(Boolean supported);

(String info);

Using Send Location

To use the SendLocation request, you must at minimum include the longitude and

latitude of the location.

SendLocation sendLocation = new SendLocation()
.setLatitudeDegrees(42.877737)
.setLongitudeDegrees(-97.380967)
.setLocationName()
.setLocationDescription(

OasisAddress address = new OasisAddress()
.setSubThoroughfare()
.setThoroughfare()
.setLocality()
.setAdministrativeArea(

.setPostalCode()
.setCountryCode()
.setCountryName();

sendLocation.setAddress(address);
sendLocation.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
Result result = response.getResultCode();
if(result.equals(Result.SUCCESS)H{
// “SendLocation’ successfully sent
}else if(result.equals(Result.INVALID_DATA)){
// "SendLocation” was rejected. The request contained invalid data
}else if(result.equals(Result.DISALLOWED)){
// Your app is not allowed to use "SendLocation’
}

}
N

sdIManager.sendRPC(sendLocation);

Checking the Result of Send Location

The SendLocation request has three possible responses that you should expect:

1. SUCCESS - Successfully sent.
2. INVALID_DATA - The request contains invalid data and was rejected.
3. DISALLOWED - Your app does not have permission to use the SendLocation

request.

Getting the Navigation
Destination (RPC v4.1+)

The GetWayPoints and SubscribeWayPoints RPCs are designed to allow you to get the
navigation destination(s) from the active navigation app when the user has activated in-car

navigation.

Checking Your App's Permissions

Both the GetWayPoints and SubscribeWayPoints RPCs are restricted by most OEMs.
As a result, a module may reject your request if your app does not have the correct
permissions. Your SDL app may also be restricted to only being allowed to get waypoints
when your app is open (i.e. the hmiLevel is non- NONE) or when it is the currently active
app (i.e. the hmilLevel is FULL).

UUID listenerld =
sdIManager.getPermissionManager().addListener(Arrays.asList(new
PermissionElement(FunctionID.GET_WAY_POINTS, null), new
PermissionElement(FunctionID.SUBSCRIBE_WAY_POINTS, null)),
PermissionManager.PERMISSION_GROUP_TYPE_ANY, new
OnPermissionChangelListener() {
@Override
void (@NonNull Map<FunctionID, PermissionStatus>
allowedPermissions, @NonNull int permissionGroupStatus) {
PermissionStatus getWayPointPermissionStatus =
allowedPermissions.get(FunctionID.GET_WAY_POINTS);
if (getWayPointPermissionStatus != null &&
getWayPointPermissionStatus.getlsRPCAllowed()) {
// Your app has permission to send the "GetWayPoints™ request for its current
HMI level
} else {
// Your app does not have permission to send the "‘GetWayPoints™ request for
its current HMI level

}

PermissionStatus subscribeWayPointsPermissionStatus =
allowedPermissions.get(FunctionID.SUBSCRIBE_WAY_POINTS);
if (subscribeWayPointsPermissionStatus != null &&
subscribeWayPointsPermissionStatus.getisRPCAllowed()) {
// Your app has permission to send the "SubscribeWayPoints™ request for its
current HMI level
} else {
// Your app does not have permission to send the "SubscribeWayPoints’
request for its current HMI level
}
}
});

Checking if the Module Supports
Waypoints

Since some modules will not support getting waypoints, you should check if the module
supports this feature before trying to use it. Once you have successfully connected to the
module, you can check the module's capabilities via the sdlManager.getSystemCapability
Manager() as shown in the example below. Please note that you only need to check once
if the module supports getting waypoints, however you must wait to perform this check

until you know that the SDL app has been opened (i.e. the hmilLevel is non- NONE).

O NOTE

If you discover that the module does not support getting navigation
waypoints or that your app does not have the right permissions, you should
disable any buttons, voice commands, menu items, etc. in your app that
would send the GetWayPoints or SubscribeWayPoints requests.

void (OnCapabilitySupportedListener
capabilitySupportedListener) {
// Check if the module has navigation capabilities
if
('sdIManager.getSystemCapabilityManager().isCapabilitySupported(SystemCapability

capabilitySupportedListener.onCapabilitySupported(false);
return;

}

// Legacy modules (pre-RPC Spec v4.5) do not support system capabilities, so for
versions less than 4.5 we will assume "GetWayPoints™ and "SubscribeWayPoints™ are
supported if “isCapabilitySupported()” returns true

SdIMsgVersion sdIMsgVersion =
sdIManager.getRegisterApplinterfaceResponse().getSdiIMsgVersion();

if (sdIMsgVersion == null) {

capabilitySupportedListener.onCapabilitySupported(true);
return;

}

Version rpcSpecVersion = new Version(sdiMsgVersion);

if (rpcSpecVersion.isNewerThan(new Version(4, 5, 0)) < 0) {

capabilitySupportedListener.onCapabilitySupported(true);
return;

}

// Retrieve the navigation capability

sdIManager.getSystemCapabilityManager().getCapability(SystemCapability Type.NAVI
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
NavigationCapability navigationCapability = (NavigationCapability) capability;
capabilitySupportedListener.onCapabilitySupported(navigationCapability !=
null ? navigationCapability.getWayPointsEnabled() : false);

}

@Override
void (String info) {
capabilitySupportedListener.onError(info);
}
}, false);

}

OnCapabilitySupportedListener {
(Boolean supported);

(String info);

Subscribing to Waypoints

To subscribe to the navigation waypoints, you will have to set up your callback for

whenever the waypoints are updated, then send the SubscribeWayPoints RPC.

// You can subscribe any time before SDL would send the notification (such as when
you call “sdIManager.start’ or at initialization of your manager)
sdIManager.addOnRPCNotificationListener(FunctionID.ON_WAY_POINT_CHANGE,
new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {

OnWayPointChange onWayPointChangeNotification = (OnWayPointChange)
notification;

// Use the waypoint data

}
N

// After SDL has started your connection, at whatever point you want to subscribe,
send the subscribe RPC
SubscribeWayPoints subscribeWayPoints = new SubscribeWayPoints();
subscribeWayPoints.setOnRPCResponselListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse rpcResponse) {
if (rpcResponse.getSuccess())
// You are now subscribed
} else {
// Handle the errors
}

}
N

sdIManager.sendRPC(subscribeWayPoints);

Unsubscribing from Waypoints

To unsubscribe from waypoint data, you must send the UnsubscribeWayPoints RPC.

UnsubscribeWayPoints unsubscribeWayPoints = new UnsubscribeWayPoints();
unsubscribeWayPoints.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse rpcResponse) {
if (rpcResponse.getSuccess()){
// You are now unsubscribed

} else {
// Handle the errors
}

}
D

sdIManager.sendRPC(unsubscribeWayPoints);

One-Time Waypoints Request

If you only need waypoint data once without an ongoing subscription, you can use GetWa
yPoints instead of SubscribeWayPoints .

GetWayPoints getWayPoints = new GetWayPoints();
getWayPoints.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse rpcResponse) {
if (rpcResponse.getSuccess()){
GetWayPointsResponse getWayPointsResponse = (GetWayPointsResponse)
rpcResponse;
// Use the waypoint data
} else {
// Handle the errors
}

}
D

sdIManager.sendRPC(getWayPoints);

Uploading Files

In almost all cases, you will not need to handle uploading images because the screen
manager API will do that for you. There are some situations, such as VR help-lists and
turn-by-turn directions, that are not currently covered by the screen manager so you will
have manually upload the image yourself in those cases. For more information about

uploading images, see the Uploading Images guide.

Uploading an MP3 Using the File
Manager

The FileManager uploads files and keeps track of all the uploaded files names during a

session. To send data with the file manager you need to create either a SdlFile or SdIAr

twork object. Both SdIFile s and SdIArtwork s can be created with using filePath , or
byte[] .

SdIFile audioFile = new SdIFile(, FileType.AUDIO_MP3, mp3Data, true);
sdIManager.getFileManager().uploadFile(audioFile, new CompletionListener() {
@Override
void (boolean success) {

if (success) {
// File upload successful
}
}
3

Batching File Uploads

If you want to upload a group of files, you can use the FileManager batch upload
methods. Once all of the uploads have completed you will be notified if any of the uploads
failed.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/other-sdl-features/uploading-images/

sdIManager.getFileManager().uploadFiles(sdIFileList, new
MultipleFileCompletionListener() {
@Override

void (Map<String, String> errors) {

File Persistence

SdIFile and its subclass SdlArtwork support uploading persistent files, i.e. files that are
not deleted when the car turns off. Persistence should be used for files that will be used
every time the user opens the app. If the file is only displayed for short time the file should
not be persistent because it will take up unnecessary space on the head unit. You can
check the persistence via:

Boolean isPersistent = file.isPersistent();

NOTE

Be aware that persistence will not work if space on the head unit is limited.
The FileManager will always handle uploading images if they are non-

existent.

Overwriting Stored Files

If a file being uploaded has the same name as an already uploaded file, the new file will be
ignored. To override this setting, set the SdIFile 's overwrite property to true .

file.setOverwrite(true);

Checking the Amount of File Storage
Left

To find the amount of file storage left for your app on the head unit, use the

FileManager 's bytesAvailable property.

int bytesAvailable = sdIManager.getFileManager().getBytesAvailable();

Checking if a File Has Already Been
Uploaded

You can check out if an image has already been uploaded to the head unit via the FileMa

nager 's remoteFileNames property.

Boolean filelsOnHeadUnit =

sdIManager.getFileManager().getRemoteFileNames().contains(

Deleting Stored Files

Use the file manager’s delete request to delete a file associated with a file name.

sdIManager.getFileManager().deleteRemoteFileWithName(
CompletionListener() {
@Override

void (boolean success) {

Batch Deleting Files

sdIManager.getFileManager().deleteRemoteFilesWithNames(remoteFiles, new
MultipleFileCompletionListener() {
@Override

void (Map<String, String> errors) {

Uploading Images

NOTE

If you use the ScreenManager , image uploading for template graphics, soft
buttons, and menu items is handled for you behind the scenes. However, you
will still need to manually upload your images if you need images in an alert,
VR help lists, turn-by-turn directions, or other features not currently covered

by the ScreenManager .

You should be aware of these four things when using images in your SDL app:

1. You may be connected to a head unit that does not have the ability to display
images.

2. You must upload images from your mobile device to the head unit before using
them in a template.

3. Persistent images are stored on a head unit between sessions. Ephemeral images
are destroyed when a session ends (i.e. when the user turns off their vehicle).

4. Images can not be uploaded when the app's hmiLevel is NONE. For more

information about permissions, please review Understanding Permissions.

Checking if Graphics are Supported

Before uploading images to a head unit you should first check if the head unit supports
graphics. If not, you should avoid uploading unnecessary image data. To check if graphics
are supported, check the getCapability() method of a valid SystemCapabilityManager
obtained from sdlManager.getSystemCapabilityManager() to find out the display
capabilities of the head unit.

List<lmageField> imageFields =
sdIManager.getSystemCapabilityManager().getDefaultMainWindowCapability().getImz

boolean imagesSuported = (imageFields.size() > 0);

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/getting-started/understanding-permissions/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/displaying-a-user-interface/template-images/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/displaying-a-user-interface/template-custom-buttons/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/displaying-a-user-interface/main-menu/

Uploading an Image Using the File
Manager

The FileManager uploads files and keeps track of all the uploaded files names during a

session. To send data with the FileManager , you need to create either a SdIFile or Sdi

Artwork object. Both SdlIFile s and SdlArtwork s can be created with using filePath , or
byte[] .

SdlArtwork artwork = new SdlArtwork(, FileType.GRAPHIC_PNG, image,
false);
sdIManager.getFileManager().uploadFile(artwork, new CompletionListener() {
@Override
void (boolean success) {

if (success){
// Image Upload Successful
}
}
b

Batch File Uploads, Persistence, etc.

Similar to other files, artworks can be persistent, batched, overwrite, etc. See Uploading

Files for more information.

Creating an OEM Cloud App Store
(RPC v5.1+)

SDL allows OEMs to offer an app store that lets users browse and install remote cloud
apps. If the cloud app requires users to login with their credentials, the app store can use
an authentication token to automatically login users after their first session.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/other-sdl-features/uploading-files/

O NOTE

An OEM app store can be a mobile app or a cloud app.

User Authentication

App stores can handle user authentication for the installed cloud apps. For example, users
can log in after installing a cloud app using the app store. After that, the app store will
save an authentication token for the cloud app in the local policy table. Then, the cloud
app can retrieve the authentication token from the local policy table and use it to
authenticate a user with the application. If desired, an optional parameter, CloudAppVehi
clelD , can be used to identify the head unit.

Setting and Getting Cloud App
Properties

An OEM's app store can manage the properties of a specific cloud app by setting and
getting its CloudAppProperties . This table summarizes the properties that are included
in CloudAppProperties :

appID

nicknames

enabled

authToken

cloudTransportType

hybridAppPreference

endpoint

O NOTE

v

applD for the cloud app

List of possible names for the cloud app. The
cloud app will not be allowed to connect if its

name is not contained in this list

If true, cloud app will be displayed on HMI

Used to authenticate the user, if the app

requires user authentication

Specifies the connection type Core should use.
Currently Core supports WS and WSS, but an
OEM can implement their own transport

adapter to handle different values

Specifies the user preference to use the cloud
app version, mobile app version, or whichever

connects first when both are available

Remote endpoint for websocket connections

Only trusted app stores are allowed to set or get CloudAppProperties for

other cloud apps.

Setting Cloud App Properties

App stores can set properties for a cloud app by sending a SetCloudAppProperties
request to Core to store them in the local policy table. For example, in this piece of code,
the app store can set the authToken to associate a user with a cloud app after the user

logs in to the app by using the app store:

CloudAppProperties cloudAppProperties = new CloudAppProperties(
cloudAppProperties.setAuthToken();
SetCloudAppProperties setCloudAppProperties = new
SetCloudAppProperties(cloudAppProperties);
setCloudAppProperties.setONRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {

if (response.getSuccess()) {
DebugTool.loginfo();
} else {

DebugTool.loginfo(
}
}

});
sdIManager.sendRPC(setCloudAppProperties);

Getting Cloud App Properties

To retrieve cloud properties for a specific cloud app from local policy table, app stores can
send GetCloudAppProperties and specify the appld for that cloud app as in this

example:

GetCloudAppProperties getCloudAppProperties = new GetCloudAppProperties(
i
getCloudAppProperties.setONRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {
DebugTool.logInfo(,);
GetCloudAppPropertiesResponse getCloudAppPropertiesResponse =
(GetCloudAppPropertiesResponse) response;
CloudAppProperties cloudAppProperties =
getCloudAppPropertiesResponse.getCloudAppProperties();
// Use cloudAppProperties
} else {
DebugTool.loginfo(

}
}
i
sdIManager.sendRPC(getCloudAppProperties);

GETTING THE CLOUD APP ICON

Cloud app developers don't need to add any code to download the app icon. The cloud app
icon will be automatically downloaded from the url provided by the policy table and sent to
Core to be later displayed on the HMI.

Getting the Authentication Token

When users install cloud apps from an OEM's app store, they may be asked to login to that
cloud app using the app store. After logging in, app store can save the authToken inthe
local policy table to be used later by the cloud app for user authentication.

A cloud app can retrieve its authToken from local policy table after starting the RPC

service. The authToken can be used later by the app to authenticate the user:

String authToken = sdiIManager.getAuthToken();

Getting CloudAppVehiclelD (Optional)

The CloudAppVehiclelD is an optional parameter used by cloud apps to identify a head
unit. The content of CloudAppVehiclelD is up to the OEM's implementation. Possible
values could be the VIN or a hashed VIN.

The CloudAppVehiclelD value can be retrieved as part of the GetVehicleData RPC. To
find out more about how to retrieve CloudAppVehiclelD , check out the Retrieving Vehicle
Data section.

Encryption

Some OEMs may want to encrypt messages passed between your SDL app and the head
unit. If this is the case, when you submit your app to the OEM for review, they will ask you
to add a security library to your SDL app. It is also possible to encrypt messages even if
the OEM does not require encryption. In this case, you will have to work with the OEM to
get a security library. This section will show you how to add the security library to your

SDL app and configure optional encryption.

When Encryption is Needed

OEM Required Encrypted RPCs

OEMs may want to encrypt all or some of the RPCs being transmitted between your SDL
app and SDL Core. The library will handle encrypting and decrypting RPCs that are required
to be encrypted.

Optional Encryption

You may want to encrypt some or all of the RPCs you send to the head unit even if the
OEM does not require that they be protected. In that case you will have to manually
configure the payload protection status of every RPC that you send. Please note that if you

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/other-sdl-features/retrieving-vehicle-data/

require that an RPC be encrypted but there is no security manager configured for the
connected head unit, then the RPC will not be sent by the library.

NOTE

v

For optional encryption to work, you must work with each OEM to obtain

their proprietary security library.

Creating the Encryption Configuration

Each OEM that supports SDL will have their own proprietary security library. You must add
all required security libraries in the encryption configuration when you are configuring the
SDL app.

List<Class<? SdISecurityBase>> secList = new ArrayList<>();

secList.add(OEMSdISecurity.class);
builder.setSdISecurity(secList, serviceEncryptionListener);

Getting the Encryption Status

Since it can take a few moments to set up the encryption manager, you must wait until you
know that setup has completed before sending encrypted RPCs. If your RPC is sent before
setup has completed, your RPC will not be sent. You can implement the ServiceEncryptio

nListener , which is set in Builder.setSdISecurity , to get updates to the encryption

manager state.

ServiceEncryptionListener serviceEncryptionListener = new
ServiceEncryptionListener() {

@Override
void (@NonNull SessionType serviceType,

boolean isServiceEncrypted, @Nullable String error) {

if (isServiceEncrypted) {
// Encryption manager can encrypt

Setting Optional Encryption

If you want to encrypt a specific RPC, you must configure the payload protected status of
the RPC before you send it to the head unit. In order to send RPCs with optional encryption
you must call startRPCEncryption onthe sdlManager to make sure the encryption
manager gets started correctly. The best place to put startRPCEncryption is in the
successful callback of the SdIManagerListener 's onStart method.

sdIManager.startRPCEncryption();

Then, once you know the encryption manager has started successfully via encryption
manager state updates to your ServiceEncryptionListener object, you can start to send
encrypted RPCs by setting setPayloadProtected to true .

GetVehicleData getVehicleData = new GetVehicleData()
.setGps(true);

getVehicleData.setPayloadProtected(true);

sdIManager.sendRPC(getVehicleData);

Configuring SDL Logging

SDL Java Suite has a built-in logging framework that is designed to make debugging
easier. It provides many of the features common to other 3rd party logging frameworks for
java and can be used by your own app as well. We recommend that your app's integration
with SDL provide logging using this framework rather than any other 3rd party framework
your app may be using or System.out.print . This will consolidate all SDL related logs into

a common format and to a common destination.

Enabling the DebugTool

To make sure that log messages are displayed, you should enable the SDL Debug Tool:

DebugTool.enableDebugTool();

If you don't want the messages to be logged, you can disable the Debug Tool anytime:

DebugTool.disableDebugTool();

NOTE

If you use SDL Debug Tool to log messages without enabling the DebugTool
nothing wrong will happen. It will simply not display the log messages. This
gives the develop control on whether the logs should be displayed or not.

Logging messages

The SDL debug tool can be used to log messages with different log levels. The log level

defines how serious the log message is. This table summarizes when to use each log

level:
Info Use this to post useful information to the log
Use this when you suspect something shady is
Warning
going on
Error Use this when bad stuff happens

To log an info message:

DebugTool.loginfo(TAG,

To log a warning message:

DebugTool.logWarning(TAG,

To log an error message:

DebugTool.logError(TAG,

If you want to log error message with exception, you can add the exception as a second
parameter to the logError method:

DebugTool.logError(TAG, , new SdIException(

, SdIExceptionCause.SDL_CONNECTION_FAILED));

Updating to 4.9

Overview

This guide is to help developers get setup with the SDL Java library version 4.9. It is
assumed that the developer is already updated to at least version 4.7 or 4.8 of the library.

The full release notes are published here.

The main differences between the previous release and this are mainly additive, including
3 new managers which we will describe briefly. Additionally, we have fixed an issue where
symlinks were not working on Windows machines by creating a gradle task that builds
them for you. Additionally, we have added the ability to pass a buffer to the
AudioStreamManager to play raw data.

Voice Command Manager

The voice command manager is accessed via the ScreenManager . It allows for an easy
way to create global voice commands for your application. These are not supposed to be
a replacement for menu voice commands, but rather an easy way to trigger main events in

your application, similar to something you might use a SoftButton for. These commands,

https://github.com/smartdevicelink/sdl_java_suite/releases

once sent, will be available on the system as voice commands for the duration of the

session.

An example is as follows:

List<String> list1 = Collections.singletonList(
List<String> list2 = Collections.singletonList(

VoiceCommand voiceCommand1 = new VoiceCommand(list1, new
VoiceCommandSelectionListener() {
@Override
void 0 {
Log.i(TAG,);
}
i

VoiceCommand voiceCommand2 = new VoiceCommand(list2, new
VoiceCommandSelectionListener() {
@Override
void 0 {
Log.i(TAG,);
}
i

sdIManager.getScreenManager().setVoiceCommands(Arrays.asList(voiceCommand1

Menu Manager

Menus have now become simpler with the MenuManager , which is accessed via the Scr
eenManager . The cells, called MenuCell 's contain 2 constructors. One is for a cell itself,
and the other is a cell that contains a sub-menu. Note that currently SmartDeviceLink
(SDL) only supports sub-menus to the depth of 1.

MenuCell s contain a MenuSelectionListener which informs you that the cell has been
triggered, so that you might perform an action based on the cell selected. Note that you

can add images and voice commands to menu cells.

NOTE

When submitting a list of Menu cells, or adding a list of sub cells to a menu
cell, the order in which the cells will appear from top to bottom will be the
order in which they are in the list.

Example use:

// SUB MENU CELLS FOR MAIN MENU CELL 2

// Sub cells are just normal cells
MenuCell subCell1 = new MenuCell(,null, null, new
MenuSelectionListener() {

@Override

void (TriggerSource trigger) {
Log.i(TAG, + trigger.toString());

}

3

MenuCell subCell2 = new MenuCell(,null, null, new
MenuSelectionListener() {
@Override
void (TriggerSource trigger) {
Log.i(TAG, + trigger.toString());

}
D

// THE MAIN MENU CELLS

// normal cell
MenuCell mainCell1 = new MenuCell(, null, null, new
MenuSelectionListener() {

@Override

void (TriggerSource trigger) {
Log.i(TAG, + trigger.toString());

}

});

// sub menu parent cell
MenuCell mainCell2 = new MenuCell(
Arrays.asList(subCell1,subCell2));

// Send the entire menu off to be created
sdIManager.getScreenManager().setMenu(Arrays.asList(mainCell1, mainCell2));

Choice Set Manager

Previously it required a lot of code to use Performinteraction s with SDL. To alleviate
some of this pain, we have introduced the Choice Set Manager which is accessible via the
ScreenManager . Because the Choice Set Manager covers so many items, we will do a
brief overview here. You may continue to the Popup Menus section for more detailed
information.

There are 2 main use cases for using this manager, one is to display a choice set, and the
other is to display a keyboard.

Choice Set

Displaying a choice set is achieved by creating some ChoiceCell s. If you know what your
choices will be, we recommend using the preloadChoices method. This will ensure your

ChoiceSet is ready to be displayed when you want to display it, and your user is not kept
waiting. You can preload cells as follows:

// create some choice cells

ChoiceCell cell1 = new ChoiceCell(
ChoiceCell cell2 = new ChoiceCell(
ChoicecCell cell3 = new ChoiceCell(

// create the array of choice cells
choiceCellList = Arrays.asList(cell1,cell2,cell3);

// pre-load the cells on the head unit
sdIManager.getScreenManager().preloadChoices(choiceCellList, null);

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/displaying-a-user-interface/popup-menus/

NOTE

You will want to reference this array of cells when presenting your choice
set later (even if you add more cells). This is why we are setting this list to a

variable for now.

Once you are ready to present the Choice Set, you can do so by:

ChoiceSet choiceSet = new ChoiceSet(
choiceCellList, new ChoiceSetSelectionListener() {
@Override
void (ChoiceCell choiceCell, TriggerSource triggerSource,
int rowIndex) {
// do something with the selection

}

@Override
void (String error) {
Log.e(TAG, + error);
}
};
sdIManager.getScreenManager().presentChoiceSet(choiceSet,
InteractionMode.MANUAL_ONLY);

Displaying A Keyboard

There is now also an easy way to display a keyboard, and listen for key events. You simply

need a KeyboardListener object.

KeyboardListener keyboardListener = new KeyboardListener() {
@Override
void (String inputText, KeyboardEvent event) {

}

@Override
void (KeyboardEvent event) {

}

@Override
void (String currentinputText,
KeyboardAutocompleteCompletionListener
keyboardAutocompleteCompletionListener) {

}

@Override
void (String currentinputText,
KeyboardCharacterSetCompletionListener
keyboardCharacterSetCompletionListener) {

}

@Override
void (KeyboardEvent event, String
currentInputText) {

You can note that two of the methods contain a KeyboardAutocompleteCompletionListe
ner and a KeyboardCharacterSetCompletionListener . These listeners allow you to show
auto completion text and to modify the available keys, respectively, on supported head
units.

To actually display the keyboard, call:

sdIManager.getScreenManager().presentKeyboard(

keyboardListener);

The null parameter in this example is a KeyboardProperties object that you can
optionally pass in to modify the keyboard for this request.

Updating to 5.0

Overview

This guide is to help developers get setup with the SDL Java library version 5.0. It is
assumed that the developer is already updated to at least version 4.11 or 4.12 of the
library.

The full release notes are published here.

New minimum SDK

SDL now has a new minimum required SDK version of 16. You can change the minimum

SDK version in the apps build.gradle file by changing minSdkVersion to 16. An example:

defaultConfig {
applicationld "com.sdl.mobileweather"
minSdkVersion 16
targetSdkVersion 26

versionCode 27
versionName "1.7.15"
testinstrumentationRunner "android.support.test.runner.AndroidJUnitRunner”

AndroidX

https://github.com/smartdevicelink/sdl_java_suite/releases

SDL now uses AndroidX. To migrate your app to use AndroidX, In Android Studio or IntelliJ,
click on Refactor, then Migrate to AndroidX.

Refactor Build Run Tools
Refactor This...

Rename File...
Change Signature...

Move Classes...
Copy File...

Extract
Inline...

Pull Members Up...

Migrate...

Convert to @CompileStatic
Remove Unused Resources...
Migrate to AppCompat...

Enable Instant Apps Support...

Add Right-to-Left (RTL) Support...

NOTE

To migrate to AndroidX you must set the compileSdkVersion to 28 in the
apps build.gradle file

Import changes

Some classes have moved packages, and imports may need to be changed.

Example:

OnSystemCapabilityListener has moved packages from:
import com.smartdevicelink.proxy.interfaces.OnSystemCapabilityListener;
to

import com.smartdevicelink.managers.lifecycle.OnSystemCapabilityListener;

SdiIManagerListener changes

In 4.12 a new managerShouldUpdateLifecycle method was added and the old
managerShouldUpdateLifecycle method was deprecated. In 5.0 the deprecated method

was removed. More detail can be found here.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/getting-started/adapting-to-the-head-unit-language/

Before:

SdIManagerListener listener = new SdiManagerListener() {
@Override

void 0 {
}

@Override
void 04
}

@Override
void (String info, Exception €) {

}

@Override
LifecycleConfigurationUpdate (Language
language, Language hmilLanguage) {
return null;

}

@Override
LifecycleConfigurationUpdate (Language
language) {
return null;

Now:

SdIManagerListener listener = new SdiManagerListener() {
@Override
void 0«

}

@Override
void 04
}

@Override
void (String info, Exception e) {
}

@Override
LifecycleConfigurationUpdate (Language
language, Language hmilLanguage) {
return null;

Sending RPC's listener updates

When sending RPC's with a listener, onError has been removed from OnMultipleRequestLi
stenerjava and OnRPCResponseListener.java . Instead of onError getting called,
onResponse will be called whether its a success or not.

OnRPCResponselListener Before:

subscribeButtonLeft.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {

}

@Override
void (int correlationld, Result resultCode, String info) {
// Handle Error
}
});

OnRPCResponseListener Now:

subscribeButtonLeft.setOnRPCResponseListener(new OnRPCResponselListener() {
@Override
void (int correlationld, RPCResponse response) {
if(response.getSuccess()){

// Add if statement to check success
}
}
)

OnMultipleRequestListener Before:

sdIManager.sendRPCs(Arrays.asList(subscribeButtonLeft, subscribeButtonRight),
new OnMultipleRequestListener() {
@Override
void (int remainingRequests) {

}

@Override
void

}

@Override
void (int correlationld, Result resultCode, String info) {

}

@Override
void (int correlationld, RPCResponse response) {

OnMultipleRequestListener Now:

sdIManager.sendRPCs(Arrays.asList(subscribeButtonLeft, subscribeButtonRight),
new OnMultipleRequestListener() {
@Override
void (int remainingRequests) {

}

@Override
void

}

@Override
void (int correlationld, RPCResponse response) {
if(response.getSuccess(){
// Add if statement to check success

}

Use Multiplex instead of legacy BT &
USB

BTTransportConfig.java and USBTransportConfig have been removed from the library.
You should use MultiplexBluetoothTransport.java and MultiplexUsbTransport.java
instead.

ScreenManager Template
Management

You can now use the ScreenManager to change screen templates and day/night color

schemes. See Main Screen Templates for more detail.

Example:

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/displaying-a-user-interface/main-screen-templates/

TemplateConfiguration configuration = new
TemplateConfiguration().setTemplate(Template).setDayColorScheme(DayColorScher

sdIManager.getScreenManager().changeLayout(configuration, new
CompletionListener() {
@Override
void (boolean success) {

Chainable RPC setters

Rpc setters are now chainable. Before you had to either use a constructor that took all

parameters or set everyone individually. Now you can chain them together.

Before:

Alert alert = new Alert();
alert.setAlertText1()i
alert.setDuration(5000);
alert.setPlayTone(true);

Now:

Alert alert = new Alert().setAlertText1().setDuration(5000).setPlayTone(true);

New DebugTool methods

There is a new way of logging information in debug mode. Before for example, we would

use Log.e to log errors, now we use the DebugTool.logError.

Log.i to DebugTool.loginfo
Logw to DebugTool.logWarning
Log.e to DebugTool.logError

Before:

Log.e(TAG,

Now:

DebugTool.logError(TAG,

NOTE

In JavaSE you must use the DebugTool, the old log methods will not work.

TTSChunkFactory removal

TTSChunkFactory.java was removed. To create a voice command you should now use T
TSChunk An example of creating and sending a voice command:

Before:

Speak msg = new Speak(TTSChunkFactory.createSimpleTTSChunks(

);
sdIManager.sendRPC(msg);

Now:

Speak msg = new Speak(Collections.singletonList(new TTSChunk(
, SpeechCapabilities. TEXT)));

sdIManager.sendRPC(msg);

CharacterSets

Existing CharacterSet sets were not standards-compliant and are deprecated. New
character sets have been added and will be used in future head units to describe text
fields.

Updating to 5.1

Overview

This guide is to help developers get setup with the SDL Java library version 5.1. It is
assumed that the developer is already updated to at least version 5.0 of the library.

The full release notes are published here.

Maven Central

https://github.com/smartdevicelink/sdl_java_suite/releases

Starting with SDL Java library version 5.1 the release will be published to Maven Central
instead of JCenter.

To gain access to the Maven Central repository, make sure your app's build.gradle file
includes the following:

repositories {

mavenCentral()

}

SdiIManagerListener changes

In 5.1 a new onSystemInfoReceived method was added to the SdIManagerListener. More
detail can be found here

9, MUST

SdIManagerListener method: onSysteminfoReceived auto generates in
Android Studio to returns false. This will cause your app to not connect. You
must change it to true or implement logic to check system info to see if you
wish for your app to connect to that system.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/getting-started/integration-basics-java/

SdIManagerListener listener = new SdiManagerListener() {
@Override
void 0«
}

@Override
void 04
}

@Override
void (String info, Exception e) {

}

@Override
LifecycleConfigurationUpdate (Language
language, Language hmilLanguage) {
return null;

}

@Override
boolean (Systeminfo systeminfo) {
//Check the SystemInfo object to ensure that the connection to the device
should continue
return true;

Alert View

In 5.1 rather than sending an Alert RPC we now recommend sending an AlertView through

the ScreenManagers presentAlert method. More detail can be found here

Before:

void (String text) {
Alert alert = new Alert();
alert.setAlertText1(text);

alert.setDuration(5000);
sdIManager.sendRPC(alert);

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javase/displaying-a-user-interface/alerts-and-subtle-alerts/

Now:

void (String text) {
AlertView.Builder builder = new AlertView.Builder();
builder.setText(text);
builder.setTimeout(5);
AlertView alertView = builder.build();

sdIManager.getScreenManager().presentAlert(alertView, new
AlertCompletionListener() {

@Override
void (boolean success, Integer tryAgainTime) {
Log.i(TAG, + success);
}
3

