
JavaScript Suite Guides
Document current as of 12/18/2023 03:49 PM.

In order to build your app on a SmartDeviceLink (SDL) Core, the SDL software

development kit (SDK) must be installed in your app. The following steps will guide you

through adding the SDL SDK to your workspace and configuring the environment.

You can find the most recent release of the SDL JavaScript Suite here. The project comes

with prebuilt bundles of the library in the form of SDL.min.js files. There is a vanilla

JavaScript distribution of the library as well as one for Node.js. They are located in the li

b/js/dist and lib/node/dist directories respectively.

Installation

The SDL SDK is currently supported on Node.js v10.24.1 and above.

NOT E

Install SDL SDK

https://github.com/smartdevicelink/sdl_javascript_suite/releases
https://sdl-devportal-media-production.s3.amazonaws.com/

This build allows you to create apps that run on the browser. In order to have the built JS

file be imported into your HTML, you'll need to run a simple web server that can serve that

JS file. We will be using Node.js and npm for this task, but you can use any software that

lets you serve HTML and JS to the browser.

In a new directory, save your SDL.min.js file there, and then run the following: npm init .

Press Enter repeatedly through the prompts to set up some default npm configuration.

Then, install the express package by running npm install express --save . Express is a

popular Node.js package that allows easy setup of a server. Then, create a index.js file in

the same directory, and save the following to it:

const express = require('express');
const app = express();
app.use(express.static(__dirname));
const PORT = process.env.PORT || 3000;
const server = app.listen(PORT, async function () {
 console.log('Server running on port', PORT);
});

This code will start up a server on port 3000 on localhost, and serve any files in the

directory it is running in. Now that the server code is complete, create a new file named in

dex.html that will contain the app logic and save it in the same directory. Make the

contents of the HTML file the following:

<html>
 <head>
 <script src='./SDL.min.js'></script>
 </head>
 <body>
 <script>
 console.log(SDL);
 </script>
 </body>
</html>

Vanilla JavaScript Setup

https://nodejs.org/en/
https://docs.npmjs.com/about-npm/

Finally, run the server by running this in a Terminal window in the same directory: node in

dex.js . The console should print Server running on port 3000 . Go to your browser and

enter localhost:3000 in the address bar. If you open up your browser's console on the

blank page that shows up you should see the SDL library version be printed and the

imported SDL object. If so, then you have successfully set up SDL in your browser! If not,

then make sure your SDL build name is correct, and that the HTML file, build file, and JS

server file are all in the same directory. If you still have questions, ask them in the

javascript-suite-help channel in the SDL Slack. You can sign up for our Slack here.

This build allows you to create apps that run through a server on your computer. You will

need to have installed Node.js and npm are before beginning work on this app.

In a new directory, save your SDL.min.js file, then create a new file in the same directory

named index.js . Make the contents of that file the following:

const SDL = require('./SDL.min.js');
console.log(SDL);

Finally, run the file by entering the following in a Terminal window in the same directory: n

ode index.js . You should see the SDL library version and the imported SDL object be

printed to the console. If so, then you have successfully set up the SDL library!

WebEngine apps use the vanilla JavaScript build, and are set up in a similar fashion to

those JS apps where it will also run in the browser. Set up the index.js and index.html

file like in the Vanilla JavaScript Setup section. The majority of the configuration for the

app will now be separated into a manifest.js file and then imported into the index.html

file. Create a manifest.js file like below and save it in the same directory as the other

two files. The entrypoint's value should have the same name as your app's HTML file.

Node.js Setup

WebEngine App Setup

https://slack.smartdevicelink.com/
https://nodejs.org/en/
https://docs.npmjs.com/about-npm/

export default {
 "entrypoint": "./index.html",
 "appIcon": "./app_icon.png",
 "appId": "hello-webengine",
 "appName": "Hello WebEngine",
 "category": "DEFAULT",
 "additionalCategories": [],
 "locales": {
 "de_DE": {
 "appName": "Hallo JS",
 "appIcon": "./app_icon.png"
 }
 },
 "appVersion": "1.0.0",
 "minRpcVersion": "6.0",
 "minProtocolVersion": "5.0"
};

Note that the manifest file is using the import/export module syntax; in the HTML file it

should be imported in as a module:

import sdl_manifest from './manifest.js';

In the transport configuration the parameters for WebSocketClientConfig will be empty.

For WebEngine apps those connection details are expected as query parameters in the

URL. See below for an example of what the URL is expected to be once the server is

running. sdl-host is the location of the SDL Core WebSocket server. sdl-port is the port

of that WebSocket server. sdl-transport-role refers to SDL Core's role, which is as a

server (as opposed to a client).

http://localhost:3000/?sdl-host=HOST&sdl-transport-role=ws-server&sdl-port=PORT

An app id is required for production level apps. The app id gives your app special

permissions to access vehicle data. If your app does not need to access vehicle data, a

dummy app id (i.e. creating a fake id like "1234") is sufficient during the development

stage. However, you must get an app id before releasing the app to the public.

To obtain an app id, sign up at smartdevicelink.com.

The type of app you can make will depend on the build library you select. If you are using

the Node.js build, your app can run as a WebSocket server or as a TCP client. If you are

using the vanilla JavaScript build (a minified JS file not tied to any specific build system or

server structure), your app can run as a WebSocket client. This guide will cover topics that

apply to both Node.js and vanilla JS library builds.

In order to correctly connect to an SDL enabled head unit, developers need to create an A

ppConfig configuration object to pass into an instance of the SdlManager class and

then start it. This configuration object requires a LifecycleConfig object which contains

the majority of the settings you need to set in order for the app to function. You will want

to use the following methods to get started: setAppId , setAppName , setLanguageDe

sired , setAppTypes , and setTransportConfig . These configuration objects support

method chaining, which allow you to create the following example configuration object:

SDK Configuration

1. Get an App Id

Integration Basics

Basic Configuration

https://www.smartdevicelink.com/

const lifecycleConfig = new SDL.manager.LifecycleConfig()
 .setAppId('hello-js')
 .setAppName('Hello JS')
 .setLanguageDesired(SDL.rpc.enums.Language.EN_US)
 .setAppTypes([
 SDL.rpc.enums.AppHMIType.DEFAULT,
]);

You have the ability to determine a minimum SDL protocol and minimum SDL RPC version

that your app supports. You can also check the connected vehicle type and disconnect if

the vehicle module is not supported. We recommend not setting these values until your

app is ready for production. The OEMs you support will help you configure correct values

during the application review process.

If a head unit is blocked by protocol version, your app icon will never appear on the head

unit's screen. If you configure your app to block by RPC version, it will appear and then

quickly disappear. So while blocking with minimumProtocolVersion is preferable, mini

mumRpcVersion allows you more granular control over which RPCs will be present.

lifecycleConfig.setMinimumProtocolVersion(new SDL.util.Version(3, 0, 0));
lifecycleConfig.setMinimumRpcVersion(new SDL.util.Version(4, 0, 0));

For WebEngine apps, most of this configuration will happen in the manifes

t.js file and does not need to be duplicated here.

NOT E

Configure Module Support

BLOC KING BY V ERSION

If you are blocking by vehicle type and you are connected over RPC v7.1+, your app icon

will never appear on the head unit's screen. If you are connected over RPC v7.0 or below, it

will appear and then quickly disappear. To implement this type of blocking, you need to set

up the SDLManager. You will then implement the optional onSystemInfoReceived

method and return true if you want to continue the connection and false if you wish to

disconnect.

The transport configuration will depend on the environment you're using. For example, you

can make a TCP connection with Node.js, but not with vanilla JS. See below for example

transport configurations.

lifecycleConfig.setTransportConfig(new SDL.transport.TcpClientConfig(HOST,
PORT));

For a WebSocket server connection, the developer is expected to set up the server

component, and pass in incoming client connections to the WebSocketServerConfig .

The ws node module provides the necessary object to the config.

BLOC KING BY V EHIC L E TYP E

Transport Configuration

NODE.J S T CP T R A NS POR T

NODE.J S WEBS OCKET S ER VER

const WS = require('ws');
const PORT = 3000;

// create a WebSocket Server
const appWebSocketServer = new WS.Server({
 port: PORT,
});
console.log(`WebSocket Server listening on port ${PORT}`);

appWebSocketServer.on('connection', (connection) => {
 // app setup goes here
 lifecycleConfig.setTransportConfig(
 new SDL.transport.WebSocketServerConfig(
 connection,
 CONNECTION_LOST_TIMEOUT // connection timeout in milliseconds (default
is 60 seconds)
)
);
});

lifecycleConfig.setTransportConfig(new SDL.transport.WebSocketClientConfig(HOST,
PORT));

There are several additional basic configuration options to set up your app, like the app

name and icon.

An app icon can be set in the LifecycleConfig to automatically upload and set the icon

image. Note that although the implementation of retrieving files are different between the

JS browser and Node.js environments, the developer can use the same API in both cases,

VA NI L L A J S WEBS OCKET CL I ENT

Additional Configuration Options

App Icon

and the SDL library will cover the implementation details for the developer depending on

which build they are using.

const filePath = './app_icon.png';
const file = new SDL.manager.file.filetypes.SdlFile()
 .setName('AppIcon')
 .setFilePath(filePath)
 .setType(SDL.rpc.enums.FileType.GRAPHIC_PNG)
 .setPersistent(true);

lifecycleConfig.setAppIcon(file);

In this case, the code snippet expects there to be an app_icon.png file present in the

same directory for the app icon.

You can listen for specific events using the LifecycleConfig 's setRpcNotificationListen

ers . The following example shows how to listen for HMI Status notifications. Additional

listeners can be added for specific RPCs by using their corresponding FunctionID in

place of the OnHMIStatus in the following example.

lifecycleConfig.setRpcNotificationListeners({
 [SDL.rpc.enums.FunctionID.OnHMIStatus]: (onHmiStatus) => {
 // HMI Level updates
 const hmiLevel = onHmiStatus.getHmiLevel();
 console.log("Current HMI Level: ", hmiLevel);
 }
});

It is recommended to use this method over the SdlManager.addRpcListener method for

the OnHMIStatus RPC, or any RPC Notifications that your app cannot afford to miss

during the initial connection.

Listening for RPC notifications and events

After creating the LifecycleConfig , it can be set into the AppConfig and then passed

into the SdlManager . The following snippet will set up the SdlManager and start it up. A

listener is attached to the manager listener to let you know when there is a connection

and the managers are ready.

const appConfig = new SDL.manager.AppConfig()
 .setLifecycleConfig(lifecycleConfig);

const managerListener = new SDL.manager.SdlManagerListener()
 .setOnStart((sdlManager) => {
 // managers are ready
 })
 .setOnError((sdlManager, info) => {
 console.error('Error from SdlManagerListener: ', info);
 })
 .setOnSystemInfoReceived((systemInfo) => {
 console.log(`Connected to system ${systemInfo}`);
 return true;
 })
 .setManagerShouldUpdateLifecycleToLanguage((language, hmiLanguage) => {
 return new SDL.manager.lifecycle.LifecycleConfigurationUpdate();
 });

const sdlManager = new SDL.manager.SdlManager(appConfig, managerListener)
 .start();

For WebEngine apps, there are slight modifications for integrating the library, such as

importing the manifest file and passing it into the LifecycleConfig.loadManifest method.

Additionally, since the data for the connection information is part of the URL query, the W

ebSocketClientConfig class requires no arguments, and the library will read the URL query

values instead. The resulting index.html may look something like this as a result:

Setting Up the SDL Manager

Configuring the WebEngine App
HTML File

<html>
 <head>
 <script src='./SDL.min.js'></script>
 </head>
 <body>
 <script type='module'>
 import sdl_manifest from './manifest.js';

 const lifecycleConfig = new SDL.manager.LifecycleConfig()
 .loadManifest(sdl_manifest)
 .setLanguageDesired(SDL.rpc.enums.Language.EN_US);

 lifecycleConfig.setTransportConfig(new
SDL.transport.WebSocketClientConfig());

 lifecycleConfig.setRpcNotificationListeners({
 [SDL.rpc.enums.FunctionID.OnHMIStatus]: (onHmiStatus) => {
 // HMI Level updates
 const hmiLevel = onHmiStatus.getHmiLevel();
 console.log("Current HMI Level: ", hmiLevel);
 }
 });

 const appConfig = new SDL.manager.AppConfig()
 .setLifecycleConfig(lifecycleConfig);

 const managerListener = new SDL.manager.SdlManagerListener()
 .setOnStart((sdlManager) => {
 // managers are ready
 })
 .setOnError((sdlManager, info) => {
 console.error('Error from SdlManagerListener: ', info);
 })
 .setOnSystemInfoReceived((systemInfo) => {
 console.log(`Connected to system ${systemInfo}`);
 return true;
 })
 .setManagerShouldUpdateLifecycleToLanguage((language, hmiLanguage)
=> {
 return new SDL.manager.lifecycle.LifecycleConfigurationUpdate();
 });

 const sdlManager = new SDL.manager.SdlManager(appConfig,
managerListener)
 .start();
 </script>
 </body>
</html>

You should now be able to connect to a head unit or emulator. For more guidance on

connecting, see Connecting to an Infotainment System. To start building your app, learn

about designing your interface. Please also review the best practices for building an SDL

app.

In order to view your SDL app, you must connect your device to a head unit that supports

SDL Core. If you do not have access to a head unit, we recommend using the Manticore

web-based emulator for testing how your SDL app reacts to real-world vehicle events, on-

screen interactions and voice recognition.

To connect to an emulator such as Manticore or a local Ubuntu SDL Core-based emulator

you must implement a TCP connection when configuring your SDL app.

To connect to a virtual machine running the Ubuntu SDL Core-based emulator, you will use

the IP address of the Ubuntu OS and 12345 for the port. You may have to enable port

forwarding on your virtual machine if you want to connect using a real device instead of a

simulated device.

Where to Go From Here

Connecting to an Infotainment
System

Connecting to an Emulator

Getting the IP Address and Port

GENERIC SDL C ORE

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/getting-started/connecting-to-an-infotainment-system/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/displaying-a-user-interface/main-screen-templates/
https://smartdevicelink.com/en/guides/sdl-overview-guides/best-practices/display-information/
https://smartdevicelink.com/resources/manticore/
https://smartdevicelink.com/resources/manticore/
https://github.com/smartdevicelink/sdl_core
https://github.com/smartdevicelink/sdl_core

Once you launch an instance of Manticore, you will be given an IP address and port

number that you can use to configure your TCP connection.

const lifecycleConfiguration = new
SDL.manager.LifecycleConfig().setTransportConfig(new
SDL.transport.TcpClientConfig(<IP Address>, <PORT>));

Build and run the project in Node.js, targeting the device or simulator that you want to test

your app with. Your app should compile and launch on your device of choosing. If your

connection configuration is setup correctly, you should see your SDL app icon appear on

the HMI screen:

MANTIC ORE

Setting the IP Address and Port

Running the SDL App

To open your app, click on your app's icon in the HMI.

This is the main screen of your SDL app. If you get to this point, your SDL app is working.

If you are having issues with connecting to an emulator or head unit, please see our

troubleshooting tips in the Example Apps section of the guide.

Your SDL cloud/webengine app will only work with head units that support RPC Spec

v5.1+.

Troubleshooting

Configuring the Connection

Generic SDL Core

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/getting-started/example-apps/

To connect to your app to a local Ubuntu SDL Core-based emulator you need to know the

IP address of the machine that is running the cloud app. If needed, running ifconfig in the

terminal will give you the current network configuration information.

Once you know the IP address, you need to set the websocket endpoint and app nickna

mes for your SDL app in the policy table under the "app_policies" section. This will let

Core know where your instance of the SDL app is running. The websocket endpoint needs

to include both the IP address and port: ws://<ip address>:<port>/ .

 "<Your SDL App ID>": {
 "keep_context": false,
 "steal_focus": false,
 "priority": "NONE",
 "default_hmi": "NONE",
 "groups": ["Base-4"],
 "RequestType": [],
 "RequestSubType": [],
 "hybrid_app_preference": "CLOUD",
 "endpoint": "ws://<ip address>:<port>",
 "enabled": true,
 "auth_token": "",
 "cloud_transport_type": "WS",
 "nicknames": ["<app name>"]
 }

For more information about policy tables please visit the Policy Table guide.

P OL IC Y TABL E C ONFIGU RATION

The <app name> value in "nicknames" must match the app name value

used in Integration Basics when implementing the SDL manager.

NOT E

https://github.com/smartdevicelink/sdl_core
https://smartdevicelink.com/en/guides/sdl-server/api-reference-documentation/policy-table/application-policies
https://smartdevicelink.com/en/guides/sdl-server/api-reference-documentation/policy-table/overview
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/getting-started/integration-basics-js/#basic-configuration

If you are using Manticore, the app connection information can be easily added in the

settings tab of the Manticore web page. Please note that Manticore needs to access your

machine's IP address in order to be able to start a websocket connection with your app. If

you are hosting the app on your local machine, you may need to do extra setup to make

your machine publicly accessible.

Once you have a configured instance of Core running, you should see your SDL app name

appear in a box on HMI. However, nothing will happen when you tap on the box until you

build and run your SDL app.

Manticore

Running the SDL App

Once your SDL app is running, either locally in an IDE or on a server, you will be able to

launch the SDL app by clicking on the app icon in the HMI.

This is the main screen of your SDL app. If you get to this point, your SDL app is working.

Since a head unit can support multiple languages, you may want to add support for more

than one language to your SDL app. The SDL library allows you to check which language is

currently used by the head unit. If desired, the app's name and the app's text-to-speech

(TTS) name can be customized to reflect the head unit's current language. If your app

name is not part of the current lexicon, you should tell the VR system how a native

speaker will pronounce your app name by setting the TTS name using phonemes from

either the Microsoft SAPI phoneme set or from the LHPLUS phoneme set.

Adapting to the Head Unit
Language

https://en.wikipedia.org/wiki/Phoneme

The initial configuration of the SdlManager requires a default language when setting the

SDL.manager.LifecycleConfig . If not set, the SDL library uses American English (EN_US)

as the default language. The connection will fail if the head unit does not support the lan

guage set in the SDL.manager.LifecycleConfig . The RegisterAppInterface response

RPC will return INVALID_DATA as the reason for rejecting the request.

If your app does not support the current head unit language, you should decide on a default

language to use in your app. All text should be created using this default language.

Unfortunately, your VR commands will probably not work as the VR system will not

recognize your users' pronunciation.

After starting the SDLManager you can check the sdlManager.getRegisterAppInterfaceR

esponse() property for the head unit's language and hmiDisplayLanguage . The langu

age property gives you the current VR system language; hmiDisplayLanguage the

current display text language.

const headUnitLanguage =
sdlManager.getRegisterAppInterfaceResponse().getLanguage();
const headUnitHMILanguage =
sdlManager.getRegisterAppInterfaceResponse().getHmiDisplayLanguage();

To customize the app name for the head unit's current language, implement the following

steps:

Setting the Default Language

What if My App Does Not Support the Head Unit
Language?

Checking the Current Head Unit Language

Updating the SDL App Name

1. Set the default language in the LifecyleConfig.

2. Implement the sdlManagerListener 's managerShouldUpdateLifecycle(language, h

miLanguage) method. If the module's current HMI language or voice recognition

(VR) language is different from the app's default language, the listener will be called

with the module's current HMI and/or VR language. Return a LifecycleConfiguration

Update with the new appName and/or ttsName .

managerShouldUpdateLifecycle(language, hmiLanguage) {
 let isUpdateNeeded = false;
 let appName = APP_NAME;
 let ttsName = APP_NAME;
 switch (language) {
 case SDL.rpc.enums.Language.ES_MX:
 isUpdateNeeded = true;
 ttsName = APP_NAME_ES;
 break;
 case SDL.rpc.enums.Language.FR_CA:
 isUpdateNeeded = true;
 ttsName = APP_NAME_FR;
 break;
 default:
 break;
 }
 switch (hmiLanguage) {
 case SDL.rpc.enums.Language.ES_MX:
 isUpdateNeeded = true;
 appName = APP_NAME_ES;
 break;
 case SDL.rpc.enums.Language.FR_CA:
 isUpdateNeeded = true;
 appName = APP_NAME_FR;
 break;
 default:
 break;
 }
 if (isUpdateNeeded) {
 const chunks = [new
SDL.rpc.structs.TTSChunk().setText(ttsName).setType(SDL.rpc.enums.SpeechCapabi

 return new SDL.manager.lifecycle.LifecycleConfigurationUpdate(appName, null,
chunks, null);
 } else {
 return null;
 }
}

While creating your SDL app, remember that just because your app is connected to a head

unit it does not mean that the app has permission to send the RPCs you want. If your app

does not have the required permissions, requests will be rejected. There are three

important things to remember in regards to permissions:

1. You may not be able to send a RPC when the SDL app is closed, in the background,

or obscured by an alert. Each RPC has a set of hmiLevels during which it can be

sent.

2. For some RPCs, like those that access vehicle data or make a phone call, you may

need special permissions from the OEM to use. This permission is granted when

you submit your app to the OEM for approval. Each OEM decides which RPCs it will

restrict access to, so it is up you to check if you are allowed to use the RPC with the

head unit.

3. Some head units may not support all RPCs.

When your app is connected to the head unit you will receive notifications when the SDL

app's HMI status changes. Your app can be in one of four different hmiLevel s:

Understanding Permissions

HMI Levels

H M I L E V E L W H A T D O E S T H I S M E A N ?

Be careful with sending user interface related RPCs in the NONE and BACKGROUND

levels; some head units may reject RPCs sent in those states. We recommended that you

wait until your app's hmiLevel enters FULL to set up your app's UI.

To get more detailed information about the state of your SDL app check the current

system context. The system context will let you know if a menu is open, a VR session is

in progress, an alert is showing, or if the main screen is unobstructed. You can find more

information about the system context below.

Monitoring HMI Status is possible through an OnHMIStatus notification that you can

subscribe to via the LifecycleConfig 's setRpcNotificationListeners .

NONE
The user has not yet opened your app, or the

app has been killed.

BACKGROUND
The user has opened your app, but is currently

in another part of the head unit.

LIMITED

This level only applies to media and navigation

apps (i.e. apps with an appType of MEDIA
or NAVIGATION). The user has opened your

app, but is currently in another part of the head

unit. The app can receive button presses from

the play, seek, tune, and preset buttons.

FULL Your app is currently in focus on the screen.

Monitoring the HMI Level

function onHmiStatusListener (onHmiStatus) {
 const hmiLevel = onHmiStatus.getHmiLevel();
 if (hmiLevel === SDL.rpc.enums.HMILevel.HMI_FULL) {
 // now in HMI FULL
 }
}

lifecycleConfig.setRpcNotificationListeners({
 [SDL.rpc.enums.FunctionID.OnHMIStatus]: onHmiStatusListener
});

The PermissionManager allows developers to easily query whether specific RPCs are

allowed or not in the current state of the app. It also allows a listener to be added for

RPCs or their parameters so that if there are changes in their permissions, the app will be

notified.

You can also retrieve the status of a group of RPCs. First, you can retrieve the permission

status of the group of RPCs as a whole: whether or not those RPCs are all allowed, all

disallowed, or some are allowed and some are disallowed. This will allow you to know, for

example, if a feature you need is allowed based on the status of all the RPCs needed for

the feature.

const isAllowed =
sdlManager.getPermissionManager().isRpcAllowed(SDL.rpc.enums.FunctionID.Show)

const isParameterAllowed =
sdlManager.getPermissionManager().isPermissionParameterAllowed(SDL.rpc.enums
 SDL.rpc.messages.GetVehicleData.KEY_RPM);

Permission Manager

Checking Current Permissions of a Single RPC

Checking Current Permissions of a Group of RPCs

The previous snippet will give a quick generic status for all permissions together.

However, if you want to get a more detailed result about the status of every permission or

parameter in the group, you can use the getStatusOfPermissions method.

const permissionElements = [];
permissionElements.push(new
SDL.manager.permission.PermissionElement(SDL.rpc.enums.FunctionID.Show,
null));
permissionElements.push(new
SDL.manager.permission.PermissionElement(SDL.rpc.enums.FunctionID.GetVehicleD
 [SDL.rpc.messages.GetVehicleData.KEY_RPM,
SDL.rpc.messages.GetVehicleData.KEY_SPEED]));

const groupStatus =
sdlManager.getPermissionManager().getGroupStatusOfPermissions(permissionElem

switch (groupStatus) {
 case SDL.manager.permission.enums.PermissionGroupStatus.ALLOWED:
 // Every permission in the group is currently allowed
 break;
 case SDL.manager.permission.enums.PermissionGroupStatus.DISALLOWED:
 // Every permission in the group is currently disallowed
 break;
 case SDL.manager.permission.enums.PermissionGroupStatus.MIXED:
 // Some permissions in the group are allowed and some disallowed
 break;
 case SDL.manager.permission.enums.PermissionGroupStatus.UNKNOWN:
 // The current status of the group is unknown
 break;
}

If desired, you can set a listener for a group of permissions. The listener will be called

when the permissions for the group changes. If you want to be notified when the

permission status of any of RPCs in the group change, set the groupType to SDL.manag

er.permission.enums.PermissionGroupType.ANY . If you only want to be notified when all

of the RPCs in the group are allowed, or go from allowed to some/all not allowed, set the

groupType to SDL.manager.permission.enums.PermissionGroupType.ALL_ALLOWED .

const permissionElements = [];
permissionElements.push(new
SDL.manager.permission.PermissionElement(SDL.rpc.enums.FunctionID.Show,
null));
permissionElements.push(new
SDL.manager.permission.PermissionElement(SDL.rpc.enums.FunctionID.GetVehicleD
 [SDL.rpc.messages.GetVehicleData.KEY_RPM,
SDL.rpc.messages.GetVehicleData.KEY_AIRBAG_STATUS]));

const status =
sdlManager.getPermissionManager().getStatusOfPermissions(permissionElements);

if (status[SDL.rpc.enums.FunctionID.GetVehicleData].getIsRpcAllowed()){
 // GetVehicleData RPC is allowed
}

if (status[SDL.rpc.enums.FunctionID.GetVehicleData].getAllowedParameters()
[SDL.rpc.messages.GetVehicleData.KEY_RPM]){
 // rpm parameter in GetVehicleData RPC is allowed
}

Observing Permissions

When you set up the listener, you will get a unique id back. Use this id to unsubscribe to

the permissions at a later date.

sdlManager.getPermissionManager().removeListener(listenerUuid);

If you want more detail about the current state of your SDL app you can monitor the audio

playback state as well as get notifications when something blocks the main screen of

const permissionElements = [];
permissionElements.push(new
SDL.manager.permission.PermissionElement(SDL.rpc.enums.FunctionID.Show,
null));
permissionElements.push(new
SDL.manager.permission.PermissionElement(SDL.rpc.enums.FunctionID.GetVehicleD
 [SDL.rpc.messages.GetVehicleData.KEY_RPM,
SDL.rpc.messages.GetVehicleData.KEY_AIRBAG_STATUS]));

const listenerId =
sdlManager.getPermissionManager().addListener(permissionElements,
SDL.manager.permission.enums.PermissionGroupType.ANY, function
(allowedPermissions, permissionGroupStatus) {
 if
(allowedPermissions[SDL.rpc.enums.FunctionID.GetVehicleData].getIsRpcAllowed())
{
 // GetVehicleData RPC is allowed
 }

 if
(allowedPermissions[SDL.rpc.enums.FunctionID.GetVehicleData].getAllowedParamet
[SDL.rpc.messages.GetVehicleData.KEY_RPM]){
 // rpm parameter in GetVehicleData RPC is allowed
 }
});

Stopping Observation of Permissions

Additional HMI State Information

your app.

The Audio Streaming State informs your app whether or not the driver will be able to hear

your app's audio. It will be either AUDIBLE , NOT_AUDIBLE , or ATTENUATED .

You will get these notifications when an alert pops up, when you start recording the in-car

audio, when voice recognition is active, when another app takes audio control, when a

navigation app is giving directions, etc.

A U D I O S T R E A M I N G S TA T E W H A T D O E S T H I S M E A N ?

sdlManager.addRpcListener(SDL.rpc.enums.FunctionID.OnHMIStatus, onHmiStatus
=> {
 const streamingState = onHmiStatus.getAudioStreamingState();
});

The code snippet above will get the AudioStreamingState which reflects the HMI's ability

to stream audio. However, the JavaScript Suite does not yet support audio and video

streaming. This will be addressed in a future version.

Audio Streaming State

AUDIBLE
Any audio you are playing will be audible to the

user

ATTENUATED

Some kind of audio mixing is occurring

between what you are playing, if anything, and

some system level audio or navigation

application audio.

NOT_AUDIBLE
Your streaming audio is not audible. This could

occur during a VRSESSION System Context.

System Context

The System Context informs your app if there is potentially a blocking HMI component

while your app is still visible. An example of this would be if your application is open and

you display an alert. Your app will receive a system context of ALERT while it is

presented on the screen, followed by MAIN when it is dismissed.

S Y S T E M C O N T E X T S TA T E W H A T D O E S T H I S M E A N ?

sdlManager.addRpcListener(SDL.rpc.enums.FunctionID.OnHMIStatus, onHmiStatus
=> {
 const systemContext = onHmiStatus.getSystemContext();
});

New features are always being added to SDL, however, you or your users may be

connecting to modules that do not support the newest features. If your SDL app attempts

to use an unsupported feature your request will be ignored by the module.

MAIN
No user interaction is in progress that could be

blocking your app's visibility.

VRSESSION Voice recognition is currently in progress.

MENU A menu interaction is currently in-progress.

HMI_OBSCURED

The app's display HMI is being blocked by

either a system or other app's overlay (another

app's alert, for instance).

ALERT An alert that you have sent is currently visible.

Checking Supported Features

When you are implementing a feature you should always assume that some modules your

users connect to will not support the feature or that the user may have disabled

permissions for this feature on their head unit. The best way to deal with unsupported

features is to check if the feature is available before attempting to use it and to handle

error responses.

The easiest way to check if a feature is supported is to query the library's System

Capability Manager. For more details on how get this information, please see the Adaptive

Interface Capabilities guide.

When you are trying to use a feature, you can watch for an error response to the RPC

request you sent to the module. If the response contains an error, you may be able to

check the result enum to determine if the feature is disabled. If the response that comes

back is of the type GenericResponse , the module doesn't understand your request.

Checking the System Capability Manager

Handling RPC Error Responses

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/displaying-a-user-interface/adaptive-interface-capabilities/

// sdl_javascript_suite v1.1+
async function send () {
 const response = await sdlManager.sendRpcResolve(alert);
 if (!response.getSuccess()) {
 // The request was not successful. Check the response's result code for more
information
 return;
 }
 // The request was successful
}
send().catch(err => {
 // thrown exceptions will be caught here
 // catch exceptional behavior in a parent function instead of at the RPC sending
level
});

// Pre sdl_javascript_suite v1.1
(async function () {
 const response = await sdlManager.sendRpc(request);
 if (!response.getSuccess()) {
 // The request was not successful. Check the response's result code or catch
and log the Promise error for more information
 return;
 }
 // The request was successful
})();

When you connect successfully to a head unit, SDL will automatically negotiate the

maximum SDL RPC version supported by both the module and your SDL SDK. If the feature

you want to support was added in a version less than or equal to the version returned by

the head unit, then your head unit may support the feature. Remember that the module may

still disable the feature, or the user may still have disabled permissions for the feature in

some cases. It's best to check if the feature is supported through the System Capability

Manager first, but you may also check the negotiated version to know if the head unit was

built before the feature was designed.

Throughout these guides you may see headers that contain text like "RPC 6.0+". That

means that if the negotiated version is 6.0 or greater, then SDL supports the feature but

the above caveats may still apply.

Checking if a Feature is Supported by Version

const rpcSpecVersion =
sdlManager.getRegisterAppInterfaceResponse().getSdlMsgVersion();

The JavaScript Suite repository on GitHub provides example apps for both the browser

and for NodeJS. This includes a WebEngine app, a WebSocket client app, a WebSocket

server app, and a TCP client app. The examples in the folders already come with their own

SDL library build files. Check each example app's readme.md file for more information on

how to run the respective app.

If your app compiles and but does not show up on the HMI, there are a few things you

should check:

1. Make sure that your HOST and PORT environment variables are set to match the

machine running SDL Core.

2. Make sure there is no firewall blocking the incoming port 12345 on the machine or

VM running SDL Core. Also, make sure your firewall allows that outgoing port.

3. There are different network configurations needed for different virtualization

software (VirtualBox, VMware, etc). Make sure yours is set up correctly. Or use

Manticore.

1. Make sure that the policy table of SDL Core has the correct app IDs and nicknames

as well as enabled=true.

Example Apps

Troubleshooting

TCP Debug Transport

Websocket Transport

https://github.com/smartdevicelink/sdl_javascript_suite/tree/master/examples
https://smartdevicelink.com/resources/manticore/

2. Make sure that the cloud endpoint and cloud transport type provided to SDL Core

are correct and reachable by SDL core. There are different network configurations

needed for different virtualization software (VirtualBox, VMware, etc). Make sure

yours is set up correctly.

1. Make sure that the manifest.js has provided all necessary fields and that the

information is correct.

2. If you're unable to install your app from a cloud app store, make sure that the app

has been compressed to a file archive that can be retrieved via the download URL

you provided.

For vanilla JavaScript SDL apps, connecting as a WebSocket client requires a version of

SDL Core that can accept incoming WebSocket connections (at least v6.1.0). If you are

using Manticore to test your app, note that it currently does not support WebSocket

connections.

A workaround to this limitation is to use a proxy program for your app to connect with

which modifies the incoming WebSocket connection into a TCP connection. The proxy

program then connects to SDL Core on the app's behalf and passes through your transport

data. A Java program that does exactly this is available in the repository's JavaScript

example folder called proxy.jar . Check the example app's readme.md for how to run it.

Please check the Connecting to an Infotainment System guide for more detailed

instructions on how to get the emulator's IP address and port number.

This workaround for older versions of Core is also necessary for WebEngine apps.

WebEngine Transport

Connecting to an Infotainment
System

Connecting as a WebSocket Client

Connecting as a WebSocket Server

https://smartdevicelink.com/en/guides/core/developer-documentation/web-engine-app-support/#webengine-apps
https://github.com/smartdevicelink/sdl_javascript_suite/blob/master/examples/js/hello-sdl
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/getting-started/connecting-to-an-infotainment-system/

SDL Core acts as the WebSocket client in this case. The information about your app and

how Core should connect to it must go into the policy table. Check the Connecting to an

Infotainment System guide's Configuring the Connection section for how to set up your

policy table to point to your app

The following snippet is a truncated version of what is needed to set up the WebSocket

server to accept and pass connections to the SDL library. This example uses the ws npm

module for WebSocket connections. Refer to the integration basics guide for the full

integration setup.

const SDL = require('./SDL.min.js');
const WS = require('ws');
const PORT = 3000;

// create a WebSocket Server
const appWebSocketServer = new WS.Server({
 port: PORT,
});
console.log(`WebSocket Server listening on port ${PORT}`);

// Event listener for incoming WebSocket connections
appWebSocketServer.on('connection', (connection) => {
 ...
 /* truncated snippet to show only the transport configuration setup */
 /* each new connection corresponds to a new instance of your app */
 lifecycleConfig.setTransportConfig(
 new SDL.transport.WebSocketServerConfig(
 connection
)
);
 ...
});

Since each car manufacturer has different user interface style guidelines, the number of

lines of text, soft and hard buttons, and images supported will vary between different types

Adaptive Interface Capabilities

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/getting-started/connecting-to-an-infotainment-system/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/getting-started/integration-basics-js/

of head units. The system will send information to your app about its capabilities for

various user interface elements. You should use this information to create the user

interface of your SDL app.

You can access these properties on the sdlManager.getSystemCapabilityManager()

instance.

System Capability Manager
Properties/Methods

PA R A M E T E R S / M E T H O D
S D E S C R I P T I O N R P C V E R S I O N

SystemCapabilityType.DISP

LAYS

Specifies display related

information. The primary

display will be the first element

within the array. Windows

within that display are different

places that the app could be

displayed (such as the main

app window and various

widget windows).

RPC v6.0+

getHmiZoneCapabilities()

Specifies HMI Zones in the

vehicle. There may be a HMI

available for back seat

passengers as well as front

seat passengers.

RPC v1.0+

getSpeechCapabilities()

Contains information about

TTS capabilities on the SDL

platform. Platforms may

support text, SAPI phonemes,

LH PLUS phonemes, pre-

recorded speech, and silence.

RPC v1.0+

getPrerecordedSpeechCapa

bilities()

A list of pre-recorded sounds

you can use in your app.

Sounds may include a help,

initial, listen, positive, or a

negative jingle.Currently only

available in the SDL_iOS and

SDL JavaScript libraries

RPC v3.0+

getVrCapabilities()

The voice-recognition

capabilities of the connected

SDL platform. The platform

may be able to recognize

spoken text in the current

language.

RPC v1.0+

PA R A M E T E R S / M E T H O D
S D E S C R I P T I O N R P C V E R S I O N

getAudioPassThruCapabiliti

es()

Describes the sampling rate,

bits per sample, and audio

types available.

RPC v2.0+

getPcmStreamCapabilities()

Describes different audio type

configurations for the audio

PCM stream service, e.g.

{8kHz,8-bit,PCM}.

RPC v4.1+

getHmiCapabilities()

Returns whether or not the app

can support built-in navigation

and phone calls.

RPC v3.0+

SystemCapabilityType.APP_

SERVICES

Describes the capabilities of

app services including what

service types are supported and

the current state of services.

RPC v5.1+

SystemCapabilityType.NAVI

GATION

Describes the built-in vehicle

navigation system's APIs.
RPC v4.5+

SystemCapabilityType.PHO

NE_CALL

Describes the built-in phone

calling capabilities of the IVI

system.

RPC v4.5+

SystemCapabilityType.VIDE

O_STREAMING

Describes the abilities of the

head unit to video stream

projection applications.

RPC v4.5+

SystemCapabilityType.REM

OTE_CONTROL

Describes the abilities of an

app to control built-in aspects

of the IVI system.

RPC v4.5+

SystemCapabilityType.SEAT

_LOCATION

Describes the positioning of

each seat in a vehicle
RPC v6.0+

The following properties are deprecated on SDL JavaScript 1.0 because as of RPC v6.0

they are deprecated. However, these properties will still be filled with information. When

connected on RPC <6.0, the information will be exactly the same as what is returned in the

RegisterAppInterfaceResponse and SetDisplayLayoutResponse . However, if connected

on RPC >6.0, the information will be converted from the newer-style display information,

which means that some information will not be available.

PA R A M E T E R S D E S C R I P T I O N

Images may be formatted as PNG, JPEG, or BMP. You can find which image types and

resolutions are supported using the system capability manager.

Deprecated Properties

getDisplayCapabilities()

Information about the HMI display. This

includes information about available

templates, whether or not graphics are

supported, and a list of all text fields and the

max number of characters allowed in each text

field.

getDefaultMainWindowCapability().getButtonC

apabilities()

A list of available buttons and whether the

buttons support long, short and up-down

presses.

getDefaultMainWindowCapability().getSoftButt

onCapabilities()

A list of available soft buttons and whether the

button support images. Also, information

about whether the button supports long, short

and up-down presses.

getPresetBankCapabilities()
If returned, the platform supports custom on-

screen presets.

Image Specifics

Since the head unit connection is often relatively slow (especially over Bluetooth), you

should pay attention to the size of your images to ensure that they are not larger than they

need to be. If an image is uploaded that is larger than the supported size, the image will be

scaled down by Core.

Below is a table with example image sizes. Check the SystemCapabilityManager for the

exact image sizes desired by the system you are connecting to. The connected system

should be able to scale down larger sizes, but if the image you are sending is much larger

than desired, then performance will be impacted.

const field =
sdlManager.getSystemCapabilityManager().getDefaultMainWindowCapability().getIma
[index];
const resolution = field.getImageResolution();

EXAMP L E IMAGE SIZES

I M A G E N A
M E

U S E D I N
R P C D E TA I L S S I Z E T Y P E

softButtonIm

age
Show

Image shown on

softbuttons on

the base screen

70x70px png, jpg, bmp

choiceImage
CreateInteractio

nChoiceSet

Image shown in

the manual part

of an

performInteracti

on either big

(ICON_ONLY) or

small

(LIST_ONLY)

70x70px png, jpg, bmp

choiceSecon

daryImage

CreateInteractio

nChoiceSet

Image shown on

the right side of

an entry in

(LIST_ONLY)

performInteracti

on

35x35px png, jpg, bmp

vrHelpItem
SetGlobalProper

ties

Image shown

during voice

interaction

35x35px png, jpg, bmp

menuIcon
SetGlobalProper

ties

Image shown on

the “More…”

button

35x35px png, jpg, bmp

cmdIcon AddCommand

Image shown for

commands in

the "More…"

menu

35x35px png, jpg, bmp

I M A G E N A
M E

U S E D I N
R P C D E TA I L S S I Z E T Y P E

Capabilities that can be updated can be queried and subscribed to using the SystemCapa

bilityManager .

You should check if the head unit supports your desired capability before subscribing to or

updating the capability.

Most head units provide features that your app can use: making and receiving phone calls,

an embedded navigation system, video and audio streaming, as well as supporting app

services. To pull information about this capability, use the SystemCapabilityManager to

const navigationSupported =
sdlManager.getSystemCapabilityManager().isCapabilitySupported(SDL.rpc.enums.Sys

appIcon SetAppIcon

Image shown as

Icon in the

"Mobile Apps"

menu

70x70px png, jpg, bmp

graphic Show

Image shown on

the base screen

as cover art

185x185px png, jpg, bmp

Querying and Subscribing System
Capabilities

Determining Support for System Capabilities

Manual Querying for System Capabilities

query the head unit for the desired capability. If a capability is unavailable, the query will

return null .

In addition to getting the current system capabilities, it is also possible to subscribe for

updates when the head unit capabilities change.

The supportsSubscriptions method currently is not supported by the JavaScript Suite.

This will be addressed in a future release.

const appServicesCapabilities = await
sdlManager.getSystemCapabilityManager().updateCapability(SDL.rpc.enums.SystemC

if (appServicesCapabilities !== null) {
 // Capability retrieved
} else {
 // Handle Error
}

Subscribing to System Capabilities (RPC v5.1+)

If supportsSubscriptions === false , you can still subscribe to capabilities,

however, you must manually poll for new capability updates using getCapab

ility(type) . All subscriptions will be automatically updated when that method

returns a new value.

The DISPLAYS type can be subscribed on all SDL versions.

NOT E

C HEC KING IF THE HEAD U NIT SU P P ORTS SU BSC RIP TIONS

Each head unit manufacturer supports a set of user interface templates. These templates

determine the position and size of the text, images, and buttons on the screen. Once the

app has connected successfully with an SDL enabled head unit, a list of supported

templates is available on sdlManager.getSystemCapabilityManager().getDefaultMainWind

owCapability().getTemplatesAvailable() .

To change a template at any time, use ScreenManager.changeLayout() . This guide

requires SDL JavaScript Suite version 1.2. If using an older version, use the SetDisplayLa

yout RPC.

sdlManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SDL.rpc.e
 function (capability) {
 // This listener is now subscribed to AppServicesCapabilities
 if (capability instanceof SDL.rpc.structs.AppServicesCapabilities) {
 // Got an AppServicesCapabilities struct
 }
})

SU BSC RIBE TO A C APABIL ITY

Main Screen Templates

Change the Template

const templateConfiguration = new SDL.rpc.structs.TemplateConfiguration()
 .setTemplate(SDL.rpc.enums.PredefinedLayout.GRAPHIC_WITH_TEXT);

const success = await
sdlManager.getScreenManager().changeLayout(templateConfiguration);
if (success) {
 console.log('Layout set successfully');
} else {
 console.log('Layout not set successfully');
}

Template changes can also be batched with text and graphics updates:

sdlManager.getScreenManager().beginTransaction();
sdlManager.getScreenManager().setTextField1('Line of Text');
// The promise returned by changeLayout will not resolve because it is part of a
batch update, and the await operator should be avoided as a result
sdlManager.getScreenManager().changeLayout(templateConfiguration);
sdlManager.getScreenManager().setPrimaryGraphic(artwork);
const success = await sdlManager.getScreenManager().commit();
if (success) {
 console.log('Text, Graphic, and Template changed successful');
}

When changing screen layouts and template data (for example, to show a weather hourly

data screen vs. a daily weather screen), it is recommended to encapsulate these updates

When changing the layout, you may get an error or failure if the update is

"superseded." This isn't technically a failure, because changing the layout has

not yet been attempted. The layout or batched operation was cancelled

before it could be completed because another operation was requested. The

layout change will then be inserted into the future operation and completed

then.

NOT E

into a class or method. Doing so is a good way to keep SDL UI changes organized. Below

is a generic example.

This example code creates an interface that can be implemented by various "screens" of

your SDL app. This is a recommended design pattern so that you can separate your code

to only involve the data models you need. This is just a simple example and your own

needs may be different.

All screens will need to have access to the ScreenManager object and a function to

display the screen. Therefore, it is recommended to create a generic interface for all

screens to follow. For the example below, the CustomSDLScreen protocol requires an

initializer with the parameters SDLManager and a showScreen method.

class CustomSdlScreen {
 constructor (sdlManager) {
 this.sdlManager = sdlManager;
 }
 showScreen () {
 // stub
 }
}

The following example code shows a few implementations of the example screen

changing protocol. A good practice for screen classes is to keep screen data in a view

model. Doing so will add a layer of abstraction for exposing public properties and

commands to the screen.

For the example below, the HomeScreen class will inherit the CustomSDLScreen

interface and will have a property of type HomeDataViewModel . The screen manager will

Screen Change Example Code

Screen Change Example Interface

Screen Change Example Implementations

change its text fields based on the view model's data. In addition, the home screen will

also create a navigation button to open the ButtonSDLScreen when pressed.

The ButtonSDLScreen follows the same patterns as the HomeSDLScreen but has

minor implementation differences. The screen's view model ButtonDataViewModel

contains properties unique to the ButtonSDLScreen such as text fields and an array of

soft button objects. It also changes the template configuration to tiles only.

class HomeSdlScreen extends CustomSdlScreen {
 constructor (sdlManager) {
 super(sdlManager);
 this.buttonScreen = new ButtonSdlScreen(sdlManager);
 this.homeDataViewModel = new HomeDataViewModel(); // holds plain object
data
 }

 showScreen () {
 const screenManager = this.sdlManager.getScreenManager();
 // Batch Updates
 screenManager.beginTransaction();
 // Change template to Graphics With Text and Soft Buttons
 screenManager.changeLayout(new SDL.rpc.structs.TemplateConfiguration()

.setTemplate(SDL.rpc.enums.PredefinedLayout.GRAPHIC_WITH_TEXT_AND_SOFTBUT

 // Assign text fields to view model data
 screenManager.setTextField1(this.homeDataViewModel.text1);
 screenManager.setTextField2(this.homeDataViewModel.text2);
 screenManager.setTextField3(this.homeDataViewModel.text3);
 screenManager.setTextField4(this.homeDataViewModel.text4);
 // Create and assign a button to navigate to the ButtonSdlScreen
 const navigationButton = new
SDL.manager.screen.utils.SoftButtonObject('ButtonSdlScreen', [new
SDL.manager.screen.utils.SoftButtonState('ButtonSdlScreen', 'Button Screen')],
'ButtonSdlScreen', (id, rpc) => {
 if (rpc instanceof SDL.rpc.messages.OnButtonPress) {
 this.buttonScreen.showScreen();
 }
 });
 screenManager.setSoftButtonObjects([navigationButton]);
 screenManager.commit();
 }
}

class ButtonSdlScreen extends CustomSdlScreen {
 constructor (sdlManager) {
 super(sdlManager);
 this.buttonDataViewModel = new ButtonDataViewModel(); // holds plain object
data
 }
 showScreen () {
 const screenManager = this.sdlManager.getScreenManager();
 // Batch Updates
 screenManager.beginTransaction();
 // Change template to Tiles Only
 screenManager.changeLayout(new SDL.rpc.structs.TemplateConfiguration()
 .setTemplate(SDL.rpc.enums.PredefinedLayout.TILES_ONLY));
 // Assign soft button objects to view model buttons array
 screenManager.setSoftButtonObjects(this.buttonDataViewModel.buttons);
 screenManager.commit();
 }
}

There are fifteen standard templates to choose from, however some head units may only

support a subset of these templates. The following examples show how templates will

appear on the Generic HMI and Ford's SYNC® 3 HMI.

Available Templates

MEDIA

https://github.com/smartdevicelink/generic_hmi
https://developer.ford.com/

MEDIA (WITH A P ROGRESS BAR)

NON-MEDIA

GRAP HIC WITH TEXT

TEXT WITH GRAP HIC

TIL ES ONLY

GRAP HIC WITH TIL ES

TIL ES WITH GRAP HIC

GRAP HIC WITH TEXT AND SOFT BU TTONS

TEXT AND SOFT BU TTONS WITH GRAP HIC

GRAP HIC WITH TEXT BU TTONS

DOU BL E GRAP HIC WITH SOFT BU TTONS

TEXT BU TTONS WITH GRAP HIC

TEXT BU TTONS ONLY

L ARGE GRAP HIC WITH SOFT BU TTONS

L ARGE GRAP HIC ONLY

You can easily display text, images, and buttons using the ScreenManager . To update the

UI, simply give the manager your new data and (optionally) sandwich the update between

the manager's beginTransaction() and commit() methods.

Template Text

Text Fields

S C R E E N M A N A G E R PA R A M E T E R N A M E D E S C R I P T I O N

textField1
The text displayed in a single-line display, or in

the upper display line of a multi-line display

textField2
The text displayed on the second display line of

a multi-line display

textField3
The text displayed on the third display line of a

multi-line display

textField4
The text displayed on the bottom display line of

a multi-line display

mediaTrackTextField
The text displayed in the in the track field; this

field is only valid for media applications

textAlignment
The text justification for the text fields; the text

alignment can be left, center, or right

textField1Type The type of data provided in textField1

textField2Type The type of data provided in textField2

textField3Type The type of data provided in textField3

textField4Type The type of data provided in textField4

title The title of the displayed template

Showing Text

sdlManager.getScreenManager().beginTransaction();
sdlManager.getScreenManager().setTextField1('Line 1 of Text');
sdlManager.getScreenManager().setTextField2('Line 2 of Text');
// Commit the updates and catch any errors
const success = await sdlManager.getScreenManager().commit().catch(function
(error) {
 // Handle Error
});
console.log('ScreenManager update complete:', success);
if (success === true) {
 // Update complete
} else {
 // Something went wrong
}

To remove text from the screen simply set the screen manager property to .

sdlManager.getScreenManager().setTextField1(null);
sdlManager.getScreenManager().setTextField2(null);

You can easily display text, images, and buttons using the ScreenManager . To update the

UI, simply give the manager your new data and (optionally) sandwich the update between

the manager's beginTransaction() and commit() methods.

Removing Text

Template Images

Image Fields

S C R E E N M A N A G E R PA R A M E T E R N A M E D E S C R I P T I O N

Create an SdlArtwork object which can be manually uploaded or set into the ScreenMa

nager and automatically uploaded. An SdlArtwork includes information about whether

the image should be persisted between vehicle startups, whether the image is a template

image and should be re-colored, and more.

const artwork = new SDL.manager.file.filetypes.SdlArtwork('artworkName',
SDL.rpc.enums.FileType.GRAPHIC_PNG, fileData, true);

primaryGraphic
The primary image in a template that supports

images

secondaryGraphic
The second image in a template that supports

multiple images

Showing Images

Creating an SDLArtwork

Setting Primary Graphic

sdlManager.getScreenManager().beginTransaction();
sdlManager.getScreenManager().setPrimaryGraphic(sdlArtwork);
// Commit the updates and catch any errors
const success = await sdlManager.getScreenManager().commit().catch(function
(error) {
 // Handle Error
});
console.log('ScreenManager update complete:', success);
if (success === true) {
 // Update complete
} else {
 // Something went wrong
}

To remove an image from the screen you just need to set the screen manager property to .

sdlManager.getScreenManager().setPrimaryGraphic(null);

When a file is to be uploaded to the module, the library checks if a file with the same name

has already been uploaded to module and skips the upload if it can. For cases where an

image by the same name needs to be re-uploaded, the SdlArtwork / SdlFile 's overwrit

e property should be used. Setting overwrite to true before passing the image to a Sc

reenManager method such as setPrimaryGraphic() and setSecondaryGraphic() will

force the image to be re-uploaded. This includes methods such as preloadChoices()

where the arguments passed in contain images.

Removing Images

Overwriting Images

Templated images are tinted by Core so the image is visible regardless of whether your

user has set the head unit to day or night mode. For example, if a head unit is in night

mode with a dark theme (see Customizing the Template section for more details on how

to customize theme colors), then your templated images will be displayed as white. In the

day theme, the image will automatically change to black.

Soft buttons, menu icons, and primary / secondary graphics can all be templated. Images

that you wish to template must be PNGs with a transparent background and only one color

for the icon. Therefore, templating is only useful for things like icons and not for images

that must be rendered in a specific color.

In the screenshots below, the shuffle and repeat icons have been templated. In night mode,

the icons are tinted white and in day mode the icons are tinted black.

Please note that many production modules on the road do not refresh the

HMI with the new image if the file name has not changed. If you want the

image to refresh on the screen immediately, we suggest using two image

names and toggling back and forth between the names each time you update

the image.

This issue may also extend to menus, alerts, and other UI features even if

they're not on-screen at the time. Because of these issues, we do not

recommend that you try to overwrite an image. Instead, you can delete an

image file using the SdlFileManager and re-upload it once the deletion

completes, or you may use a different file name.

NOT E

Templating Images (RPC v5.0+)

Templated Images Example

NI G HT MODE

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/customizing-look-and-functionality/customizing-the-template/

DAY MODE

const image = new SDL.manager.file.filetypes.SdlArtwork('artworkName',
SDL.rpc.enums.FileType.GRAPHIC_PNG, fileData, true);
image.setTemplateImage(true);

Static icons are pre-existing images on the remote system that you may reference and use

in your own application. Each OEM will design their own custom static icons but you can

get an overview of the available icons from the icons designed for the open source

Generic HMI. Static icons are fully supported by the screen manager via an SdlArtwork

initializer. Static icons can be used in primary and secondary graphic fields, soft button

image fields, and menu icon fields.

Static Icons

https://smartdevicelink.com/en/guides/sdl-overview-guides/user-interface/static-icons/

The SDL JavaScript Suite is currently missing support for the StaticIconName enum. This

will be addressed in a future release. Constructing a StaticIcon can still be done using the

appropriate hex values found here.

const staticIconAlbumName = '0x21';
const staticIconAlbumBytes = 0x21;
const staticIconArt = new SDL.manager.file.filetypes.SdlArtwork()
 .setName(staticIconAlbumName)
 .setFileData(staticIconAlbumBytes)
 .setStaticIcon(true)
 .setPersistent(false);

You can easily create and update custom buttons (called Soft Buttons in SDL) using the S

creenManager . To update the UI, simply give the manager your new data and (optionally)

sandwich the update between the manager's beginTransaction() and commit()

methods.

S C R E E N M A N A G E R PA R A M E T E R N A M E D E S C R I P T I O N

Template Custom Buttons

Soft Button Fields

softButtonObjects
An array of buttons. Each template supports a

different number of soft buttons

Creating Soft Buttons

https://github.com/smartdevicelink/sdl_java_suite/blob/master/base/src/main/java/com/smartdevicelink/proxy/rpc/enums/StaticIconName.java

To create a soft button using the ScreenManager , you only need to create a custom

name for the button and provide the text for the button's label and/or an image for the

button's icon. If your button cycles between different states (e.g. a button used to set the

repeat state of a song playlist can have three states: repeat-off, repeat-one, and repeat-all),

you can create all the states on initialization.

There are three different ways to create a soft button: with only text, with only an image, or

with both text and an image. If creating a button with an image, we recommend that you

template the image so its color works well with both the day and night modes of the head

unit. For more information on templating images please see the Template Images guide.

Text Only Soft Buttons

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/displaying-a-user-interface/template-images/

const textState = new new SDL.manager.screen.utils.SoftButtonState('State Name',
'Button Label Text');

const softButtonObject = new
SDL.manager.screen.utils.SoftButtonObject('softButtonObject', [textState],
textState.getName(), function (softButtonObject, rpc) {
 if (rpc instanceof SDL.rpc.messages.OnButtonPress) {
 console.log('SoftButton pressed!');
 }
});

sdlManager.getScreenManager().beginTransaction();
sdlManager.getScreenManager().setSoftButtonObjects([softButtonObject]);
// Commit the updates and catch any errors
const success = await sdlManager.getScreenManager().commit().catch(function
(error) {
 // Handle Error
});
console.log('ScreenManager update complete:', success);
if (success === true) {
 // Update complete
} else {
 // Something went wrong
}

You can use the SystemCapabilityManager to check if the HMI supports soft buttons

with images. If you send image-only buttons to a HMI that does not support images, then

the library will not send the buttons as they will be rejected by the head unit. If all your soft

buttons have text in addition to images, the library will send the text-only buttons if the

head unit does not support images.

Image Only Soft Buttons

Once you know that the HMI supports images in soft buttons you can create and send the

image-only soft buttons.

const softButtonCapabilitiesList =
sdlManager.getSystemCapabilityManager().getDefaultMainWindowCapability().getSof

const imageSupported = (softButtonCapabilitiesList.length !== 0) ?
softButtonCapabilitiesList[0].getImageSupported() : false;

const imageState = new SDL.manager.screen.utils.SoftButtonState('State Name',
null, sdlArtwork);
const softButtonObject = new
SDL.manager.screen.utils.SoftButtonObject('softButtonObject', [imageState],
imageState.getName(), function (softButtonObject, rpc) {
 if (rpc instanceof SDL.rpc.messages.OnButtonPress) {
 console.log('SoftButton pressed');
 }
});

sdlManager.getScreenManager().beginTransaction();
sdlManager.getScreenManager().setSoftButtonObjects([softButtonObject]);
// Commit the updates and catch any errors
const success = await sdlManager.getScreenManager().commit().catch(function
(error) {
 // Handle Error
});
console.log('ScreenManager update complete:', success);
if (success === true) {
 // Update complete
} else {
 // Something went wrong
}

Image and Text Soft Buttons

const textAndImageState = new SDL.manager.screen.utils.SoftButtonState('State
Name', 'Button Label Text', artwork);
const softButtonObject = new
SDL.manager.screen.utils.SoftButtonObject('softButtonObject', [textAndImageState],
textAndImageState.getName(), function (softButtonObject, rpc) {
 if (rpc instanceof SDL.rpc.messages.OnButtonPress) {
 console.log('SoftButton pressed');
 }
});

sdlManager.getScreenManager().beginTransaction();
sdlManager.getScreenManager().setSoftButtonObjects([softButtonObject])
// Commit the updates and catch any errors
const success = await sdlManager.getScreenManager().commit().catch(function
(error) {
 // Handle Error
});
console.log('ScreenManager update complete:', success);
if (success === true) {
 // Update complete
} else {
 // Something went wrong
}

When a button is highlighted its background color will change to indicate that it has been

selected.

Highlighting a Soft Button

HIGHL IGHT ON

HIGHL IGHT OFF

const softButtonState1 = new SDL.manager.screen.utils.SoftButtonState('Soft
Button State Name', 'On', sdlArtwork);
softButtonState1.setHighlighted(true);
const softButtonState2 = new SDL.manager.screen.utils.SoftButtonState('Soft
Button State Name 2', 'Off', sdlArtwork);
softButtonState2.setHighlighted(false);
const softButtonObject = new
SDL.manager.screen.utils.SoftButtonObject('softButtonObject', [softButtonState1,
softButtonState2], softButtonState1.getName(), function (softButtonObj, rpc) {
 if (rpc instanceof SDL.rpc.messages.onButtonPress) {
 softButtonObject.transitionToNextState();
 }
});

When the soft button state needs to be updated, simply tell the SoftButtonObject to

transition to the next state. If your button states do not cycle in a predictable order, you

Updating Soft Button States

can also tell the soft button which state to transition to by passing the stateName of the

new soft button state.

const state1 = new SDL.manager.screen.utils.SoftButtonState('State1 Name',
'Button1 Label Text', sdlArtwork);
const state2 = new SDL.manager.screen.utils.SoftButtonState('State2 Name',
'Button2 Label Text', sdlArtwork);

const softButtonObject = new
SDL.manager.screen.utils.SoftButtonObject('softButtonObject', [state1, state2],
state1.getName(), function (softButtonObj, rpc) {
 if (rpc instanceof SDL.rpc.messages.OnButtonPress) {
 console.log('Soft Button pressed.');
 }
});

sdlManager.getScreenManager().beginTransaction();
sdlManager.getScreenManager().setSoftButtonObjects([]);
// Commit the updates and catch any errors
const success = await sdlManager.getScreenManager().commit().catch(function
(error) {
 // Handle Error
});
console.log('ScreenManager update complete:', success);
if (success === true) {
 // Update complete, transition to a new state
 const retrievedSoftButtonObject =
sdlManager.getScreenManager().getSoftButtonObjectByName('softButtonObject');
 retrievedSoftButtonObject.transitionToNextState();
} else {
 // Something went wrong
}

To delete soft buttons, simply pass the screen manager a new array of soft buttons. To

delete all soft buttons, simply pass the screen manager an empty array.

sdlManager.getScreenManager().setSoftButtonObjects([]);

Deleting Soft Buttons

You can also send soft buttons manually using the Show RPC. Note that if you do so,

you must not mix the ScreenManager soft buttons and manually sending the Show

RPC. Additionally, the ScreenManager takes soft button ids 0 - 10000. Ensure that if you

use custom RPCs, that the soft button ids you use are outside of this range.

This guide shows you how to subscribe and react to "subscription" buttons. Subscription

buttons are used to detect when the user has interacted with buttons located in the car's

center console or steering wheel. A subscription button may also show up as part of your

template, however, the text and/or image used in the button is determined by the template

and is (usually) not customizable.

In the screenshot below, the pause, seek left and seek right icons are subscription

buttons. Once subscribed to, for example, the seek left button, you will be notified when

the user selects the seek left button on the HMI or when they select the seek left button

on the car's center console and/or steering wheel.

Using RPCs

Template Subscription Buttons

There are three general types of subscriptions buttons: audio related buttons only used for

media apps, navigation related buttons only used for navigation apps, and general buttons,

like preset buttons and the OK button, that can be used with all apps. Please note that if

your app type is not MEDIA or NAVIGATION , your attempt to subscribe to media-only

or navigation-only buttons will be rejected.

Types of Subscription Buttons

B U T T O N A P P T Y P E R P C V E R S I O N

Ok All v1.0+

Preset 0-9 All v1.0+

Search All v1.0+

Play / Pause Media only v5.0+

Seek left Media only v1.0+

Seek right Media only v1.0+

Tune up Media only v1.0+

Tune down Media only v1.0+

Center Location Navigation only v6.0+

Zoom In Navigation only v6.0+

Zoom Out Navigation only v6.0+

Pan Up Navigation only v6.0+

Pan Up-Right Navigation only v6.0+

Pan Right Navigation only v6.0+

Pan Down-Right Navigation only v6.0+

Pan Down Navigation only v6.0+

B U T T O N A P P T Y P E R P C V E R S I O N

You can easily subscribe to subscription buttons using the ScreenManager . Simply tell

the manager which button to subscribe and you will be notified when the user selects the

button.

Once you have subscribed to the button, the listener will be called when the button has

been selected. If there is an error subscribing to the button the error message will be

returned in the catch method.

Pan Down-Left Navigation only v6.0+

Pan Left Navigation only v6.0+

Pan Up-Left Navigation only v6.0+

Toggle Tilt Navigation only v6.0+

Rotate Clockwise Navigation only v6.0+

Rotate Counter-Clockwise Navigation only v6.0+

Toggle Heading Navigation only v6.0+

Subscribing to Subscription Buttons

Subscribe with a Listener

const playPauseButtonListener = function (buttonName, buttonEvent) {
 if (onButton instanceof SDL.rpc.messages.OnButtonPress) {

 } else if (onButton instanceof SDL.rpc.messages.OnButtonEvent) {

 }
}

await sdlManager.getScreenManager()
 .addButtonListener(SDL.rpc.enums.ButtonName.PLAY_PAUSE,
playPauseButtonListener)
 .catch(function (err) {
 // Handle error
 });

To unsubscribe to a subscription button, simply tell the ScreenManager which button

name and listener object to unsubscribe.

The play/pause, seek left, seek right, tune up, and tune down subscribe buttons can only be

used if the app type is MEDIA . Depending on the OEM, the subscribed button could show

up as an on-screen button in the MEDIA template, work as a physical button on the car

console or steering wheel, or both. For example, Ford's SYNC® 3 HMI will add the

play/pause, seek right, and seek left soft buttons to the media template when you

await
sdlManager.getScreenManager().removeButtonListener(SDL.rpc.enums.ButtonName.
 playPauseButtonListener);

Unsubscribing from Subscription
Buttons

Media Buttons

subscribe to those buttons. However, those buttons will also trigger when the user uses

the seek left / seek right buttons on the steering wheel.

If desired, you can change the style of the play/pause button image between a play, stop,

or pause icon by updating the audio streaming indicator, and you can also set the style of

the next/previous buttons between a track or time seek style. See the Media Clock guide

for more information.

await
sdlManager.getScreenManager().addButtonListener(SDL.rpc.enums.ButtonName.PLAY
 function (buttonName, onButton) {
 if (onButton instanceof SDL.rpc.messages.OnButtonPress) {
 switch (onButton.getButtonPressMode()) {
 case SDL.rpc.enums.ButtonPressMode.SHORT:
 // The user short pressed the button
 case SDL.rpc.enums.ButtonPressMode.LONG:
 // The user long pressed the button
 }
 } else if (onButton instanceof SDL.rpc.messages.OnButtonEvent) {
 // OnButtonEvent
 }
}).catch(function (info) {
 // There was an error subscribing to the button
});

Before RPC v5.0, Ok and PlayPause were combined into Ok .

Subscribing to Ok will also subscribe you to PlayPause . This means that

for the time being, you should not simultaneously subscribe to Ok and Play

Pause . In a future major version, this will change. For now, only subscribe to

either Ok or PlayPause and the library will execute the right action based

on the connected head unit.

NOT E

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/displaying-a-user-interface/media-clock/

All app types can subscribe to preset buttons. Depending on the OEM, the preset buttons

may be added to the template when subscription occurs. Preset buttons can also be

physical buttons on the console that will notify the subscriber when selected. An OEM

may support only template buttons or only hard buttons or they may support both

template and hard buttons. The screenshot below shows how the Ford SYNC® 3 HMI

displays the preset buttons on the HMI.

Preset Buttons

Checking if Preset Buttons are Supported

You can check if a HMI supports subscribing to preset buttons, and if so, how many preset

buttons are supported, by checking the system capability manager.

Head units supporting RPC v6.0+ may support subscription buttons that allow your user to

drag and scale the map using hard buttons located on car's center console or steering

wheel. Subscriptions to navigation buttons will only succeed if your app's type is NAVIG

ATION . If subscribing to these buttons succeeds, you can remove any buttons of your

const numOfCustomPresetsAvailable =
sdlManager.getSystemCapabilityManager().getDefaultMainWindowCapability().getNum

function onButtonListener (buttonName, onButton) {
 if (onButton instanceof SDL.rpc.messages.OnButtonPress) {
 switch (buttonName) {
 case SDL.rpc.enums.ButtonName.PRESET_1:
 // The user short or long pressed the preset 1 button
 case SDL.rpc.enums.ButtonName.PRESET_2:
 // The user short or long pressed the preset 2 button
 }
 } else if (onButton instanceof SDL.rpc.messages.OnButtonEvent) {
 // OnButtonEvent
 }
}

function onError (info) {
 // There was an error subscribing to the button
}

sdlManager.getScreenManager().addButtonListener(SDL.rpc.enums.ButtonName.PRE
 onButtonListener).catch(onError);
sdlManager.getScreenManager().addButtonListener(SDL.rpc.enums.ButtonName.PRE
 onButtonListener).catch(onError);

Subscribing to Preset Buttons

Navigation Buttons

own from your map screen. If subscribing to these buttons fails, you can display buttons

of your own on your map screen.

You have two different options when creating menus. One is to simply add items to the

default menu available in every template. The other is to create a custom menu that pops

up when needed. You can find more information about these popups in the Popup Menus

section. This guide will cover using the default menu / menu button.

await
sdlManager.getScreenManager().addButtonListener(SDL.rpc.enums.ButtonName.NAV
 function (buttonName, onButton) {
 if (onButton instanceof SDL.rpc.messages.OnButtonPress) {
 switch (onButton.getButtonPressMode()) {
 case SDL.rpc.enums.ButtonPressMode.SHORT:
 // The user short pressed the button
 case SDL.rpc.enums.ButtonPressMode.LONG:
 // The user long pressed the button
 }
 } else if (onButton instanceof SDL.rpc.messages.OnButtonEvent) {
 // OnButtonEvent
 }
}).catch(function (info) {
 // There was an error subscribing to the button
});

Subscribing to Navigation Buttons

Main Menu

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/displaying-a-user-interface/popup-menus/

On some newer head units, you may have the option to display menu items as a grid of

tiles instead of the default list layout. To determine if the head unit supports the tiles

layout, check the SystemCapabilityManager 's getDefaultMainWindowCapability().getMe

nuLayoutsAvailable() property after successfully connecting to the head unit. To set the

menu layout using the screen manager, you will need to set the ScreenManager.menuCon

figuration property.

Every template has a main menu button. The position of this button varies

between templates and cannot be removed from the template. Some OEMs

may format certain templates to not display the main menu button if you

have no menu items (such as the navigation map view).

NOT E

Setting the Menu Layout (RPC v6.0+)

L IST MENU L AYOU T

GRID MENU L AYOU T

const menuConfiguration = new SDL.manager.screen.menu.MenuConfiguration()
 .setMenuLayout(mainMenuLayout)
 .setSubMenuLayout(submenuLayout);
sdlManager.getScreenManager().setMenuConfiguration(menuConfiguration);

The best way to create and update your menu is to the use the Screen Manager API. The

screen manager contains two menu related properties: menu , and voiceCommands .

Setting an array of MenuCell s into the menu property will automatically set and update

your menu and submenus, while setting an array of VoiceCommand s into the voiceCom

mands property allows you to use "hidden" menu items that only contain voice

recognition data. The user can then use the IVI system's voice engine to activate this

command even though it will not be displayed within the main menu.

Adding Menu Items

To find out more information on how to create voiceCommands see the related

documentation.

Head units supporting RPC v7.1+ may support displaying secondaryText , t

ertiaryText , and secondaryArtwork . This gives the user a richer experience

by displaying more data. Attempting to set this data on head units that do

not support RPC 7.1+ will result in that data not being displayed to the user.

To determine if the head unit supports displaying these fields, you can check

the SystemCapabilityManager 's getDefaultMainWindowCapability().getTex

tFields() / getDefaultMainWindowCapability().getImageFields() properties

after successfully connecting to the head unit. Then check those arrays for

objects with the related text / image field names.

NOT E

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/speech-and-audio/setting-up-voice-commands/

// Create the menu cell
const cell = new SDL.manager.screen.menu.MenuCell('Cell Text')
 .setSecondaryText('Secondary Text')
 .setTertiaryText('Tertiary Text')
 .setVoiceCommands(['cell text'])
 .setMenuSelectionListener(new
SDL.manager.screen.menu.MenuSelectionListener()
 .setOnTriggered((trigger) => {
 // Menu item was selected, check the `triggerSource` to know if the user used
touch or voice to activate it
 // Handle the Cell's Selection
 }));

Adding a submenu is as simple as adding subcells to a MenuCell . The submenu is

automatically displayed when selected by the user. Currently menus only support one layer

of subcells. In RPC v6.0+ it is possible to set individual submenus to use different layouts

such as tiles or lists.

// Create the inner menu cell
const innerCell = new SDL.manager.screen.menu.MenuCell('inner menu cell')
 .setSecondaryText('secondary text')
 .setTertiaryText('tertiary text')
 .setVoiceCommands(['inner menu cell'])
 .setMenuSelectionListener(new
SDL.manager.screen.menu.MenuSelectionListener()
 .setOnTriggered((trigger) => {
 // Menu item was selected, check the `triggerSource` to know if the user used
touch or voice to activate it
 // Handle the cell's selection
 }));

// Create and set the submenu cell
const cell = new SDL.manager.screen.menu.MenuCell('cell')
 .setSecondaryText('secondary text')
 .setTertiaryText('tertiary text')
 .setSubMenuLayout(SDL.rpc.enums.MenuLayout.LIST)
 .setSubCells([innerCell]);

sdlManager.getScreenManager().setMenu([cell]);

Adding Submenus

Artworks will be automatically handled when using the screen manager API. First, a "non-

artwork" menu will be displayed, then, when the artworks have finished uploading, the

"artwork-ified" menu will be displayed. If you are doing this manually with RPCs, you will

have to upload artworks using the file manager yourself and send the correct menu when

they are ready.

The screen manager will intelligently handle deletions for you. If you want to show new

menu items, simply set a new array of menu cells. If you want to have a blank menu, set

an empty array. On supported systems, the library will calculate the optimal adds / deletes

to create the new menu. If the system doesn't support this sort of dynamic updating, the

entire list will be removed and re-added.

If you are doing this manually, you must use the DeleteCommand and DeleteSubMenu

RPCs, passing the cmdID s you wish to delete.

Starting with SDL v1.5+ menu cells and sub-menu cells do not require unique titles in

order to be presented. For example, if you are trying to display points of interest as a list

you can now have multiple locations with the same name but are not the same location.

You cannot present multiple cells that are exactly the same. They must have some

property that makes them different, such as secondaryText or an artwork.

Menu Item Artwork

Deleting and Changing Menu Items

Duplicate Menu Titles

R PC V7.1+ CONNECT I ONS

The titles on the menu will be displayed as provided even if there are duplicate titles.

The titles on the menu will have a number appended to them when there are duplicate

titles.

R PC V7.0 A ND BEL OW CONNECT I ONS

The AddCommand RPC can be used to add items to the root menu or to a submenu.

Each AddCommand RPC must be sent with a unique id, a voice-recognition command,

and a set of menu parameters. The menu parameters include the menu name, the position

of the item in the menu, and the id of the menu item’s parent. If the menu item is being

added to the root menu, then the parent id is 0. If it is being added to a submenu, then the

parent id is the submenu’s id.

To create a submenu using RPCs, you must use a AddSubMenu RPC with a unique id.

When a response is received from the SDL Core, check if the submenu was added

successfully. If it was, send an AddCommand RPC for each item in the submenu.

Using RPCs

SDL supports modal menus. The user can respond to the list of menu options via touch,

voice (if voice recognition is supported by the head unit), or by keyboard input to search or

filter the menu.

There are several UX considerations to take into account when designing your menus. The

main menu should not be updated often and should act as navigation for your app. Popup

menus should be used to present a selection of options to your user.

Presenting a popup menu is similar to presenting a modal view to request input from your

user. It is possible to chain together menus to drill down, however, it is recommended to

do so judiciously. Requesting too much input from a driver while they are driving is

distracting and may result in your app being rejected by OEMs.

You should not mix usage of the ScreenManager menu features and menu

RPCs described above. You must use either one system or the other, but not

both.

NOT E

Popup Menus

Presenting a Popup Menu

L A Y O U T M O D E F O R M A T T I N G D E S C R I P T I O N

We provide several properties on the ChoiceCell to set your data, but the layout itself is

determined by the manufacturer of the head unit.

const cell = new SDL.manager.screen.choiceset.ChoiceCell("cell1 text")
 .setVoiceCommands(["cell1"])
const fullCell = new SDL.manager.screen.choiceset.ChoiceCell("cell2 text")
 .setSecondaryText("cell2 secondaryText")
 .setTertiaryText("cell2 tertiaryText")
 .setVoiceCommands(["cell2"])
 .setArtwork(image1Artwork)
 .setSecondaryArtwork(image2Artwork)

Present as Icon A grid of buttons with images

Present Searchable as Icon
A grid of buttons with images along with a

search field in the HMI

Present as List A vertical list of text

Present Searchable as List
A vertical list of text with a search field in the

HMI

Creating Cells

On many systems, including VR commands will be exponentially slower than

not including them. However, including them is necessary for a user to be

able to respond to your prompt with their voice.

NOT E

If you know the content you will show in the popup menu long before the menu is shown

to the user, you can "preload" those cells in order to speed up the popup menu

presentation at a later time. Once you preload a cell, you can reuse it in multiple popup

menus without having to send the cell content to Core again.

const success = await sdlManager.getScreenManager().preloadChoices([cell,
fullCell]);

To show a popup menu to the user, you must present the menu. If some or all of the cells

in the menu have not yet been preloaded, calling the present API will preload the cells

and then present the menu once all the cells have been uploaded. Calling present

without preloading the cells can take longer than if the cells were preloaded earlier in the

app's lifecycle especially if your cell has voice commands. Subsequent menu

presentations using the same cells will be faster because the library will reuse those cells

(unless you have deleted them).

Preloading Cells

Presenting a Menu

MENU - L I S T

MENU - I CON

In order to present a menu, you must bundle together a bunch of ChoiceCell s into an Ch

oiceSet .

Some notes on various parameters (full documentation is available as API documentation

on this website):

Title: This is the title of the menu when presented

Listeners: You must implement this listener interface to receive callbacks based on

the user's interaction with the menu

Layout: You may present your menu as a set of tiles or a list. If you are using tiles,

it's recommended to use artworks on each item.

When you preload a cell, you do not need to maintain a reference to it. If you

reuse a cell with the same properties that has already been preloaded (or

previously presented), the cell will automatically be reused.

NOT E

C REATING A C HOIC E SET

If the ChoiceSet contains an invalid set of ChoiceCell s, presenting the C

hoiceSet will fail. This can happen, for example, if you have duplicate title

text or if some, but not all choices have voice commands.

NOT E

const listener = new SDL.manager.screen.choiceset.ChoiceSetSelectionListener()
 .setOnChoiceSelected((choiceCell, triggerSource, rowIndex) => {
 // You will be passed the `cell` that was selected, the manner in which it was
selected (voice or text), and the index of the cell that was passed.
 // handle selection
 })
 .setOnError((error) => {
 // handle error
 });
const choiceSet = new SDL.manager.screen.choiceset.ChoiceSet("ChoiceSet Title",
[cell, fullCell], listener);

Finally, you will present the menu. When you do so, you must choose a mode to present

it in. If you have no vrCommands on the choice cell you should choose manualOnly . If

vrCommands are available, you may choose voiceRecognitionOnly or both .

You may want to choose this based on the trigger source leading to the menu being

presented. For example, if the menu was presented via the user touching the screen, you

may want to use a mode of manualOnly or both , but if the menu was presented via

the user speaking a voice command, you may want to use a mode of voiceRecognition

Only or both .

It may seem that the answer is to always use both . However, remember that you must

provide vrCommand s on all cells to use both , which is exponentially slower than not

providing vrCommand s (this is especially relevant for large menus, but less important

for smaller ones). Also, some head units may not provide a good user experience for bot

h .

P RESENTING THE MENU WITH A MODE

I N T E R A C T I O N M O D E D E S C R I P T I O N

Manual only Interactions occur only through the display

VR only
Interactions occur only through text-to-speech

and voice recognition

Both
Interactions can occur both manually or

through VR

MENU - MA NUA L ONLY MODE

MENU - VOI CE ONLY MODE

sdlManager.getScreenManager().presentChoiceSet(choiceSet,
SDL.rpc.enums.InteractionMode.MANUAL_ONLY);

In addition to presenting a standard menu, you can also present a "searchable" menu, that

is, a menu with a keyboard input box at the top. For more information on implementing the

keyboard callbacks, see the Popup Keyboards guide.

Presenting a Searchable Menu

MENU WI T H S EA R CH

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/displaying-a-user-interface/popup-keyboards/

sdlManager.getScreenManager().presentSearchableChoiceSet(choiceSet,
SDL.rpc.enums.InteractionMode.MANUAL_ONLY, keyboardListener);

You can discover cells that have been preloaded on sdlManager.getScreenManager().getP

reloadedChoices() . You may then pass an array of cells to delete from the remote

system. Many times this is not necessary, but if you have deleted artwork used by cells,

for example, you should delete the cells as well.

sdlManager.getScreenManager().deleteChoices(<List of choices to delete>);

Deleting Cells

Dismissing the Popup Menu (RPC v6.0+)

You can dismiss a displayed choice set before the timeout has elapsed by sending a Can

celInteraction request. If you presented the choice set using the screen manager, you can

dismiss the choice set by calling cancel on the ChoiceCell object that you presented.

choiceSet.cancel();

Starting with SDL v1.3.0+ choice cells no longer require unique titles in order to be

presented. For example, if you are trying to display points of interest as a list you can now

have multiple locations with the same name but are not the same location. You cannot

present multiple cells that are exactly the same. They must have some property that

makes them different, such as secondaryText or an artwork.

If connected to older head units that do not support this feature, the cancel

request will be ignored, and the choice set will persist on the screen until the

timeout has elapsed or the user dismisses it by making a selection.

NOT E

Duplicate Cell Titles

R PC V7.1+ CONNECT I ONS

The titles on the choice set will be displayed as provided even if there are duplicate titles.

The titles on the choice set will have a number appended to them when there are duplicate

titles.

R PC V7.0 A ND BEL OW CONNECT I ONS

If you don't want to use the ScreenManager , you can do this manually using the Choice ,

CreateInteractionChoiceSet , and PerformInteraction . You will need to create

Choice s, bundle them into CreateInteractionChoiceSet s. As this is no longer a

recommended course of action, we will leave it to you to figure out how to manually do it.

Note that if you do manually create a PerformInteraction and want to set a cancel id, the

ScreenManager takes cancel ids 0 - 10000. Any cancel id you set must be outside of that

range.

Using RPCs

Popup Keyboards

Presenting a keyboard or a popup menu with a search field requires you to implement the

KeyboardListener . Note that the initialText in the keyboard case often acts as

"placeholder text" and not as true initial text.

You should present a keyboard to users when your app contains a "search" field. For

example, in a music player app, you may want to give the user a way to search for a song

or album. A keyboard could also be useful in an app that displays nearby points of interest,

or in other situations.

Presenting a Keyboard

Keyboards are unavailable for use in many countries when the driver is

distracted. This is often when the vehicle is moving above a certain speed,

such as 5 miles per hour. This will be automatically managed by the system.

Your keyboard may be disabled or an error returned if the driver is distracted.

NOT E

const cancelId = sdlManager.getScreenManager().presentKeyboard('Initial text', null,
keyboardListener);

Using the KeyboardListener involves implementing several methods:

Implementing the Keyboard Listener

const keyboardListener = new SDL.manager.screen.choiceset.KeyboardListener()
 .setOnUserDidSubmitInput((inputText, event) => {
 switch (event) {
 case SDL.rpc.enums.KeyboardEvent.ENTRY_VOICE:
 // The user decided to start voice input, you should start an AudioPassThru
session if supported
 break;
 case SDL.rpc.enums.KeyboardEvent.ENTRY_SUBMITTED:
 // The user submitted some text with the keyboard
 break;
 default:
 break;
 }
 })
 .setOnKeyboardDidAbortWithReason((event) => {
 switch (event) {
 case SDL.rpc.enums.KeyboardEvent.ENTRY_CANCELLED:
 // The user cancelled the keyboard interaction
 break;
 case SDL.rpc.enums.KeyboardEvent.ENTRY_ABORTED:
 // The system aborted the keyboard interaction
 break;
 default:
 break;
 }
 })
 .setUpdateAutocompleteWithInput((currentInputText,
keyboardAutocompleteCompletionListener) => {
 // Check the input text and return a list of autocomplete results
 keyboardAutocompleteCompletionListener(updatedAutoCompleteList);
 })
 .setUpdateCharacterSetWithInput((currentInputText,
keyboardCharacterSetCompletionListener) => {
 // Check the input text and return a set of characters to allow the user to enter
 })
 .setOnKeyboardDidSendEvent((event, currentInputText) => {
 // This is sent upon every event, such as keypresses, cancellations, and aborting
 })
 .setOnKeyboardDidUpdateInputMask((event) => {
 switch (event) {
 case SDL.rpc.enums.KeyboardEvent.INPUT_KEY_MASK_ENABLED:
 // The user enabled input key masking
 break;
 case SDL.rpc.enums.KeyboardEvent.INPUT_KEY_MASK_DISABLED:
 // The user disabled input key masking
 break;
 default:
 break;
 }
 });

You can change default keyboard properties by updating sdlManager.getScreenManager().

setKeyboardConfiguration() . If you want to change the keyboard configuration for only

one keyboard session and keep the default keyboard configuration unchanged, you can

pass a single-use KeyboardProperties to presentKeyboard() .

You can modify the keyboard language by changing the keyboard configuration's languag

e . For example, you can set an EN_US keyboard. It will default to EN_US if not

otherwise set.

const keyboardConfiguration = new SDL.rpc.structs.KeyboardProperties()
 .setLanguage(SDL.rpc.enums.Language.EN_US);

sdlManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

You can modify the keyboard to enable only some characters by responding to the update

CharacterSetWithInput listener method or by changing the keyboard configuration before

displaying the keyboard. For example, you can enable only "a", "b" , and "c" on the

keyboard. All other characters will be greyed out (disabled).

const keyboardConfiguration = new SDL.rpc.structs.KeyboardProperties()
 .setLimitedCharacterList(['a', 'b', 'c']);

sdlManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

Configuring Keyboard Properties

KEYBOARD L ANGU AGE

L IMITED C HARAC TER L IST

You can modify the keyboard to allow an app to pre-populate the text field with a list of

suggested entries as the user types by responding to the updateAutocompleteWithInput

listener method or by changing the keyboard configuration before displaying the keyboard.

For example, you can display recommended searches "test1", "test2", and "test3" if the

user types "tes".

const keyboardConfiguration = new SDL.rpc.structs.KeyboardProperties()
 .setAutoCompleteList(['test1', 'test2', 'test3']);

sdlManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

You can modify the keyboard layout by changing the keyboard configuration's keyboardL

ayout . For example, you can set a NUMERIC keyboard. It will default to QWERTY if not

otherwise set.

AU TOC OMP L ETE L IST

A list of autocomplete results is only available on RPC 6.0+ connections. On

connections < RPC 6.0, only the first item will be available to the user.

NOT E

KEYBOARD L AYOU T

const keyboardConfiguration = new SDL.rpc.structs.KeyboardProperties()
 .setKeyboardLayout(SDL.rpc.enums.KeyboardLayout.NUMERIC);

sdlManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

The numeric keyboard layout is only available on RPC 7.1+. See the section

Checking Keyboard Capabilities to determine if this layout is available.

NOT E

You can modify the keyboard to mask the entered characters by changing the keyboard

configuration's maskInputCharacters .

const keyboardConfiguration = new SDL.rpc.structs.KeyboardProperties()
 .setKeyboardLayout(SDL.rpc.enums.KeyboardLayout.NUMERIC)

.setMaskInputCharacters(SDL.rpc.enums.KeyboardInputMask.ENABLE_INPUT_KEY_M

sdlManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

INP U T MASKING (RP C 7.1+)

C U STOM KEYS (RP C 7.1+)

Each keyboard layout has a number of keys that can be customized to your app's needs.

For example, you could set two of the customizable keys in QWERTY layout to be "!" and

"?" as seen in the image below. The available number and location of these custom keys is

determined by the connected head unit. See the section Checking Keyboard Capabilities to

determine how many custom keys are available for any given layout.

const keyboardConfiguration = new SDL.rpc.structs.KeyboardProperties()
 .setKeyboardLayout(SDL.rpc.enums.KeyboardLayout.QWERTY)
 .setCustomKeys(['!','?']);

sdlManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

Each head unit may support different keyboard layouts and each layout can support a

different number of custom keys. Head units may not support masking input. If you want

Checking Keyboard Capabilities (RPC v7.1+)

to know which keyboard features are supported on the connected head unit, you can

check the KeyboardCapabilities :

const windowCapability =
sdlManager.getSystemCapabilityManager().getDefaultMainWindowCapability();
const keyboardCapabilities = windowCapability.getKeyboardCapabilities();

// List of layouts and number of custom keys supported by each layout
const keyboardLayouts = keyboardCapabilities.getSupportedKeyboards();

// Boolean represents whether masking is supported or not
const maskInputSupported =
keyboardCapabilities.getMaskInputCharactersSupported();

You can dismiss a displayed keyboard before the timeout has elapsed by sending a Canc

elInteraction request. If you presented the keyboard using the screen manager, you can

dismiss the choice set by calling dismissKeyboard with the cancelID that was returned

(if one was returned) when presenting.

sdlManager.getScreenManager().dismissKeyboard(cancelId);

Dismissing the Keyboard (RPC v6.0+)

If connected to older head units that do not support this feature, the cancel

request will be ignored, and the keyboard will persist on the screen until the

timeout has elapsed or the user dismisses it by making a selection.

NOT E

If you don't want to use the ScreenManager , you can do this manually using the Perform

Interaction RPC request. As this is no longer a recommended course of action, we will

leave it to you to figure out how to manually do it.

Note that if you do manually create a PerformInteraction and want to set a cancel id, the

ScreenManager takes cancel ids 0 - 10000. Any cancel id you set must be outside of that

range.

SDL supports two types of alerts: a large popup alert that typically takes over the whole

screen and a smaller subtle alert that only covers a small part of screen.

Your SDL app may be restricted to only being allowed to send an alert when your app is

open (i.e. the hmiLevel is non- NONE) or when it is the currently active app (i.e. the h

miLevel is FULL). Subtle alert is a new feature (RPC v7.0+) and may not be supported on

all modules.

const isAlertAllowed =
sdlManager.getPermissionManager().isRpcAllowed(SDL.rpc.enums.FunctionID.Alert);
const isSubtleAlertAllowed =
sdlManager.getPermissionManager().isRpcAllowed(SDL.rpc.enums.FunctionID.Subtle

Using RPCs

Alerts and Subtle Alerts

Checking if the Module Supports
Alerts

An alert is a large pop-up window showing a short message with optional buttons. When

an alert is activated, it will abort any SDL operation that is in-progress, except the already-

in-progress alert. If an alert is issued while another alert is still in progress the newest

alert will wait until the current alert has finished.

Depending on the platform, an alert can have up to three lines of text, a progress indicator

(e.g. a spinning wheel or hourglass), and up to four soft buttons.

Alerts

A L ER T WI T H NO S OF T BUT T ONS

If no soft buttons are added to an alert some modules may add a default

"cancel" or "close" button.

NOT E

Use the AlertView to set all the properties of the alert you want to present.

A L ER T WI T H S OF T BUT T ONS

Creating the AlertView

An AlertView must contain at least either text , secondaryText or audi

o for the alert to be presented.

NOT E

TEXT

const alertView = new SDL.manager.screen.utils.AlertView()
 .setText('Text')
 .setSecondaryText('SecondaryText')
 .setAudio(AlertAudioData);

alertView.setSoftButtons(/* List of SoftButtonObjects */);

An alert can include a custom or static (built-in) image that will be displayed within the

alert.

BU TTONS

IC ON

alertView.setIcon(SdlArtwork);

An optional timeout can be added that will dismiss the alert when the duration is over.

Typical timeouts are between 3 and 10 seconds. If omitted, a default of 5 seconds is used.

alertView.setTimeout(5);

TIMEOU TS

Not all modules support a progress indicator. If supported, the alert will show an

animation that indicates that the user must wait (e.g. a spinning wheel or hourglass, etc).

If omitted, no progress indicator will be shown.

alertView.setShowWaitIndicator(true);

An alert can also speak a prompt or play a sound file when the alert appears on the

screen. This is done by creating an AlertAudioData object and setting it in the AlertView

const alertAudioData = new SDL.manager.screen.utils.AlertAudioData('Text to
Speak')
alertView.setAudio(alertAudioData);

AlertAudioData can also play an audio file.

P ROGRESS INDIC ATOR

TEXT-TO-SP EEC H

On Manticore, using alerts with audio (Text-To-Speech or Tones) work best

in Google Chrome, Mozilla Firefox, or Microsoft Edge. Alerts with audio

does not work in Apple Safari at this time.

NOT E

https://smartdevicelink.com/resources/manticore/

const alertAudioData = new SDL.manager.screen.utils.AlertAudioData(null, null,
sdlFile);
alertView.setAudio(alertAudioData);

You can also play a combination of audio files and text-to-speech strings. The audio will

be played in the order you add them to the AlertAudioData object.

const alertAudioData = new SDL.manager.screen.utils.AlertAudioData(null, null,
sdlFile);
const textToSpeech = [];
textToSpeech.push('Text to speak');
alertAudioData.addSpeechSynthesizerStrings(textToSpeech);

To play a notification sound when the alert appears, set playTone to true .

const alertAudioData = new SDL.manager.screen.utils.AlertAudioData('Text to
Speak')
 .setPlaytone(true);

sdlManager.getScreenManager().presentAlert(alertView, new
SDL.manager.screen.utils.AlertCompletionListener()
 .setOnComplete((success, tryAgainTime) => {
 if(success){
 // Alert was presented successfully
 }
 })
);

P L AY TONE

Showing the Alert

You can cancel an alert that has not yet been sent to the head unit.

On systems with RPC v6.0+ you can dismiss a displayed alert before the timeout has

elapsed. This feature is useful if you want to show users a loading screen while

performing a task, such as searching for a list for nearby coffee shops. As soon as you

have the search results, you can cancel the alert and show the results.

alertView.cancel();

Canceling/Dismissing the Alert

If connected to older head units that do not support this feature, the cancel

request will be ignored, and the alert will persist on the screen until the

timeout has elapsed or the user dismisses the alert by selecting a button.

NOT E

Canceling the alert will only dismiss the displayed alert. If the alert has

audio, the speech will play in its entirety even when the displayed alert has

been dismissed. If you know you will cancel an alert, consider setting a

short audio message like "searching" instead of "searching for coffee shops,

please wait."

NOT E

Using RPCs

You can also use RPCs to present alerts. You need to use the Alert RPC to do so. Note

that if you do so, you must avoid using soft button ids 0 - 10000 and cancel ids 0 - 10000

because these ranges are used by the ScreenManager .

A subtle alert is a notification style alert window showing a short message with optional

buttons. When a subtle alert is activated, it will not abort other SDL operations that are in-

progress like the larger pop-up alert does. If a subtle alert is issued while another subtle

alert is still in progress the newest subtle alert will simply be ignored.

Touching anywhere on the screen when a subtle alert is showing will dismiss the alert. If

the SDL app presenting the alert is not currently the active app, touching inside the subtle

alert will open the app.

Depending on the platform, a subtle alert can have up to two lines of text and up to two

soft buttons.

Subtle Alerts (RPC v7.0+)

Because SubtleAlert is not currently supported in the ScreenManager ,

you need to be careful when setting soft buttons or cancel ids to ensure that

they do not conflict with those used by the ScreenManager . The ScreenM

anager takes soft button ids 0 - 10000 and cancel ids 0 - 10000. Ensure that

if you use custom RPCs that the soft button ids and cancel ids are outside

of this range.

NOT E

S UBT L E A L ER T WI T H NO S OF T BUT T ONS

The following steps show you how to add text, images, buttons, and sound to your subtle

alert. Please note that at least one line of text or the "text-to-speech" chunks must be set

in order for your subtle alert to work.

const subtleAlert = new SDL.rpc.messages.SubtleAlert()
 .setAlertText1('Line 1')
 .setAlertText2('Line 2')
 .setCancelID(cancelId);

S UBT L E A L ER T WI T H S OF T BUT T ONS

Creating the Subtle Alert

TEXT

// Soft buttons
const softButtonId = 10001; // Set it to any unique ID
const okButton = new SDL.rpc.structs.SoftButton()
 .setType(SDL.rpc.enums.SoftButtonType.SBT_TEXT)
 .setSoftButtonID(softButtonId)
 .setText('OK');

// Set the softbuttons(s) to the alert
subtleAlert.setSoftButtons([okButton]);

// This listener is only needed once, and will work for all of soft buttons you send
with your alert
sdlManager.addRpcListener(SDL.rpc.enums.FunctionID.OnButtonPress, function
(onButtonPress) {
 if (onButtonPress.getCustomButtonID() === softButtonId) {
 console.log("OK button pressed");
 }
})

A subtle alert can include a custom or static (built-in) image that will be displayed within

the subtle alert. Before you add the image to the subtle alert, make sure the image is

uploaded to the head unit using the FileManager . Once the image is uploaded, you can

show the alert with the icon.

BU TTONS

IC ON

subtleAlert.setAlertIcon(new SDL.rpc.structs.Image()
 .setValueParam('artworkName')
 .setImageType(SDL.rpc.enums.ImageType.DYNAMIC));

An optional timeout can be added that will dismiss the subtle alert when the duration is

over. Typical timeouts are between 3 and 10 seconds. If omitted, a default of 5 seconds is

used.

subtleAlert.setDuration(5000);

A subtle alert can also speak a prompt or play a sound file when the subtle alert appears

on the screen. This is done by setting the ttsChunks parameter.

const chunk = new SDL.rpc.structs.TTSChunk()
 .setType(SDL.rpc.enums.SpeechCapabilities.SC_TEXT)
 .setText('Text to Speak');
subtleAlert.setTtsChunks([chunk]);

The ttsChunks parameter can also take a file to play/speak. For more information on

how to upload the file please refer to the Playing Audio Indications guide.

TIMEOU TS

TEXT-TO-SP EEC H

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/speech-and-audio/playing-audio-indications/

const ttsChunk = new SDL.rpc.structs.TTSChunk()
 .setText(sdlFile.getName())
 .setType(SDL.rpc.enums.SpeechCapabilities.FILE);
subtleAlert.setTtsChunk([ttsChunk]);

// sdl_javascript_suite v1.1+
const response = await sdlManager.sendRpcResolve(subtleAlert);
if (response.getSuccess()) {
 console.log('Subtle alert was shown successfully');
}
// thrown exceptions should be caught by a parent function via .catch()
// Pre sdl_javascript_suite v1.1
// Handle RPC Response
const response = await sdlManager.sendRpc(subtleAlert).catch(function (error) {
 // Handle Error
});
if (response.getSuccess()) {
 console.log('Subtle alert was shown successfully');
}

If desired, you can be notified when the user tapped on the subtle alert by registering for

the OnSubtleAlertPressed notification.

sdlManager.addRpcListener(SDL.rpc.enums.FunctionID.OnSubtleAlertPressed,
function (onSubtleAlertPressed) {
 // The subtle alert was pressed
});

You can dismiss a displayed subtle alert before the timeout has elapsed.

Showing the Subtle Alert

Checking if the User Dismissed the Subtle Alert

Dismissing the Subtle Alert

There are two ways to dismiss a subtle alert. The first way is to dismiss a specific subtle

alert using a unique cancelID assigned to the subtle alert. The second way is to dismiss

whichever subtle alert is currently on-screen.

const cancelInteraction = new SDL.rpc.messages.CancelInteraction()
 .setFunctionIDParam(SDL.rpc.enums.FunctionID.SubtleAlert)
 .setCancelID(cancelID);

// sdl_javascript_suite v1.1+
const response = await sdlManager.sendRpcResolve(cancelInteraction);
if (response.getSuccess()) {
 console.log('Subtle alert was dismissed successfully');
}
// thrown exceptions should be caught by a parent function via .catch()
// Pre sdl_javascript_suite v1.1
// Handle RPC Response
const response = await sdlManager.sendRpc(cancelInteraction).catch(function
(error) {
 // Handle Error
});
if (response.getSuccess()) {
 console.log('Subtle alert was dismissed successfully');
}

Canceling the subtle alert will only dismiss the displayed alert. If you have

set the ttsChunk property, the speech will play in its entirety even when the

displayed subtle alert has been dismissed. If you know you will cancel a

subtle alert, consider setting a short ttsChunk .

NOT E

DISMISSING A SP EC IF IC SU BTL E AL ERT

The media clock is used by media apps to present the current timing information of a

playing media item such as a song, podcast, or audiobook.

The media clock consists of three parts: the progress bar, a current position label and a

remaining time label. In addition, you may want to update the play/pause button icon to

reflect the current state of the audio or the media forward / back buttons to reflect if it will

skip tracks or time.

const cancelInteraction = new
SDL.rpc.messages.CancelInteraction().setFunctionIDParam(SDL.rpc.enums.FunctionI

// sdl_javascript_suite v1.1+
const response = await sdlManager.sendRpcResolve(cancelInteraction);
if (response.getSuccess()) {
 console.log('Subtle alert was dismissed successfully');
}
// thrown exceptions should be caught by a parent function via .catch()
// Pre sdl_javascript_suite v1.1
// Handle RPC Response
const response = await sdlManager.sendRpc(cancelInteraction).catch(function
(error) {
 // Handle Error
});
if (response.getSuccess()) {
 console.log('Subtle alert was dismissed successfully');
}

DISMISSING THE C U RRENT SU BTL E AL ERT

Media Clock

Media clock operations require the HMI status to be FULL . More

information on how to monitor the HMI status can be found in the

Understanding Permissions guide.

NOT E

Ensure your app has an appType of media and you are using the media

template before implementing this feature.

NOT E

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/getting-started/understanding-permissions/#hmi-levels

In order to count up using the timer, you will need to set a start time that is less than the

end time. The "bottom end" of the media clock will always start at 0:00 and the "top end"

will be the end time you specified. The start time can be set to any position between 0 and

the end time. For example, if you are starting a song at 0:30 and it ends at 4:13 the

media clock timer progress bar will start at the 0:30 position and start incrementing up

automatically every second until it reaches 4:13 . The current position label will start

counting upwards from 0:30 and the remaining time label will start counting down from

3:43 . When the end is reached, the current time label will read 4:13 , the remaining time

label will read 0:00 and the progress bar will stop moving.

The play / pause indicator parameter is used to update the play / pause button to your

desired button type. This is explained below in the section "Updating the Audio Indicator"

const mediaClock = new SDL.rpc.messages.SetMediaClockTimer()
 .setUpdateMode(SDL.rpc.enums.UpdateMode.COUNTUP)
 .setStartTime(
 new SDL.rpc.structs.StartTime()
 .setHours(0)
 .setMinutes(0)
 .setSeconds(30)
).setEndTime(
 new SDL.rpc.structs.StartTime()
 .setHours(0)
 .setMinutes(4)
 .setSeconds(13)
).setAudioStreamingIndicator(SDL.rpc.enums.AudioStreamingIndicator.PAUSE);

// sdl_javascript_suite v1.1+
sdlManager.sendRpcResolve(mediaClock);
// Pre sdl_javascript_suite v1.1
sdlManager.sendRpc(mediaClock);

Counting Up

Counting Down

Counting down is the opposite of counting up (I know, right?). In order to count down using

the timer, you will need to set a start time that is greater than the end time. The timer bar

moves from right to left and the timer will automatically count down. For example, if

you're counting down from 10:00 to 0:00 , the progress bar will be at the leftmost

position and start decrementing every second until it reaches 0:00 .

const mediaClock = new SDL.rpc.messages.SetMediaClockTimer()
 .setUpdateMode(SDL.rpc.enums.UpdateMode.COUNTDOWN)
 .setStartTime(
 new SDL.rpc.structs.StartTime()
 .setHours(0)
 .setMinutes(10)
 .setSeconds(0)
).setEndTime(
 new SDL.rpc.structs.StartTime()
 .setHours(0)
 .setMinutes(0)
 .setSeconds(0)
).setAudioStreamingIndicator(SDL.rpc.enums.AudioStreamingIndicator.PAUSE);

// sdl_javascript_suite v1.1+
sdlManager.sendRpcResolve(mediaClock);
// Pre sdl_javascript_suite v1.1
sdlManager.sendRpc(mediaClock);

When pausing the timer, it will stop the timer as soon as the request is received and

processed. When a resume request is sent, the timer begins again at the paused time as

soon as the request is processed. You can update the start and end times using a pause

command to change the timer while remaining paused.

Pausing & Resuming

// Pause the progress bar and set the play / pause indicator to PLAY
const mediaClock = new SDL.rpc.messages.SetMediaClockTimer()
 .setUpdateMode(SDL.rpc.enums.UpdateMode.PAUSE)
 .setAudioStreamingIndicator(SDL.rpc.enums.AudioStreamingIndicator.PLAY);
// sdl_javascript_suite v1.1+
sdlManager.sendRpcResolve(mediaClock);
// Pre sdl_javascript_suite v1.1
sdlManager.sendRpc(mediaClock);

// Resume the progress bar from its current location and set the play / pause
indicator to PAUSE
const mediaClock = new SDL.rpc.messages.SetMediaClockTimer()
 .setUpdateMode(SDL.rpc.enums.UpdateMode.RESUME)
 .setAudioStreamingIndicator(SDL.rpc.enums.AudioStreamingIndicator.PAUSE);
// sdl_javascript_suite v1.1+
sdlManager.sendRpcResolve(mediaClock);
// Pre sdl_javascript_suite v1.1
sdlManager.sendRpc(mediaClock);

// Pause the progress bar, update the progress start / end time and set the play /
pause indicator to PLAY
const mediaClock = new SDL.rpc.messages.SetMediaClockTimer()
 .setUpdateMode(SDL.rpc.enums.UpdateMode.PAUSE)
 .setStartTime(
 new SDL.rpc.structs.StartTime()
 .setHours(0)
 .setMinutes(1)
 .setSeconds(0)
).setEndTime(
 new SDL.rpc.structs.StartTime()
 .setHours(0)
 .setMinutes(4)
 .setSeconds(0)
).setAudioStreamingIndicator(SDL.rpc.enums.AudioStreamingIndicator.PLAY);
// sdl_javascript_suite v1.1+
sdlManager.sendRpcResolve(mediaClock);
// Pre sdl_javascript_suite v1.1
sdlManager.sendRpc(mediaClock);

Clearing the timer removes it from the screen.

const mediaClock = new SDL.rpc.messages.SetMediaClockTimer()
 .setUpdateMode(SDL.rpc.enums.UpdateMode.CLEAR)
 .setAudioStreamingIndicator(SDL.rpc.enums.AudioStreamingIndicator.PLAY);
// sdl_javascript_suite v1.1+
sdlManager.sendRpcResolve(mediaClock);
// Pre sdl_javascript_suite v1.1
sdlManager.sendRpc(mediaClock);

The audio indicator is, essentially, the play / pause button. You can tell the system which

icon to display on the play / pause button to correspond with how your app works. For

example, if audio is currently playing you can update the play/pause button to show the

pause icon. On older head units, the audio indicator shows an icon with both the play and

pause indicators and the icon can not be updated.

For example, a radio app will probably want two button states: play and stop. A music app,

in contrast, will probably want a play and pause button. If you don't send any audio

indicator information, a play / pause button will be displayed.

As of RPC v7.1, you can set the style of the media forward / back buttons to show icons

for skipping time (in seconds) forward and backward instead of skipping tracks. The

skipping time style is common in podcast & audiobook media apps.

Clearing the Timer

Setting the Play / Pause Button Style
(RPC v5.0+)

Setting The Media Forward / Back
Button Style (RPC v7.1+)

When you set the skip indicator style, you can set type TRACK , which is the default style

that shows "skip forward" and "skip back" indicators. This is the only style available on

RPC < 7.1 connections. You can also set the new type TIME , which will allow you to set

the number of seconds and display indicators for skipping forward and backward in time.

const streamingIndicator = new SDL.rpc.structs.SeekStreamingIndicator()
 .setType(SDL.rpc.enums.SeekIndicatorType.TRACK);

const mediaClock = new SDL.rpc.messages.SetMediaClockTimer()
 .setUpdateMode(SDL.rpc.enums.UpdateMode.PAUSE)
 .setForwardSeekIndicator(streamingIndicator)
 .setBackSeekIndicator(streamingIndicator)
 .setAudioStreamingIndicator(SDL.rpc.enums.AudioStreamingIndicator.PLAY);
// sdl_javascript_suite v1.1+
sdlManager.sendRpcResolve(mediaClock);
// Pre sdl_javascript_suite v1.1
sdlManager.sendRpc(mediaClock);

Track Style

const streamingIndicator = new SDL.rpc.structs.SeekStreamingIndicator()
 .setType(SDL.rpc.enums.SeekIndicatorType.TIME)
 .setSeekTime(5);

const mediaClock = new SDL.rpc.messages.SetMediaClockTimer()
 .setUpdateMode(SDL.rpc.enums.UpdateMode.PAUSE)
 .setForwardSeekIndicator(streamingIndicator)
 .setBackSeekIndicator(streamingIndicator)
 .setAudioStreamingIndicator(SDL.rpc.enums.AudioStreamingIndicator.PLAY);

Time Style

Many audio apps that support podcasts and audiobooks allow the user to adjust the audio

playback rate.

As of RPC v7.1, you can set the rate that the audio is playing at to ensure the media clock

accurately reflects the audio.

For example, a user can play a podcast at 125% speed or at 75% speed.

//Play Audio at 50% or half speed
const mediaClockSlow = new SDL.rpc.messages.SetMediaClockTimer()
 .setUpdateMode(SDL.rpc.enums.UpdateMode.COUNTUP)
 .setStartTime(
 new SDL.rpc.structs.StartTime()
 .setHours(0)
 .setMinutes(0)
 .setSeconds(30)
).setEndTime(
 new SDL.rpc.structs.StartTime()
 .setHours(0)
 .setMinutes(4)
 .setSeconds(13)
).setAudioStreamingIndicator(SDL.rpc.enums.AudioStreamingIndicator.PAUSE)
 .setCountRate(0.5);

sdlManager.sendRpcResolve(mediaClockSlow);

//Play Audio at 200% or double speed
const mediaClockFast = new SDL.rpc.messages.SetMediaClockTimer()
 .setUpdateMode(SDL.rpc.enums.UpdateMode.COUNTUP)
 .setStartTime(
 new SDL.rpc.structs.StartTime()
 .setHours(0)
 .setMinutes(0)
 .setSeconds(30)
).setEndTime(
 new SDL.rpc.structs.StartTime()
 .setHours(0)
 .setMinutes(4)
 .setSeconds(13)
).setAudioStreamingIndicator(SDL.rpc.enums.AudioStreamingIndicator.PAUSE)
 .setCountRate(2);

sdlManager.sendRpcResolve(mediaClockFast);

Adding Custom Playback Rate (RPC
v7.1+)

A Slider creates a full screen or pop-up overlay (depending on platform) that a user can

control. There are two main Slider layouts, one with a static footer and one with a

dynamic footer.

A slider popup with a static footer displays a single, optional, footer message below the

slider UI. A dynamic footer can show a different message for each slider position.

CountRate has a default value of 1.0, and the CountRate will be reset to

1.0 if any SetMediaClockTimer request does not have the parameter set.

To ensure that you maintain the correct CountRate in your application

make sure to set the parameter in all SetMediaClockTimer requests

(including when sending a RESUME request).

NOT E

Slider

The slider will persist on the screen until the timeout has elapsed or the user

dismisses the slider by selecting a position or canceling.

NOT E

Slider UI

DY NA MI C S L I DER I N POS I T I ON 1

DY NA MI C S L I DER I N POS I T I ON 2

const slider = new SDL.rpc.messages.Slider();

The number of selectable items on a horizontal axis.

// Must be a number between 2 and 26
slider.setNumTicks(5);

The initial position of slider control (cannot exceed numTicks).

// Must be a number between 1 and 26
slider.setPosition(1);

The header to display.

// Max length 500 chars
slider.setSliderHeader("This is a Header");

Creating the Slider

Ticks

Position

Header

Static Footer

The footer will have the same message across all positions of the slider.

// Max length 500 chars
slider.setSliderFooter(["Static Footer"]);

This type of footer will have a different message displayed for each position of the slider.

The footer is an optional parameter. The footer message displayed will be based off of the

slider's current position. The footer array should be the same length as numTicks

because each footer must correspond to a tick value. Or, you can pass to have no footer

at all.

// Array length 1 - 26, Max length 500 chars
slider.setSliderFooter(["Footer 1","Footer 2","Footer 3"]);

An ID for this specific slider to allow cancellation through the CancelInteraction RPC.

The ScreenManager takes cancel ids 0 - 10000, so ensure any cancel id that you set is

outside of that range.

slider.setCancelID(10045);

Dynamic Footer

Cancel ID

Show the Slider

// sdl_javascript_suite v1.1+
const sliderResponse = await sdlManager.sendRpcResolve(slider);
if (sliderResponse.getSuccess()) {
 console.log('Slider Position Set: ' + sliderResponse.getSliderPosition());
}
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const sliderResponse = await sdlManager.sendRpc(slider).catch(function (error) {
 // Handle Error
});
if (sliderResponse.getSuccess()) {
 console.log('Slider Position Set: ' + sliderResponse.getSliderPosition());
}

You can dismiss a displayed slider before the timeout has elapsed by dismissing either a

specific slider or the current slider.

Dismissing a Slider (RPC v6.0+)

If connected to older head units that do not support this feature, the cancel

request will be ignored, and the slider will persist on the screen until the

timeout has elapsed or the user dismisses by selecting a position or

canceling.

NOT E

Dismissing a Specific Slider

// sdl_javascript_suite v1.1+
// `cancelID` is the ID that you assigned when creating the slider
const cancelInteraction = new SDL.rpc.messages.CancelInteraction()
 .setFunctionIDParam(SDL.rpc.enums.FunctionID.Slider)
 .setCancelID(cancelID);
const response = await sdlManager.sendRpcResolve(cancelInteraction);
if (response.getSuccess()) {
 console.log('Slider was dismissed successfully');
}
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
// `cancelID` is the ID that you assigned when creating the slider
const cancelInteraction = new SDL.rpc.messages.CancelInteraction()
 .setFunctionIDParam(SDL.rpc.enums.FunctionID.Slider)
 .setCancelID(cancelID);
const response = await sdlManager.sendRpc(cancelInteraction).catch(function
(error) {
 // Handle Error
});
if (response.getSuccess()) {
 console.log('Slider was dismissed successfully');
}

Dismissing the Current Slider

A ScrollableMessage creates an overlay containing a large block of formatted text that

can be scrolled. It contains a body of text, a message timeout, and up to eight soft

buttons. To display a scrollable message in your SDL app, you simply send a ScrollableM

essage RPC request.

// sdl_javascript_suite v1.1+
const cancelInteraction = new
SDL.rpc.messages.CancelInteraction().setFunctionIDParam(SDL.rpc.enums.FunctionI

const response = await sdlManager.sendRpcResolve(cancelInteraction);
if (response.getSuccess()) {
 console.log('Slider was dismissed successfully');
}
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const cancelInteraction = new
SDL.rpc.messages.CancelInteraction().setFunctionIDParam(SDL.rpc.enums.FunctionI

const response = await sdlManager.sendRpc(cancelInteraction).catch(function
(error) {
 // Handle Error
});
if (response.getSuccess()) {
 console.log('Slider was dismissed successfully');
}

Scrollable Message

The message will persist on the screen until the timeout has elapsed or the

user dismisses the message by selecting a soft button or cancelling (if the

head unit provides cancel UI).

NOT E

Currently, you can only create a scrollable message view to display on the screen using

RPCs.

Scrollable Message UI

Creating the Scrollable Message

The ScreenManager uses soft button ids 0 – 10000. Ensure that if you use

custom RPCs—such as this one—that the soft button ids you use are

outside of this range (i.e. > 10000).

NOT E

// Create Message To Display
const scrollableMessageText = "Lorem ipsum dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Vestibulum
mattis ullamcorper velit sed ullamcorper morbi tincidunt ornare. Purus in massa
tempor nec feugiat nisl pretium fusce id. Pharetra convallis posuere morbi leo urna
molestie at elementum eu. Dictum sit amet justo donec enim diam.";

// Create SoftButtons
const softButton1 = new SDL.rpc.structs.SoftButton()
 .setType(SDL.rpc.enums.SoftButtonType.SBT_TEXT)
 .setSoftButtonID(10001)
 .setText("Button 1");

const softButton2 = new SDL.rpc.structs.SoftButton()
 .setType(SDL.rpc.enums.SoftButtonType.SBT_TEXT)
 .setSoftButtonID(10002)
 .setText("Button 2");

// Create SoftButton Array
const softButtonList = [softButton1, softButton2];

// Create ScrollableMessage Object
const scrollableMessage = new SDL.rpc.messages.ScrollableMessage()
 .setScrollableMessageBody(scrollableMessageText)
 .setTimeout(50000)
 .setSoftButtons(softButtonList);

// Set cancelId
scrollableMessage.setCancelID(integer);

// Send the scrollable message

// sdl_javascript_suite v1.1+
sdlManager.sendRpcResolve(scrollableMessage);
// Pre sdl_javascript_suite v1.1
sdlManager.sendRpc(scrollableMessage);

To listen for OnButtonPress events for SoftButton s, we need to add a listener that

listens for their Id's:

sdlManager.addRpcListener(SDL.rpc.enums.FunctionID.OnButtonPress, function
(onButtonPress) {
 switch (onButtonPress.getCustomButtonId()) {
 case 10001:
 console.log("Button 1 Pressed");
 break;
 case 10002:
 console.log("Button 2 Pressed");
 break;
 }
});

You can dismiss a displayed scrollable message before the timeout has elapsed. You can

dismiss a specific scrollable message, or you can dismiss the scrollable message that is

currently displayed.

Dismissing a Scrollable Message
(RPC v6.0+)

If connected to older head units that do not support this feature, the cancel

request will be ignored, and the scrollable message will persist on the

screen until the timeout has elapsed or the user dismisses the message by

selecting a button.

NOT E

Dismissing a Specific Scrollable Message

// sdl_javascript_suite v1.1+
// `cancelID` is the ID that you assigned when creating and sending the alert
const cancelInteraction = new SDL.rpc.messages.CancelInteraction()
 .setFunctionIDParam(SDL.rpc.enums.FunctionID.ScrollableMessage)
 .setCancelID(cancelID);
const response = await sdlManager.sendRpcResolve(cancelInteraction);
if (response.getSuccess()){
 console.log("Scrollable message was dismissed successfully");
}
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
// `cancelID` is the ID that you assigned when creating and sending the alert
const cancelInteraction = new SDL.rpc.messages.CancelInteraction()
 .setFunctionIDParam(SDL.rpc.enums.FunctionID.ScrollableMessage)
 .setCancelID(cancelID);
const response = await sdlManager.sendRpc(cancelInteraction).catch(function
(error) {
 // Handle Error
});
if (response.getSuccess()){
 console.log("Scrollable message was dismissed successfully");
}

Dismissing the Current Scrollable Message

You have the ability to customize the look and feel of the template. How much

customization is available depends on the RPC version of the head unit you are connected

with as well as the design of the HMI.

You can customize the color scheme of your app using template coloring APIs.

// sdl_javascript_suite v1.1+
// `cancelID` is the ID that you assigned when creating and sending the alert
const cancelInteraction = new
SDL.rpc.messages.CancelInteraction().setFunctionIDParam(SDL.rpc.enums.FunctionI

const response = await sdlManager.sendRpcResolve(cancelInteraction);
if (response.getSuccess()){
 console.log("Scrollable message was dismissed successfully");
}
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const cancelInteraction = new
SDL.rpc.messages.CancelInteraction().setFunctionIDParam(SDL.rpc.enums.FunctionI

const response = await sdlManager.sendRpc(cancelInteraction).catch(function
(error) {
 // Handle Error
});
if (response.getSuccess()){
 console.log("Scrollable message was dismissed successfully");
}

Customizing the Template

Customizing Template Colors (RPC
v5.0+)

You can change the template colors of the initial template layout in the lifecycleConfigur

ation .

Customizing the Default Layout

// Set color schemes
const green = new
SDL.rpc.structs.RGBColor().setRed(126).setGreen(188).setBlue(121);
const white = new
SDL.rpc.structs.RGBColor().setRed(249).setGreen(251).setBlue(254);
const grey = new
SDL.rpc.structs.RGBColor().setRed(186).setGreen(198).setBlue(210);
const darkGrey = new
SDL.rpc.structs.RGBColor().setRed(57).setGreen(78).setBlue(96);

const dayColorScheme = new SDL.rpc.structs.TemplateColorScheme();
dayColorScheme.setBackgroundColor(white);
dayColorScheme.setPrimaryColor(green);
dayColorScheme.setSecondaryColor(grey);
lifecycleConfig.setDayColorScheme(dayColorScheme);

const nightColorScheme = new SDL.rpc.structs.TemplateColorScheme();
nightColorScheme.setBackgroundColor(white);
nightColorScheme.setPrimaryColor(green);
nightColorScheme.setSecondaryColor(darkGrey);
lifecycleConfig.setNightColorScheme(nightColorScheme);

You can change the template color scheme when you change layouts. This guide requires

SDL JavaScript Suite version 1.2. If using an older version, use SetDisplayLayout (any

RPC version) or Show (RPC v6.0+) request.

You may only change the template coloring once per template; that is, you

cannot call changeLayout , SetDisplayLayout or Show for the template

you are already on and expect the color scheme to update.

NOT E

Customizing Future Layouts

// Set color schemes
const green = new
SDL.rpc.structs.RGBColor().setRed(126).setGreen(188).setBlue(121);
const white = new
SDL.rpc.structs.RGBColor().setRed(249).setGreen(251).setBlue(254);
const grey = new
SDL.rpc.structs.RGBColor().setRed(186).setGreen(198).setBlue(210);
const darkGrey = new
SDL.rpc.structs.RGBColor().setRed(57).setGreen(78).setBlue(96);

const dayColorScheme = new SDL.rpc.structs.TemplateColorScheme();
dayColorScheme.setBackgroundColor(white);
dayColorScheme.setPrimaryColor(green);
dayColorScheme.setSecondaryColor(grey);
lifecycleConfig.setDayColorScheme(dayColorScheme);

const nightColorScheme = new SDL.rpc.structs.TemplateColorScheme();
nightColorScheme.setBackgroundColor(white);
nightColorScheme.setPrimaryColor(green);
nightColorScheme.setSecondaryColor(darkGrey);

const templateConfiguration = new SDL.rpc.structs.TemplateConfiguration()
 .setTemplate(SDL.rpc.enums.PredefinedLayout.GRAPHIC_WITH_TEXT)
 .setDayColorScheme(dayColorScheme)
 .setNightColorScheme(nightColorScheme);

const success = await
sdlManager.getScreenManager().changeLayout(templateConfiguration);
if (success) {
 // Color set with template change
} else {
 // Color and template not changed
}

You can also customize the title and icon of the main menu button that appears on your

template layouts. The menu icon must first be uploaded with a specific name through the

file manager; see the Uploading Images section for more information on how to upload

your image.

Customizing the Menu Title and Icon

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/other-sdl-features/uploading-images/

const setGlobalProperties = new SDL.rpc.messages.SetGlobalProperties();
setGlobalProperties.setMenuTitle('customTitle');
// The image must be uploaded before referencing the image name here
setGlobalProperties.setMenuIcon(image);
const response = await sdlManager.sendRpc(setGlobalProperties);
if (response.getSuccess()){
 // Success
}

If you present keyboards in your app – such as in searchable interactions or another

custom keyboard – you may wish to customize the keyboard for your users. The best way

to do this is through the ScreenManager . For more information presenting keyboards,

see the Popup Keyboards section.

You can modify the language of the keyboard to change the characters that are displayed.

const keyboardProperties = new SDL.rpc.structs.KeyboardProperties()
 .setLanguage(SDL.rpc.enums.Language.HE_IL) // Set to Israeli Hebrew
 .setKeyboardLayout(SDL.rpc.enums.KeyboardLayout.AZERTY); // Set to AZERTY

sdlManager.getScreenManager().setKeyboardConfiguration(keyboardProperties);

Customizing the Keyboard (RPC
v3.0+)

Setting Keyboard Properties

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/displaying-a-user-interface/popup-keyboards/

While there are other keyboard properties available on KeyboardProperties , these will be

overridden by the screen manager. The keypressMode must be a specific configuration

for the screen manager's callbacks to work properly. The limitedCharacterList , autoCo

mpleteText , and autoCompleteList will be set on a per-keyboard basis when calling sdl

Manager.getScreenManager.presentKeyboard(...) , should custom keyboard properties be

set.

On some head units it is possible to display a customized help menu or speak a custom

command if the user asks for help while using your app. The help menu is commonly used

to let users know what voice commands are available, however, it can also be customized

to help your user navigate the app or let them know what features are available.

You can customize the help menu with your own title and/or menu options. If you don't

customize these options, then the head unit's default menu will be used.

If you wish to use an image, you should check the sdlManager.getSystemCapabilityMana

ger().getDefaultMainWindowCapability().getImageFields(); for an imageField.name of vr

HelpItem to see if that image is supported. If vrHelpItem is in the imageFields array,

then it can be used. You will then need to upload the image using the file manager before

using it in the request. See the Uploading Images section for more information.

Other Properties

Customizing Help Prompts

Configuring the Help Menu

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/other-sdl-features/uploading-images/

const setGlobalProperties = new SDL.rpc.messages.SetGlobalProperties();
setGlobalProperties.setVrHelpTitle('What Can I Say?');

const item1 = new SDL.rpc.structs.VrHelpItem().setText("Show
Artists").setPosition(1).setImage(image); // a previously uploaded image or null

const item2 = new SDL.rpc.structs.VrHelpItem().setText("Show
Albums").setPosition(2).setImage(image); // a previously uploaded image or null

setGlobalProperties.setVrHelp([item1, item2]);
sdlManager.sendRpc(setGlobalProperties).catch(err => err); // If there was an error,
catch it and return it
if (response instanceof SDL.rpc.RpcRespone && response.getSuccess()) {
 // The help menu is updated
} else {
 // Handle Error
}

On head units that support voice recognition, a user can request assistance by saying

"Help." In addition to displaying the help menu discussed above a custom spoken text-to-

speech response can be spoken to the user.

const setGlobalProperties = new SDL.rpc.messages.SetGlobalProperties();
const chunk = new SDL.rpc.structs.TTSChunk().setText('Your custom help
prompt').setType(SDL.rpc.enums.SpeechCapabilities.SC_TEXT);
setGlobalProperties.setHelpPrompt([chunk]);
const response = await sdlManager.sendRpc(setGlobalProperties).catch(err => err);
// If there was an error, catch it and return it
if (response instanceof SDL.rpc.RpcRespone && response.getSuccess()) {
 // The help prompt is updated
} else {
 // Handle Error
}

Configuring the Help Prompt

Configuring the Timeout Prompt

If you display any sort of popup menu or modal interaction that has a timeout – such as

an alert, interaction, or slider – you can create a custom text-to-speech response that will

be spoken to the user in the event that a timeout occurs.

const setGlobalProperties = new SDL.rpc.messages.SetGlobalProperties();
const chunk = new SDL.rpc.structs.TTSChunk().setText('Your custom help
prompt').setType(SDL.rpc.enums.SpeechCapabilities.SC_TEXT);
setGlobalProperties.setTimeoutPrompt([chunk]);
const response = await sdlManager.sendRpc(setGlobalProperties).catch(err => err);
// If there was an error, catch it and return it
if (response instanceof SDL.rpc.RpcRespone && response.getSuccess()) {
 // The timeout prompt is updated
} else {
 // Handle Error
}

You can also reset your customizations to the help menu or spoken prompts. To do so,

you will send a ResetGlobalProperties RPC with the fields that you wish to clear.

Clearing Help Menu and Prompt
Customizations

Since your user will be driving while interacting with your SDL app, speech phrases can

provide important feedback to your user. At any time during your app's lifecycle you can

send a speech phrase using the Speak request and the head unit's text-to-speech (TTS)

engine will produce synthesized speech from your provided text.

When using the Speak RPC, you will receive a response from the head unit once the

operation has completed. From the response you will be able to tell if the speech was

completed, interrupted, rejected or aborted. It is important to keep in mind that a speech

request can interrupt another ongoing speech request. If you want to chain speech

requests you must wait for the current speech request to finish before sending the next

speech request.

// Reset the help menu
const resetGlobalProperties = new
SDL.rpc.messages.ResetGlobalProperties().setProperties([SDL.rpc.enums.GlobalProp
 SDL.rpc.enums.GlobalProperty.VRHELPTITLE]);

// Reset the menu icon and title
const resetGlobalProperties = new
SDL.rpc.messages.ResetGlobalProperties().setProperties([SDL.rpc.enums.GlobalProp
 SDL.rpc.enums.GlobalProperty.MENUNAME]);

// Reset spoken prompts
const resetGlobalProperties = new
SDL.rpc.messages.ResetGlobalProperties().setProperties([SDL.rpc.enums.GlobalProp
 SDL.rpc.enums.GlobalProperty.TIMEOUTPROMPT]);

// To send any one of these, use the typical format:
const response = await sdlManager.sendRpc(setGlobalProperties).catch(err => err);
// If there was an error, catch it and return it
if (response instanceof SDL.rpc.RpcRespone && response.getSuccess()) {
 // The global properties are reset
} else {
 // Handle Error
}

Playing Spoken Feedback

The speech request you send can simply be a text phrase, which will be played back in

accordance with the user's current language settings, or it can consist of phoneme

specifications to direct SDL’s TTS engine to speak a language-independent, speech-

sculpted phrase. It is also possible to play a pre-recorded sound file (such as an MP3)

using the speech request. For more information on how to play a sound file please refer to

Playing Audio Indications.

Once you have successfully connected to the module, you can access supported speech

capabilities properties on the sdlManager.getSystemCapabilityManager() instance.

// This is technically a private property and a `getSpeechCapabilities` method will be
added to retrieve it in a future release.
let speechCapabilities =
sdlManager.getSystemCapabilityManager()._speechCapabilities;

Below is a list of commonly supported speech capabilities.

On Manticore, spoken feedback works best in Google Chrome, Mozilla

Firefox, or Microsoft Edge. Spoken feedback does not work in Apple Safari

at this time.

NOT E

Creating the Speak Request

Getting the Supported Speech Capabilities

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/speech-and-audio/playing-audio-indications/
https://smartdevicelink.com/resources/manticore/

S P E E C H C A PA B I L I T Y D E S C R I P T I O N

Once you know what speech capabilities are supported by the module, you can create the

speak requests.

const chunk = new SDL.rpc.structs.TTSChunk().setText('h eh - l ow
1').setType(SDL.rpc.enums.SpeechCapabilities.SAPI_PHONEMES);
const speak = new SDL.rpc.messages.Speak([chunk]);

const chunk = new
SDL.rpc.structs.TTSChunk().setText('hello').setType(SDL.rpc.enums.SpeechCapabilitie

const speak = new SDL.rpc.messages.Speak().setTtsChunks([chunk]);

Text Text phrases

SAPI Phonemes Microsoft speech synthesis API

File A pre-recorded sound file

Creating Different Types of Speak Requests

TEXT P HRASE

SAP I P HONEMES P HRASE

// sdl_javascript_suite v1.1+
const response = await sdlManager.sendRpcResolve(speak);
if (!response.getSuccess()){
 switch (response.getResultCode()){
 case SDL.rpc.enums.Result.DISALLOWED:
 console.log('The app does not have permission to use the speech request');
 break;
 case SDL.rpc.enums.Result.REJECTED:
 console.log('The request was rejected because a higher priority request is in
progress');
 break;
 case SDL.rpc.enums.Result.ABORTED:
 console.log('The request was aborted by another higher priority request');
 break;
 default:
 console.log('Some other error occurred');
 }
} else {
 console.log('Speech was successfully spoken');
}

// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const response = await sdlManager.sendRpc(speak);
if (!response.getSuccess()){
 switch (response.getResultCode()){
 case SDL.rpc.enums.Result.DISALLOWED:
 console.log('The app does not have permission to use the speech request');
 break;
 case SDL.rpc.enums.Result.REJECTED:
 console.log('The request was rejected because a higher priority request is in
progress');
 break;
 case SDL.rpc.enums.Result.ABORTED:
 console.log('The request was aborted by another higher priority request');
 break;
 default:
 console.log('Some other error occurred');
 }
} else {
 console.log('Speech was successfully spoken');
}

Sending the Speak Request

You can pass an uploaded audio file's name to TTSChunk , allowing any API that takes a

text-to-speech parameter to pass and play your audio file. A sports app, for example, could

play a distinctive audio chime to notify the user of a score update alongside an Alert

request.

The first step is to make sure the audio file is available on the remote system. To upload

the file use the FileManager .

const audioFile = new SDL.manager.file.filetypes.SdlFile('Audio file name',
SDL.rpc.enums.FileType.AUDIO_MP3, fileData, true);
const success = await sdlManager.getFileManager().uploadFile(audioFile)

For more information about uploading files, see the Uploading Files guide.

Playing Audio Indications (RPC
v5.0+)

On Manticore, audio indications work best in Google Chrome, Mozilla

Firefox, or Microsoft Edge. Audio indications do not work in Apple Safari at

this time.

NOT E

Uploading the Audio File

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/other-sdl-features/uploading-files/
https://smartdevicelink.com/resources/manticore/

Now that the file is uploaded to the remote system, it can be used in various RPCs, such

as Speak , Alert , and AlertManeuver . To use the audio file in an alert, you simply need

to construct a TTSChunk referring to the file's name.

const alert = new SDL.rpc.messages.Alert();
alert.setAlertText1('Alert Text 1');
alert.setAlertText2('Alert Text 2');
alert.setDuration(5000);
alert.setTtsChunks([new SDL.rpc.structs.TTSChunk().setText('Audio file
name').setType(SDL.rpc.enums.SpeechCapabilities.FILE)]);
// sdl_javascript_suite v1.1+
sdlManager.sendRpcResolve(alert);
// Pre sdl_javascript_suite v1.1
sdlManager.sendRpc(alert);

Voice commands are global commands available anywhere on the head unit to users of

your app. Once the user has opened your SDL app (i.e. your SDL app has left the HMI state

of NONE) they have access to the voice commands you have setup. Your app will be

notified when a voice command has been triggered even if the SDL app has been

backgrounded.

Using the Audio File

Setting Up Voice Commands

The head unit manufacturer will determine how these voice commands are

triggered, and some head units will not support voice commands.

NOT E

You have the ability to create voice command shortcuts to your Main Menu cells which we

highly recommended that you implement. Global voice commands should be created for

functions that you wish to make available as voice commands that are not available as

menu cells. We recommend creating global voice commands for common actions such

as the actions performed by your Soft Buttons.

To create voice commands, you simply create and set VoiceCommand objects to the v

oiceCommands array on the screen manager.

const voiceCommand = new SDL.manager.screen.utils.VoiceCommand(['Command
One'], function () {
 // Handle the VoiceCommand's Selection
});
sdlManager.getScreenManager().setVoiceCommands([voiceCommand]);

The library automatically filters out empty strings and whitespace-only strings from a

voice command's array of strings. For example, if a voice command has the following

array values: [" ", "CommandA", "", "Command A"] the library will filter it to: ["CommandA",

"Command A"] .

If you provide an array of voice commands which only contains empty string and

whitespace-only strings across all of the voice commands, the upload request will be

On Manticore, voice commands are viewed and activated by a tab in the right

hand section, not through a microphone.

NOT E

Creating Voice Commands

Unsupported Voice Commands

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/displaying-a-user-interface/main-menu/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/displaying-a-user-interface/template-custom-buttons/
https://smartdevicelink.com/resources/manticore/

aborted and the previous voice commands will remain available.

Voice commands that are sent with duplicate strings in different voice commands, such

as:

{
 Command1: ["Command A", "Command B"],
 Command2: ["Command B", "Command C"],
 Command3: ["Command D", "Command E"]
}

Then the manager will abort the upload request. The previous voice commands will

remain available.

If any individual voice command contains duplicate strings, they will be reduced to one.

For example, if the voice commands to be sent are:

{
 Command1: ["Command A", "Command A", "Command B"],
 Command2: ["Command C", "Command D"]
}

Then the manager will strip the duplicates to:

Duplicate Strings in Voice Commands

DU P L IC ATES BETWEEN DIFFERENT C OMMANDS

DU P L IC ATES IN THE SAME C OMMAND

{
 Command1: ["Command A", "Command B"],
 Command2: ["Command C", "Command D"]
}

To delete previously set voice commands, you just have to set an empty array to the voic

eCommands array on the screen manager.

sdlManager.getScreenManager().setVoiceCommands([]);

If you wish to do this without the aid of the screen manager, you can create AddComman

d objects without the menuParams parameter to create global voice commands.

Deleting Voice Commands

Setting voice command strings composed only of whitespace characters

will be considered invalid (e.g. " ") and your request will be aborted by the

module.

NOT E

Using RPCs

Getting Microphone Audio

Capturing in-car audio allows developers to interact with users by requesting raw audio

data provided to them from the car's microphones. In order to gather the raw audio from

the vehicle, you must leverage the PerformAudioPassThru RPC.

SDL does not support automatic speech cancellation detection, so if this feature is

desired, it is up to the developer to implement. The user may press an "OK" or "Cancel"

button, the dialog may timeout, or you may close the dialog with EndAudioPassThru .

Before you start an audio capture session you need to find out what audio pass thru

capabilities the module supports. You can then use that information to start an audio pass

thru session.

You must use a sampling rate, bit rate, and audio type supported by the module. Once you

have successfully connected to the module, you can access these properties on the sdlM

SDL does not support an open microphone. However, SDL is working on

wake-word support in the future. You may implement a voice command and

start an audio pass thru session when that voice command occurs.

NOT E

Manticore does not currently support the PerformAudioPassThru RPC

used for getting microphone audio.

NOT E

Starting Audio Capture

Getting the Supported Capabilities

https://smartdevicelink.com/resources/manticore/
https://smartdevicelink.com/resources/manticore/#support-notes

anager.getSystemCapabilityManager instance.

// This is technically a private property and a `getAudioPassThruCapabilities` method
will be added to retrieve it in a future release.
let audioPassThruCapabilities =
sdlManager.getSystemCapabilityManager()._audioPassThruCapabilities;

The module may return one or multiple supported audio pass thru capabilities. Each

capability will have the following properties:

A U D I O PA S S T H R U
C A PA B I L I T Y PA R A M E T E R N A M E D E S C R I P T I O N

To initiate audio capture, first construct a PerformAudioPassThru request.

Sampling Rate samplingRate The sampling rate

Bits Per Sample bitsPerSample The sample depth in bits

Audio Type audioType The audio type

Sending the Audio Capture Request

const audioPassThru = new SDL.rpc.messages.PerformAudioPassThru()
 .setAudioPassThruDisplayText1('Ask me "What\'s the weather?"')
 .setAudioPassThruDisplayText2('or "What\'s 1 + 2?"')
 .setInitialPrompt([new SDL.rpc.structs.TTSChunk()
 .setType(SDL.rpc.enums.SpeechCapabilities.SC_TEXT)
 .setText('Ask me What\'s the weather? or What\'s 1 plus 2?')
])
 .setSamplingRate(SDL.rpc.enums.SamplingRate.SamplingRate_16KHZ)
 .setMaxDuration(7000)
 .setBitsPerSample(SDL.rpc.enums.BitsPerSample.BitsPerSample_16_BIT)
 .setAudioType(SDL.rpc.enums.AudioType.PCM)
 .setMuteAudio(false);

// sdl_javascript_suite v1.1+
sdlManager.sendRpcResolve(performAPT);
// Pre sdl_javascript_suite v1.1
sdlManager.sendRpc(performAPT);

SDL provides audio data as fast as it can gather it and sends it to the developer in chunks.

In order to retrieve this audio data, the developer must observe the OnAudioPassThru

Gathering Audio Data

notification.

sdlManager.addRpcListener(SDL.rpc.enums.FunctionID.OnAudioPassThru, function
(onAudioPassThru) {
 if(onAudioPassThru instanceof SDL.rpc.messages.OnAudioPassThru) {
 const dataRcvd = onAudioPassThru.getBulkData();
 // Do something with current audio data
 }
});

The format of audio data is described as follows:

It does not include a header (such as a RIFF header) at the beginning.

The audio sample is in linear PCM format.

The audio data includes only one channel (i.e. monaural).

For bit rates of 8 bits, the audio samples are unsigned. For bit rates of 16 bits, the

audio samples are signed and are in little-endian.

PerformAudioPassThru is a request that works in a different way than other RPCs. For

most RPCs, a request is followed by an immediate response, with whether that RPC was

This audio data is only the current chunk of audio data, so the app is in

charge of saving previously retrieved audio data.

NOT E

FORMAT OF AU DIO DATA

Ending Audio Capture

successful or not. This RPC, however, will only send out the response when the audio pass

thru has ended.

Audio capture can be ended four ways:

1. The audio pass thru has timed out.

If the audio pass thru surpasses the timeout duration, this request will be

ended with a resultCode of SUCCESS. You should handle the audio pass thru

as though it was successful.

2. The audio pass thru was closed due to user pressing "Cancel" (or other head-unit

provided cancellation button).

If the audio pass thru was displayed, and the user pressed the "Cancel" button,

you will receive a resultCode of ABORTED. You should ignore the audio pass

thru.

3. The audio pass thru was closed due to user pressing "Done" (or other head-unit

provided completion button).

If the audio pass thru was displayed and the user pressed the "Done" button,

you will receive a resultCode of SUCCESS. You should handle the audio pass

thru as though it was successful.

4. The audio pass thru was ended due to a request from the app for it to end.

If the audio pass thru was displayed, but you have established on your own

that you no longer need to capture audio data, you can send an EndAudioPass

Thru RPC. You will receive a resultCode of SUCCESS. Depending on the

reason that you sent the EndAudioPassThru RPC, you can choose whether or

not to handle the audio pass thru as though it were successful. See Manually

Stopping Audio Capture below for more details.

To force stop audio capture, simply send an EndAudioPassThru request. Your PerformA

udioPassThru request will receive response with a resultCode of SUCCESS when the

audio pass thru has ended.

Manually Stopping Audio Capture

// sdl_javascript_suite v1.1+
const response = await sdlManager.sendRpcResolve(performAPT);
if (response instanceof SDL.rpc.messages.PerformAudioPassThruResponse) {
 if (response.getResultCode() === SDL.rpc.enums.Result.SUCCESS) {
 // We can use the data
 } else {
 // Cancel any usage of the data
 console.log('Audio pass thru attempt failed.');
 }
}
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const response = await sdlManager.sendRpc(performAPT).catch(error => error);
if (response instanceof SDL.rpc.messages.PerformAudioPassThruResponse) {
 if (response.getResultCode() === SDL.rpc.enums.Result.SUCCESS) {
 // We can use the data
 } else {
 // Cancel any usage of the data
 console.log('Audio pass thru attempt failed.');
 }
} else {
 // Handle Error
}

// The end audio pass thru was sent successfully

To process the response received from an ended audio capture, make sure that you are

listening to the PerformAudioPassThru response. If the response has a successful

result, all of the audio data for the audio pass thru has been received and is ready for

processing.

Handling the Response

Batch Sending RPCs

There are two ways to send multiple requests to the head unit: concurrently and

sequentially. Which method you should use depends on the type of RPCs being sent.

Concurrently sent requests might finish in a random order and should only be used when

none of the requests in the group depend on the response of another, such as when

subscribing to several hard buttons. Sequentially sent requests only send the next request

in the group when a response has been received for the previously sent RPC. Requests

should be sent sequentially when you need to know the result of a previous request before

sending the next, like when sending the several different requests needed to create a

menu.

Both methods can have the await syntax be used to pause execution until all the

responses return, and errors can be caught by attaching a catch handler. The concurrent

method accepts an array of requests and will return an array of responses, while the

sequential method accepts an array of requests and returns the last RPC response in the

array.

When you send multiple RPCs concurrently, it will not wait for the response of the previous

RPC before sending the next one. Therefore, there is no guarantee that responses will be

returned in order, and you will not be able to use information sent in a previous RPC for a

later RPC.

Sending Concurrent Requests

The JavaScript library concurrent sendRpcs method will honor the ordering

of the requests passed in (the method uses Promise.all behind the scenes).

Each response in the array has the same position of their matching request.

NOT E

// sdl_javascript_suite v1.1+
const subscribeButtonLeft = new SDL.rpc.messages.SubscribeButton()
 .setButtonName(SDL.rpc.enums.ButtonName.SEEKLEFT);
const subscribeButtonRight = new SDL.rpc.messages.SubscribeButton()
 .setButtonName(SDL.rpc.enums.ButtonName.SEEKRIGHT);

const responses = await sdlManager.sendRpcsResolve([subscribeButtonLeft,
subscribeButtonRight],
 (result, messagesRemaining) => {
 // this is the update callback function
 });
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const subscribeButtonLeft = new SDL.rpc.messages.SubscribeButton()
 .setButtonName(SDL.rpc.enums.ButtonName.SEEKLEFT);
const subscribeButtonRight = new SDL.rpc.messages.SubscribeButton()
 .setButtonName(SDL.rpc.enums.ButtonName.SEEKRIGHT);

const responses = await sdlManager.sendRpcs([subscribeButtonLeft,
subscribeButtonRight])
 .catch(error => {
 // if an RPC isn't successful, this is invoked with the passed-in failed RPC
 });

Requests sent sequentially are sent in a set order. The next request is only sent when a

response has been received for the previously sent request.

The code example below shows how to create a perform interaction choice set. When

creating a perform interaction choice set, the PerformInteraction RPC can only be sent

after the CreateInteractionChoiceSet RPC has been registered by Core, which is why the

requests must be sent sequentially.

Sending Sequential Requests

// sdl_javascript_suite v1.1+
const choiceId = 111;
const choiceSetId = 222;
const choice = new SDL.rpc.structs.Choice()
 .setChoiceID(choiceId)
 .setMenuName('Choice title');
const createInteractionChoiceSet = new
SDL.rpc.messages.CreateInteractionChoiceSet()
 .setInteractionChoiceSetID(choiceSetId)
 .setChoiceSet([choice]);
const performInteraction = new SDL.rpc.messages.PerformInteraction()
 .setInitialText('Initial Text')
 .setInteractionMode(SDL.rpc.enums.InteractionMode.MANUAL_ONLY)
 .setInteractionChoiceSetIDList([choiceSetId]);
const response = await
sdlManager.sendSequentialRpcsResolve([createInteractionChoiceSet,
performInteraction],
 (result, messagesRemaining) => {
 // this is the update callback function
 });
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const choiceId = 111;
const choiceSetId = 222;
const choice = new SDL.rpc.structs.Choice()
 .setChoiceID(choiceId)
 .setMenuName('Choice title');
const createInteractionChoiceSet = new
SDL.rpc.messages.CreateInteractionChoiceSet()
 .setInteractionChoiceSetID(choiceSetId)
 .setChoiceSet([choice]);
const performInteraction = new SDL.rpc.messages.PerformInteraction()
 .setInitialText('Initial Text')
 .setInteractionMode(SDL.rpc.enums.InteractionMode.MANUAL_ONLY)
 .setInteractionChoiceSetIDList([choiceSetId]);
const response = await
sdlManager.sendSequentialRpcs([createInteractionChoiceSet, performInteraction])
 .catch(error => {
 // if an RPC isn't successful, this is invoked with the passed-in failed RPC
 });

Retrieving Vehicle Data

You can use the GetVehicleData and SubscribeVehicleData RPC requests to get

vehicle data. Each vehicle manufacturer decides which data it will expose and to whom

they will expose it. Please check the response from Core to find out which data you will

have permission to access. Additionally, be aware that the user may have the ability to

disable vehicle data access through the settings menu of their head unit. It may be

possible to access vehicle data when the hmiLevel is NONE (i.e. the user has not

opened your SDL app) but you will have to request this permission from the vehicle

manufacturer.

You will only have access to vehicle data that is allowed to your appName

and appId combination. Permissions will be granted by each OEM

separately. See Understanding Permissions for more details.

NOT E

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/getting-started/understanding-permissions/

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Acceleration

Pedal

Position

accPedalPositio

n

Accelerator

pedal position

(percentage

depressed)

Airbag Status airbagStatus

Status of each

of the airbags in

the vehicle: yes,

no, no event, not

supported, fault

Belt Status beltStatus

The status of

each of the seat

belts: no, yes,

not supported,

fault, or no event

Body

Information

bodyInformatio

n

Door ajar status

for each door.

Roof status.

Trunk & hood

Status. The

Ignition status.

The ignition

stable status.

The park brake

active status

Climate Data climateData

Information

about cabin

temperature,

atmospheric

pressure, and

external

temperature

RPC v7.1+

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Cloud App

Vehicle Id

cloudAppVehicl

eID

The id for the

vehicle when

connecting to

cloud

applications

RPC v5.1+

Cluster Mode

Status

clusterModeStat

us

Whether or not

the power mode

is active. The

power mode

qualification

status: power

mode undefined,

power mode

evaluation in

progress, not

defined, power

mode ok. The

car mode status:

normal, factory,

transport, or

crash. The

power mode

status: key out,

key recently out,

key approved,

post accessory,

accessory, post

ignition, ignition

on, running,

crank

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Device Status deviceStatus

Contains

information

about the

smartphone

device. Is voice

recognition on

or off, has a

bluetooth

connection been

established, is a

call active, is the

phone in

roaming mode,

is a text

message

available, the

battery level, the

status of the

mono and

stereo output

channels, the

signal level, the

primary audio

source, whether

or not an

emergency call

is currently

taking place

Driver

Braking
driverBraking

The status of the

brake pedal: yes,

no, no event,

fault, not

supported

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

E-Call

Information
eCallInfo

Information

about the status

of an emergency

call

Electronic

Parking

Brake Status

electronicParkin

gBrakeStatus

The status of the

electronic

parking brake.

Available states:

closed,

transition, open,

drive active, fault

RPC v5.0+

Emergency

event
emergencyEvent

The type of

emergency:

frontal, side, rear,

rollover, no

event, not

supported, fault.

Fuel cutoff

status: normal

operation, fuel is

cut off, fault. The

roll over status:

yes, no, no event,

not supported,

fault. The

maximum

change in

velocity. Whether

or not multiple

emergency

events have

occurred

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Engine Oil

Life
engineOilLife

The estimated

percentage (0% -

100%) of

remaining oil life

of the engine

RPC v5.0+

Engine

Torque
engineTorque

Torque value for

engine (in Nm)

on non-diesel

variants

External

Temperature

externalTempera

ture

The external

temperature in

degrees celsius

RPC v7.1

Fuel Level fuelLevel

The fuel level in

the tank

(percentage)

RPC v7.0

Fuel Level

State
fuelLevel_State

The fuel level

state: Unknown,

Normal, Low,

Fault, Alert, or

Not Supported

RPC v7.0

Fuel Range fuelRange

The estimate

range in KM the

vehicle can

travel based on

fuel level and

consumption.

As of RPC 7.0,

this also

contains Fuel

Level and Fuel

Level State

information.

RPC v5.0+

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Gear Status gearStatus

Includes

information

about the

transmission,

the user's

selected gear,

and the actual

gear of the

vehicle.

RPC v7.0+

GPS gps

Longitude and

latitude, current

time in UTC,

degree of

precision,

altitude,

heading, speed,

satellite data vs

dead reckoning,

and supported

dimensions of

the GPS

Hands Off

Steering

handsOffSteerin

g

Status of hands

on steering

wheels

capability

RPC v7.0+

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Head Lamp

Status

headLampStatu

s

Status of the

head lamps:

whether or not

the low and high

beams are on or

off. The ambient

light sensor

status: night,

twilight 1,

twilight 2,

twilight 3,

twilight 4, day,

unknown, invalid

Instant Fuel

Consumption

instantFuelCons

umption

The

instantaneous

fuel

consumption in

microlitres

My Key myKey

Information

about whether

or not the

emergency 911

override has

been activated

Odometer odometer
Odometer

reading in km

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

PRNDL prndl

The selected

gear the car is

in: park, reverse,

neutral, drive,

sport, low gear,

first, second,

third, fourth,

fifth, sixth,

seventh or

eighth gear,

unknown, or

fault

RPC v7.0

RPM rpm

The number of

revolutions per

minute of the

engine

Seat

Occupancy
seatOccupancy

The status of the

seats that show

whether each

seat is occupied

and belted or

not

RPC v7.1+

Speed speed Speed in KPH

Stability

Control

Status

stabilityControls

Status

Status of the

vehicle's stability

control and

trailer sway

control

RPC v7.0+

Steering

Wheel Angle

steeringWheelA

ngle

Current angle of

the steering

wheel (in

degrees)

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Tire Pressure tirePressure

Tire status of

each wheel in

the vehicle:

normal, low,

fault, alert, or not

supported.

Warning light

status for the

tire pressure: off,

on, flash, or not

used

Turn Signal turnSignal

The status of the

turn signal.

Available states:

off, left, right,

both

RPC v5.0+

VIN vin

The Vehicle

Identification

Number

Window

Status
windowStatus

An array of

window

locations and

approximate

position

RPC v7.0+

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

To get vehicle data a single time, use the GetVehicleData RPC.

Wiper Status wiperStatus

The status of the

wipers: off,

automatic off,

off moving,

manual

interaction off,

manual

interaction on,

manual low,

manual high,

manual flick,

wash, automatic

low, automatic

high, courtesy

wipe, automatic

adjust, stalled,

no data exists

One-Time Vehicle Data Retrieval

// sdl_javascript_suite v1.1+
const vdRequest = new SDL.rpc.messages.GetVehicleData()
 .setGearStatus(true);
const response = await sdlManager.sendRpcResolve(vdRequest);

if (response.getSuccess()) {
 const gearStatus = response.getGearStatus();
 console.log('GearStatus: ' + gearStatus);
} else {
 console.log('GetVehicleData was rejected.')
}
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const vdRequest = new SDL.rpc.messages.GetVehicleData()
 .getGearStatus(true);
const response = await sdlManager.sendRpc(vdRequest).catch(error => error);

if (response.getSuccess()) {
 const gearStatus = response.getGearStatus();
 console.log('GearStatus: ' + gearStatus);
} else {
 console.log('GetVehicleData was rejected.')
}

Subscribing to vehicle data allows you to get notifications whenever new data is available.

You should not rely upon getting this data in a consistent manner. New vehicle data is

available roughly every second but notification timing can vary between modules.

First, you should add a notification listener for the OnVehicleData notification:

sdlManager.addRpcListener(SDL.rpc.enums.FunctionID.OnVehicleData,
(onVehicleDataNotification) => {
 if (onVehicleDataNotification.getGearStatus() !== null) {
 console.log('GearStatus was updated to: ' +
onVehicleDataNotification.getGearStatus());
 }
});

Subscribing to Vehicle Data

Second, send the SubscribeVehicleData request:

// sdl_javascript_suite v1.1+
const subscribeRequest = new SDL.rpc.messages.SubscribeVehicleData()
 .getGearStatus(true);
const response = await sdlManager.sendRpcResolve(subscribeRequest);
if (response.getSuccess()) {
 console.log('Successfully subscribed to vehicle data.');
} else {
 console.log('Request to subscribe to vehicle data was rejected.');
}
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const subscribeRequest = new SDL.rpc.messages.SubscribeVehicleData()
 .getGearStatus(true);
const response = await sdlManager.sendRpc(subscribeRequest).catch(error =>
error);
if (response.getSuccess()) {
 console.log('Successfully subscribed to vehicle data.');
} else {
 console.log('Request to subscribe to vehicle data was rejected.');
}

Third, the addRpcListener function passed in will be called when there is an update to the

subscribed vehicle data.

We suggest that you only subscribe to vehicle data as needed. To stop listening to

specific vehicle data use the UnsubscribeVehicleData RPC.

Unsubscribing from Vehicle Data

// sdl_javascript_suite v1.1+
const unsubscribeRequest = new SDL.rpc.messages.UnsubscribeVehicleData()
 .setGearStatus(true); // unsubscribe to GearStatus data
const response = await sdlManager.sendRpcResolve(unsubscribeRequest);
if (response.getSuccess()) {
 console.log('Successfully unsubscribed to vehicle data.');
} else {
 console.log('Request to unsubscribe to vehicle data was rejected.');
}
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const unsubscribeRequest = new SDL.rpc.messages.UnsubscribeVehicleData()
 .setGearStatus(true); // unsubscribe to GearStatus data
const response = await sdlManager.sendRpc(unsubscribeRequest).catch(error =>
error);
if (response.getSuccess()) {
 console.log('Successfully unsubscribed to vehicle data.');
} else {
 console.log('Request to unsubscribe to vehicle data was rejected.');
}

OEM applications can access additional vehicle data published by their systems that is

not available via the SDL vehicle data APIs. This data is accessed using the same SDL

vehicle data RPCs, but instead of requesting a certain type of SDL-specified data, you must

request data using a custom vehicle data name. The type of object returned is up to the

OEM and must be parsed manually.

OEM-Specific Vehicle Data

This feature is only for OEM-created applications and is not permitted for

3rd-party use.

NOT E

Below is an example of requesting a custom piece of vehicle data with the name OEM-X-

Vehicle-Data . To adapt this for subscriptions instead, you must look at the section

Subscribing to Vehicle Data above and adapt the example for subscribing to custom

vehicle data based on what you see in the examples below.

// sdl_javascript_suite v1.1+
const vdRequest = new SDL.rpc.messages.GetVehicleData()
 .setOemCustomVehicleData('OEM-X-Vehicle-Data', true);
const response = await sdlManager.sendRpcResolve(vdRequest);
if (response.getSuccess()) {
 const CustomData = response.getOemCustomVehicleData('OEM-X-Vehicle-Data');
} else {
 console.log('GetVehicleData was rejected.')
}
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const vdRequest = new SDL.rpc.messages.GetVehicleData()
 .setOemCustomVehicleData('OEM-X-Vehicle-Data', true);
const response = await sdlManager.sendRpc(vdRequest).catch(error => error);
if (response.getSuccess()) {
 const CustomData = response.getOemCustomVehicleData('OEM-X-Vehicle-Data');
} else {
 console.log('GetVehicleData was rejected.')
}

The remote control framework allows apps to control modules such as climate, radio,

seat, lights, etc., within a vehicle. Newer head units can support multi-zone modules that

allow customizations based on seat location.

Requesting One-Time OEM-Specific Vehicle Data

Remote Control Vehicle Features

Consider the following scenarios:

A radio application wants to use the in-vehicle radio tuner. It needs the functionality

to select the radio band (AM/FM/XM/HD/DAB), tune the radio frequency or change

the radio station, as well as obtain general radio information for decision making.

A climate control application needs to turn on the AC, control the air circulation

mode, change the fan speed and set the desired cabin temperature.

A user profile application wants to remember users' favorite settings and apply it

later automatically when the users get into the same/another vehicle.

Currently, the remote control feature supports these modules:

If you are using this feature in your app, you will most likely need to request

permission from the vehicle manufacturer. Not all head units support the

remote control framework and only the newest head units will support multi-

zone modules.

NOT E

Why Use Remote Control?

Supported Modules

R E M O T E C O N T R O L M O D U L E S R P C V E R S I O N

The following table lists which items are in each control module.

Climate v4.5+

Radio v4.5+

Seat v5.0+

Audio v5.0+

Light v5.0+

HMI Settings v5.0+

C L IMATE

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Climate

Enable

climateEnab

le
on, off

Get/Set/Noti

fication

Enabled to

turn on the

climate

system,

Disabled to

turn off the

climate

system. All

other climate

items need

climate

enabled to

work.

Since v6.0

Current

Cabin

Temperat

ure

currentTemp

erature
N/A

Get/Notificat

ion

Read only,

value range

depends on

OEM

Since v4.5

Desired

Cabin

Temperat

ure

desiredTemp

erature
N/A

Get/Set/Noti

fication

Value range

depends on

OEM

Since v4.5

AC

Setting
acEnable on, off

Get/Set/Noti

fication
Since v4.5

AC MAX

Setting

acMaxEnabl

e
on, off

Get/Set/Noti

fication
Since v4.5

Air

Recirculat

ion

Setting

circulateAirE

nable
on, off

Get/Set/Noti

fication
Since v4.5

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Auto AC

Mode

Setting

autoModeEn

able
on, off

Get/Set/Noti

fication
Since v4.5

Defrost

Zone

Setting

defrostZone
front, rear,

all, none

Get/Set/Noti

fication
Since v4.5

Dual

Mode

Setting

dualModeEn

able
on, off

Get/Set/Noti

fication
Since v4.5

Fan

Speed

Setting

fanSpeed 0%-100%
Get/Set/Noti

fication
Since v4.5

Ventilatio

n Mode

Setting

ventilationM

ode

upper, lower,

both, none

Get/Set/Noti

fication
Since v4.5

Heated

Steering

Wheel

Enabled

heatedSteeri

ngWheelEna

ble

on, off
Get/Set/Noti

fication
Since v5.0

Heated

Windshiel

d Enabled

heatedWind

shieldEnable
on, off

Get/Set/Noti

fication
Since v5.0

Heated

Rear

Window

Enabled

heatedRear

WindowEna

ble

on, off
Get/Set/Noti

fication
Since v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Heated

Mirrors

Enabled

heatedMirror

sEnable
on, off

Get/Set/Noti

fication
Since v5.0

RADIO

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Radio

Enabled
radioEnable true, false

Get/Set/Noti

fication

Read only, all

other radio

control items

need radio

enabled to

work

Since v4.5

Radio

Band
band AM, FM, XM

Get/Set/Noti

fication
Since v4.5

Radio

Frequenc

y

frequencyInt

eger /

frequencyFr

action

0-1710, 0-9
Get/Set/Noti

fication

Value range

depends on

band

Since v4.5

Radio

RDS Data
rdsData

RdsData

struct

Get/Notificat

ion
Read only Since v4.5

Available

HD

Channels

availableHd

Channels

Array size 0-

8, values 0-7

Get/Notificat

ion
Read only

Since

v6.0,

replaces

available

HDs

Available

HD

Channels

(DEPREC

ATED)

availableHD

s

1-7

(Deprecated

in v6.0) (1-3

before v5.0)

Get/Notificat

ion
Read only

Since

v4.5,

updated

in v5.0,

deprecate

d in v6.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Current

HD

Channel

hdChannel

0-7 (1-3

before v.5.0)

(1-7 between

v.5.0-6.0)

Get/Set/Noti

fication

Since

v4.5,

updated

in v5.0,

updated

in v6.0

Radio

Signal

Strength

signalStreng

th
0-100%

Get/Notificat

ion
Read only Since v4.5

Signal

Change

Threshold

signalStreng

thThreshold
0-100%

Get/Notificat

ion
Read only Since v4.5

Radio

State
state

Acquiring,

acquired,

multicast,

not_found

Get/Notificat

ion
Read only Since v4.5

SIS Data sisData
SisData

struct

Get/Notificat

ion
Read only Since v5.0

SEAT

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Seat

Heating

Enabled

heatingEnab

led
true, false

Get/Set/Noti

fication

Indicates

whether

heating is

enabled for a

seat

Since v5.0

Seat

Cooling

Enabled

coolingEnab

led
true, false

Get/Set/Noti

fication

Indicates

whether

cooling is

enabled for a

seat

Since v5.0

Seat

Heating

level

heatingLevel 0-100%
Get/Set/Noti

fication

Level of the

seat heating
Since v5.0

Seat

Cooling

level

coolingLevel 0-100%
Get/Set/Noti

fication

Level of the

seat cooling
Since v5.0

Seat

Horizonta

l Position

horizontalPo

sition
0-100%

Get/Set/Noti

fication

Adjust a seat

forward/bac

kward, 0

means the

nearest

position to

the steering

wheel, 100%

means the

furthest

position

from the

steering

wheel

Since v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Seat

Vertical

Position

verticalPositi

on
0-100%

Get/Set/Noti

fication

Adjust seat

height (up or

down) in

case there is

only one

actuator for

seat height,

0 means the

lowest

position,

100% means

the highest

position

Since v5.0

Seat-

Front

Vertical

Position

frontVertical

Position
0-100%

Get/Set/Noti

fication

Adjust seat

front height

(in case

there are two

actuators for

seat height),

0 means the

lowest

position,

100% means

the highest

position

Since v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Seat-Back

Vertical

Position

backVertical

Position
0-100%

Get/Set/Noti

fication

Adjust seat

back height

(in case

there are two

actuators for

seat height),

0 means the

lowest

position,

100% means

the highest

position

Since v5.0

Seat Back

Tilt Angle

backTiltAngl

e
0-100%

Get/Set/Noti

fication

Backrest

recline, 0

means the

angle that

back top is

nearest to

the steering

wheel, 100%

means the

angle that

back top is

furthest from

the steering

wheel

Since v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Head

Support

Horizonta

l Position

headSupport

HorizontalP

osition

0-100%
Get/Set/Noti

fication

Adjust head

support

forward/bac

kward, 0

means the

nearest

position to

the front,

100% means

the furthest

position

from the

front

Since v5.0

Head

Support

Vertical

Position

headSupport

VerticalPosit

ion

0-100%
Get/Set/Noti

fication

Adjust head

support

height (up or

down), 0

means the

lowest

position,

100% means

the highest

position

Since v5.0

Seat

Massagin

g Enabled

massageEn

abled
true, false

Get/Set/Noti

fication

Indicates

whether

massage is

enabled for a

seat

Since v5.0

Massage

Mode

massageMo

de

MassageMo

deData

struct

Get/Set/Noti

fication

List of

massage

mode of

each zone

Since v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Massage

Cushion

Firmness

massageCu

shionFirmne

ss

MassageCus

hionFirmnes

s struct

Get/Set/Noti

fication

List of

firmness of

each

massage

cushion

Since v5.0

Seat

memory
memory

SeatMemory

Action struct

Get/Set/Noti

fication

Seat

memory
Since v5.0

AU DIO

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Audio

Volume
volume 0%-100%

Get/Set/Noti

fication

The audio

source

volume level

Since SDL

v5.0

Audio

Source
source

PrimaryAudi

oSource

enum

Get/Set/Noti

fication

Defines one

of the

available

audio

sources

Since SDL

v5.0

Keep

Context
keepContext true, false Set only

Controls

whether the

HMI will keep

the current

application

context or

switch to the

default

media

UI/APP

associated

with the

audio source

Since SDL

v5.0

Equalizer

Settings

equalizerSett

ings

EqualizerSet

tings struct

Get/Set/Noti

fication

Defines the

list of

supported

channels

(band) and

their

current/desir

ed settings

on HMI

Since SDL

v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

L IGHT

Light

State
lightState

Array of

LightState

struct

Get/Set/Noti

fication

Since SDL

v5.0

HMI SETTINGS

Display

Mode
displayMode

Day, Night,

Auto

Get/Set/Noti

fication

Current

display

mode of the

HMI display

Since SDL

v5.0

Distance

Unit
distanceUnit

Miles,

Kilometers

Get/Set/Noti

fication

Distance

Unit used in

the HMI (for

maps/tracki

ng

distances)

Since SDL

v5.0

Temperat

ure Unit

temperature

Unit

Fahrenheit,

Celsius

Get/Set/Noti

fication

Temperature

Unit used in

the HMI (for

temperature

measuring

systems)

Since SDL

v5.0

The remote control framework also allows mobile applications to send simulated button

press events for the following common buttons in the vehicle.

Remote Control Button Presses

R C M O D U L E C O N T R O L B U T T O N

Climate AC

AC MAX

RECIRCULATE

FAN UP

FAN DOWN

TEMPERATURE UP

TEMPERATURE DOWN

DEFROST

DEFROST REAR

DEFROST MAX

UPPER VENT

LOWER VENT

Radio VOLUME UP

VOLUME DOWN

EJECT

SOURCE

R C M O D U L E C O N T R O L B U T T O N

For remote control to work, the head unit must support SDL RPC v4.4+. In addition, your

app's appHMIType must include REMOTE_CONTROL .

Each module type can have multiple modules in RPC v6.0+. In previous versions, only one

module was available for each module type. A specific module is controlled using the

unique id assigned to the module. When sending remote control RPCs to a RPC v6.0+

head unit, the moduleInfo.moduleId must be stored and provided to control the desired

module. If no moduleId is set, the HMI will use the default module of that module type.

When connected to <6.0 systems, the moduleInfo struct will be null , and only the

default module will be available for control.

Prior to using any remote control RPCs, you must check that the head unit has the remote

control capability. As you will encounter head units that do not support remote control, or

head units that do not give your application permission to read and write remote control

data, this check is important.

SHUFFLE

REPEAT

Integration

Multiple Modules (RPC v6.0+)

Getting Remote Control Module Information

When connected to head units supporting RPC v6.0+, you should save this information for

future use. The moduleId contained within the moduleInfo struct on each capability is

necessary to control that module.

With the saved remote control capabilities struct you can get the location of the each

module and the area that it services. This will map to the grid graphic below. This

information is useful for creating a custom UI.

sdlManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SDL.rpc.e
 (remoteControlCapabilities) => {
 // Save remote control capabilities
});

This check can be performed once your SDL app has left the HMI state of

NONE . More information on how to monitor the HMI status can be found

in the Understanding Permissions guide.

NOT E

GETTING MODU L E DATA LOC ATION AND SERV IC E AREAS
(RP C V 6.0+)

This data is only available when connected to SDL RPC v6.0+ systems. On

previous systems, only one module per module type was available, so the

module's location didn't matter. You will not be able to build a custom UI for

those cases and should use a generic UI instead.

NOT E

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/getting-started/understanding-permissions/#hmi-levels

// Get the first climate module's information
const firstClimateModule =
remoteControlCapabilities.getClimateControlCapabilities()[0];
const climateModuleId = firstClimateModule.getModuleInfo().getModuleId();
const climateModuleLocation =
firstClimateModule.getModuleInfo().getModuleLocation();

You can also get an array of seats in the SeatLocationCapability.seats array. Each Seat

Location object within the seats array will have a grid parameter. The grid will tell

you the location of that particular seat in the vehicle (See the graphic below).

The grid system starts with the front left corner of the bottom level of the vehicle being

(col=0, row=0, level=0) . For example, assuming a vehicle manufactured for sale in the

United States with three seats in the backseat, (0, 0, 0) would be the drivers' seat. The

front passenger location would be at (2, 0, 0) and the rear middle seat would be at (1, 1,

0) . The colspan and rowspan properties tell you how many rows and columns that

module or seat takes up. The level property tells you how many decks the vehicle has

(i.e. a double-decker bus would have 2 levels).

sdlManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SDL.rpc.e
 (seatLocationCapability) => {
 if (seatLocationCapability.getSeatLocations() !== null &&
seatLocationCapability.getSeatLocations().length > 0) {
 const seats = seatLocationCapability.getSeatLocations();
 // Save seat location capabilities
 }
});

The Grid

C O L = 0 C O L = 1 C O L = 2

Seat location does not affect the ability to get data from a module. Once you know you

have permission to use the remote control feature and you have moduleId s (when

connected to RPC v6.0+ systems), you can retrieve the data for any module. The following

code is an example of how to subscribe to the data of a climate module.

When connected to head units that only support RPC versions older than v6.0, there can

only be one module for each module type (e.g. there can only be one climate module, light

module, radio module, etc.), so you will not need to pass a moduleId .

You can either subscribe to module data or receive it one time. If you choose to subscribe

to module data you will receive continuous updates on the vehicle data you have

subscribed to.

row=0

driver's seat: {col=0,

row=0, level=0,

colspan=1,

rowspan=1,

levelspan=1}

front passenger's

seat : {col=2,

row=0, level=0,

colspan=1,

rowspan=1,

levelspan=1}

row=1

rear-left seat : {col=0,

row=1, level=0,

colspan=1,

rowspan=1,

levelspan=1}

rear-middle seat :

{col=1, row=1, level=0,

colspan=1,

rowspan=1,

levelspan=1}

rear-right seat :

{col=2, row=1,

level=0, colspan=1,

rowspan=1,

levelspan=1}

Getting Module Data

SU BSC RIBING TO MODU L E DATA

sdlManager.addRpcListener(SDL.rpc.enums.FunctionID.OnInteriorVehicleData,
(onInteriorVehicleData) => {
 if (onInteriorVehicleData !== null) {
 // NOTE: If you subscribe to multiple modules, all the data will be sent here. You
will have to
 // split it out based on
`onInteriorVehicleData.getModuleData().getModuleType()` yourself.
 // Code
 }
});

After you subscribe to the InteriorVehicleDataNotification you must also subscribe to

the module you wish to receive updates for. Subscribing to a module will send a

notification when that particular module is changed.

// sdl_javascript_suite v1.1+
const getInteriorVehicleData = new SDL.rpc.messages.GetInteriorVehicleData()
 .setModuleType(SDL.rpc.enums.ModuleType.CLIMATE)
 .setSubscribe(true);
const response = await sdlManager.sendRpcResolve(getInteriorVehicleData);
// This can now be used to retrieve data
// Code
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const getInteriorVehicleData = new SDL.rpc.messages.GetInteriorVehicleData()
 .setModuleType(SDL.rpc.enums.ModuleType.CLIMATE)
 .setSubscribe(true);
const response = await sdlManager.sendRpc(getInteriorVehicleData).catch(error =>
error);
// This can now be used to retrieve data
// Code

Subscribing to the OnInteriorVehicleData notification must be done before

sending the GetInteriorVehicleData request.

NOT E

R P C < v 6 . 0

// sdl_javascript_suite v1.1+
const getInteriorVehicleData = new SDL.rpc.messages.GetInteriorVehicleData()
 .setModuleType(SDL.rpc.enums.ModuleType.CLIMATE)
 .setModuleId(moduleId)
 .setSubscribe(true);
const response = await sdlManager.sendRpcResolve(getInteriorVehicleData);
// This can now be used to retrieve data
// Code
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const getInteriorVehicleData = new SDL.rpc.messages.GetInteriorVehicleData()
 .setModuleType(SDL.rpc.enums.ModuleType.CLIMATE)
 .setModuleId(moduleId)
 .setSubscribe(true);
const response = await sdlManager.sendRpc(getInteriorVehicleData).catch(error =>
error);
// This can now be used to retrieve data
// Code

After you subscribe to the InteriorVehicleDataNotification you must also subscribe to

the module you wish to receive updates for. Subscribing to a module will send a

notification when that particular module is changed.

To get data from a module without subscribing send a GetInteriorVehicleData request

with the subscribe flag set to false .

R P C v 6 . 0 +

GETTING ONE-TIME DATA

R P C < v 6 . 0

// sdl_javascript_suite v1.1+
const interiorVehicleData = new SDL.rpc.messages.GetInteriorVehicleData()
 .setModuleType(SDL.rpc.enums.ModuleType.CLIMATE);
const response = await sdlManager.sendRpcResolve(interiorVehicleData);
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const interiorVehicleData = new SDL.rpc.messages.GetInteriorVehicleData()
 .setModuleType(SDL.rpc.enums.ModuleType.CLIMATE);
const response = await sdlManager.sendRpc(interiorVehicleData).catch(error =>
error);
// This can now be used to retrieve data
// Code

// sdl_javascript_suite v1.1+
const interiorVehicleData = new SDL.rpc.messages.GetInteriorVehicleData()
 .setModuleType(SDL.rpc.enums.ModuleType.CLIMATE)
 .setModuleId(moduleId);
const response = await sdlManager.sendRpcResolve(interiorVehicleData);
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const interiorVehicleData = new SDL.rpc.messages.GetInteriorVehicleData()
 .setModuleType(SDL.rpc.enums.ModuleType.CLIMATE)
 .setModuleId(moduleId);
const response = await sdlManager.sendRpc(interiorVehicleData).catch(error =>
error);
// This can now be used to retrieve data
// Code

Not only do you have the ability to get data from these modules, but, if you have the right

permissions, you can also set module data.

R P C 6 . 0 +

Setting Module Data

SETTING THE U SER'S SEAT (RP C V 6.0+)

Before you attempt to take control of any module, you should have your user select their

seat location as this affects which modules they have permission to control. You may

wish to show the user a map or list of all available seats in your app in order to ask them

where they are located. See Getting Module Data Location and Service Areas for

information useful in creating a custom UI showing module location and service area. The

following example is only meant to show you how to access the available data and not

how to build your UI/UX.

When the user selects their seat, you must send an SetGlobalProperties RPC with the

appropriate userLocation property in order to update that user's location within the

vehicle (The default seat location is Driver).

// sdl_javascript_suite v1.1+
const seatLocation = new SDL.rpc.messages.SetGlobalProperties()
 .setUserLocation(selectedSeat);
const response = await sdlManager.sendRpcResolve(seatLocation);
// Seat location updated#>
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const seatLocation = new SDL.rpc.messages.SetGlobalProperties()
 .setUserLocation(selectedSeat);
const response = await sdlManager.sendRpc(seatLocation).catch(error => error);
// Seat location updated#>

Some OEMs may wish to ask the driver for consent before a user can control a module.

The GetInteriorVehicleDataConsent RPC will alert the driver in some OEM head units if

the module is not free (another user has control) and allowMultipleAccess (multiple

users can access/set the data at the same time) is true . The allowMultipleAccess

property is part of the moduleInfo in the module object.

Check the allowed property in the GetInteriorVehicleDataConsentResponse to see

what modules can be controlled. Note that the order of the allowed array is 1-1 with the

moduleIds array you passed into the GetInteriorVehicleDataConsent RPC.

GETTING C ONSENT TO C ONTROL A MODU L E (RP C V 6.0+)

// sdl_javascript_suite v1.1+
const getInteriorVehicleDataConsent = new
SDL.rpc.messages.GetInteriorVehicleDataConsent()
 .setModuleType(moduleType)
 .setModuleIds(moduleId);
const getInteriorVehicleDataConsentResponse = await
sdlManager.sendRpcResolve(getInteriorVehicleDataConsent);
const allowed = getInteriorVehicleDataConsentResponse.getAllowances();
// Allowed is an array of true or false values
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const getInteriorVehicleDataConsent = new
SDL.rpc.messages.GetInteriorVehicleDataConsent()
 .setModuleType(moduleType)
 .setModuleIds(moduleId);
const getInteriorVehicleDataConsentResponse = await
sdlManager.sendRpc(getInteriorVehicleDataConsent).catch(error => error);
const allowed = getInteriorVehicleDataConsentResponse.getAllowances();
// Allowed is an array of true or false values

Below is an example of setting climate control data. It is likely that you will not need to

set all the data as in the code example below. When connected to RPC v6.0+ systems, you

must set the moduleId in SetInteriorVehicleData.setModuleData . When connected to <

v6.0 systems, there is only one module per module type, so you must only pass the type of

the module you wish to control.

When you received module information above in Getting Remote Control Module

Information on RPC v6.0+ systems, you received information on the location and servic

You should always try to get consent before setting any module data. If

consent is not granted you should not attempt to set any module's data.

NOT E

C ONTROL L ING A MODU L E

eArea of the module. The permission area of a module depends on that serviceArea .

The location of a module is like the seats array: it maps to the grid to tell you the

physical location of a particular module. The serviceArea maps to the grid to show how

far that module's scope reaches.

For example, a radio module usually serves all passengers in the vehicle, so its service

area will likely cover the entirety of the vehicle grid, while a climate module may only

cover a passenger area and not the driver or the back row. If a serviceArea is not

included, it is assumed that the serviceArea is the same as the module's location . If

neither is included, it is assumed that the serviceArea covers the whole area of the

vehicle. If a user is not sitting within the serviceArea 's grid , they will not receive

permission to control that module (attempting to set data will fail).

const temp = new SDL.rpc.struct.Temperature()
 .setUnit(SDL.rpc.enums.TemperatureUnit.FAHRENHEIT)
 .setValueParam(74.1);

const climateControlData = SDL.rpc.structs.ClimateControlData()
 .setAcEnable(true)
 .setAcMaxEnable(true)
 .setAutoModeEnable(false)
 .setCirculateAirEnable(true)
 .setCurrentTemperature(temp)
 .setDefrostZone(SDL.rpc.enums.DefrostZone.FRONT)
 .setDualModeEnable(true)
 .setFanSpeed(2)
 .setVentilationMode(SDL.rpc.enums.VentilationMode.BOTH)
 .setDesiredTemperature(temp);

const moduleData = new SDL.rpc.structs.ModuleData()
 .setModuleType(SDL.rpc.enums.ModuleType.CLIMATE)
 .setClimateControlData(climateControlData);

const setInteriorVehicleData = new SDL.rpc.messages.SetInteriorVehicleData()
 .setModuleData(moduleData);

// sdl_javascript_suite v1.1+
const response = await sdlManager.sendRpcResolve(setInteriorVehicleData);
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const response = await sdlManager.sendRpc(setInteriorVehicleData).catch(error =>
error);

R P C < v 6 . 0

const temp = new SDL.rpc.struct.Temperature()
 .setUnit(SDL.rpc.enums.TemperatureUnit.FAHRENHEIT)
 .setValueParam(74.1);

const climateControlData = SDL.rpc.structs.ClimateControlData()
 .setAcEnable(true)
 .setAcMaxEnable(true)
 .setAutoModeEnable(false)
 .setCirculateAirEnable(true)
 .setCurrentTemperature(temp)
 .setDefrostZone(SDL.rpc.enums.DefrostZone.FRONT)
 .setDualModeEnable(true)
 .setFanSpeed(2)
 .setVentilationMode(SDL.rpc.enums.VentilationMode.BOTH)
 .setDesiredTemperature(temp);

const moduleData = new SDL.rpc.structs.ModuleData()
 .setModuleType(SDL.rpc.enums.ModuleType.CLIMATE)
 .setModuleId(moduleId)
 .setClimateControlData(climateControlData);

const setInteriorVehicleData = new SDL.rpc.messages.SetInteriorVehicleData()
 .setModuleData(moduleData);

// sdl_javascript_suite v1.1+
const response = await sdlManager.sendRpcResolve(setInteriorVehicleData);
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const response = await sdlManager.sendRpc(setInteriorVehicleData).catch(error =>
error);

Another unique feature of remote control is the ability to send simulated button presses

to the associated modules, imitating a button press on the hardware itself. Simply specify

the module, the button, and the type of press you would like to simulate.

R P C 6 . 0 +

BU TTON P RESSES

R P C < 6 . 0

const buttonPress = new SDL.rpc.messages.ButtonPress()
 .setModuleType(SDL.rpc.enums.ModuleType.CLIMATE)
 .setButtonName(SDL.rpc.enums.ButtonName.EJECT)
 .setButtonPressMode(SDL.rpc.enums.ButtonPressMode.SHORT);

// sdl_javascript_suite v1.1+
const response = await sdlManager.sendRpcResolve(buttonPress);
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const response = await sdlManager.sendRpc(buttonPress).catch(error => error);

const buttonPress = new SDL.rpc.messages.ButtonPress()
 .setModuleType(SDL.rpc.enums.ModuleType.CLIMATE)
 .setButtonName(SDL.rpc.enums.ButtonName.EJECT)
 .setModuleId(moduleId)
 .setButtonPressMode(SDL.rpc.enums.ButtonPressMode.SHORT);

// sdl_javascript_suite v1.1+
const response = await sdlManager.sendRpcResolve(buttonPress);
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const response = await sdlManager.sendRpc(buttonPress).catch(error => error);

When the user no longer needs control over a module, you should release the module so

other users can control it. If you do not release the module, other users who would

otherwise be able to control the module may be rejected from doing so.

R P C 6 . 0 +

REL EASING THE MODU L E (RP C V 6.0+)

// sdl_javascript_suite v1.1+
const releaseInteriorVehicleDataModule = new
SDL.rpc.messages.ReleaseInteriorVehicleDataModule()
 .setModuleType(moduleType)
 .setModuleId(moduleId);
const response = await
sdlManager.sendRpcResolve(releaseInteriorVehicleDataModule);
// Module Was Released
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const releaseInteriorVehicleDataModule = new
SDL.rpc.messages.ReleaseInteriorVehicleDataModule()
 .setModuleType(moduleType)
 .setModuleId(moduleId);
const response = await
sdlManager.sendRpc(releaseInteriorVehicleDataModule).catch(error => error);
// Module Was Released

App services is a powerful feature enabling both a new kind of vehicle-to-app

communication and app-to-app communication via SDL.

App services are used to publish navigation, weather and media data (such as

temperature, navigation waypoints, or the current playlist name). This data can then be

used by both the vehicle head unit and, if the publisher of the app service desires, other

SDL apps.

Vehicle head units may use these services in various ways. One app service for each type

will be the "active" service to the module. For media, for example, this will be the media

app that the user is currently using or listening to. For navigation, it would be a navigation

app that the user is using to navigate. For weather, it may be the last used weather app, or

a user-selected default. The system may then use that service's data to perform various

Creating an App Service (RPC
v5.1+)

actions (such as navigating to an address with the active service or to display the

temperature as provided from the active weather service).

An SDL app can also subscribe to a published app service. Once subscribed, the app will

be sent the new data when the app service publisher updates its data. To find out more

about how to subscribe to an app service check out the Using App Services guide.

Subscribed apps can also send certain RPCs and generic URI-based actions (see the

section Supporting Service RPCs and Actions below) to your service.

Currently, there is no high-level API support for publishing an app service, so you will have

to use raw RPCs for all app service related APIs.

Using an app service is covered in another guide.

Apps are able to declare that they provide an app service by publishing an app service

manifest. Three types of app services are currently available and more will be made

available over time. The currently available types are: Media, Navigation, and Weather. An

app may publish multiple services (one for each of the different service types) if desired.

Publishing a service is a multi-step process. First, you need to create your app service

manifest. Second, you will publish your app service to the module. Third, you will publish

the service data using OnAppServiceData . Fourth, you must listen for data requests and

respond accordingly. Fifth, if your app service supports handling of RPCs related to your

service you must listen for these RPC requests and handle them accordingly. Sixth,

optionally, you can support URI-based app actions. Finally, if necessary, you can you

update or delete your app service manifest.

App Service Types

Publishing an App Service

1. Creating an App Service Manifest

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/other-sdl-features/using-app-services/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/other-sdl-features/using-app-services/

The first step to publishing an app service is to create an AppServiceManifest object.

There is a set of generic parameters you will need to fill out as well as service type

specific parameters based on the app service type you are creating.

const manifest = new SDL.rpc.messages.AppServiceManifest()
 .setServiceType(SDL.rpc.enums.AppServiceType.MEDIA)
 .setServiceName('My Media App') // Must be unique across app services.
 .setServiceIcon(new SDL.rpc.structs.Image()
 .setValueParam('Service Icon Name')
 .setImageType(SDL.rpc.enums.ImageType.DYNAMIC)) // Previously uploaded
service icon. This could be the same as your app icon.
 .setAllowAppConsumers(true) // Whether or not other apps can view your data in
addition to the head unit. If set to `false` only the head unit will have access to this
data.
 .setRpcSpecVersion(new SDL.rpc.structs.SdlMsgVersion()
 .setMajorVersion(5)
 .setMinorVersion(0)) // An *optional* parameter that limits the RPC spec
versions you can understand to the provided version *or below*.
 .setHandledRpcs([]) // If you add function ids to this *optional* parameter, you can
support newer RPCs on older head units (that don't support those RPCs natively)
when those RPCs are sent from other connected applications.
 .setMediaServiceManifest(mediaManifest); // Covered Below

Currently, there's no information you have to provide in your media service manifest! You'll

just have to create an empty media service manifest and set it into your general app

service manifest.

const mediaManifest = new SDL.rpc.structs.MediaServiceManifest()
manifest.setMediaServiceManifest(mediaManifest);

C REATING A MEDIA SERV IC E MANIFEST

C REATING A NAV IGATION SERV IC E MANIFEST

You will need to create a navigation manifest if you want to publish a navigation service.

You will declare whether or not your navigation app will accept waypoints. That is, if your

app will support receiving multiple points of navigation (e.g. go to this McDonalds, then

this Walmart, then home).

const navigationManifest = new SDL.rpc.structs.NavigationServiceManifest()
 .setAcceptsWayPoints(true);
manifest.setNavigationServiceManifest(navigationManifest);

You will need to create a weather service manifest if you want to publish a weather

service. You will declare the types of data your service provides in its WeatherServiceDat

a .

const weatherManifest = new SDL.rpc.structs.WeatherServiceManifest()
 .setCurrentForecastSupported(true)
 .setMaxMultidayForecastAmount(10)
 .setMaxHourlyForecastAmount(24)
 .setMaxMinutelyForecastAmount(60)
 .setWeatherForLocationSupported(true);
manifest.setWeatherServiceManifest(weatherManifest);

Once you have created your service manifest, publishing your app service is simple.

C REATING A WEATHER SERV IC E MANIFEST

2. Publish Your Service

// sdl_javascript_suite v1.1+
const publishServiceRequest = new SDL.rpc.messages.PublishAppService()
 .setAppServiceManifest(manifest);
const response = await sdlManager.sendRpcResolve(publishServiceRequest);
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const publishServiceRequest = new SDL.rpc.messages.PublishAppService()
 .setAppServiceManifest(manifest);
const response = await sdlManager.sendRpc(publishServiceRequest)
 .catch(error => error);

Once you have your publish app service response, you will need to store the information

provided in its appServiceRecord property. You will need the information later when you

want to update your service's data.

As noted in the introduction to this guide, one service for each type may become the

"active" service. If your service is the active service, your AppServiceRecord parameter

serviceActive will be updated to note that you are now the active service.

After the initial app record is passed to you in the PublishAppServiceResponse , you will

need to be notified of changes in order to observe whether or not you have become the

active service. To do so, you will have to observe the new SystemCapabilityType.APP_SE

RVICES using GetSystemCapability and OnSystemCapabilityUpdated .

For more information, see the Using App Services guide and go to the Getting and

Subscribing to Services section.

After your service is published, it's time to update your service data. First, you must send

an onAppServiceData RPC notification with your updated service data. RPC notifications

are different than RPC requests in that they will not receive a response from the

connected head unit .

WATC HING FOR AP P REC ORD U P DATES

3. Update Your Service's Data

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/other-sdl-features/using-app-services/#getting-and-subscribing-to-services

First, you will have to create an MediaServiceData , NavigationServiceData or

WeatherServiceData object with your service's data. Then, add that service-specific data

object to an AppServiceData object. Finally, create an OnAppServiceData notification,

append your AppServiceData object, and send it.

You should only update your service's data when you are the active service;

service consumers will only be able to see your data when you are the active

service.

NOT E

MEDIA SERV IC E DATA

const mediaData = new SDL.rpc.structs.MediaServiceData();
 .setMediaTitle('Some media title')
 .setMediaArtist('Some media artist')
 .setMediaAlbum('Some album')
 .setMediaImage(new SDL.rpc.structs.Image()
 .setValueParam('Some image')
 .setImageType(SDL.rpc.enums.ImageType.DYNAMIC))
 .setPlaylistName('Some playlist')
 .setIsExplicit(true)
 .setTrackPlaybackProgress(45)
 .setTrackPlaybackDuration(90)
 .setQueuePlaybackProgress(45)
 .setQueuePlaybackDuration(150)
 .setQueueCurrentTrackNumber(2)
 .setQueueTotalTrackCount(3);

const appData = new SDL.rpc.structs.AppServiceData()
 .setServiceID(myServiceId)
 .setServiceType(SDL.rpc.enums.AppServiceType.MEDIA)
 .setMediaServiceData(mediaData);

const onAppData = new SDL.rpc.messages.OnAppServiceData()
 .setServiceData(appData);

// sdl_javascript_suite v1.1+
sdlManager.sendRpcResolve(onAppData);
// Pre sdl_javascript_suite v1.1
sdlManager.sendRpc(onAppData);

NAV IGATION SERV IC E DATA

const navInstructionArt = SDL.manager.file.filetypes.SdlArtwork('turn',
SDL.rpc.enums.FileType.GRAPHIC_PNG, image, true);
// We have to send the image to the system before it's used in the app service.
const success = await sdlManager.getFileManager().uploadFile(navInstructionArt);
if (success) {
 const coordinate = new SDL.rpc.structs.Coordinate()
 .setLatitudeDegrees(42)
 .setLongitudeDegrees(43);

 const locationDetails = new SDL.rpc.structs.LocationDetails()
 .setCoordinate(coordinate);

 const navigationInstruction = new SDL.rpc.structs.NavigationInstruction()
 .setLocationDetails(locationDetails)
 .setAction(SDL.rpc.enums.NavigationAction.TURN)
 .setImage(navInstructionArt.getImageRPC());

 const dateTime = new SDL.rpc.structs.DateTime()
 .setHour(2)
 .setMinute(3)
 .setSecond(4);

 const navigationData = new SDL.rpc.structs.NavigationServiceData()
 .setTimeStamp(dateTime)
 .setInstructions([navigationInstruction]);

 const appData = new SDL.rpc.structs.AppServiceData()
 .setServiceID(myServiceId)
 .setServiceType(SDL.rpc.enums.AppServiceType.NAVIGATION)
 .setNavigationServiceData(navigationData);

 const onAppData = new SDL.rpc.messages.OnAppServiceData()
 .setServiceData(appData);

 // sdl_javascript_suite v1.1+
 sdlManager.sendRpcResolve(onAppData);
 // Pre sdl_javascript_suite v1.1
 sdlManager.sendRpc(onAppData);
}

WEATHER SERV IC E DATA

const weatherImage = SDL.manager.file.filetypes.SdlArtwork('sun',
SDL.rpc.enums.FileType.GRAPHIC_PNG, image, true);
// We have to send the image to the system before it's used in the app service.
const success = await sdlManager.getFileManager().uploadFile(weatherImage);
if (success) {
 const weatherData = new SDL.rpc.structs.WeatherData()
 .setWeatherIcon(weatherImage.getImageRPC());

 const coordinate = new SDL.rpc.structs.Coordinate()
 .setLatitudeDegrees(42)
 .setLongitudeDegrees(43);

 const locationDetails = new SDL.rpc.structs.LocationDetails()
 .setCoordinate(coordinate);

 const weatherServiceData = new SDL.rpc.structs.WeatherServiceData()
 .setLocation(locationDetails);

 const appData = new SDL.rpc.structs.AppServiceData()
 .setServiceID(myServiceId)
 .setServiceType(SDL.rpc.enums.AppServiceType.WEATHER)
 .setWeatherServiceData(weatherServiceData);

 const onAppData = new SDL.rpc.messages.OnAppServiceData()
 .setServiceData(appData);

 // sdl_javascript_suite v1.1+
 sdlManager.sendRpcResolve(onAppData);
 // Pre sdl_javascript_suite v1.1
 sdlManager.sendRpc(onAppData);
}

If you choose to make your app service available to other apps, you will have to handle

requests to get your app service data when a consumer requests it directly.

Handling app service subscribers is a two step process. First, you must setup listeners for

the subscriber. Then, when you get a request, you will either have to send a response to

the subscriber with the app service data or if you have no data to send, send a response

with a relevant failure result code.

4. Handling App Service Subscribers

First, you will need to setup a listener for GetAppServiceDataRequest . Then, when you

get the request, you will need to respond with your app service data. Therefore, you will

need to store your current service data after the most recent update using OnAppService

Data (see the section Update Your Service's Data).

// Get App Service Data Request Listener
sdlManager.addRpcListener(SDL.rpc.enums.FunctionID.GetAppServiceData,
(message) => {
 if (message.getMessageType() === SDL.rpc.enums.MessageType.request) {
 const getAppServiceData = message;

 const response = new SDL.rpc.messages.GetAppServiceDataResponse()
 .setSuccess(true)
 .setCorrelationID(getAppServiceData.getCorrelationId())
 .setResultCode(SDL.rpc.enums.Result.SUCCESS)
 .setInfo('Use to provide more information about an error')
 .setServiceData(appServiceData);

 // sdl_javascript_suite v1.1+
 sdlManager.sendRpcResolve(response);
 // Pre sdl_javascript_suite v1.1
 sdlManager.sendRpc(response);
 }
});

Certain RPCs are related to certain services. The chart below shows the current

relationships:

L ISTENING FOR REQU ESTS

Supporting Service RPCs and Actions

5. Service RPCs

M E D I A N A V I G A T I O N W E A T H E R

When you are the active service for your service's type (e.g. media), and you have declared

that you support these RPCs in your manifest (see the section Creating an App Service

Manifest), then these RPCs will be automatically routed to your app. You will have to set

up listeners to be aware that they have arrived, and you will then need to respond to those

requests.

const manifest = new
SDL.rpc.structs.AppServiceManifest(SDL.rpc.enums.AppServiceType.MEDIA);
...
manifest.setHandledRpcs([SDL.rpc.enums.FunctionID.ButtonPress]);

ButtonPress (OK) SendLocation

ButtonPress (SEEKLEFT) GetWayPoints

ButtonPress (SEEKRIGHT) SubscribeWayPoints

ButtonPress (TUNEUP) OnWayPointChange

ButtonPress (TUNEDOWN)

ButtonPress (SHUFFLE)

ButtonPress (REPEAT)

sdlManager.addRpcListener(SDL.rpc.enums.FunctionID.ButtonPress, (message) => {
 if (message.getMessageType() === SDL.rpc.enums.MessageType.request) {
 const buttonPress = message;

 const response = new SDL.rpc.messages.ButtonPressResponse()
 .setSuccess(true)
 .setResultCode(SDL.rpc.enums.Result.SUCCESS)
 .setCorrelationID(buttonPress.getCorrelationId())
 .setInfo('Use to provide more information about an error');

 // sdl_javascript_suite v1.1+
 sdlManager.sendRpcResolve(response);
 // Pre sdl_javascript_suite v1.1
 sdlManager.sendRpc(response);
 }
});

App actions are the ability for app consumers to use the SDL services system to send

URIs to app providers in order to activate actions on the provider. Service actions are

schema-less, i.e. there is no way to define the appropriate URIs through SDL. If you already

provide actions through your app and want to expose them to SDL, or if you wish to start

providing them, you will have to document your available actions elsewhere (such as your

website).

In order to support actions through SDL services, you will need to observe and respond to

the PerformAppServiceInteraction RPC request.

6. Service Actions

Once you have published your app service, you may decide to update its data. For example,

if you have a free and paid tier with different amounts of data, you may need to upgrade or

downgrade a user between these tiers and provide new data in your app service manifest.

If desired, you can also delete your app service by unpublishing the service.

// Perform App Services Interaction Request Listener
sdlManager.addRpcListener(SDL.rpc.enums.FunctionID.PerformAppServiceInteraction
 (message) => {
 if (message.getMessageType() === SDL.rpc.enums.MessageType.request) {
 const performAppServiceInteraction = message;

 // If you have multiple services, this will let you know which of your services is
being addressed
 const serviceId = performAppServiceInteraction.getServiceID();

 // A result you want to send to the consumer app.
 const response = new
SDL.rpc.messages.PerformAppServiceInteractionResponse()
 .setServiceSpecificResult('Some Result')
 .setCorrelationID(performAppServiceInteraction.getCorrelationId())
 .setInfo('Use to provide more information about an error')
 .setSuccess(true)
 .setResultCode(SDL.rpc.enums.Result.SUCCESS);

 // sdl_javascript_suite v1.1+
 sdlManager.sendRpcResolve(response);
 // Pre sdl_javascript_suite v1.1
 sdlManager.sendRpc(response);
 }
});

Updating Your Published App Service

7. Updating a Published App Service Manifest (RPC
v6.0+)

const manifest = new SDL.rpc.structs.AppServiceManifest()
 .getServiceType(SDL.rpc.enums.AppServiceType.WEATHER)
 .setWeatherServiceManifest(weatherServiceManifest);

const publishServiceRequest = new SDL.rpc.messages.PublishAppService()
 .setAppServiceManifest(manifest);

// sdl_javascript_suite v1.1+
sdlManager.sendRpcResolve(publishServiceRequest);
// Pre sdl_javascript_suite v1.1
sdlManager.sendRpc(publishServiceRequest);

const unpublishAppService = new SDL.rpc.messages.UnpublishAppService()
 .setServiceID(serviceId);

// sdl_javascript_suite v1.1+
sdlManager.sendRpcResolve(unpublishAppService);
// Pre sdl_javascript_suite v1.1
sdlManager.sendRpc(unpublishAppService);

App services is a powerful feature enabling both a new kind of vehicle-to-app

communication and app-to-app communication via SDL.

App services are used to publish navigation, weather and media data (such as

temperature, navigation waypoints, or the current playlist name). This data can then be

used by both the vehicle head unit and, if the publisher of the app service desires, other

SDL apps. Creating an app service is covered in another guide.

8. Unpublishing a Published App Service Manifest (RPC
v6.0+)

Using App Services (RPC v5.1+)

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/other-sdl-features/creating-an-app-service/

Vehicle head units may use these services in various ways. One app service for each type

will be the "active" service to the module. For media, for example, this will be the media

app that the user is currently using or listening to. For navigation, it would be a navigation

app that the user is using to navigate. For weather, it may be the last used weather app, or

a user-selected default. The system may then use that service's data to perform various

actions (such as navigating to an address with the active service or to display the

temperature as provided from the active weather service).

An SDL app can also subscribe to a published app service. Once subscribed, the app will

be sent the new data when the app service publisher updates its data. This guide will cover

subscribing to a service. Subscribed apps can also send certain RPCs and generic URI-

based actions (see the section Sending an Action to a Service Provider, below) to your

service.

Currently, there is no high-level API support for using an app service, so you will have to

use raw RPCs for all app service related APIs.

Once your app has connected to the head unit, you will first want to be notified of all

available services and updates to the metadata of all services on the head unit. Second,

you will narrow down your app to subscribe to an individual app service and subscribe to

its data. Third, you may want to interact with that service through RPCs, or fourth, through

service actions.

To get information on all services published on the system, as well as on changes to

published services, you will use the SystemCapabilityManager .

Getting and Subscribing to Services

1. Getting and Subscribing to Available Services

Once you've retrieved the initial list of app service capabilities or an updated list of app

service capabilities, you may want to inspect the data to find what you are looking for.

Below is example code with comments explaining what each part of the app service

capability is used for.

// This array contains all currently available app services on the system
const appServices = servicesCapabilities.getAppServices();

if (appServices !== null) {
 appServices.forEach(anAppServiceCapability => {
 // This will tell you why a service is in the list of updates
 const updateReason = anAppServiceCapability.getUpdateReason();
 // The app service record will give you access to a service's generated id, which
can be used to address the service directly (see below), it's manifest, used to see
what data it supports, whether or not the service is published (it always will be here),
and whether or not the service is the active service for its service type (only one
service can be active for each type)
 const serviceRecord = anAppServiceCapability.getUpdatedAppServiceRecord();
 });
}

// Grab the capability once
const servicesCapabilities = await
sdlManager.getSystemCapabilityManager().updateCapability(SDL.rpc.enums.SystemC

...

// Subscribe to updates
sdlManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SDL.rpc.e
 (servicesCapabilities) => {

});

C HEC KING THE AP P SERV IC E C APABIL ITY

2. Getting and Subscribing to a Service Type's Data

Once you have information about all of the services available, you may want to view or

subscribe to a service type's data. To do so, you will use the GetAppServiceData RPC.

Note that you will currently only be able to get data for the active service of the service

type. You can attempt to make another service the active service by using the PerformAp

pServiceInteraction RPC, discussed below in Sending an Action to a Service Provider.

// sdl_javascript_suite v1.1+
// Get service data once
const getAppServiceData = new SDL.rpc.messages.GetAppServiceData()
 .setServiceType(SDL.rpc.enums.AppServiceType.MEDIA);

// Subscribe to future updates if you want them
getAppServiceData.setSubscribe(true);

const response = await sdlManager.sendRpcResolve(getAppServiceData);
if (response !== null && response.getSuccess()) {
 const mediaServiceData = response.getServiceData().getMediaServiceData();
}
...

// Unsubscribe from updates
const unsubscribeServiceData = new
SDL.rpc.messages.GetAppServiceData(SDL.rpc.enums.AppServiceType.MEDIA);
unsubscribeServiceData.setSubscribe(false);

sdlManager.sendRpcResolve(unsubscribeServiceData);
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
// Get service data once
const getAppServiceData = new SDL.rpc.messages.GetAppServiceData()
 .setServiceType(SDL.rpc.enums.AppServiceType.MEDIA);

// Subscribe to future updates if you want them
getAppServiceData.setSubscribe(true);

const response = await sdlManager.sendRpc(getAppServiceData).catch(error =>
error);
if (response !== null && response.getSuccess()) {
 const mediaServiceData = response.getServiceData().getMediaServiceData();
}
...

// Unsubscribe from updates
const unsubscribeServiceData = new
SDL.rpc.messages.GetAppServiceData(SDL.rpc.enums.AppServiceType.MEDIA);
unsubscribeServiceData.setSubscribe(false);

sdlManager.sendRpc(unsubscribeServiceData);

Interacting with a Service Provider

Once you have a service's data, you may want to interact with a service provider by

sending RPCs or actions.

Only certain RPCs are available to be passed to the service provider based on their service

type. See the Creating an App Service guide Supporting Service RPCs and Actions section

for a chart detailing which RPCs work with which service types. The RPC can only be sent

to the active service of a specific service type, not to any inactive service.

Sending an RPC works exactly the same as if you were sending the RPC to the head unit

system. The head unit will simply route your RPC to the appropriate app automatically.

const buttonPress = new SDL.rpc.messages.ButtonPress()
 .setButtonPressMode(SDL.rpc.enums.ButtonPressMode.SHORT)
 .setButtonName(SDL.rpc.enums.ButtonName.OK)
 .setModuleType(SDL.rpc.enums.ModuleType.AUDIO);

// sdl_javascript_suite v1.1+
const response = await sdlManager.sendRpcResolve(buttonPress);
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const response = await sdlManager.sendRpc(buttonPress).catch(error => error);

Actions are generic URI-based strings sent to any app service (active or not). You can also

use actions to request to the system that they make the service the active service for that

3. Sending RPCs to a Service Provider

Your app may need special permissions to use the RPCs that route to app

service providers.

NOT E

4. Sending an Action to a Service Provider

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/other-sdl-features/creating-an-app-service/#supporting-service-rpcs-and-actions

service type. Service actions are schema-less, i.e. there is no way to define the appropriate

URIs through SDL. The service provider must document their list of available actions

elsewhere (such as their website).

const performAppServiceInteraction = new
SDL.rpc.messages.PerformAppServiceInteraction()
 .setServiceUri("sdlexample://x-callback-url/showText?x-
source=MyApp&text=My%20Custom%20String")
 .setServiceID(previousServiceId)
 .setOriginApp(appId);

// sdl_javascript_suite v1.1+
const response = await sdlManager.sendRpcResolve(performAppServiceInteraction);
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const response = await
sdlManager.sendRpc(performAppServiceInteraction).catch(error => error);

In some cases, a service may upload an image that can then be retrieved from the module.

First, you will need to get the image name from the AppServiceData (see point 2 above).

Then you will use the image name to retrieve the image data.

5. Getting a File from a Service Provider

// sdl_javascript_suite v1.1+
const weatherServiceData = appServiceData.getWeatherServiceData();

if (weatherServiceData === null || weatherServiceData.getCurrentForecast() === null ||
weatherServiceData.getCurrentForecast().getWeatherIcon() === null) {
 // The image doesn't exist, exit early
 return;
}
const currentForecastImageName =
weatherServiceData.getCurrentForecast().getWeatherIcon().getValueParam();

const getFile = new SDL.rpc.messages.GetFile()
 .setFileName(currentForecastImageName)
 .setAppServiceId(serviceId);

const getFileResponse = await sdlManager.sendRpcResolve(getFile);
const fileData = getFileResponse.getBulkData();
const sdlArtwork = new SDL.manager.file.filetypes.SdlArtwork(fileName,
FileType.GRAPHIC_PNG, fileData, false);
// Use the sdlArtwork
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const weatherServiceData = appServiceData.getWeatherServiceData();

if (weatherServiceData === null || weatherServiceData.getCurrentForecast() === null ||
weatherServiceData.getCurrentForecast().getWeatherIcon() === null) {
 // The image doesn't exist, exit early
 return;
}
const currentForecastImageName =
weatherServiceData.getCurrentForecast().getWeatherIcon().getValueParam();

const getFile = new SDL.rpc.messages.GetFile()
 .setFileName(currentForecastImageName)
 .setAppServiceId(serviceId);

const getFileResponse = await sdlManager.sendRpc(getFile).catch(error => error);
const fileData = getFileResponse.getBulkData();
const sdlArtwork = new SDL.manager.file.filetypes.SdlArtwork(fileName,
FileType.GRAPHIC_PNG, fileData, false);
// Use the sdlArtwork

The DialNumber RPC allows you make a phone call via the user's phone. In order to dial

a phone number you must be sure that the device is connected via Bluetooth (even if your

device is also connected using a USB cord) for this request to work. If the phone is not

connected via Bluetooth, you will receive a result of REJECTED from the module.

DialNumber is an RPC that is usually restricted by OEMs. As a result, a module may

reject your request if your app does not have the correct permissions. Your SDL app may

also be restricted to only being allowed to making a phone call when your app is open (i.e.

the hmiLevel is non- NONE) or when it is the currently active app (i.e. the hmiLevel is

FULL).

const listenerId = sdlManager.getPermissionManager().addListener([new
SDL.manager.permission.PermissionElement(SDL.rpc.enums.FunctionID.DialNumber
 null)], SDL.manager.permission.enums.PermissionGroupType.ANY, function
(allowedPermissions, permissionGroupStatus) {
 if (permissionGroupStatus !==
SDL.manager.permission.enums.PermissionGroupStatus.ALLOWED) {
 // Your app does not have permission to send the `DialNumber` request for its
current HMI level
 return;
 }

 // Your app has permission to send the `DialNumber` request for its current HMI
level
});

Calling a Phone Number

Checking Your App's Permissions

Checking if the Module Supports
Calling a Phone Number

Since making a phone call is a newer feature, there is a possibility that some legacy

modules will reject your request because the module does not support the DialNumber

request. Once you have successfully connected to the module, you can check the

module's capabilities via the sdlManager.getSystemCapabilityManager as shown in the

example below. Please note that you only need to check once if the module supports

calling a phone number, however you must wait to perform this check until you know that

the SDL app has been opened (i.e. the hmiLevel is non- NONE).

If you discover that the module does not support calling a phone number or

that your app does not have the right permissions, you should disable any

buttons, voice commands, menu items, etc. in your app that would send the

DialNumber request.

NOT E

Once you know that the module supports dialing a phone number and that your SDL app

has permission to send the DialNumber request, you can create and send the request.

function isDialNumberSupported () {
 // Check if the module has phone capabilities
 if
(!sdlManager.getSystemCapabilityManager().isCapabilitySupported(SDL.rpc.enums.Sy
 {
 return false;
 }

 // Legacy modules (pre-RPC Spec v4.5) do not support system capabilities, so for
versions less than 4.5 we will assume `DialNumber` is supported if
`isCapabilitySupported()` returns true
 const sdlMsgVersion =
sdlManager.getRegisterAppInterfaceResponse().getSdlMsgVersion();
 if (sdlMsgVersion === null) {
 return true;
 }
 const rpcSpecVersion = new SDL.util.Version(sdlMsgVersion);
 if (rpcSpecVersion.isNewerThan(new SDL.util.Version(4, 5, 0)) < 0) {
 return true;
 }

 // Retrieve the phone capability
 const phoneCapability =
sdlManager.getSystemCapabilityManager().getCapability(SDL.rpc.enums.SystemCapa

 return phoneCapability !== null ? phoneCapability.getDialNumberEnabled() : false;
}

Sending a DialNumber Request

DialNumber strips all characters except for 0 - 9 , * , # , , , ; , and + .

NOT E

const dialNumber = new SDL.rpc.messages.DialNumber()
 .setNumber('1238675309');
const response = await sdlManager.sendRpcResolve(dialNumber);
const result = response.getResultCode();
if (result === SDL.rpc.enums.Result.SUCCESS) {
 // `DialNumber` successfully sent
} else if (result === SDL.rpc.enums.Result.REJECTED) {
 // `DialNumber` was rejected. Either the call was sent and cancelled or there is no
device connected
} else if (result === SDL.rpc.enums.Result.DISALLOWED) {
 // Your app is not allowed to use `DialNumber`
}

The DialNumber request has three possible responses that you should expect:

1. SUCCESS - The request was successfully sent, and a phone call was initiated by the

user.

2. REJECTED - This can mean either:

The user rejected the request to make the phone call.

The phone is not connected to the module via Bluetooth.

3. DISALLOWED - Your app does not have permission to use the DialNumber

request.

The SendLocation RPC gives you the ability to send a GPS location to the active

navigation app on the module.

When using the SendLocation RPC, you will not have access to any information about

how the user interacted with this location, only if the request was successfully sent. The

Dial Number Responses

Setting the Navigation
Destination

request will be handled by the module from that point on using the active navigation

system.

The SendLocation RPC is restricted by most OEMs. As a result, a module may reject

your request if your app does not have the correct permissions. Your SDL app may also be

restricted to only being allowed to send a location when your app is open (i.e. the hmiLe

vel is non- NONE) or when it is the currently active app (i.e. the hmiLevel is FULL).

Since some modules will not support sending a location, you should check if the module

supports this feature before trying to use it. Once you have successfully connected to the

module, you can check the module's capabilities via the sdlManager.getSystemCapability

const permissionElements = [];
permissionElements.push(new
SDL.manager.permission.PermissionElement(SDL.rpc.enums.FunctionID.SendLocatio
 null));

const listenerId =
sdlManager.getPermissionManager().addListener(permissionElements,
SDL.manager.permission.enums.PermissionGroupType.ANY, function
(allowedPermissions, permissionGroupStatus) {
 if (permissionGroupStatus !=
SDL.manager.permission.enums.PermissionGroupStatus.ALLOWED) {
 // Your app does not have permission to send the `SendLocation` request for its
current HMI level
 return;
 }

 // Your app has permission to send the `SendLocation` request for its current HMI
level
});

Checking Your App's Permissions

Checking if the Module Supports
Sending a Location

Manager() as shown in the example below. Please note that you only need to check once

if the module supports sending a location, however you must wait to perform this check

until you know that the SDL app has been opened (i.e. the hmiLevel is non- NONE).

If you discover that the module does not support sending a location or that

your app does not have the right permissions, you should disable any

buttons, voice commands, menu items, etc. in your app that would send the

SendLocation request.

NOT E

To use the SendLocation request, you must at minimum include the longitude and

latitude of the location.

async function isSendLocationSupported() {
 // Check if the module has navigation capabilities
 if
(!sdlManager.getSystemCapabilityManager().isCapabilitySupported(SDL.rpc.enums.Sy
 {
 return false;
 }

 // Legacy modules (pre-RPC Spec v4.5) do not support system capabilities, so for
versions less than 4.5 we will assume `SendLocation` is supported if
`isCapabilitySupported` returns true
 let sdlMsgVersion =
sdlManager.getRegisterAppInterfaceResponse().getSdlMsgVersion();
 if (sdlMsgVersion == null) {
 return true;
 }
 let rpcSpecVersion = new SDL.util.Version(sdlMsgVersion.getMajorVersion(),
sdlMsgVersion.getMinorVersion(), sdlMsgVersion.getPatchVersion());
 if (rpcSpecVersion.isNewerThan(new SDL.util.Version(4, 5, 0)) < 0) {
 return true;
 }

 // Retrieve the navigation capability
 let isNavigationSupported = false;
 const navCapability = await
sdlManager.getSystemCapabilityManager().updateCapability(SDL.rpc.enums.SystemC

 .catch(error => {
 throw error;
 });
 if (navCapability !== null) {
 isNavigationSupported = navCapability.getSendLocationEnabled();
 }

 return isNavigationSupported;
}

Using Send Location

const sendLocation = new SDL.rpc.messages.SendLocation()
 .setLatitudeDegrees(42.877737)
 .setLongitudeDegrees(-97.380967)
 .setLocationName('The Center')
 .setLocationDescription('Center of the United States');

const address = new SDL.rpc.structs.OasisAddress()
 .setSubThoroughfare('900')
 .setThoroughfare('Whiting Dr')
 .setLocality('Yankton')
 .setAdministrativeArea('SD')
 .setPostalCode('57078')
 .setCountryCode('US-SD')
 .setCountryName('United States');

sendLocation.setAddress(address);

// sdl_javascript_suite v1.1+
const response = await sdlManager.sendRpcResolve(sendLocation);

// Monitor response
const result = response.getResultCode();
if (result === SDL.rpc.enums.Result.SUCCESS) {
 // SendLocation was successfully sent.
} else if (result === SDL.rpc.enums.Result.INVALID_DATA) {
 // The request you sent contains invalid data and was rejected.
} else if (result === SDL.rpc.enums.Result.DISALLOWED) {
 // Your app does not have permission to use SendLocation.
}
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const response = await sdlManager.sendRpc(sendLocation).catch(error => error);

const result = response.getResultCode();
if (result === SDL.rpc.enums.Result.SUCCESS) {
 // `SendLocation` was successfully sent
} else if (result === SDL.rpc.enums.Result.INVALID_DATA) {
 // `SendLocation` was rejected. The request contained invalid data
} else if (result === SDL.rpc.enums.Result.DISALLOWED) {
 // Your app is not allowed to use `SendLocation`
}

Checking the Result of Send Location

The SendLocation request has three possible responses that you should expect:

1. SUCCESS - Successfully sent.

2. INVALID_DATA - The request contains invalid data and was rejected.

3. DISALLOWED - Your app does not have permission to use the SendLocation

request.

The GetWayPoints and SubscribeWayPoints RPCs are designed to allow you to get the

navigation destination(s) from the active navigation app when the user has activated in-car

navigation.

Both the GetWayPoints and SubscribeWayPoints RPCs are restricted by most OEMs.

As a result, a module may reject your request if your app does not have the correct

permissions. Your SDL app may also be restricted to only being allowed to get waypoints

when your app is open (i.e. the hmiLevel is non- NONE) or when it is the currently active

app (i.e. the hmiLevel is FULL).

Getting the Navigation
Destination (RPC v4.1+)

Checking Your App's Permissions

Since some modules will not support getting waypoints, you should check if the module

supports this feature before trying to use it. Once you have successfully connected to the

module, you can check the module's capabilities via the sdlManager.getSystemCapability

Manager() as shown in the example below. Please note that you only need to check once

if the module supports getting waypoints, however you must wait to perform this check

until you know that the SDL app has been opened (i.e. the hmiLevel is non- NONE).

const permissionElements = [];
permissionElements.push(new
SDL.manager.permission.PermissionElement(SDL.rpc.enums.FunctionID.GetWayPoin
 null));
permissionElements.push(new
SDL.manager.permission.PermissionElement(SDL.rpc.enums.FunctionID.SubscribeW
 null));

const listenerId =
sdlManager.getPermissionManager().addListener(permissionElements,
SDL.manager.permission.enums.PermissionGroupType.ANY, function
(allowedPermissions, permissionGroupStatus) {
 if
(allowedPermissions[SDL.rpc.enums.FunctionID.GetWayPoints].getIsRpcAllowed()) {
 // Your app has permission to send the `GetWayPoints` request for its current
HMI level
 } else {
 // Your app does not have permission to send the `GetWayPoints` request for its
current HMI level
 }

 if
(allowedPermissions[SDL.rpc.enums.FunctionID.SubscribeWayPoints].getIsRpcAllowe
 {
 // Your app has permission to send the `SubscribeWayPoints` request for its
current HMI level
 } else {
 // Your app does not have permission to send the `SubscribeWayPoints` request
for its current HMI level
 }
});

Checking if the Module Supports
Waypoints

async function isGetWaypointsSupported() {
 // Check if the module has navigation capabilities
 if
(!sdlManager.getSystemCapabilityManager().isCapabilitySupported(SDL.rpc.enums.Sy
 {
 return false;
 }

 // Legacy modules (pre-RPC Spec v4.5) do not support system capabilities, so for
versions less than 4.5 we will assume `GetWayPoints` and `SubscribeWayPoints` are
supported if `isCapabilitySupported` returns true
 let sdlMsgVersion =
sdlManager.getRegisterAppInterfaceResponse().getSdlMsgVersion();
 if (sdlMsgVersion == null) {
 return true;
 }
 let rpcSpecVersion = new SDL.util.Version(sdlMsgVersion.getMajorVersion(),
sdlMsgVersion.getMinorVersion(), sdlMsgVersion.getPatchVersion());
 if (rpcSpecVersion.isNewerThan(new SDL.util.Version(4, 5, 0)) < 0) {
 return true;
 }

 // Retrieve the navigation capability
 let isNavigationSupported = false;
 const navCapability = await
sdlManager.getSystemCapabilityManager().updateCapability(SDL.rpc.enums.SystemC

 .catch(error => {
 throw error;
 });
 if (navCapability !== null) {
 isNavigationSupported = navCapability.getGetWayPointsEnabled();
 }

 return isNavigationSupported;
}

If you discover that the module does not support getting navigation

waypoints or that your app does not have the right permissions, you should

disable any buttons, voice commands, menu items, etc. in your app that

would send the GetWayPoints or SubscribeWayPoints requests.

NOT E

To subscribe to the navigation waypoints, you will have to set up your callback for

whenever the waypoints are updated, then send the SubscribeWayPoints RPC.

// Create this method to receive the subscription callback
sdlManager.addRpcListener(SDL.rpc.enums.FunctionID.OnWayPointChange,
(onWayPointChangeNotification) => {
 // Use the waypoint data
});

// After SDL has started your connection, at whatever point you want to subscribe,
send the subscribe RPC
const subscribeWayPoints = new SDL.rpc.messages.SubscribeWayPoints();

// sdl_javascript_suite v1.1+
const response = await sdlManager.sendRpcResolve(subscribeWayPoints);
if (response.getSuccess()) {
 // You are now subscribed!
} else {
 // Handle the errors
}
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const response = await sdlManager.sendRpc(subscribeWayPoints).catch(error =>
error);
if (response.getSuccess()) {
 // You are now subscribed
} else {
 // Handle the errors
}

To unsubscribe from waypoint data, you must send the UnsubscribeWayPoints RPC.

Subscribing to Waypoints

Unsubscribing from Waypoints

// sdl_javascript_suite v1.1+
const unsubscribeWayPoints = new SDL.rpc.messages.UnsubscribeWayPoints();
const response = await sdlManager.sendRpcResolve(unsubscribeWayPoints);
if (response.getSuccess()) {
 // You are now unsubscribed!
} else {
 // Handle the errors
}
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const unsubscribeWayPoints = new SDL.rpc.messages.UnsubscribeWayPoints();
const response = await sdlManager.sendRpc(unsubscribeWayPoints).catch(error =>
error);
if (response.getSuccess()) {
 // You are now unsubscribed
} else {
 // Handle the errors
}

If you only need waypoint data once without an ongoing subscription, you can use GetWa

yPoints instead of SubscribeWayPoints .

One-Time Waypoints Request

// sdl_javascript_suite v1.1+
const getWayPoints = new SDL.rpc.messages.GetWayPoints();
const response = await sdlManager.sendRpcResolve(getWayPoints);
if (response.getSuccess()) {
 // Use the waypoint information
} else {
 // Handle the errors
}
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const getWayPoints = new SDL.rpc.messages.GetWayPoints();
const response = await sdlManager.sendRpc(getWayPoints).catch(error => error);
if (response.getSuccess()) {
 // Use the waypoint data
} else {
 // Handle the errors
}

In almost all cases, you will not need to handle uploading images because the screen

manager API will do that for you. There are some situations, such as VR help-lists and

turn-by-turn directions, that are not currently covered by the screen manager so you will

have manually upload the image yourself in those cases. For more information about

uploading images, see the Uploading Images guide.

The FileManager uploads files and keeps track of all the uploaded files names during a

session. To send data with the file manager you need to create either a SdlFile or SdlAr

Uploading Files

Uploading an MP3 Using the File
Manager

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/other-sdl-features/uploading-images/

twork object. Both SdlFile s and SdlArtwork s can be created with using filePath , or

String .

const audioFile = new SDL.manager.file.filetypes.SdlFile('File Name',
SDL.rpc.enums.FileType.AUDIO_MP3, mp3Data, true);
const success = await sdlManager.getFileManager().uploadFile(audioFile)
 .catch(error => {
 // handle errors here
 return false;
 });
if (success) {
 // File upload successful
}

If you want to upload a group of files, you can use the FileManager batch upload

methods. Once all of the uploads have completed you will be notified if any of the uploads

failed.

const files = await sdlManager.getFileManager().uploadFiles(sdlFileList)
 .catch(err => {
 // handle errors here
 });

SdlFile and its subclass SdlArtwork support uploading persistent files, i.e. files that are

not deleted when the car turns off. Persistence should be used for files that will be used

every time the user opens the app. If the file is only displayed for short time the file should

not be persistent because it will take up unnecessary space on the head unit. You can

check the persistence via:

Batching File Uploads

File Persistence

const isPersistent = file.isPersistent();

If a file being uploaded has the same name as an already uploaded file, the new file will be

ignored. To override this setting, set the SdlFile 's overwrite property to true .

file.setOverwrite(true);

To find the amount of file storage left for your app on the head unit, use the

FileManager ’s bytesAvailable property.

const bytesAvailable = sdlManager.getFileManager().getBytesAvailable();

Be aware that persistence will not work if space on the head unit is limited.

The FileManager will always handle uploading images if they are non-

existent.

NOT E

Overwriting Stored Files

Checking the Amount of File Storage
Left

You can check out if an image has already been uploaded to the head unit via the FileMa

nager 's remoteFileNames property.

const fileIsOnHeadUnit =
sdlManager.getFileManager().getRemoteFileNames().includes(fileName);

Use the file manager’s delete request to delete a file associated with a file name.

const success = await
sdlManager.getFileManager().deleteRemoteFileWithName(fileName);

const successes = await
sdlManager.getFileManager().deleteRemoteFilesWithNames(remoteFiles);

Checking if a File Has Already Been
Uploaded

Deleting Stored Files

Batch Deleting Files

You should be aware of these four things when using images in your SDL app:

1. You may be connected to a head unit that does not have the ability to display

images.

2. You must upload images from your mobile device to the head unit before using

them in a template.

3. Persistent images are stored on a head unit between sessions. Ephemeral images

are destroyed when a session ends (i.e. when the user turns off their vehicle).

4. Images can not be uploaded when the app's hmiLevel is NONE. For more

information about permissions, please review Understanding Permissions.

Before uploading images to a head unit you should first check if the head unit supports

graphics. If not, you should avoid uploading unnecessary image data. To check if graphics

are supported, check the getCapability() method of a valid SystemCapabilityManager

obtained from sdlManager.getSystemCapabilityManager() to find out the display

capabilities of the head unit.

Uploading Images

If you use the ScreenManager , image uploading for template graphics, soft

buttons, and menu items is handled for you behind the scenes. However, you

will still need to manually upload your images if you need images in an alert,

VR help lists, turn-by-turn directions, or other features not currently covered

by the ScreenManager .

The JavaScript manager does not currently handle uploading graphics for

menu items. This will be included in a future version.

NOT E

Checking if Graphics are Supported

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/getting-started/understanding-permissions/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/displaying-a-user-interface/template-images/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/displaying-a-user-interface/template-custom-buttons/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/displaying-a-user-interface/main-menu/

The FileManager uploads files and keeps track of all the uploaded files names during a

session. To send data with the FileManager , you need to create either a SdlFile or Sdl

Artwork object. Both SdlFile s and SdlArtwork s can be created with using filePath , or

String .

const artwork = new SDL.manager.file.filetypes.SdlArtwork('image_name',
SDL.rpc.enums.FileType.GRAPHIC_PNG, image, false);
const success = await sdlManager.getFileManager().uploadFile(audioFile)
 .catch(error => {
 // handle errors here
 return false;
 });
if (success) {
 // Image upload successful
}

Similar to other files, artworks can be persistent, batched, overwrite, etc. See Uploading

Files for more information.

const imageFields =
sdlManager.getSystemCapabilityManager().getDefaultMainWindowCapability().getIma

const areImagesSupported = (imageFields.length > 0);

Uploading an Image Using the File
Manager

Batch File Uploads, Persistence, etc.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/other-sdl-features/uploading-files/

SDL allows OEMs to offer an app store that lets users browse and install remote cloud

apps. If the cloud app requires users to login with their credentials, the app store can use

an authentication token to automatically login users after their first session.

App stores can handle user authentication for the installed cloud apps. For example, users

can log in after installing a cloud app using the app store. After that, the app store will

save an authentication token for the cloud app in the local policy table. Then, the cloud

app can retrieve the authentication token from the local policy table and use it to

authenticate a user with the application. If desired, an optional parameter, CloudAppVehi

cleID , can be used to identify the head unit.

An OEM's app store can manage the properties of a specific cloud app by setting and

getting its CloudAppProperties . This table summarizes the properties that are included

in CloudAppProperties :

Creating an OEM Cloud App Store
(RPC v5.1+)

An OEM app store can be a mobile app or a cloud app.

NOT E

User Authentication

Setting and Getting Cloud App
Properties

PA R A M E T E R N A M E D E S C R I P T I O N

appID appID for the cloud app

nicknames

List of possible names for the cloud app. The

cloud app will not be allowed to connect if its

name is not contained in this list

enabled If true, cloud app will be displayed on HMI

authToken
Used to authenticate the user, if the app

requires user authentication

cloudTransportType

Specifies the connection type Core should use.

Currently Core supports WS and WSS , but an

OEM can implement their own transport

adapter to handle different values

hybridAppPreference

Specifies the user preference to use the cloud

app version, mobile app version, or whichever

connects first when both are available

endpoint Remote endpoint for websocket connections

Only trusted app stores are allowed to set or get CloudAppProperties for

other cloud apps.

NOT E

Setting Cloud App Properties

App stores can set properties for a cloud app by sending a SetCloudAppProperties

request to Core to store them in the local policy table. For example, in this piece of code,

the app store can set the authToken to associate a user with a cloud app after the user

logs in to the app by using the app store:

const cloudAppProperties = new SDL.rpc.structs.CloudAppProperties()
 .setAppID("<appId>")
 .setAuthToken("<auth token>");

const setCloudAppProperties = new SDL.rpc.messages.SetCloudAppProperties()
 .setProperties(cloudAppProperties);

// sdl_javascript_suite v1.1+
const response = await sdlManager.sendRpcResolve(setCloudAppProperties);
if (response.getSuccess()) {
 console.log("Request was successful.");
} else {
 console.log("Request was rejected.");
}
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const response = await sdlManager.sendRpc(setCloudAppProperties).catch(error =>
error);
if (response.getSuccess()) {
 console.log("Request was successful.");
} else {
 console.log("Request was rejected.");
}

To retrieve cloud properties for a specific cloud app from local policy table, app stores can

send GetCloudAppProperties and specify the appId for that cloud app as in this

example:

Getting Cloud App Properties

// sdl_javascript_suite v1.1+
const getCloudAppProperties = new SDL.rpc.message.GetCloudAppProperties()
 .setAppID("<appId>");

const response = await sdlManager.sendRpcResolve(getCloudAppProperties);
if (response.getSuccess()) {
 console.log("Request was successful.");
} else {
 console.log("Request was rejected.");
}
// thrown exceptions should be caught by a parent function via .catch()

// Pre sdl_javascript_suite v1.1
const getCloudAppProperties = new SDL.rpc.message.GetCloudAppProperties()
 .setAppID("<appId>");

const response = await sdlManager.sendRpc(getCloudAppProperties).catch(error =>
error);
if (response.getSuccess()) {
 console.log("Request was successful.");
} else {
 console.log("Request was rejected.");
}

Cloud app developers don't need to add any code to download the app icon. The cloud app

icon will be automatically downloaded from the url provided by the policy table and sent to

Core to be later displayed on the HMI.

When users install cloud apps from an OEM's app store, they may be asked to login to that

cloud app using the app store. After logging in, app store can save the authToken in the

local policy table to be used later by the cloud app for user authentication.

A cloud app can retrieve its authToken from local policy table after starting the RPC

service. The authToken can be used later by the app to authenticate the user:

GETTING THE C LOU D AP P IC ON

Getting the Authentication Token

const authToken = sdlManager.getAuthToken();

The CloudAppVehicleID is an optional parameter used by cloud apps to identify a head

unit. The content of CloudAppVehicleID is up to the OEM's implementation. Possible

values could be the VIN or a hashed VIN.

The CloudAppVehicleID value can be retrieved as part of the GetVehicleData RPC. To

find out more about how to retrieve CloudAppVehicleID , check out the Retrieving Vehicle

Data section.

Encryption will be supported in a future release.

For Vanilla JS API Reference Documentation, please click "API Reference Documentation"

below. For API Reference Documentation specific to NodeJS, see inline on GitHub.

Getting CloudAppVehicleID (Optional)

Encryption

NodeJS Documentation

https://sdl-devportal-media-production.s3.amazonaws.com/guides/javascript/other-sdl-features/retrieving-vehicle-data/
https://github.com/smartdevicelink/sdl_javascript_suite/tree/master/lib/node/src

