
iOS Guides
Document current as of 12/18/2023 03:50 PM.

In order to build your app on a SmartDeviceLink (SDL) Core, the SDL software

development kit (SDK) must be installed in your app. The following steps will guide you

through adding the SDL SDK to your workspace and configuring the environment.

There are four different ways to install the SDL SDK in your project: Carthage, CocoaPods,

Swift Package Manager, or manually.

Installation

The SDL SDK is currently supported on iOS 10.0 and above.

NOT E

Install SDL SDK

CocoaPods Installation

https://sdl-devportal-media-production.s3.amazonaws.com/

1. Xcode should be closed for the following steps.

2. Open the terminal app on your Mac.

3. Make sure you have the latest version of CocoaPods installed. For more information on

installing CocoaPods on your system please consult: https://cocoapods.org.

sudo gem install cocoapods

4. Navigate to the root directory of your app. Make sure your current folder contains the

.xcodeproj file.

5. Create a new Podfile.

pod init

6. In the Podfile, add the following text. This tells CocoaPods to install SDL SDK for iOS.

SDL Versions are available on Github. We suggest always using the latest release.

target ‘<#Your Project Name#>’ do
 pod ‘SmartDeviceLink’, ‘~> <#SDL Version#>’
end

7. Install SDL SDK for iOS:

pod install

8. There will be a newly created .xcworkspace file in the directory in addition to the

.xcodeproj file. Always use the .xcworkspace file from now on.

https://cocoapods.org/
https://cocoapods.org/
https://github.com/smartdevicelink/sdl_ios/releases

9. Open the .xcworkspace file. To open from the terminal, type:

open <#Your Project Name#>.xcworkspace

You can install this library using the Swift Package Manager. You can install SDL into your

iOS project using Xcode 12 by following these steps:

1. Open File -> Swift Packages -> Add Package Dependency...

2. Enter the URL https://github.com/smartdevicelink/sdl_ios.git into the search box.

3. Use the default rules or customize the rules to use a specific version or branch. This

library added SPM support in version 7.0.0, so please use at least that version.

4. You will be asked which package project to use. If you are using a Swift project, then

you should use the SmartDeviceLinkSwift project. If not, then you should use the Smart

DeviceLink project. You can use the SmartDeviceLink project in a Swift project as well,

but you will miss some Swift specific customizations, which are currently limited to

logging enhancements.

5. In your SDL related code, use import SmartDeviceLink to call most SDL-related code.

If you want to use the Swift-specific logging enhancements you must also use import Sm

artDeviceLinkSwift .

SDL iOS supports Carthage! Install using Carthage by following this guide.

Tagged to our releases is a dynamic framework file that can be drag-and-dropped into the

application.

Swift Package Manager Installation

Carthage Installation

Manual Installation

https://swift.org/package-manager/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/developer-tools/configuring-sdl-logging/#logging-with-the-sdl-logger
https://github.com/Carthage/Carthage#adding-frameworks-to-an-application

You can check the architectures of your built framework like so:

lipo -info SmartDeviceLink.framework/SmartDeviceLink

Use a script like this to strip the simulator part of the framework.

lipo -remove i386 -remove x86_64 -o SmartDeviceLink.framework/SmartDeviceLink
SmartDeviceLink.framework/SmartDeviceLink

An app id is required for production level apps. The app id gives your app special

permissions to access vehicle data. If your app does not need to access vehicle data, a

dummy app id (i.e. creating a fake id like "1234") is sufficient during the development

stage. However, you must get an app id before releasing the app to the public.

To obtain an app id, sign up at smartdevicelink.com.

You cannot submit your app to the app store with the framework as is. You

MUST strip the simulator part of the framework first.

NOT E

SDK Configuration

1. Get an App Id

https://www.smartdevicelink.com/

Your application must be able to maintain a connection to the SDL Core even when it is in

the background. This capability must be explicitly enabled for your application (available

for iOS 5+). To enable the feature, select your application's build target, go to Capabilities,

Background Modes, and select External accessory communication mode.

Your application must support a set of SDL protocol strings in order to be connected to

SDL enabled head units. Go to your application's .plist file and add the following code

under the top level dictionary.

2. Enable Background Capabilities

3. Add SDL Protocol Strings

This is only required for USB and Bluetooth enabled head units. It is not

necessary during development using SDL Core.

NOT E

<key>UISupportedExternalAccessoryProtocols</key>
<array>
<string>com.smartdevicelink.prot29</string>
<string>com.smartdevicelink.prot28</string>
<string>com.smartdevicelink.prot27</string>
<string>com.smartdevicelink.prot26</string>
<string>com.smartdevicelink.prot25</string>
<string>com.smartdevicelink.prot24</string>
<string>com.smartdevicelink.prot23</string>
<string>com.smartdevicelink.prot22</string>
<string>com.smartdevicelink.prot21</string>
<string>com.smartdevicelink.prot20</string>
<string>com.smartdevicelink.prot19</string>
<string>com.smartdevicelink.prot18</string>
<string>com.smartdevicelink.prot17</string>
<string>com.smartdevicelink.prot16</string>
<string>com.smartdevicelink.prot15</string>
<string>com.smartdevicelink.prot14</string>
<string>com.smartdevicelink.prot13</string>
<string>com.smartdevicelink.prot12</string>
<string>com.smartdevicelink.prot11</string>
<string>com.smartdevicelink.prot10</string>
<string>com.smartdevicelink.prot9</string>
<string>com.smartdevicelink.prot8</string>
<string>com.smartdevicelink.prot7</string>
<string>com.smartdevicelink.prot6</string>
<string>com.smartdevicelink.prot5</string>
<string>com.smartdevicelink.prot4</string>
<string>com.smartdevicelink.prot3</string>
<string>com.smartdevicelink.prot2</string>
<string>com.smartdevicelink.prot1</string>
<string>com.smartdevicelink.prot0</string>
<string>com.smartdevicelink.multisession</string>
<string>com.ford.sync.prot0</string>
</array>

Integration Basics

Set Up a Proxy Manager Class

You will need a class that manages the connection between your app and SDL Core. Since

there should be only one active connection to the SDL Core, you may wish to implement

this proxy class using the singleton pattern.

Your app should always start passively watching for a connection with a SDL Core as

soon as the app launches. The easy way to do this is by instantiating the ProxyManager

class in the didFinishLaunchingWithOptions() method in your AppDelegate class.

The connect method will be implemented later. To see a full example, navigate to the

bottom of this page.

At the top of the ProxyManager class, import the SDL for iOS library.

The SDLManager is the main class of SmartDeviceLink. It will handle setting up the

initial connection with the head unit. It will also help you upload images and send RPCs.

In order to instantiate the SDLManager class, you must first configure an SDLConfigura

tion . To start, we will look at the SDLLifecycleConfiguration . You will at minimum need

a SDLLifecycleConfiguration instance with the application name and application id.

O B J C S WIF T

O B J C S WIF T

Importing the SDL Library

O B J C S WIF T

Creating the SDL Manager

O B J C S WIF T

1. Create a Lifecycle Configuration

During the development stage, a dummy app id is usually sufficient. For more information

about obtaining an application id, please consult the SDK Configuration section of this

guide. You must also decide which network configuration to use to connect the app to the

SDL Core. Optional, but recommended, configuration properties include short app name,

app icon, and app type.

There are two different ways to connect your app to a SDL Core: with a TCP (Wi-Fi)

network connection or with an iAP (USB / Bluetooth) network connection. Use TCP for

debugging and use iAP for production level apps.

This is a shortened version of your app name that is substituted when the full app name

will not be visible due to character count constraints. You will want to make this as short

NETWORK C ONNEC TION TYP E

I A P

O B J C S WIF T

T CP

O B J C S WIF T

If you are connecting your app to an emulator using a TCP connection, the IP

address is your computer or virtual machine’s IP address, and the port

number is usually 12345. If you are connecting to Manticore, the Manticore

UI will give you your IP / Port to connect to.

NOT E

2. Short App Name (optional)

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/sdk-configuration/
https://smartdevicelink.com/resources/manticore/

as possible.

This is a custom icon for your application. Please refer to Adaptive Interface Capabilities

for icon sizes.

The app type is used by car manufacturers to decide how to categorize your app. Each car

manufacturer has a different categorization system. For example, if you set your app type

as media, your app will also show up in the audio tab as well as the apps tab of Ford’s

SYNC® 3 head unit. The app type options are: default, communication, media (i.e.

music/podcasts/radio), messaging, navigation, projection, information, and social.

O B J C S WIF T

3. App Icon

O B J C S WIF T

Persistent files are used when the image ought to remain on the remote

system between ignition cycles. This is commonly used for menu artwork,

soft button artwork and app icons. Non-persistent artwork is usually used

for dynamic images like music album artwork.

NOT E

4. App Type (optional)

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/adaptive-interface-capabilities/

If one app type doesn't cover your full app use-case, you can add additional

AppHMIType s as well.

You can customize the color scheme of your templates. For more information, see the

Customizing the Template guide section.

You have the ability to determine a minimum SDL protocol and minimum SDL RPC version

that your app supports. You can also check the connected vehicle type and disconnect if

the vehicle module is not supported. We recommend not setting these values until your

app is ready for production. The OEMs you support will help you configure correct values

during the application review process.

Navigation and projection applications both use video and audio byte

streaming. However, navigation apps require special permissions from

OEMs, and projection apps are only for internal use by OEMs.

NOT E

O B J C S WIF T

ADDITIONAL AP P TYP ES

O B J C S WIF T

5. Template Coloring

6. Configure Module Support

BLOC KING BY V ERSION

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/customizing-look-and-functionality/customizing-the-template/

If a head unit is blocked by protocol version, your app icon will never appear on the head

unit's screen. If you configure your app to block by RPC version, it will appear and then

quickly disappear. So while blocking with minimumProtocolVersion is preferable, mini

mumRPCVersion allows you more granular control over which RPCs will be present.

If you are blocking by vehicle type and you are connected over RPC v7.1+, your app icon

will never appear on the head unit's screen. If you are connected over RPC v7.0 or below, it

will appear and then quickly disappear. To implement this type of blocking, you need to

implement the SDLManager delegate. You will then implement the optional didReceiveSy

stemInfo method and return YES if you want to continue the connection and NO if you

wish to disconnect. See the section example implementation of a proxy class for an

example.

A lock screen is used to prevent the user from interacting with the app on the smartphone

while they are driving. When the vehicle starts moving, the lock screen is activated.

Similarly, when the vehicle stops moving, the lock screen is removed. You must

implement a lock screen in your app for safety reasons. Any application without a lock

screen will not get approval for release to the public.

The SDL SDK can take care of the lock screen implementation for you, automatically

using your app logo and the connected vehicle logo. If you do not want to use the default

lock screen, you can implement your own custom lock screen.

For more information, please refer to the Adding the Lock Screen section; for this guide

we will be using SDLLockScreenConfiguration 's basic enabledConfiguration .

O B J C S WIF T

BLOC KING BY V EHIC L E TYP E

7. Lock Screen

O B J C S WIF T

8. Logging

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/adding-the-lock-screen/

A logging configuration is used to define where and how often SDL will log. It will also

allow you to set your own logging modules and filters. For more information about setting

up logging, see the logging guide.

The file manager configuration allows you to configure retry behavior for uploading files

and images. The default configuration attempts one re-upload, but will fail after that.

The SDLConfiguration class is used to set the lifecycle, lock screen, logging, and

optionally (dependent on if you are a Navigation or Projection app) streaming media

configurations for the app. Use the lifecycle configuration settings above to instantiate a

SDLConfiguration instance.

Now you can use the SDLConfiguration instance to instantiate the SDLManager .

The manager should be started as soon as possible in your application's lifecycle. We

suggest doing this in the didFinishLaunchingWithOptions() method in your AppDelegat

e class. Once the manager has been initialized, it will immediately start watching for a

connection with the remote system. The manager will passively search for a connection

with a SDL Core during the entire lifespan of the app. If the manager detects a connection

with a SDL Core, the startWithReadyHandler will be called.

O B J C S WIF T

9. File Manager

O B J C S WIF T

10. Set the Configuration

O B J C S WIF T

11. Create a SDLManager

O B J C S WIF T

12. Start the SDLManager

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/developer-tools/configuring-sdl-logging/

Create a new function in the ProxyManager class called connect .

If the connection is successful, you can start sending RPCs to the SDL Core. However,

some RPCs can only be sent when the HMI is in the FULL or LIMITED state. If the SDL

Core's HMI is not ready to accept these RPCs, your requests will be ignored. If you want to

make sure that the SDL Core will not ignore your RPCs, use the SDLManagerDelegate

methods in the next section.

The ProxyManager class should conform to the SDLManagerDelegate protocol. This

means that the ProxyManager class must implement the following required methods:

1. managerDidDisconnect This function is called when the proxy disconnects from the

SDL Core. Do any cleanup you need to do in this function.

2. hmiLevel:didChangeToLevel: This function is called when the HMI level changes for

the app. The HMI level can be FULL, LIMITED, BACKGROUND, or NONE. It is

important to note that most RPCs sent while the HMI is in BACKGROUND or NONE

mode will be ignored by the SDL Core. For more information, please refer to

Understanding Permissions.

In addition, there are several optional methods:

1. audioStreamingState:didChangeToState: Called when the audio streaming state of

this application changes on the remote system. For more information, please refer

to Understanding Permissions.

O B J C S WIF T

In production, your app will be watching for connections using iAP, which will

not use any more battery power than normal.

NOT E

IMP L EMENT THE SDL MANAGER DEL EGATE

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/understanding-permissions/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/understanding-permissions/

2. videoStreamingState:didChangeToState: Called when the video streaming state of

this application changes on the remote system. For more information, please refer

to Understanding Permissions.

3. systemContext:didChangeToContext: Called when the system context (i.e. a menu

is open, an alert is visible, a voice recognition session is in progress) of this

application changes on the remote system. For more information, please refer to

Understanding Permissions.

4. managerShouldUpdateLifecycleToLanguage:hmiLanguage: Called when the

module's HMI language or voice recognition language does not match the language

set in the SDLLifecycleConfiguration but does match a language included in languag

esSupported. If desired, you can customize the appName, the shortAppName, and tt

sName for the head unit's current language. For more information about supporting

more than one language in your app please refer to Getting Started/Adapting to the

Head Unit Language.

5. didReceiveSystemInfo Called when the module receives vehicle information, which

is before RPC connection on RPC v7.1+ and after RPC connection on RPC v7.0 or

below. Returning YES will continue the connection, and returning NO will cause your

app to disconnect from the module.

The following code snippet has an example of setting up both a TCP and iAP connection.

You should now be able to connect to a head unit or emulator. For more guidance on

connecting, see Connecting to an Infotainment System. To start building your app, learn

about designing your interface. Please also review the best practices for building an SDL

app.

Example Implementation of a Proxy Class

O B J C S WIF T

Where to Go From Here

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/understanding-permissions/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/understanding-permissions/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/adapting-to-the-head-unit-language/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/connecting-to-an-infotainment-system/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/main-screen-templates/
https://smartdevicelink.com/en/guides/sdl-overview-guides/best-practices/display-information/

In order to view your SDL app, you must connect your device to a head unit that supports

SDL Core. If you do not have access to a head unit, we recommend using the Manticore

web-based emulator for testing how your SDL app reacts to real-world vehicle events, on-

screen interactions and voice recognition.

You will have to configure different connection types based on whether you are connecting

to a head unit or an emulator. When connecting to a head unit, you must configure an iAP

connection. Likewise, when connecting to an emulator, a TCP connection must be

configured.

To connect to an emulator such as Manticore or a local Ubuntu SDL Core-based emulator

you must implement a TCP connection when configuring your SDL app.

To connect to a virtual machine running the Ubuntu SDL Core-based emulator, you will use

the IP address of the Ubuntu OS and 12345 for the port. You may have to enable port

forwarding on your virtual machine if you want to connect using a real device instead of a

simulated device.

Connecting to an Infotainment
System

Connecting to an Emulator

Getting the IP Address and Port

GENERIC SDL C ORE

MANTIC ORE

https://smartdevicelink.com/resources/manticore/
https://smartdevicelink.com/resources/manticore/
https://github.com/smartdevicelink/sdl_core
https://github.com/smartdevicelink/sdl_core

Once you launch an instance of Manticore, you will be given an IP address and port

number that you can use to configure your TCP connection.

To connect your device directly to a production vehicle head unit or Test Development Kit

(TDK), make sure to implement an iAP connection. Then connect the device using a USB

cord or, if the head unit supports it, Bluetooth.

If you are testing with a vehicle head unit or TDK and wish to see realtime debug logs in

the Xcode console, you should use wireless debugging.

Build and run the project in Xcode, targeting the device or simulator that you want to test

your app with. Your app should compile and launch on your device of choosing. If your

connection configuration is setup correctly, you should see your SDL app icon appear on

the HMI screen:

Setting the IP Address and Port

O B J C S WIF T

Connecting to a Head Unit

O B J C S WIF T

Viewing Realtime Logs

Running the SDL App

https://developer.apple.com/videos/play/wwdc2017/404/

To open your app, click on your app's icon in the HMI.

This is the main screen of your SDL app. If you get to this point, your SDL app is working.

If you are having issues with connecting to an emulator or head unit, please see our

troubleshooting tips in the Example Apps section of the guide.

The lock screen is a vital part of your SDL app because it prevents the user from using the

phone while the vehicle is in motion. SDL takes care of the lock screen for you. If you

prefer your own look, but still want the recommended logic that SDL provides for free, you

can also set your own custom lock screen.

Troubleshooting

Adding the Lock Screen

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/example-apps/

If you would not like to use any of the following code, you may use the SDLLockScreenC

onfiguration class function disabledConfiguration , and manage the entire lifecycle of

the lock screen yourself. However, it is strongly recommended that you use the provided

lock screen manager, even if you use your own view controller.

To see where the SDLLockScreenConfiguration is used, refer to the Integration Basics

guide.

Using the default lock screen is simple. Using the lock screen this way will automatically

load an automaker's logo, if available, to show alongside your logo. If it is not, the default

lock screen will show your logo alone.

Using the Provided Lock Screen

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/integration-basics-ios/

To do this, instantiate a new SDLLockScreenConfiguration :

It is possible to customize the background color and app icon in the default provided

lockscreen. If you choose not to set your own app icon the library will use the SDL logo.

O B J C S WIF T

Customizing the Default Lock Screen

The default lock screen handles retrieving and setting the OEM logo from head units that

support this feature.

Custom Background Color

O B J C S WIF T

Custom App Icon

O B J C S WIF T

Showing the OEM Logo

This feature can be disabled on the default lock screen by setting showDeviceLogo to

false.

If you would like to use your own lock screen instead of the one provided by the library, but

still use the logic we provide, you can use a new initializer within SDLLockScreenConfigu

ration . Any custom lock screen you create should be a subclass of SDLLockScreenView

O B J C S WIF T

Creating a Custom Lock Screen

Controller to ensure that it is configured correctly and can receive all of the information

necessary to customize your lock screen such as the OEM icon.

In SDL iOS v6.4, a new parameter displayMode has been added to the SDLLockScreenC

onfiguration to control the state of the lock screen and the older boolean parameters

have been deprecated.

If you create a custom lock screen view controller, please note that the view

controller's default view background will be transparent, even if you set a

background color for it. You must place a custom view across the entire

view controller in order to make your lock screen opaque.

NOT E

O B J C S WIF T

Customizing the Lock Screen State

D I S P L A Y M O D E D E S C R I P T I O N

Please note that a lock screen will be required by most OEMs. You can disable the lock

screen manager, but you will then be required to implement your own logic for showing

and hiding the lock screen. This is not recommended as the SDLLockScreenConfiguratio

n adheres to most OEM lock screen requirements. However, if you must create a lock

screen manager from scratch, the library's lock screen manager can be disabled via the S

DLLockScreenConfiguration as follows:

The lock screen manager is configured to dismiss the lock screen when it is safe to do

so. To always have the lock screen visible when the device is connected to the head unit,

simply update the lock screen configuration.

never

The lock screen should never be shown. This

should almost always mean that you will build

your own lock screen

requiredOnly
The lock screen should only be shown when it

is required by the head unit

optionalOrRequired

The lock screen should be shown when required

by the head unit or when the head unit says

that its optional, but not in other cases, such as

before the user has interacted with your app on

the head unit

always
The lock screen should always be shown after

connection

Disabling the Lock Screen

O B J C S WIF T

Making the Lock Screen Always On

Starting in RPC v6.0+ users may now have the ability to dismiss the lock screen by

swiping the lock screen down. Not all OEMs support this new feature. A dismissible lock

screen is enabled by default if the head unit enables the feature, but you can disable it

manually as well.

To disable this feature, set SDLLockScreenConfiguration s enableDismissGesture to

false.

O B J C S WIF T

Enabling User Lockscreen Dismissal (Passenger Mode)

O B J C S WIF T

The multiple transports feature allows apps to carry their SDL session over multiple

transports. The first transport that the app connects with is referred to as the primary

transport and a transport connected at a later point is the secondary transport. For

example, apps can register over Bluetooth or USB as a primary transport, then connect

over WiFi when necessary (ex. to allow video/audio streaming) as a secondary transport.

This feature is supported on connections with protocol version 5.1+, which is supported

on SDL iOS 6.1+ and SDL Core 5.0+.

On head units that support multiple transports, the primary transport will be used for RPC

communication while the secondary transport will be used for high bandwidth services

such as streaming video data for navigation applications. If no high-bandwidth secondary

transport is present, the primary transport will be used for all needed services that the

transport supports.

The only primary transport available for iOS in production applications is iAP.

Secondary transports must be enabled by the module to which the app is connecting. TCP

over WiFi can be configured as a supported secondary transport.

By default, TCP is a configured secondary transport, but this can be disabled.

Multiple Transports (Protocol
v5.1+)

Primary Transports

Secondary Transports

O B J C S WIF T

Since a head unit can support multiple languages, you may want to add support for more

than one language to your SDL app. The SDL library allows you to check which language is

currently used by the head unit. If desired, the app's name and the app's text-to-speech

(TTS) name can be customized to reflect the head unit's current language. If your app

name is not part of the current lexicon, you should tell the VR system how a native

speaker will pronounce your app name by setting the TTS name using phonemes from

either the Microsoft SAPI phoneme set or from the LHPLUS phoneme set.

The initial configuration of the SDLManager requires a default language when setting the

SDLLifecycleConfiguration . If not set, the SDL library uses American English (EN_US) as

the default language. The connection will fail if the head unit does not support the langu

age set in the SDLLifecycleConfiguration . The RegisterAppInterface response RPC will

return INVALID_DATA as the reason for rejecting the request.

If your app does not support the current head unit language, you should decide on a default

language to use in your app. All text should be created using this default language.

Unfortunately, your VR commands will probably not work as the VR system will not

recognize your users' pronunciation.

Adapting to the Head Unit
Language

Setting the Default Language

What if My App Does Not Support the Head Unit
Language?

Checking the Current Head Unit Language

https://en.wikipedia.org/wiki/Phoneme

After starting the SDLManager you can check the registerResponse property for the

head unit's language and hmiDisplayLanguage . The language property gives you the

current VR system language; hmiDisplayLanguage the current display text language.

To customize the app name for the head unit's current language, implement the following

steps:

1. Set the default language in the SDLLifecycleConfiguration .

2. Add all languages your app supports to languagesSupported in the SDLLifecycleC

onfiguration .

3. Implement the SDLManagerDelegate's managerShouldUpdateLifecycleToLanguage:

hmiLanguage: method. If the module's current HMI language or voice recognition

(VR) language is different from the app's default language, the method will be called

with the module's current HMI and/or VR language. Please note that the delegate

method will only be called if your app supports the head unit's current language.

Return a SDLLifecycleConfigurationUpdate object with the new appName and/or tts

Name.

method. If the module's current HMI language or voice recognition (VR) language is

different from the app's default language, the listener will be called with the module's

current HMI and/or VR language. Return a LifecycleConfigurationUpdate with the

new appName and/or ttsName.

While creating your SDL app, remember that just because your app is connected to a head

unit it does not mean that the app has permission to send the RPCs you want. If your app

O B J C S WIF T

Updating the SDL App Name

O B J C S WIF T

Understanding Permissions

does not have the required permissions, requests will be rejected. There are three

important things to remember in regards to permissions:

1. You may not be able to send a RPC when the SDL app is closed, in the background,

or obscured by an alert. Each RPC has a set of hmiLevels during which it can be

sent.

2. For some RPCs, like those that access vehicle data or make a phone call, you may

need special permissions from the OEM to use. This permission is granted when

you submit your app to the OEM for approval. Each OEM decides which RPCs it will

restrict access to, so it is up you to check if you are allowed to use the RPC with the

head unit.

3. Some head units may not support all RPCs.

When your app is connected to the head unit you will receive notifications when the SDL

app's HMI status changes. Your app can be in one of four different hmiLevel s:

H M I L E V E L W H A T D O E S T H I S M E A N ?

HMI Levels

NONE
The user has not yet opened your app, or the

app has been killed.

BACKGROUND
The user has opened your app, but is currently

in another part of the head unit.

LIMITED

This level only applies to media and navigation

apps (i.e. apps with an appType of MEDIA
or NAVIGATION). The user has opened your

app, but is currently in another part of the head

unit. The app can receive button presses from

the play, seek, tune, and preset buttons.

FULL Your app is currently in focus on the screen.

Be careful with sending user interface related RPCs in the NONE and BACKGROUND

levels; some head units may reject RPCs sent in those states. We recommended that you

wait until your app's hmiLevel enters FULL to set up your app's UI.

To get more detailed information about the state of your SDL app check the current

system context. The system context will let you know if a menu is open, a VR session is

in progress, an alert is showing, or if the main screen is unobstructed. You can find more

information about the system context below.

The easiest way to monitor the hmiLevel of your SDL app is through a required delegate

callback of SDLManagerDelegate . The function hmiLevel:didChangeToLevel: is called

every time your app's hmiLevel changes.

The PermissionManager allows developers to easily query whether specific RPCs are

allowed or not in the current state of the app. It also allows a listener to be added for

RPCs or their parameters so that if there are changes in their permissions, the app will be

notified.

You can also retrieve the status of a group of RPCs. First, you can retrieve the permission

status of the group of RPCs as a whole: whether or not those RPCs are all allowed, all

disallowed, or some are allowed and some are disallowed. This will allow you to know, for

example, if a feature you need is allowed based on the status of all the RPCs needed for

the feature.

Monitoring the HMI Level

O B J C S WIF T

Permission Manager

Checking Current Permissions of a Single RPC

O B J C S WIF T

Checking Current Permissions of a Group of RPCs

The previous snippet will give a quick generic status for all permissions together.

However, if you want to get a more detailed result about the status of every permission or

parameter in the group, you can use the statusesOfRPCPermissions: method.

If desired, you can subscribe to a group of permissions. The subscription's handler will be

called when the permissions for the group changes. If you want to be notified when the

permission status of any of RPCs in the group change, set the groupType to SDLPermis

sionGroupTypeAny . If you only want to be notified when all of the RPCs in the group are

allowed, or go from allowed to some/all not allowed, set the groupType to SDLPermissi

onGroupTypeAllAllowed .

When you set up the subscription, you will get a unique id back. Use this id to unsubscribe

to the permissions at a later date.

If you want more detail about the current state of your SDL app you can monitor the audio

playback state as well as get notifications when something blocks the main screen of

your app.

O B J C S WIF T

O B J C S WIF T

Observing Permissions

O B J C S WIF T

Stopping Observation of Permissions

O B J C S WIF T

Additional HMI State Information

Audio Streaming State

The Audio Streaming State informs your app whether or not the driver will be able to hear

your app's audio. It will be either AUDIBLE , NOT_AUDIBLE , or ATTENUATED .

You will get these notifications when an alert pops up, when you start recording the in-car

audio, when voice recognition is active, when another app takes audio control, when a

navigation app is giving directions, etc.

A U D I O S T R E A M I N G S TA T E W H A T D O E S T H I S M E A N ?

The System Context informs your app if there is potentially a blocking HMI component

while your app is still visible. An example of this would be if your application is open and

you display an alert. Your app will receive a system context of ALERT while it is

presented on the screen, followed by MAIN when it is dismissed.

AUDIBLE
Any audio you are playing will be audible to the

user

ATTENUATED

Some kind of audio mixing is occurring

between what you are playing, if anything, and

some system level audio or navigation

application audio.

NOT_AUDIBLE
Your streaming audio is not audible. This could

occur during a VRSESSION System Context.

O B J C S WIF T

System Context

S Y S T E M C O N T E X T S TA T E W H A T D O E S T H I S M E A N ?

New features are always being added to SDL, however, you or your users may be

connecting to modules that do not support the newest features. If your SDL app attempts

to use an unsupported feature your request will be ignored by the module.

When you are implementing a feature you should always assume that some modules your

users connect to will not support the feature or that the user may have disabled

permissions for this feature on their head unit. The best way to deal with unsupported

features is to check if the feature is available before attempting to use it and to handle

error responses.

MAIN
No user interaction is in progress that could be

blocking your app's visibility.

VRSESSION Voice recognition is currently in progress.

MENU A menu interaction is currently in-progress.

HMI_OBSCURED

The app's display HMI is being blocked by

either a system or other app's overlay (another

app's alert, for instance).

ALERT An alert that you have sent is currently visible.

O B J C S WIF T

Checking Supported Features

Checking the System Capability Manager

The easiest way to check if a feature is supported is to query the library's System

Capability Manager. For more details on how get this information, please see the Adaptive

Interface Capabilities guide.

When you are trying to use a feature, you can watch for an error response to the RPC

request you sent to the module. If the response contains an error, you may be able to

check the result enum to determine if the feature is disabled. If the response that comes

back is of the type GenericResponse , the module doesn't understand your request.

When you connect successfully to a head unit, SDL will automatically negotiate the

maximum SDL RPC version supported by both the module and your SDL SDK. If the feature

you want to support was added in a version less than or equal to the version returned by

the head unit, then your head unit may support the feature. Remember that the module may

still disable the feature, or the user may still have disabled permissions for the feature in

some cases. It's best to check if the feature is supported through the System Capability

Manager first, but you may also check the negotiated version to know if the head unit was

built before the feature was designed.

Throughout these guides you may see headers that contain text like "RPC 6.0+". That

means that if the negotiated version is 6.0 or greater, then SDL supports the feature but

the above caveats may still apply.

Handling RPC Error Responses

O B J C S WIF T

Checking if a Feature is Supported by Version

O B J C S WIF T

Example Apps

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/adaptive-interface-capabilities/

SDL provides two example apps: one written in Objective-C and one in Swift. Both

implement the same features.

The example apps are located in the sdl_ios repository. To try them, you can download the

repository and run the example app targets, or you can use pod try SmartDeviceLink with

CocoaPods installed on your Mac.

The example apps implement soft buttons, template text and images, a main menu and

submenu, vehicle data, popup menus, voice commands, and capturing in-car audio.

You can use a simulated or a real device to connect the example app to an emulator. To

connect the example app to Manticore or another emulator, make sure you are on the TC

P Debug tab of the example app. Then type in the IP address and port number and press

the "Connect" button. The button will turn green when you are connected. Please check the

Connecting to an Infotainment System guide for more detailed instructions on how to get

the emulator's IP address and port number.

If you download or clone the SDL repository in order to run the example

apps, you must first obtain the BSON submodule. You can do so by running

git submodule init and git submodule update in your terminal when in the

main directory of the cloned repository.

NOT E

Connecting to an Infotainment
System

Emulator

Head Unit

https://github.com/smartdevicelink/sdl_ios
https://cocoapods.org/
https://smartdevicelink.com/resources/manticore/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/connecting-to-an-infotainment-system/

You need a real device to connect the example app to production or debug hardware. After

building the running the app, make sure you are on the iAP tab of the example app and

press "Connect". The button will turn green when you are connected.

If using the Bluetooth (BT) transport, make sure to first pair your phone to the hardware

before attempting to connect your SDL app. If using the USB transport, you will need to

connect your phone to the hardware using a USB cord.

If the hardware supports both BT and USB transports, only one transport will be supported

at once. If your phone is connected via BT and you then connect the phone to the head

unit via a USB cord, the library will close the BT session and open a new session over

USB. Likewise, when the USB cord is disconnected, the library will close the USB session

and open session over BT.

If your app compiles and but does not show up on the HMI, there are a few things you

should check:

1. Make sure the correct IP address and port number is set in the SDLLifecycleConfigur

ation.

2. Make sure the device and the SDL Core emulator are on the same network.

3. If you are running an SDL Core emulator on a virtual machine, and you are using port

forwarding to connect your device to the virtual machine, the IP address should be

the IP address of your machine hosting the VM, not the IP address of the VM. The

port number will be 12345.

4. Make sure there is no firewall blocking the incoming port 12345 on the machine or

VM running the SDL Core emulator. Also make sure your firewall allows that

outgoing port.

5. Your SDL app will not work when the device app is in the background, because the

OS will terminate background tasks after a short amount of time. This is not an

issue with production IAP connections because Apple's External Accessory

framework allows your app unlimited background time.

Troubleshooting

TCP Debug Transport

6. If you have a media SDL app, audio will not play on the emulator. Only production

IAP connections are currently able to play audio because this happens over the

standard Bluetooth / USB system audio channel.

7. You cannot connect to any of our open-source emulators using a USB cord or

Bluetooth because Apple's MFi Program is confidential and can not be used in open

source projects.

1. Make sure to use the default SDLLifecycleConfiguration.

2. Make sure the protocol strings have been added to the app.

3. Make sure you have enabled background capabilities for your app.

4. If the head unit (emulators do not support IAP) does not support Bluetooth, an iAP

connection requires a USB cord.

1. Bluetooth transport support is automatic when you support the iAP production

transport. It cannot be turned on or off separately.

2. Make sure the head unit supports Bluetooth transport for iPhones. Currently, only

some head units support Bluetooth.

3. Make sure Bluetooth is turned on - both on the head unit hardware and your iPhone.

4. Ensure your iPhone is properly paired with the head unit.

For more examples go to the SmartDeviceLink Examples GitHub organization. Download

or clone any of these projects.

The examples available include an example weather app and an example navigation app.

The example weather app uses the OpenWeather API to implement a basic connected

weather app with SDL UI. This example showcases changing screen template items for

iAP Production Transport

IAP BL U ETOOTH P RODU C TION TRANSP ORT

Additional Examples

https://mfi.apple.com/en/faqs.html#qc1
https://smartdevicelink.com/en/guides/iOS/getting-started/sdk-configuration/
https://smartdevicelink.com/en/guides/iOS/getting-started/sdk-configuration/
https://github.com/SmartDeviceLink-Examples
https://github.com/SmartDeviceLink-Examples/example_weather_app_ios
https://github.com/SmartDeviceLink-Examples/example_navigation_app_ios
https://github.com/SmartDeviceLink-Examples/example_weather_app_ios

certain weather forecasts, displaying hourly and daily weather in popup menus, and

showing weather alerts with SDL Alerts.

The example navigation app utilizes the MapBox API to create a basic video streaming

map app. The example navigation app can be used as a reference for developers who want

to create their own navigation app.

Since each car manufacturer has different user interface style guidelines, the number of

lines of text, soft and hard buttons, and images supported will vary between different types

of head units. The system will send information to your app about its capabilities for

various user interface elements. You should use this information to create the user

interface of your SDL app.

You can access these properties on the SDLManager.systemCapabilityManager

instance.

Some examples require obtaining API tokens from third parties for data and

services. For all of these examples follow the setup instructions as outlined

in their README.md.

NOT E

Adaptive Interface Capabilities

System Capability Manager
Properties

https://github.com/SmartDeviceLink-Examples/example_navigation_app_ios

PA R A M E T E R S D E S C R I P T I O N R P C V E R S I O N

displays

Specifies display related

information. The primary

display will be the first element

within the array. Windows

within that display are different

places that the app could be

displayed (such as the main

app window and various

widget windows).

RPC v6.0+

hmiZoneCapabilities

Specifies HMI Zones in the

vehicle. There may be a HMI

available for back seat

passengers as well as front

seat passengers.

RPC v1.0+

speechCapabilities

Contains information about

TTS capabilities on the SDL

platform. Platforms may

support text, SAPI phonemes,

LH PLUS phonemes, pre-

recorded speech, and silence.

RPC v1.0+

prerecordedSpeechCapabiliti

es

A list of pre-recorded sounds

you can use in your app.

Sounds may include a help,

initial, listen, positive, or a

negative jingle.

RPC v3.0+

vrCapability

The voice-recognition

capabilities of the connected

SDL platform. The platform

may be able to recognize

spoken text in the current

language.

RPC v1.0+

PA R A M E T E R S D E S C R I P T I O N R P C V E R S I O N

audioPassThruCapabilities

Describes the sampling rate,

bits per sample, and audio

types available.

RPC v2.0+

pcmStreamCapabilities

Describes different audio type

configurations for the audio

PCM stream service, e.g.

{8kHz,8-bit,PCM}.

RPC v4.1+

hmiCapabilities

Returns whether or not the app

can support built-in navigation

and phone calls.

RPC v3.0+

appServicesCapabilities

Describes the capabilities of

app services including what

service types are supported and

the current state of services.

RPC v5.1+

navigationCapability
Describes the built-in vehicle

navigation system's APIs.
RPC v4.5+

phoneCapability

Describes the built-in phone

calling capabilities of the IVI

system.

RPC v4.5+

videoStreamingCapability

Describes the abilities of the

head unit to video stream

projection applications.

RPC v4.5+

remoteControlCapability

Describes the abilities of an

app to control built-in aspects

of the IVI system.

RPC v4.5+

seatLocationCapability
Describes the positioning of

each seat in a vehicle
RPC v6.0+

The following properties are deprecated on SDL iOS 6.4 because as of RPC v6.0 they are

deprecated. However, these properties will still be filled with information. When connected

on RPC <6.0, the information will be exactly the same as what is returned in the RegisterA

ppInterfaceResponse and SetDisplayLayoutResponse . However, if connected on RPC

>6.0, the information will be converted from the newer-style display information, which

means that some information will not be available.

PA R A M E T E R S D E S C R I P T I O N

Images may be formatted as PNG, JPEG, or BMP. You can find which image types and

resolutions are supported using the system capability manager.

Deprecated Properties

displayCapabilities

Information about the HMI display. This

includes information about available

templates, whether or not graphics are

supported, and a list of all text fields and the

max number of characters allowed in each text

field.

buttonCapabilities

A list of available buttons and whether the

buttons support long, short and up-down

presses.

softButtonCapabilities

A list of available soft buttons and whether the

button support images. Also, information

about whether the button supports long, short

and up-down presses.

presetBankCapabilities
If returned, the platform supports custom on-

screen presets.

Image Specifics

Since the head unit connection is often relatively slow (especially over Bluetooth), you

should pay attention to the size of your images to ensure that they are not larger than they

need to be. If an image is uploaded that is larger than the supported size, the image will be

scaled down by Core.

Below is a table with example image sizes. Check the SystemCapabilityManager for the

exact image sizes desired by the system you are connecting to. The connected system

should be able to scale down larger sizes, but if the image you are sending is much larger

than desired, then performance will be impacted.

O B J C S WIF T

EXAMP L E IMAGE SIZES

I M A G E N A
M E

U S E D I N
R P C D E TA I L S S I Z E T Y P E

softButtonIm

age
Show

Image shown on

softbuttons on

the base screen

70x70px png, jpg, bmp

choiceImage
CreateInteractio

nChoiceSet

Image shown in

the manual part

of an

performInteracti

on either big

(ICON_ONLY) or

small

(LIST_ONLY)

70x70px png, jpg, bmp

choiceSecon

daryImage

CreateInteractio

nChoiceSet

Image shown on

the right side of

an entry in

(LIST_ONLY)

performInteracti

on

35x35px png, jpg, bmp

vrHelpItem
SetGlobalProper

ties

Image shown

during voice

interaction

35x35px png, jpg, bmp

menuIcon
SetGlobalProper

ties

Image shown on

the “More…”

button

35x35px png, jpg, bmp

cmdIcon AddCommand

Image shown for

commands in

the "More…"

menu

35x35px png, jpg, bmp

I M A G E N A
M E

U S E D I N
R P C D E TA I L S S I Z E T Y P E

Capabilities that can be updated can be queried and subscribed to using the SDLSystemC

apabilityManager .

You should check if the head unit supports your desired capability before subscribing to or

updating the capability.

Most head units provide features that your app can use: making and receiving phone calls,

an embedded navigation system, video and audio streaming, as well as supporting app

services. To pull information about this capability, use the SDLSystemCapabilityManager

to query the head unit for the desired capability. If a capability is unavailable, the query will

return nil .

appIcon SetAppIcon

Image shown as

Icon in the

"Mobile Apps"

menu

70x70px png, jpg, bmp

graphic Show

Image shown on

the base screen

as cover art

185x185px png, jpg, bmp

Querying and Subscribing System
Capabilities

Determining Support for System Capabilities

O B J C S WIF T

Manual Querying for System Capabilities

O B J C S WIF T

In addition to getting the current system capabilities, it is also possible to subscribe for

updates when the head unit capabilities change. To get these notifications you must

register using a subscribeToCapabilityType: method.

Subscribing to System Capabilities (RPC v5.1+)

If supportsSubscriptions == NO , you can still subscribe to capabilities,

however, you must manually poll for new capability updates using updateCa

pabilityType:completionHandler: . All subscriptions will be automatically

updated when that method returns a new value.

The DISPLAYS type can be subscribed on all SDL versions.

NOT E

C HEC KING IF THE HEAD U NIT SU P P ORTS SU BSC RIP TIONS

O B J C S WIF T

SU BSC RIBE TO A C APABIL ITY

O B J C S WIF T

Main Screen Templates

Each head unit manufacturer supports a set of user interface templates. These templates

determine the position and size of the text, images, and buttons on the screen. Once the

app has connected successfully with an SDL enabled head unit, a list of supported

templates is available on SDLManager.systemCapabilityManager.defaultMainWindowCap

ability.templatesAvailable .

To change a template at any time, use [SDLScreenManager changeLayout:] . This guide

requires SDL iOS version 7.0. If using an older version, use the SetDisplayLayout RPC.

Template changes can also be batched with text and graphics updates:

When changing screen layouts and template data (for example, to show a weather hourly

data screen vs. a daily weather screen), it is recommended to encapsulate these updates

into a class or method. Doing so is a good way to keep SDL UI changes organized. A fully-

formed example of this can be seen in the example weather app. Below is a generic

example.

Change the Template

When changing the layout, you may get an error or failure if the update is

"superseded." This isn't technically a failure, because changing the layout has

not yet been attempted. The layout or batched operation was cancelled

before it could be completed because another operation was requested. The

layout change will then be inserted into the future operation and completed

then.

NOT E

O B J C S WIF T

O B J C S WIF T

https://github.com/SmartDeviceLink-Examples/example_weather_app_ios

This example code creates an interface that can be implemented by various "screens" of

your SDL app. This is a recommended design pattern so that you can separate your code

to only involve the data models you need. This is just a simple example and your own

needs may be different.

All screens will need to have access to the SDLScreenManager object and a function to

display the screen. Therefore, it is recommended to create a generic interface for all

screens to follow. For the example below, the CustomSDLScreen protocol requires an

initializer with the parameters SDLManager and a showScreen method.

The following example code shows a few implementations of the example screen

changing protocol. A good practice for screen classes is to keep screen data in a view

model. Doing so will add a layer of abstraction for exposing public properties and

commands to the screen.

For the example below, the HomeScreen class will inherit the CustomSDLScreen

interface and will have a property of type HomeDataViewModel . The screen manager will

change its text fields based on the view model's data. In addition, the home screen will

also create a navigation button to open the ButtonSDLScreen when pressed.

The ButtonSDLScreen follows the same patterns as the HomeSDLScreen but has

minor implementation differences. The screen's view model ButtonDataViewModel

contains properties unique to the ButtonSDLScreen such as text fields and an array of

soft button objects. It also changes the template configuration to tiles only.

Screen Change Example Code

Screen Change Example Interface

O B J C S WIF T

Screen Change Example Implementations

O B J C S WIF T

O B J C S WIF T

There are fifteen standard templates to choose from, however some head units may only

support a subset of these templates. The following examples show how templates will

appear on the Generic HMI and Ford's SYNC® 3 HMI.

Available Templates

MEDIA

MEDIA (WITH A P ROGRESS BAR)

https://github.com/smartdevicelink/generic_hmi
https://developer.ford.com/

NON-MEDIA

GRAP HIC WITH TEXT

TEXT WITH GRAP HIC

TIL ES ONLY

GRAP HIC WITH TIL ES

TIL ES WITH GRAP HIC

GRAP HIC WITH TEXT AND SOFT BU TTONS

TEXT AND SOFT BU TTONS WITH GRAP HIC

GRAP HIC WITH TEXT BU TTONS

DOU BL E GRAP HIC WITH SOFT BU TTONS

TEXT BU TTONS WITH GRAP HIC

TEXT BU TTONS ONLY

L ARGE GRAP HIC WITH SOFT BU TTONS

L ARGE GRAP HIC ONLY

You can easily display text, images, and buttons using the SDLScreenManager . To

update the UI, simply give the manager your new data and (optionally) sandwich the update

between the manager's beginUpdates and endUpdatesWithCompletionHandler

methods.

Template Text

Text Fields

S D L S C R E E N M A N A G E R PA R A M E T E R
N A M E D E S C R I P T I O N

textField1
The text displayed in a single-line display, or in

the upper display line of a multi-line display

textField2
The text displayed on the second display line of

a multi-line display

textField3
The text displayed on the third display line of a

multi-line display

textField4
The text displayed on the bottom display line of

a multi-line display

mediaTrackTextField
The text displayed in the in the track field; this

field is only valid for media applications

textAlignment
The text justification for the text fields; the text

alignment can be left, center, or right

textField1Type The type of data provided in textField1

textField2Type The type of data provided in textField2

textField3Type The type of data provided in textField3

textField4Type The type of data provided in textField4

title The title of the displayed template

Showing Text

O B J C S WIF T

To remove text from the screen simply set the screen manager property to nil .

You can easily display text, images, and buttons using the SDLScreenManager . To

update the UI, simply give the manager your new data and (optionally) sandwich the update

between the manager's beginUpdates and endUpdatesWithCompletionHandler

methods.

S D L S C R E E N M A N A G E R PA R A M E T E R
N A M E D E S C R I P T I O N

Create an SDLArtwork object which can be manually uploaded or set into the SDLScree

nManager and automatically uploaded. An SDLArtwork includes information about

Removing Text

O B J C S WIF T

Template Images

Image Fields

primaryGraphic
The primary image in a template that supports

images

secondaryGraphic
The second image in a template that supports

multiple images

Showing Images

Creating an SDLArtwork

whether the image should be persisted between vehicle startups, whether the image is a

template image and should be re-colored, and more.

To remove an image from the screen you just need to set the screen manager property to

nil .

When a file is to be uploaded to the module, the library checks if a file with the same name

has already been uploaded to module and skips the upload if it can. For cases where an

image by the same name needs to be re-uploaded, the SDLArtwork / SDLFile 's overwr

ite property should be used. Setting overwrite to true before passing the image to a S

DLScreenManager method such as primaryGraphic and secondaryGraphic will force

the image to be re-uploaded. This includes methods such as preloadChoices:withComple

tionHandler: where the arguments passed in contain images.

O B J C S WIF T

Setting Primary Graphic

O B J C S WIF T

Removing Images

O B J C S WIF T

Overwriting Images

Templated images are tinted by Core so the image is visible regardless of whether your

user has set the head unit to day or night mode. For example, if a head unit is in night

mode with a dark theme (see Customizing the Template section for more details on how

to customize theme colors), then your templated images will be displayed as white. In the

day theme, the image will automatically change to black.

Soft buttons, menu icons, and primary / secondary graphics can all be templated. A

template image works very much like it does on iOS and in fact, it uses the same API as

iOS. Any SDLArtwork created with a UIImage that has a renderingMode of alwaysTe

mplate will be templated via SDL as well. Images that you wish to template must be

PNGs with a transparent background and only one color for the icon. Therefore, templating

is only useful for things like icons and not for images that must be rendered in a specific

color.

In the screenshots below, the shuffle and repeat icons have been templated. In night mode,

the icons are tinted white and in day mode the icons are tinted black.

Please note that many production modules on the road do not refresh the

HMI with the new image if the file name has not changed. If you want the

image to refresh on the screen immediately, we suggest using two image

names and toggling back and forth between the names each time you update

the image.

This issue may also extend to menus, alerts, and other UI features even if

they're not on-screen at the time. Because of these issues, we do not

recommend that you try to overwrite an image. Instead, you can delete an

image file using the SDLFileManager and re-upload it once the deletion

completes, or you may use a different file name.

NOT E

Templating Images (RPC v5.0+)

Templated Images Example

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/customizing-look-and-functionality/customizing-the-template/
https://developer.apple.com/documentation/uikit/uiimage/1624153-imagewithrenderingmode

NI G HT MODE

DAY MODE

Static icons are pre-existing images on the remote system that you may reference and use

in your own application. Each OEM will design their own custom static icons but you can

get an overview of the available icons from the icons designed for the open source

Generic HMI. Static icons are fully supported by the screen manager via an SDLArtwork

initializer. Static icons can be used in primary and secondary graphic fields, soft button

image fields, and menu icon fields.

O B J C S WIF T

Static Icons

O B J C S WIF T

https://smartdevicelink.com/en/guides/sdl-overview-guides/user-interface/static-icons/

You can easily create and update custom buttons (called Soft Buttons in SDL) using the S

DLScreenManager . To update the UI, simply give the manager your new data and

(optionally) sandwich the update between the manager's beginUpdates and endUpdates

WithCompletionHandler methods.

S D L S C R E E N M A N A G E R PA R A M E T E R
N A M E D E S C R I P T I O N

To create a soft button using the SDLScreenManager , you only need to create a custom

name for the button and provide the text for the button's label and/or an image for the

button's icon. If your button cycles between different states (e.g. a button used to set the

repeat state of a song playlist can have three states: repeat-off, repeat-one, and repeat-all),

you can create all the states on initialization.

There are three different ways to create a soft button: with only text, with only an image, or

with both text and an image. If creating a button with an image, we recommend that you

template the image so its color works well with both the day and night modes of the head

unit. For more information on templating images please see the Template Images guide.

Template Custom Buttons

Soft Button Fields

softButtonObjects
An array of buttons. Each template supports a

different number of soft buttons

Creating Soft Buttons

Text Only Soft Buttons

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/template-images/

You can use the SDLSystemCapabilityManager to check if the HMI supports soft

buttons with images. If you send image-only buttons to a HMI that does not support

images, then the library will not send the buttons as they will be rejected by the head unit.

If all your soft buttons have text in addition to images, the library will send the text-only

buttons if the head unit does not support images.

O B J C S WIF T

Image Only Soft Buttons

Once you know that the HMI supports images in soft buttons you can create and send the

image-only soft buttons.

O B J C S WIF T

O B J C S WIF T

Image and Text Soft Buttons

When a button is highlighted its background color will change to indicate that it has been

selected.

O B J C S WIF T

Highlighting a Soft Button

HIGHL IGHT ON

HIGHL IGHT OFF

When the soft button state needs to be updated, simply tell the SoftButtonObject to

transition to the next state. If your button states do not cycle in a predictable order, you

can also tell the soft button which state to transition to by passing the stateName of the

new soft button state.

To delete soft buttons, simply pass the screen manager a new array of soft buttons. To

delete all soft buttons, simply pass the screen manager an empty array.

O B J C S WIF T

Updating Soft Button States

O B J C S WIF T

Deleting Soft Buttons

You can also send soft buttons manually using the Show RPC. Note that if you do so,

you must not mix the SDLScreenManager soft buttons and manually sending the Show

RPC. Additionally, the SDLScreenManager takes soft button ids 0 - 10000. Ensure that if

you use custom RPCs, that the soft button ids you use are outside of this range.

This guide shows you how to subscribe and react to "subscription" buttons. Subscription

buttons are used to detect when the user has interacted with buttons located in the car's

center console or steering wheel. A subscription button may also show up as part of your

template, however, the text and/or image used in the button is determined by the template

and is (usually) not customizable.

In the screenshot below, the pause, seek left and seek right icons are subscription

buttons. Once subscribed to, for example, the seek left button, you will be notified when

the user selects the seek left button on the HMI or when they select the seek left button

on the car's center console and/or steering wheel.

O B J C S WIF T

Using RPCs

Template Subscription Buttons

There are three general types of subscriptions buttons: audio related buttons only used for

media apps, navigation related buttons only used for navigation apps, and general buttons,

like preset buttons and the OK button, that can be used with all apps. Please note that if

your app type is not MEDIA or NAVIGATION , your attempt to subscribe to media-only

or navigation-only buttons will be rejected.

Types of Subscription Buttons

B U T T O N A P P T Y P E R P C V E R S I O N

Ok All v1.0+

Preset 0-9 All v1.0+

Search All v1.0+

Play / Pause Media only v5.0+

Seek left Media only v1.0+

Seek right Media only v1.0+

Tune up Media only v1.0+

Tune down Media only v1.0+

Center Location Navigation only v6.0+

Zoom In Navigation only v6.0+

Zoom Out Navigation only v6.0+

Pan Up Navigation only v6.0+

Pan Up-Right Navigation only v6.0+

Pan Right Navigation only v6.0+

Pan Down-Right Navigation only v6.0+

Pan Down Navigation only v6.0+

B U T T O N A P P T Y P E R P C V E R S I O N

You can easily subscribe to subscription buttons using the SDLScreenManager . Simply

tell the manager which button to subscribe and you will be notified when the user selects

the button.

There are two different ways to receive button press notifications. The first is to pass a

block handler that will get called when the button is selected. The second is to pass a

selector that will be notified when the button is selected.

Once you have subscribed to the button with a block handler, the handler will be called

whenever the button has been selected. If an error occurs attempting to subscribe to the

button, the error will be returned in the error parameter.

Pan Down-Left Navigation only v6.0+

Pan Left Navigation only v6.0+

Pan Up-Left Navigation only v6.0+

Toggle Tilt Navigation only v6.0+

Rotate Clockwise Navigation only v6.0+

Rotate Counter-Clockwise Navigation only v6.0+

Toggle Heading Navigation only v6.0+

Subscribing to Subscription Buttons

Subscribe with a Block Handler

O B J C S WIF T

Once you have subscribed to the button, the selector will be called when the button has

been selected. If there is an error subscribing to the subscribe button it will be returned in

the error parameter.

The selector can be created with between zero and four parameters of types in the

following order: SDLButtonName , NSError , SDLOnButtonPress , and SDLOnButtonEv

ent . When the fourth parameter, SDLOnButtonEvent , is omitted from the selector, then

you will only be notified when a button press occurs. When the third parameter, SDLOnBut

tonPress is omitted from the selector, you will be unable to distinguish between short

and long button presses.

When unsubscribing, you will need to pass the observer object and which button name that

you want to unsubscribe. If you subscribed using a handler, use the observer object

returned when you subscribed. If you subscribed using a selector, use the same observer

object you passed when subscribing.

The play/pause, seek left, seek right, tune up, and tune down subscribe buttons can only be

used if the app type is MEDIA . Depending on the OEM, the subscribed button could show

up as an on-screen button in the MEDIA template, work as a physical button on the car

console or steering wheel, or both. For example, Ford's SYNC® 3 HMI will add the

Subscribe with a Selector

O B J C S WIF T

O B J C S WIF T

Unsubscribing from Subscription
Buttons

O B J C S WIF T

Media Buttons

play/pause, seek right, and seek left soft buttons to the media template when you

subscribe to those buttons. However, those buttons will also trigger when the user uses

the seek left / seek right buttons on the steering wheel.

If desired, you can change the style of the play/pause button image between a play, stop,

or pause icon by updating the audio streaming indicator, and you can also set the style of

the next/previous buttons between a track or time seek style. See the Media Clock guide

for more information.

All app types can subscribe to preset buttons. Depending on the OEM, the preset buttons

may be added to the template when subscription occurs. Preset buttons can also be

physical buttons on the console that will notify the subscriber when selected. An OEM

may support only template buttons or only hard buttons or they may support both

template and hard buttons. The screenshot below shows how the Ford SYNC® 3 HMI

displays the preset buttons on the HMI.

Before library v.6.1 and RPC v5.0, Ok and PlayPause were combined into

Ok . Subscribing to Ok will, in v6.1+, also subscribe you to PlayPause .

This means that for the time being, you should not simultaneously subscribe

to Ok and PlayPause . In a future major version, this will change. For now,

only subscribe to either Ok or PlayPause and the library will execute the

right action based on the connected head unit.

NOT E

O B J C S WIF T

Preset Buttons

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/media-clock/

Checking if Preset Buttons are Supported

You can check if a HMI supports subscribing to preset buttons, and if so, how many preset

buttons are supported, by checking the system capability manager.

Head units supporting RPC v6.0+ may support subscription buttons that allow your user to

drag and scale the map using hard buttons located on car's center console or steering

wheel. Subscriptions to navigation buttons will only succeed if your app's type is NAVIG

ATION . If subscribing to these buttons succeeds, you can remove any buttons of your

own from your map screen. If subscribing to these buttons fails, you can display buttons

of your own on your map screen.

You have two different options when creating menus. One is to simply add items to the

default menu available in every template. The other is to create a custom menu that pops

up when needed. You can find more information about these popups in the Popup Menus

section. This guide will cover using the default menu / menu button.

O B J C S WIF T

Subscribing to Preset Buttons

O B J C S WIF T

O B J C S WIF T

Navigation Buttons

Subscribing to Navigation Buttons

O B J C S WIF T

Main Menu

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/popup-menus/

On some newer head units, you may have the option to display menu items as a grid of

tiles instead of the default list layout. To determine if the head unit supports the tiles

layout, check the SystemCapabilityManager 's defaultMainWindowCapability.menuLayou

tsAvailable property after successfully connecting to the head unit. To set the menu

layout using the screen manager, you will need to set the ScreenManager.menuConfigura

tion property.

Every template has a main menu button. The position of this button varies

between templates and cannot be removed from the template. Some OEMs

may format certain templates to not display the main menu button if you

have no menu items (such as the navigation map view).

NOT E

Setting the Menu Layout (RPC v6.0+)

L IST MENU L AYOU T

GRID MENU L AYOU T

The best way to create and update your menu is to the use the Screen Manager API. The

screen manager contains two menu related properties: menu , and voiceCommands .

Setting an array of SDLMenuCell s into the menu property will automatically set and

update your menu and submenus, while setting an array of SDLVoiceCommand s into the

voiceCommands property allows you to use "hidden" menu items that only contain voice

recognition data. The user can then use the IVI system's voice engine to activate this

command even though it will not be displayed within the main menu.

To find out more information on how to create voiceCommands see the related

documentation.

O B J C S WIF T

Adding Menu Items

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/speech-and-audio/setting-up-voice-commands/

Head units supporting RPC v7.1+ may support displaying secondaryText , t

ertiaryText , and secondaryArtwork . This gives the user a richer experience

by displaying more data. Attempting to set this data on head units that do

not support RPC 7.1+ will result in that data not being displayed to the user.

To determine if the head unit supports displaying these fields, you can check

the SystemCapabilityManager 's defaultMainWindowCapability.textFields

/ defaultMainWindowCapability.imageFields properties after successfully

connecting to the head unit. Then check those arrays for objects with the

related text / image field names.

NOT E

O B J C S WIF T

Adding a submenu is as simple as adding subcells to a SDLMenuCell . The submenu is

automatically displayed when selected by the user. Currently menus only support one layer

of subcells. In RPC v6.0+ it is possible to set individual submenus to use different layouts

such as tiles or lists.

Artworks will be automatically handled when using the screen manager API. First, a "non-

artwork" menu will be displayed, then, when the artworks have finished uploading, the

"artwork-ified" menu will be displayed. If you are doing this manually with RPCs, you will

have to upload artworks using the file manager yourself and send the correct menu when

they are ready.

The screen manager will intelligently handle deletions for you. If you want to show new

menu items, simply set a new array of menu cells. If you want to have a blank menu, set

an empty array. On supported systems, the library will calculate the optimal adds / deletes

to create the new menu. If the system doesn't support this sort of dynamic updating, the

entire list will be removed and re-added.

If you are doing this manually, you must use the DeleteCommand and DeleteSubMenu

RPCs, passing the cmdID s you wish to delete.

Starting with SDL v7.1+ menu cells and sub-menu cells no longer require unique titles in

order to be presented. For example, if you are trying to display points of interest as a list

you can now have multiple locations with the same name but are not the same location.

You cannot present multiple cells that are exactly the same. They must have some

property that makes them different, such as secondaryText or an artwork.

Adding Submenus

O B J C S WIF T

Menu Item Artwork

Deleting and Changing Menu Items

Duplicate Menu Titles

R PC V7.1+ CONNECT I ONS

The titles on the menu will be displayed as provided even if there are duplicate titles.

The titles on the menu will have a number appended to them when there are duplicate

titles.

R PC V7.0 A ND BEL OW CONNECT I ONS

The AddCommand RPC can be used to add items to the root menu or to a submenu.

Each AddCommand RPC must be sent with a unique id, a voice-recognition command,

and a set of menu parameters. The menu parameters include the menu name, the position

of the item in the menu, and the id of the menu item’s parent. If the menu item is being

added to the root menu, then the parent id is 0. If it is being added to a submenu, then the

parent id is the submenu’s id.

To create a submenu using RPCs, you must use a AddSubMenu RPC with a unique id.

When a response is received from the SDL Core, check if the submenu was added

successfully. If it was, send an AddCommand RPC for each item in the submenu.

Using RPCs

SDL supports modal menus. The user can respond to the list of menu options via touch,

voice (if voice recognition is supported by the head unit), or by keyboard input to search or

filter the menu.

There are several UX considerations to take into account when designing your menus. The

main menu should not be updated often and should act as navigation for your app. Popup

menus should be used to present a selection of options to your user.

Presenting a popup menu is similar to presenting a modal view to request input from your

user. It is possible to chain together menus to drill down, however, it is recommended to

do so judiciously. Requesting too much input from a driver while they are driving is

distracting and may result in your app being rejected by OEMs.

You should not mix usage of the SDLScreenManager menu features and

menu RPCs described above. You must use either one system or the other,

but not both.

NOT E

Popup Menus

Presenting a Popup Menu

L A Y O U T M O D E F O R M A T T I N G D E S C R I P T I O N

An SDLChoiceCell is similar to a UITableViewCell without the ability to configure your

own UI. We provide several properties on the SDLChoiceCell to set your data, but the

layout itself is determined by the manufacturer of the head unit.

If you know the content you will show in the popup menu long before the menu is shown

to the user, you can "preload" those cells in order to speed up the popup menu

Present as Icon A grid of buttons with images

Present Searchable as Icon
A grid of buttons with images along with a

search field in the HMI

Present as List A vertical list of text

Present Searchable as List
A vertical list of text with a search field in the

HMI

Creating Cells

On many systems, including VR commands will be exponentially slower than

not including them. However, including them is necessary for a user to be

able to respond to your prompt with their voice.

NOT E

O B J C S WIF T

Preloading Cells

presentation at a later time. Once you preload a cell, you can reuse it in multiple popup

menus without having to send the cell content to Core again.

To show a popup menu to the user, you must present the menu. If some or all of the cells

in the menu have not yet been preloaded, calling the present API will preload the cells

and then present the menu once all the cells have been uploaded. Calling present

without preloading the cells can take longer than if the cells were preloaded earlier in the

app's lifecycle especially if your cell has voice commands. Subsequent menu

presentations using the same cells will be faster because the library will reuse those cells

(unless you have deleted them).

O B J C S WIF T

Presenting a Menu

MENU - L I S T

MENU - I CON

In order to present a menu, you must bundle together a bunch of SDLChoiceCell s into an

SDLChoiceSet .

When you preload a cell, you do not need to maintain a reference to it. If you

reuse a cell with the same properties that has already been preloaded (or

previously presented), the cell will automatically be reused.

NOT E

C REATING A C HOIC E SET

Some notes on various parameters (full documentation is available as API documentation

on this website):

Title: This is the title of the menu when presented

Delegate: You must implement this delegate to receive callbacks based on the

user's interaction with the menu

Layout: You may present your menu as a set of tiles (like a UICollectionView) or a

list (like a UITableView). If you are using tiles, it's recommended to use artworks

on each item.

In order to present a menu, you must implement SDLChoiceSetDelegate in order to

receive the user's input. When a choice is selected, you will be passed the cell that was

selected, the manner in which it was selected (voice or text), and the index of the cell in

the SDLChoiceSet that was passed.

Finally, you will present the menu. When you do so, you must choose a mode to present

it in. If you have no vrCommands on the choice cell you should choose manualOnly . If

If the SDLChoiceSet contains an invalid set of SDLChoiceCell s, the

initializer will return nil . This can happen, for example, if you have duplicate

title text or if some, but not all choices have voice commands.

NOT E

O B J C S WIF T

IMP L EMENTING THE C HOIC E SET DEL EGATE

O B J C S WIF T

P RESENTING THE MENU WITH A MODE

vrCommands are available, you may choose voiceRecognitionOnly or both .

You may want to choose this based on the trigger source leading to the menu being

presented. For example, if the menu was presented via the user touching the screen, you

may want to use a mode of manualOnly or both , but if the menu was presented via

the user speaking a voice command, you may want to use a mode of voiceRecognition

Only or both .

It may seem that the answer is to always use both . However, remember that you must

provide vrCommand s on all cells to use both , which is exponentially slower than not

providing vrCommand s (this is especially relevant for large menus, but less important

for smaller ones). Also, some head units may not provide a good user experience for bot

h .

I N T E R A C T I O N M O D E D E S C R I P T I O N

Manual only Interactions occur only through the display

VR only
Interactions occur only through text-to-speech

and voice recognition

Both
Interactions can occur both manually or

through VR

MENU - MA NUA L ONLY MODE

MENU - VOI CE ONLY MODE

O B J C S WIF T

In addition to presenting a standard menu, you can also present a "searchable" menu, that

is, a menu with a keyboard input box at the top. For more information on implementing the

keyboard callbacks, see the Popup Keyboards guide.

You can discover cells that have been preloaded on screenManager.preloadedCells . You

may then pass an array of cells to delete from the remote system. Many times this is not

necessary, but if you have deleted artwork used by cells, for example, you should delete

the cells as well.

Presenting a Searchable Menu

MENU WI T H S EA R CH

O B J C S WIF T

Deleting Cells

O B J C S WIF T

Dismissing the Popup Menu (RPC v6.0+)

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/popup-keyboards/

You can dismiss a displayed choice set before the timeout has elapsed by sending a Can

celInteraction request. If you presented the choice set using the screen manager, you can

dismiss the choice set by calling cancel on the SDLChoiceCell object that you

presented.

Starting with SDL v7.1+ choice cells no longer require unique titles in order to be

presented. For example, if you are trying to display points of interest as a list you can now

have multiple locations with the same name but are not the same location. You cannot

present multiple cells that are exactly the same. They must have some property that

makes them different, such as secondaryText or an artwork.

If connected to older head units that do not support this feature, the cancel

request will be ignored, and the choice set will persist on the screen until the

timeout has elapsed or the user dismisses it by making a selection.

NOT E

O B J C S WIF T

Duplicate Cell Titles

R PC V7.1+ CONNECT I ONS

The titles on the choice set will be displayed as provided even if there are duplicate titles.

The titles on the choice set will have a number appended to them when there are duplicate

titles.

R PC V7.0 A ND BEL OW CONNECT I ONS

If you don't want to use the SDLScreenManager , you can do this manually using the Ch

oice , CreateInteractionChoiceSet , and PerformInteraction . You will need to create C

hoice s, bundle them into CreateInteractionChoiceSet s. As this is no longer a

recommended course of action, we will leave it to you to figure out how to manually do it.

Note that if you do manually create a PerformInteraction and want to set a cancel id, the

SDLScreenManager takes cancel ids 0 - 10000. Any cancel id you set must be outside of

that range.

Using RPCs

Popup Keyboards

Presenting a keyboard or a popup menu with a search field requires you to implement the

SDLKeyboardDelegate . Note that the initialText in the keyboard case often acts as

"placeholder text" and not as true initial text.

You should present a keyboard to users when your app contains a "search" field. For

example, in a music player app, you may want to give the user a way to search for a song

or album. A keyboard could also be useful in an app that displays nearby points of interest,

or in other situations.

Presenting a Keyboard

Keyboards are unavailable for use in many countries when the driver is

distracted. This is often when the vehicle is moving above a certain speed,

such as 5 miles per hour. This will be automatically managed by the system.

Your keyboard may be disabled or an error returned if the driver is distracted.

NOT E

Using the SDLKeyboardDelegate is required for popup keyboards and popup menus with

search. It involves two required methods (for handling the user's input and the keyboard's

unexpected abort), as well as several optional methods for additional functionality.

You can change default keyboard properties by updating sdlManager.screenManager.keyb

oardConfiguration . If you want to change the keyboard configuration for only one

keyboard session and keep the default keyboard configuration unchanged, you can

implement the customKeyboardConfiguration delegate method and pass back the single-

use KeyboardProperties for that given keyboard presentation.

O B J C S WIF T

Implementing the Keyboard Delegate

O B J C S WIF T

Configuring Keyboard Properties

You can modify the keyboard language by changing the keyboard configuration's languag

e . For example, you can set an EN_US keyboard. It will default to EN_US if not

otherwise set.

You can modify the keyboard to enable only some characters by responding to the update

CharacterSet:completionHandler: delegate method or by changing the keyboard

configuration before displaying the keyboard. For example, you can enable only "a", "b" ,

and "c" on the keyboard. All other characters will be greyed out (disabled).

You can modify the keyboard to allow an app to pre-populate the text field with a list of

suggested entries as the user types by responding to the updateAutocompleteWithInput:a

utoCompleteResultsHandler: delegate method or by changing the keyboard configuration

before displaying the keyboard. For example, you can display recommended searches

"test1", "test2", and "test3" if the user types "tes".

KEYBOARD L ANGU AGE

O B J C S WIF T

L IMITED C HARAC TER L IST

O B J C S WIF T

AU TOC OMP L ETE L IST

A list of autocomplete results is only available on RPC 6.0+ connections. On

connections < RPC 6.0, only the first item will be available to the user.

NOT E

You can modify the keyboard layout by changing the keyboard configuration's keyboardL

ayout . For example, you can set a NUMERIC keyboard. It will default to QWERTY if not

otherwise set.

O B J C S WIF T

KEYBOARD L AYOU T

The numeric keyboard layout is only available on RPC 7.1+. See the section

Checking Keyboard Capabilities to determine if this layout is available.

NOT E

You can modify the keyboard to mask the entered characters by changing the keyboard

configuration's maskInputCharacters .

O B J C S WIF T

INP U T MASKING (RP C 7.1+)

Each keyboard layout has a number of keys that can be customized to your app's needs.

For example, you could set two of the customizable keys in QWERTY layout to be "!" and

"?" as seen in the image below. The available number and location of these custom keys is

determined by the connected head unit. See the section Checking Keyboard Capabilities to

determine how many custom keys are available for any given layout.

O B J C S WIF T

C U STOM KEYS (RP C 7.1+)

Each head unit may support different keyboard layouts and each layout can support a

different number of custom keys. Head units may not support masking input. If you want

to know which keyboard features are supported on the connected head unit, you can

check the KeyboardCapabilities :

You can dismiss a displayed keyboard before the timeout has elapsed by sending a Canc

elInteraction request. If you presented the keyboard using the screen manager, you can

dismiss the choice set by calling dismissKeyboard with the cancelID that was returned

(if one was returned) when presenting.

O B J C S WIF T

Checking Keyboard Capabilities (RPC v7.1+)

O B J C S WIF T

Dismissing the Keyboard (RPC v6.0+)

If you don't want to use the SDLScreenManager , you can do this manually using the Perf

ormInteraction RPC request. As this is no longer a recommended course of action, we

will leave it to you to figure out how to manually do it.

Note that if you do manually create a PerformInteraction and want to set a cancel id, the

SDLScreenManager takes cancel ids 0 - 10000. Any cancel id you set must be outside of

that range.

SDL supports two types of alerts: a large popup alert that typically takes over the whole

screen and a smaller subtle alert that only covers a small part of screen.

If connected to older head units that do not support this feature, the cancel

request will be ignored, and the keyboard will persist on the screen until the

timeout has elapsed or the user dismisses it by making a selection.

NOT E

O B J C S WIF T

Using RPCs

Alerts and Subtle Alerts

Checking if the Module Supports
Alerts

Your SDL app may be restricted to only being allowed to send an alert when your app is

open (i.e. the hmiLevel is non- NONE) or when it is the currently active app (i.e. the h

miLevel is FULL). Subtle alert is a new feature (RPC v7.0+) and may not be supported on

all modules.

An alert is a large pop-up window showing a short message with optional buttons. When

an alert is activated, it will abort any SDL operation that is in-progress, except the already-

in-progress alert. If an alert is issued while another alert is still in progress the newest

alert will wait until the current alert has finished.

Depending on the platform, an alert can have up to three lines of text, a progress indicator

(e.g. a spinning wheel or hourglass), and up to four soft buttons.

O B J C S WIF T

Alerts

A L ER T WI T H NO S OF T BUT T ONS

Use the SDLAlertView to set all the properties of the alert you want to present.

If no soft buttons are added to an alert some modules may add a default

"cancel" or "close" button.

NOT E

A L ER T WI T H S OF T BUT T ONS

Creating the AlertView

An alert can include a custom or static (built-in) image that will be displayed within the

alert.

An SDLAlertView must contain at least either text , secondaryText or

audio for the alert to be presented.

NOT E

TEXT

O B J C S WIF T

BU TTONS

O B J C S WIF T

IC ON

An optional timeout can be added that will dismiss the alert when the duration is over.

Typical timeouts are between 3 and 10 seconds. If omitted, a default of 5 seconds is used.

Not all modules support a progress indicator. If supported, the alert will show an

animation that indicates that the user must wait (e.g. a spinning wheel or hourglass, etc).

O B J C S WIF T

TIMEOU TS

O B J C S WIF T

P ROGRESS INDIC ATOR

If omitted, no progress indicator will be shown.

An alert can also speak a prompt or play a sound file when the alert appears on the

screen. This is done by creating an SDLAlertAudioData object and setting it in the SDLA

lertView

SDLAlertAudioData can also play an audio file.

You can also play a combination of audio files and text-to-speech strings. The audio will

be played in the order you add them to the SDLAlertAudioData object.

OBJ ECT I VE-C

O B J C S WIF T

TEXT-TO-SP EEC H

On Manticore, using alerts with audio (Text-To-Speech or Tones) work best

in Google Chrome, Mozilla Firefox, or Microsoft Edge. Alerts with audio

does not work in Apple Safari at this time.

NOT E

O B J C S WIF T

O B J C S WIF T

O B J C S WIF T

https://smartdevicelink.com/resources/manticore/

To play a notification sound when the alert appears, set playTone to true .

You can cancel an alert that has not yet been sent to the head unit.

On systems with RPC v6.0+ you can dismiss a displayed alert before the timeout has

elapsed. This feature is useful if you want to show users a loading screen while

performing a task, such as searching for a list for nearby coffee shops. As soon as you

have the search results, you can cancel the alert and show the results.

P L AY TONE

O B J C S WIF T

Showing the Alert

O B J C S WIF T

Canceling/Dismissing the Alert

If connected to older head units that do not support this feature, the cancel

request will be ignored, and the alert will persist on the screen until the

timeout has elapsed or the user dismisses the alert by selecting a button.

NOT E

You can also use RPCs to present alerts. You need to use the Alert RPC to do so. Note

that if you do so, you must avoid using soft button ids 0 - 10000 and cancel ids 0 - 10000

because these ranges are used by the ScreenManager .

A subtle alert is a notification style alert window showing a short message with optional

buttons. When a subtle alert is activated, it will not abort other SDL operations that are in-

progress like the larger pop-up alert does. If a subtle alert is issued while another subtle

alert is still in progress the newest subtle alert will simply be ignored.

Touching anywhere on the screen when a subtle alert is showing will dismiss the alert. If

the SDL app presenting the alert is not currently the active app, touching inside the subtle

alert will open the app.

Depending on the platform, a subtle alert can have up to two lines of text and up to two

soft buttons.

Canceling the alert will only dismiss the displayed alert. If the alert has

audio, the speech will play in its entirety even when the displayed alert has

been dismissed. If you know you will cancel an alert, consider setting a

short audio message like "searching" instead of "searching for coffee shops,

please wait."

NOT E

O B J C S WIF T

Using RPCs

Subtle Alerts (RPC v7.0+)

The following steps show you how to add text, images, buttons, and sound to your subtle

alert. Please note that at least one line of text or the "text-to-speech" chunks must be set

in order for your subtle alert to work.

Because SubtleAlert is not currently supported in the ScreenManager ,

you need to be careful when setting soft buttons or cancel ids to ensure that

they do not conflict with those used by the ScreenManager . The ScreenM

anager takes soft button ids 0 - 10000 and cancel ids 0 - 10000. Ensure that

if you use custom RPCs that the soft button ids and cancel ids are outside

of this range.

NOT E

S UBT L E A L ER T WI T H NO S OF T BUT T ONS

S UBT L E A L ER T WI T H S OF T BUT T ONS

Creating the Subtle Alert

A subtle alert can include a custom or static (built-in) image that will be displayed within

the subtle alert. Before you add the image to the subtle alert, make sure the image is

uploaded to the head unit using the SDLFileManager . Once the image is uploaded, you

can show the alert with the icon.

An optional timeout can be added that will dismiss the subtle alert when the duration is

over. Typical timeouts are between 3 and 10 seconds. If omitted, a default of 5 seconds is

TEXT

O B J C S WIF T

BU TTONS

O B J C S WIF T

IC ON

O B J C S WIF T

TIMEOU TS

used.

A subtle alert can also speak a prompt or play a sound file when the subtle alert appears

on the screen. This is done by setting the ttsChunks parameter.

The ttsChunks parameter can also take a file to play/speak. For more information on

how to upload the file please refer to the Playing Audio Indications guide.

O B J C S WIF T

// Duration timeout is in milliseconds
subtleAlert.duration = @4000;

TEXT-TO-SP EEC H

O B J C S WIF T

subtleAlert.ttsChunks = [SDLTTSChunk textChunksFromString:<#(nonnull NSString
*)#>];

O B J C S WIF T

subtleAlert.ttsChunks = [SDLTTSChunk fileChunksWithName:<#(nonnull NSString
*)#>];

Showing the Subtle Alert

O B J C S WIF T

[self.sdlManager sendRequest:subtleAlert withResponseHandler:^(SDLRPCRequest
*request, SDLRPCResponse *response, NSError *error) {
 if (!response.success.boolValue) {
 <#Print out the error if there is one#>
 return;
 }

 <#Subtle alert was shown successfully#>
}];

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/speech-and-audio/playing-audio-indications/

If desired, you can be notified when the user tapped on the subtle alert by registering for

the SDLOnSubtleAlertPressed notification.

You can dismiss a displayed subtle alert before the timeout has elapsed.

There are two ways to dismiss a subtle alert. The first way is to dismiss a specific subtle

alert using a unique cancelID assigned to the subtle alert. The second way is to dismiss

whichever subtle alert is currently on-screen.

Checking if the User Dismissed the Subtle Alert

O B J C S WIF T

[self.sdlManager subscribeToRPC:SDLDidReceiveSubtleAlertPressedNotification
withObserver:self selector:@selector(subtleAlertPressed)];

- (void)subtleAlertPressed {
 <#The subtle alert was pressed#>
}

Dismissing the Subtle Alert

Canceling the subtle alert will only dismiss the displayed alert. If you have

set the ttsChunk property, the speech will play in its entirety even when the

displayed subtle alert has been dismissed. If you know you will cancel a

subtle alert, consider setting a short ttsChunk .

NOT E

DISMISSING A SP EC IF IC SU BTL E AL ERT

O B J C S WIF T

The media clock is used by media apps to present the current timing information of a

playing media item such as a song, podcast, or audiobook.

The media clock consists of three parts: the progress bar, a current position label and a

remaining time label. In addition, you may want to update the play/pause button icon to

// `cancelID` is the ID that you assigned when creating and sending the subtle alert
SDLCancelInteraction *cancelInteraction = [[SDLCancelInteraction alloc]
initWithSubtleAlertCancelID:cancelID];
[self.sdlManager sendRequest:cancelInteraction withResponseHandler:^(__kindof
SDLRPCRequest * _Nullable request, __kindof SDLRPCResponse * _Nullable
response, NSError * _Nullable error) {
 if (!response.success.boolValue) {
 <#Print out the error if there is one#>
 return;
 }
 <#The subtle alert was canceled successfully#>
}];

DISMISSING THE C U RRENT SU BTL E AL ERT

O B J C S WIF T

SDLCancelInteraction *cancelInteraction = [SDLCancelInteraction subtleAlert];
[self.sdlManager sendRequest:cancelInteraction withResponseHandler:^(__kindof
SDLRPCRequest * _Nullable request, __kindof SDLRPCResponse * _Nullable
response, NSError * _Nullable error) {
 if (!response.success.boolValue) {
 <#Print out the error if there is one#>
 return;
 }
 <#The subtle alert was canceled successfully#>
}];

Media Clock

reflect the current state of the audio or the media forward / back buttons to reflect if it will

skip tracks or time.

Media clock operations require the HMI status to be FULL . More

information on how to monitor the HMI status can be found in the

Understanding Permissions guide.

NOT E

Ensure your app has an appType of media and you are using the media

template before implementing this feature.

NOT E

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/understanding-permissions/#hmi-levels

In order to count up using the timer, you will need to set a start time that is less than the

end time. The "bottom end" of the media clock will always start at 0:00 and the "top end"

will be the end time you specified. The start time can be set to any position between 0 and

the end time. For example, if you are starting a song at 0:30 and it ends at 4:13 the

media clock timer progress bar will start at the 0:30 position and start incrementing up

automatically every second until it reaches 4:13 . The current position label will start

counting upwards from 0:30 and the remaining time label will start counting down from

3:43 . When the end is reached, the current time label will read 4:13 , the remaining time

label will read 0:00 and the progress bar will stop moving.

The play / pause indicator parameter is used to update the play / pause button to your

desired button type. This is explained below in the section "Updating the Audio Indicator"

Counting Up

O B J C S WIF T

Counting down is the opposite of counting up (I know, right?). In order to count down using

the timer, you will need to set a start time that is greater than the end time. The timer bar

moves from right to left and the timer will automatically count down. For example, if

you're counting down from 10:00 to 0:00 , the progress bar will be at the leftmost

position and start decrementing every second until it reaches 0:00 .

When pausing the timer, it will stop the timer as soon as the request is received and

processed. When a resume request is sent, the timer begins again at the paused time as

soon as the request is processed. You can update the start and end times using a pause

command to change the timer while remaining paused.

Clearing the timer removes it from the screen.

Counting Down

O B J C S WIF T

Pausing & Resuming

O B J C S WIF T

Clearing the Timer

O B J C S WIF T

Setting the Play / Pause Button Style
(RPC v5.0+)

The audio indicator is, essentially, the play / pause button. You can tell the system which

icon to display on the play / pause button to correspond with how your app works. For

example, if audio is currently playing you can update the play/pause button to show the

pause icon. On older head units, the audio indicator shows an icon with both the play and

pause indicators and the icon can not be updated.

For example, a radio app will probably want two button states: play and stop. A music app,

in contrast, will probably want a play and pause button. If you don't send any audio

indicator information, a play / pause button will be displayed.

As of RPC v7.1, you can set the style of the media forward / back buttons to show icons

for skipping time (in seconds) forward and backward instead of skipping tracks. The

skipping time style is common in podcast & audiobook media apps.

When you set the skip indicator style, you can set type TRACK , which is the default style

that shows "skip forward" and "skip back" indicators. This is the only style available on

RPC < 7.1 connections. You can also set the new type TIME , which will allow you to set

the number of seconds and display indicators for skipping forward and backward in time.

Setting The Media Forward / Back
Button Style (RPC v7.1+)

Track Style

O B J C S WIF T

Time Style

Many audio apps that support podcasts and audiobooks allow the user to adjust the audio

playback rate.

As of RPC v7.1, you can set the rate that the audio is playing at to ensure the media clock

accurately reflects the audio.

For example, a user can play a podcast at 125% speed or at 75% speed.

O B J C S WIF T

Adding Custom Playback Rate (RPC
v7.1+)

O B J C S WIF T

A SDLSlider creates a full screen or pop-up overlay (depending on platform) that a user

can control. There are two main SDLSlider layouts, one with a static footer and one with

a dynamic footer.

A slider popup with a static footer displays a single, optional, footer message below the

slider UI. A dynamic footer can show a different message for each slider position.

CountRate has a default value of 1.0, and the CountRate will be reset to

1.0 if any SetMediaClockTimer request does not have the parameter set.

To ensure that you maintain the correct CountRate in your application

make sure to set the parameter in all SetMediaClockTimer requests

(including when sending a RESUME request).

NOT E

Slider

The slider will persist on the screen until the timeout has elapsed or the user

dismisses the slider by selecting a position or canceling.

NOT E

Slider UI

DY NA MI C S L I DER I N POS I T I ON 1

DY NA MI C S L I DER I N POS I T I ON 2

The number of selectable items on a horizontal axis.

The initial position of slider control (cannot exceed numTicks).

Creating the Slider

O B J C S WIF T

Ticks

O B J C S WIF T

Position

O B J C S WIF T

Header

The header to display.

The footer will have the same message across all positions of the slider.

This type of footer will have a different message displayed for each position of the slider.

The footer is an optional parameter. The footer message displayed will be based off of the

slider's current position. The footer array should be the same length as numTicks

because each footer must correspond to a tick value. Or, you can pass nil to have no

footer at all.

An ID for this specific slider to allow cancellation through the CancelInteraction RPC.

The ScreenManager takes cancel ids 0 - 10000, so ensure any cancel id that you set is

outside of that range.

O B J C S WIF T

Static Footer

O B J C S WIF T

Dynamic Footer

O B J C S WIF T

Cancel ID

O B J C S WIF T

Show the Slider

O B J C S WIF T

Dismissing a Slider (RPC v6.0+)

You can dismiss a displayed slider before the timeout has elapsed by dismissing either a

specific slider or the current slider.

A SDLScrollableMessage creates an overlay containing a large block of formatted text

that can be scrolled. It contains a body of text, a message timeout, and up to eight soft

buttons. To display a scrollable message in your SDL app, you simply send an SDLScrolla

bleMessage RPC request.

If connected to older head units that do not support this feature, the cancel

request will be ignored, and the slider will persist on the screen until the

timeout has elapsed or the user dismisses by selecting a position or

canceling.

NOT E

Dismissing a Specific Slider

O B J C S WIF T

Dismissing the Current Slider

O B J C S WIF T

Scrollable Message

Currently, you can only create a scrollable message view to display on the screen using

RPCs.

The message will persist on the screen until the timeout has elapsed or the

user dismisses the message by selecting a soft button or cancelling (if the

head unit provides cancel UI).

NOT E

Scrollable Message UI

Creating the Scrollable Message

You can dismiss a displayed scrollable message before the timeout has elapsed. You can

dismiss a specific scrollable message, or you can dismiss the scrollable message that is

currently displayed.

The SDLScreenManager uses soft button ids 0 – 10000. Ensure that if you

use custom RPCs—such as this one—that the soft button ids you use are

outside of this range (i.e. > 10000).

NOT E

O B J C S WIF T

Dismissing a Scrollable Message
(RPC v6.0+)

If connected to older head units that do not support this feature, the cancel

request will be ignored, and the scrollable message will persist on the

screen until the timeout has elapsed or the user dismisses the message by

selecting a button.

NOT E

Dismissing a Specific Scrollable Message

O B J C S WIF T

Dismissing the Current Scrollable Message

You have the ability to customize the look and feel of the template. How much

customization is available depends on the RPC version of the head unit you are connected

with as well as the design of the HMI.

You can customize the color scheme of your app using template coloring APIs.

You can change the template colors of the initial template layout in the lifecycleConfigur

ation .

O B J C S WIF T

Customizing the Template

Customizing Template Colors (RPC
v5.0+)

Customizing the Default Layout

You can change the template color scheme when you change layouts. This guide requires

SDL iOS version 7.0. If using an older version, use SDLSetDisplayLayout (any RPC

version) or SDLShow (RPC v6.0+) request.

O B J C S WIF T

You may only change the template coloring once per template; that is, you

cannot call changeLayout , SetDisplayLayout or Show for the template

you are already on and expect the color scheme to update.

NOT E

Customizing Future Layouts

You can also customize the title and icon of the main menu button that appears on your

template layouts. The menu icon must first be uploaded with a specific name through the

file manager; see the Uploading Images section for more information on how to upload

your image.

If you present keyboards in your app – such as in searchable interactions or another

custom keyboard – you may wish to customize the keyboard for your users. The best way

to do this is through the SDLScreenManager . For more information presenting

keyboards, see the Popup Keyboards section.

You can modify the language of the keyboard to change the characters that are displayed.

O B J C S WIF T

Customizing the Menu Title and Icon

O B J C S WIF T

Customizing the Keyboard (RPC
v3.0+)

Setting Keyboard Properties

O B J C S WIF T

Other Properties

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/uploading-images/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/popup-keyboards/

While there are other keyboard properties available on SDLKeyboardProperties , these

will be overridden by the screen manager. The keypressMode must be a specific

configuration for the screen manager's callbacks to work properly. The limitedCharacter

List , autoCompleteText , and autoCompleteList will be set on a per-keyboard basis in

the SDLKeyboardDelegate which is set on the presentKeyboard and presentSearchabl

eChoiceSet methods.

On some head units it is possible to display a customized help menu or speak a custom

command if the user asks for help while using your app. The help menu is commonly used

to let users know what voice commands are available, however, it can also be customized

to help your user navigate the app or let them know what features are available.

You can customize the help menu with your own title and/or menu options. If you don't

customize these options, then the head unit's default menu will be used.

If you wish to use an image, you should check the sdlManager.systemCapabilityManager.

defaultMainWindowCapability.imageFields for an imageField.name of vrHelpItem to

see if that image is supported. If vrHelpItem is in the imageFields array, then it can be

used. You will then need to upload the image using the file manager before using it in the

request. See the Uploading Images section for more information.

On head units that support voice recognition, a user can request assistance by saying

"Help." In addition to displaying the help menu discussed above a custom spoken text-to-

Customizing Help Prompts

Configuring the Help Menu

O B J C S WIF T

Configuring the Help Prompt

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/uploading-images/

speech response can be spoken to the user.

If you display any sort of popup menu or modal interaction that has a timeout – such as

an alert, interaction, or slider – you can create a custom text-to-speech response that will

be spoken to the user in the event that a timeout occurs.

You can also reset your customizations to the help menu or spoken prompts. To do so,

you will send a ResetGlobalProperties RPC with the fields that you wish to clear.

Since your user will be driving while interacting with your SDL app, speech phrases can

provide important feedback to your user. At any time during your app's lifecycle you can

send a speech phrase using the SDLSpeak request and the head unit's text-to-speech

(TTS) engine will produce synthesized speech from your provided text.

O B J C S WIF T

Configuring the Timeout Prompt

O B J C S WIF T

Clearing Help Menu and Prompt
Customizations

O B J C S WIF T

Playing Spoken Feedback

When using the SDLSpeak RPC, you will receive a response from the head unit once the

operation has completed. From the response you will be able to tell if the speech was

completed, interrupted, rejected or aborted. It is important to keep in mind that a speech

request can interrupt another ongoing speech request. If you want to chain speech

requests you must wait for the current speech request to finish before sending the next

speech request.

The speech request you send can simply be a text phrase, which will be played back in

accordance with the user's current language settings, or it can consist of phoneme

specifications to direct SDL’s TTS engine to speak a language-independent, speech-

sculpted phrase. It is also possible to play a pre-recorded sound file (such as an MP3)

using the speech request. For more information on how to play a sound file please refer to

Playing Audio Indications.

Once you have successfully connected to the module, you can access supported speech

capabilities properties on the SDLManager.systemCapabilityManager instance.

Below is a list of commonly supported speech capabilities.

On Manticore, spoken feedback works best in Google Chrome, Mozilla

Firefox, or Microsoft Edge. Spoken feedback does not work in Apple Safari

at this time.

NOT E

Creating the Speak Request

Getting the Supported Speech Capabilities

O B J C S WIF T

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/speech-and-audio/playing-audio-indications/
https://smartdevicelink.com/resources/manticore/

S P E E C H C A PA B I L I T Y D E S C R I P T I O N

Once you know what speech capabilities are supported by the module, you can create the

speak requests.

Text Text phrases

SAPI Phonemes Microsoft speech synthesis API

File A pre-recorded sound file

Creating Different Types of Speak Requests

TEXT P HRASE

O B J C S WIF T

SAP I P HONEMES P HRASE

O B J C S WIF T

Sending the Speak Request

O B J C S WIF T

You can pass an uploaded audio file's name to SDLTTSChunk , allowing any API that

takes a text-to-speech parameter to pass and play your audio file. A sports app, for

example, could play a distinctive audio chime to notify the user of a score update

alongside an Alert request.

The first step is to make sure the audio file is available on the remote system. To upload

the file use the SDLFileManager .

For more information about uploading files, see the Uploading Files guide.

Now that the file is uploaded to the remote system, it can be used in various RPCs, such

as Speak , Alert , and AlertManeuver . To use the audio file in an alert, you simply need

to construct a SDLTTSChunk referring to the file's name.

Playing Audio Indications (RPC
v5.0+)

On Manticore, audio indications work best in Google Chrome, Mozilla

Firefox, or Microsoft Edge. Audio indications do not work in Apple Safari at

this time.

NOT E

Uploading the Audio File

O B J C S WIF T

Using the Audio File

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/uploading-files/
https://smartdevicelink.com/resources/manticore/

Voice commands are global commands available anywhere on the head unit to users of

your app. Once the user has opened your SDL app (i.e. your SDL app has left the HMI state

of NONE) they have access to the voice commands you have setup. Your app will be

notified when a voice command has been triggered even if the SDL app has been

backgrounded.

You have the ability to create voice command shortcuts to your Main Menu cells which we

highly recommended that you implement. Global voice commands should be created for

functions that you wish to make available as voice commands that are not available as

menu cells. We recommend creating global voice commands for common actions such

as the actions performed by your Soft Buttons.

O B J C S WIF T

Setting Up Voice Commands

The head unit manufacturer will determine how these voice commands are

triggered, and some head units will not support voice commands.

NOT E

On Manticore, voice commands are viewed and activated by a tab in the right

hand section, not through a microphone.

NOT E

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/main-menu/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/template-custom-buttons/
https://smartdevicelink.com/resources/manticore/

To create voice commands, you simply create and set SDLVoiceCommand objects to

the voiceCommands array on the screen manager.

The library automatically filters out empty strings and whitespace-only strings from a

voice command's array of strings. For example, if a voice command has the following

array values: [" ", "CommandA", "", "Command A"] the library will filter it to: ["CommandA",

"Command A"] .

If you provide an array of voice commands which only contains empty string and

whitespace-only strings across all of the voice commands, the upload request will be

aborted and the previous voice commands will remain available.

Voice commands that are sent with duplicate strings in different voice commands, such

as:

{
 Command1: ["Command A", "Command B"],
 Command2: ["Command B", "Command C"],
 Command3: ["Command D", "Command E"]
}

Then the manager will abort the upload request. The previous voice commands will

remain available.

Creating Voice Commands

O B J C S WIF T

Unsupported Voice Commands

Duplicate Strings in Voice Commands

DU P L IC ATES BETWEEN DIFFERENT C OMMANDS

If any individual voice command contains duplicate strings, they will be reduced to one.

For example, if the voice commands to be sent are:

{
 Command1: ["Command A", "Command A", "Command B"],
 Command2: ["Command C", "Command D"]
}

Then the manager will strip the duplicates to:

{
 Command1: ["Command A", "Command B"],
 Command2: ["Command C", "Command D"]
}

To delete previously set voice commands, you just have to set an empty array to the voic

eCommands array on the screen manager.

DU P L IC ATES IN THE SAME C OMMAND

Deleting Voice Commands

O B J C S WIF T

If you wish to do this without the aid of the screen manager, you can create SDLAddCom

mand objects without the menuParams parameter to create global voice commands.

Capturing in-car audio allows developers to interact with users by requesting raw audio

data provided to them from the car's microphones. In order to gather the raw audio from

the vehicle, you must leverage the SDLPerformAudioPassThru RPC.

SDL does not support automatic speech cancellation detection, so if this feature is

desired, it is up to the developer to implement. The user may press an "OK" or "Cancel"

button, the dialog may timeout, or you may close the dialog with SDLEndAudioPassThru .

Setting voice command strings composed only of whitespace characters

will be considered invalid (e.g. " ") and your request will be aborted by the

module.

NOT E

Using RPCs

Getting Microphone Audio

SDL does not support an open microphone. However, SDL is working on

wake-word support in the future. You may implement a voice command and

start an audio pass thru session when that voice command occurs.

NOT E

https://smartdevicelink.com/en/docs/iOS/master/Classes/SDLPerformAudioPassThru/

Before you start an audio capture session you need to find out what audio pass thru

capabilities the module supports. You can then use that information to start an audio pass

thru session.

You must use a sampling rate, bit rate, and audio type supported by the module. Once you

have successfully connected to the module, you can access these properties on the SDL

Manager.systemCapabilityManager instance.

The module may return one or multiple supported audio pass thru capabilities. Each

capability will have the following properties:

A U D I O PA S S T H R U
C A PA B I L I T Y PA R A M E T E R N A M E D E S C R I P T I O N

Manticore does not currently support the PerformAudioPassThru RPC

used for getting microphone audio.

NOT E

Starting Audio Capture

Getting the Supported Capabilities

O B J C S WIF T

Sampling Rate samplingRate The sampling rate

Bits Per Sample bitsPerSample The sample depth in bits

Audio Type audioType The audio type

https://smartdevicelink.com/resources/manticore/
https://smartdevicelink.com/resources/manticore/#support-notes

To initiate audio capture, first construct a SDLPerformAudioPassThru request.

SDL provides audio data as fast as it can gather it and sends it to the developer in chunks.

In order to retrieve this audio data, the developer must add a handler to the SDLPerformA

udioPassThru .

Sending the Audio Capture Request

O B J C S WIF T

Gathering Audio Data

This audio data is only the current chunk of audio data, so the app is in

charge of saving previously retrieved audio data.

NOT E

The format of audio data is described as follows:

It does not include a header (such as a RIFF header) at the beginning.

The audio sample is in linear PCM format.

The audio data includes only one channel (i.e. monaural).

For bit rates of 8 bits, the audio samples are unsigned. For bit rates of 16 bits, the

audio samples are signed and are in little-endian.

SDLPerformAudioPassThru is a request that works in a different way than other RPCs.

For most RPCs, a request is followed by an immediate response, with whether that RPC

was successful or not. This RPC, however, will only send out the response when the audio

pass thru has ended.

Audio capture can be ended four ways:

1. The audio pass thru has timed out.

If the audio pass thru surpasses the timeout duration, this request will be

ended with a resultCode of SUCCESS. You should handle the audio pass thru

as though it was successful.

2. The audio pass thru was closed due to user pressing "Cancel" (or other head-unit

provided cancellation button).

If the audio pass thru was displayed, and the user pressed the "Cancel" button,

you will receive a resultCode of ABORTED. You should ignore the audio pass

thru.

3. The audio pass thru was closed due to user pressing "Done" (or other head-unit

provided completion button).

O B J C S WIF T

FORMAT OF AU DIO DATA

Ending Audio Capture

If the audio pass thru was displayed and the user pressed the "Done" button,

you will receive a resultCode of SUCCESS. You should handle the audio pass

thru as though it was successful.

4. The audio pass thru was ended due to a request from the app for it to end.

If the audio pass thru was displayed, but you have established on your own

that you no longer need to capture audio data, you can send an SDLEndAudioP

assThru RPC. You will receive a resultCode of SUCCESS. Depending on the

reason that you sent the SDLEndAudioPassThru RPC, you can choose whether

or not to handle the audio pass thru as though it were successful. See

Manually Stopping Audio Capture below for more details.

To force stop audio capture, simply send an SDLEndAudioPassThru request. Your SDLP

erformAudioPassThru request will receive response with a resultCode of SUCCESS

when the audio pass thru has ended.

To process the response received from an ended audio capture, make sure that you are

listening to the SDLPerformAudioPassThru response. If the response has a successful

result, all of the audio data for the audio pass thru has been received and is ready for

processing.

There are two ways to send multiple requests to the head unit: concurrently and

sequentially. Which method you should use depends on the type of RPCs being sent.

Concurrently sent requests might finish in a random order and should only be used when

Manually Stopping Audio Capture

O B J C S WIF T

Handling the Response

Batch Sending RPCs

none of the requests in the group depend on the response of another, such as when

subscribing to several hard buttons. Sequentially sent requests only send the next request

in the group when a response has been received for the previously sent RPC. Requests

should be sent sequentially when you need to know the result of a previous request before

sending the next, like when sending the several different requests needed to create a

menu.

Both methods have optional progress and completion handlers. Use the progressHandle

r to check the status of each sent RPC; it will tell you if there was an error sending the

request and what percentage of the group has completed sending. The optional completi

onHandler is called when all RPCs in the group have been sent. Use it to check if all of

the requests have been sent successfully or not.

When you send multiple RPCs concurrently, it will not wait for the response of the previous

RPC before sending the next one. Therefore, there is no guarantee that responses will be

returned in order, and you will not be able to use information sent in a previous RPC for a

later RPC.

Requests sent sequentially are sent in a set order. The next request is only sent when a

response has been received for the previously sent request.

The code example below shows how to create a perform interaction choice set. When

creating a perform interaction choice set, the SDLPerformInteraction RPC can only be

sent after the SDLCreateInteractionChoiceSet RPC has been registered by Core, which is

why the requests must be sent sequentially.

Sending Concurrent Requests

O B J C S WIF T

Sending Sequential Requests

O B J C S WIF T

You can use the SDLGetVehicleData and SDLSubscribeVehicleData RPC requests to

get vehicle data. Each vehicle manufacturer decides which data it will expose and to

whom they will expose it. Please check the response from Core to find out which data you

will have permission to access. Additionally, be aware that the user may have the ability to

disable vehicle data access through the settings menu of their head unit. It may be

possible to access vehicle data when the hmiLevel is NONE (i.e. the user has not

opened your SDL app) but you will have to request this permission from the vehicle

manufacturer.

Retrieving Vehicle Data

You will only have access to vehicle data that is allowed to your appName

and appId combination. Permissions will be granted by each OEM

separately. See Understanding Permissions for more details.

NOT E

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/understanding-permissions/

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Acceleration

Pedal

Position

accPedalPositio

n

Accelerator

pedal position

(percentage

depressed)

Airbag Status airbagStatus

Status of each

of the airbags in

the vehicle: yes,

no, no event, not

supported, fault

Belt Status beltStatus

The status of

each of the seat

belts: no, yes,

not supported,

fault, or no event

Body

Information

bodyInformatio

n

Door ajar status

for each door.

Roof status.

Trunk & hood

Status. The

Ignition status.

The ignition

stable status.

The park brake

active status

Climate Data climateData

Information

about cabin

temperature,

atmospheric

pressure, and

external

temperature

RPC v7.1+

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Cloud App

Vehicle Id

cloudAppVehicl

eID

The id for the

vehicle when

connecting to

cloud

applications

RPC v5.1+

Cluster Mode

Status

clusterModeStat

us

Whether or not

the power mode

is active. The

power mode

qualification

status: power

mode undefined,

power mode

evaluation in

progress, not

defined, power

mode ok. The

car mode status:

normal, factory,

transport, or

crash. The

power mode

status: key out,

key recently out,

key approved,

post accessory,

accessory, post

ignition, ignition

on, running,

crank

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Device Status deviceStatus

Contains

information

about the

smartphone

device. Is voice

recognition on

or off, has a

bluetooth

connection been

established, is a

call active, is the

phone in

roaming mode,

is a text

message

available, the

battery level, the

status of the

mono and

stereo output

channels, the

signal level, the

primary audio

source, whether

or not an

emergency call

is currently

taking place

Driver

Braking
driverBraking

The status of the

brake pedal: yes,

no, no event,

fault, not

supported

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

E-Call

Information
eCallInfo

Information

about the status

of an emergency

call

Electronic

Parking

Brake Status

electronicParkin

gBrakeStatus

The status of the

electronic

parking brake.

Available states:

closed,

transition, open,

drive active, fault

RPC v5.0+

Emergency

event
emergencyEvent

The type of

emergency:

frontal, side, rear,

rollover, no

event, not

supported, fault.

Fuel cutoff

status: normal

operation, fuel is

cut off, fault. The

roll over status:

yes, no, no event,

not supported,

fault. The

maximum

change in

velocity. Whether

or not multiple

emergency

events have

occurred

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Engine Oil

Life
engineOilLife

The estimated

percentage (0% -

100%) of

remaining oil life

of the engine

RPC v5.0+

Engine

Torque
engineTorque

Torque value for

engine (in Nm)

on non-diesel

variants

External

Temperature

externalTempera

ture

The external

temperature in

degrees celsius

RPC v7.1

Fuel Level fuelLevel

The fuel level in

the tank

(percentage)

RPC v7.0

Fuel Level

State
fuelLevel_State

The fuel level

state: Unknown,

Normal, Low,

Fault, Alert, or

Not Supported

RPC v7.0

Fuel Range fuelRange

The estimate

range in KM the

vehicle can

travel based on

fuel level and

consumption.

As of RPC 7.0,

this also

contains Fuel

Level and Fuel

Level State

information.

RPC v5.0+

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Gear Status gearStatus

Includes

information

about the

transmission,

the user's

selected gear,

and the actual

gear of the

vehicle.

RPC v7.0+

GPS gps

Longitude and

latitude, current

time in UTC,

degree of

precision,

altitude,

heading, speed,

satellite data vs

dead reckoning,

and supported

dimensions of

the GPS

Hands Off

Steering

handsOffSteerin

g

Status of hands

on steering

wheels

capability

RPC v7.0+

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Head Lamp

Status

headLampStatu

s

Status of the

head lamps:

whether or not

the low and high

beams are on or

off. The ambient

light sensor

status: night,

twilight 1,

twilight 2,

twilight 3,

twilight 4, day,

unknown, invalid

Instant Fuel

Consumption

instantFuelCons

umption

The

instantaneous

fuel

consumption in

microlitres

My Key myKey

Information

about whether

or not the

emergency 911

override has

been activated

Odometer odometer
Odometer

reading in km

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

PRNDL prndl

The selected

gear the car is

in: park, reverse,

neutral, drive,

sport, low gear,

first, second,

third, fourth,

fifth, sixth,

seventh or

eighth gear,

unknown, or

fault

RPC v7.0

RPM rpm

The number of

revolutions per

minute of the

engine

Seat

Occupancy
seatOccupancy

The status of the

seats that show

whether each

seat is occupied

and belted or

not

RPC v7.1+

Speed speed Speed in KPH

Stability

Control

Status

stabilityControls

Status

Status of the

vehicle's stability

control and

trailer sway

control

RPC v7.0+

Steering

Wheel Angle

steeringWheelA

ngle

Current angle of

the steering

wheel (in

degrees)

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Tire Pressure tirePressure

Tire status of

each wheel in

the vehicle:

normal, low,

fault, alert, or not

supported.

Warning light

status for the

tire pressure: off,

on, flash, or not

used

Turn Signal turnSignal

The status of the

turn signal.

Available states:

off, left, right,

both

RPC v5.0+

VIN vin

The Vehicle

Identification

Number

Window

Status
windowStatus

An array of

window

locations and

approximate

position

RPC v7.0+

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

To get vehicle data a single time, use the SDLGetVehicleData RPC.

Subscribing to vehicle data allows you to get notifications whenever new data is available.

You should not rely upon getting this data in a consistent manner. New vehicle data is

available roughly every second but notification timing can vary between modules.

Wiper Status wiperStatus

The status of the

wipers: off,

automatic off,

off moving,

manual

interaction off,

manual

interaction on,

manual low,

manual high,

manual flick,

wash, automatic

low, automatic

high, courtesy

wipe, automatic

adjust, stalled,

no data exists

One-Time Vehicle Data Retrieval

O B J C S WIF T

Subscribing to Vehicle Data

First, register to observe the SDLDidReceiveVehicleDataNotification notification:

Second, send the SubscribeVehicleData request:

Third, react to the notification when new vehicle data is received:

We suggest that you only subscribe to vehicle data as needed. To stop listening to

specific vehicle data use the SDLUnsubscribeVehicleData RPC.

OEM applications can access additional vehicle data published by their systems that is

not available via the SDL vehicle data APIs. This data is accessed using the same SDL

vehicle data RPCs, but instead of requesting a certain type of SDL-specified data, you must

Please note that if you are integrating an sdl_ios version less than v6.3, the

following example code will not work. We recommend updating to the latest

release version.

NOT E

O B J C S WIF T

O B J C S WIF T

O B J C S WIF T

Unsubscribing from Vehicle Data

O B J C S WIF T

OEM-Specific Vehicle Data

request data using a custom vehicle data name. The type of object returned is up to the

OEM and must be parsed manually.

Below is an example of requesting a custom piece of vehicle data with the name OEM-X-

Vehicle-Data . To adapt this for subscriptions instead, you must look at the section

Subscribing to Vehicle Data above and adapt the example for subscribing to custom

vehicle data based on what you see in the examples below.

The remote control framework allows apps to control modules such as climate, radio,

seat, lights, etc., within a vehicle. Newer head units can support multi-zone modules that

allow customizations based on seat location.

This feature is only for OEM-created applications and is not permitted for

3rd-party use.

NOT E

Requesting One-Time OEM-Specific Vehicle Data

O B J C S WIF T

Remote Control Vehicle Features

Consider the following scenarios:

A radio application wants to use the in-vehicle radio tuner. It needs the functionality

to select the radio band (AM/FM/XM/HD/DAB), tune the radio frequency or change

the radio station, as well as obtain general radio information for decision making.

A climate control application needs to turn on the AC, control the air circulation

mode, change the fan speed and set the desired cabin temperature.

A user profile application wants to remember users' favorite settings and apply it

later automatically when the users get into the same/another vehicle.

Currently, the remote control feature supports these modules:

If you are using this feature in your app, you will most likely need to request

permission from the vehicle manufacturer. Not all head units support the

remote control framework and only the newest head units will support multi-

zone modules.

NOT E

Why Use Remote Control?

Supported Modules

R E M O T E C O N T R O L M O D U L E S R P C V E R S I O N

The following table lists which items are in each control module.

Climate v4.5+

Radio v4.5+

Seat v5.0+

Audio v5.0+

Light v5.0+

HMI Settings v5.0+

C L IMATE

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Climate

Enable

climateEnab

le
on, off

Get/Set/Noti

fication

Enabled to

turn on the

climate

system,

Disabled to

turn off the

climate

system. All

other climate

items need

climate

enabled to

work.

Since v6.0

Current

Cabin

Temperat

ure

currentTemp

erature
N/A

Get/Notificat

ion

Read only,

value range

depends on

OEM

Since v4.5

Desired

Cabin

Temperat

ure

desiredTemp

erature
N/A

Get/Set/Noti

fication

Value range

depends on

OEM

Since v4.5

AC

Setting
acEnable on, off

Get/Set/Noti

fication
Since v4.5

AC MAX

Setting

acMaxEnabl

e
on, off

Get/Set/Noti

fication
Since v4.5

Air

Recirculat

ion

Setting

circulateAirE

nable
on, off

Get/Set/Noti

fication
Since v4.5

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Auto AC

Mode

Setting

autoModeEn

able
on, off

Get/Set/Noti

fication
Since v4.5

Defrost

Zone

Setting

defrostZone
front, rear,

all, none

Get/Set/Noti

fication
Since v4.5

Dual

Mode

Setting

dualModeEn

able
on, off

Get/Set/Noti

fication
Since v4.5

Fan

Speed

Setting

fanSpeed 0%-100%
Get/Set/Noti

fication
Since v4.5

Ventilatio

n Mode

Setting

ventilationM

ode

upper, lower,

both, none

Get/Set/Noti

fication
Since v4.5

Heated

Steering

Wheel

Enabled

heatedSteeri

ngWheelEna

ble

on, off
Get/Set/Noti

fication
Since v5.0

Heated

Windshiel

d Enabled

heatedWind

shieldEnable
on, off

Get/Set/Noti

fication
Since v5.0

Heated

Rear

Window

Enabled

heatedRear

WindowEna

ble

on, off
Get/Set/Noti

fication
Since v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Heated

Mirrors

Enabled

heatedMirror

sEnable
on, off

Get/Set/Noti

fication
Since v5.0

RADIO

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Radio

Enabled
radioEnable true, false

Get/Set/Noti

fication

Read only, all

other radio

control items

need radio

enabled to

work

Since v4.5

Radio

Band
band AM, FM, XM

Get/Set/Noti

fication
Since v4.5

Radio

Frequenc

y

frequencyInt

eger /

frequencyFr

action

0-1710, 0-9
Get/Set/Noti

fication

Value range

depends on

band

Since v4.5

Radio

RDS Data
rdsData

RdsData

struct

Get/Notificat

ion
Read only Since v4.5

Available

HD

Channels

availableHd

Channels

Array size 0-

8, values 0-7

Get/Notificat

ion
Read only

Since

v6.0,

replaces

available

HDs

Available

HD

Channels

(DEPREC

ATED)

availableHD

s

1-7

(Deprecated

in v6.0) (1-3

before v5.0)

Get/Notificat

ion
Read only

Since

v4.5,

updated

in v5.0,

deprecate

d in v6.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Current

HD

Channel

hdChannel

0-7 (1-3

before v.5.0)

(1-7 between

v.5.0-6.0)

Get/Set/Noti

fication

Since

v4.5,

updated

in v5.0,

updated

in v6.0

Radio

Signal

Strength

signalStreng

th
0-100%

Get/Notificat

ion
Read only Since v4.5

Signal

Change

Threshold

signalStreng

thThreshold
0-100%

Get/Notificat

ion
Read only Since v4.5

Radio

State
state

Acquiring,

acquired,

multicast,

not_found

Get/Notificat

ion
Read only Since v4.5

SIS Data sisData
SisData

struct

Get/Notificat

ion
Read only Since v5.0

SEAT

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Seat

Heating

Enabled

heatingEnab

led
true, false

Get/Set/Noti

fication

Indicates

whether

heating is

enabled for a

seat

Since v5.0

Seat

Cooling

Enabled

coolingEnab

led
true, false

Get/Set/Noti

fication

Indicates

whether

cooling is

enabled for a

seat

Since v5.0

Seat

Heating

level

heatingLevel 0-100%
Get/Set/Noti

fication

Level of the

seat heating
Since v5.0

Seat

Cooling

level

coolingLevel 0-100%
Get/Set/Noti

fication

Level of the

seat cooling
Since v5.0

Seat

Horizonta

l Position

horizontalPo

sition
0-100%

Get/Set/Noti

fication

Adjust a seat

forward/bac

kward, 0

means the

nearest

position to

the steering

wheel, 100%

means the

furthest

position

from the

steering

wheel

Since v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Seat

Vertical

Position

verticalPositi

on
0-100%

Get/Set/Noti

fication

Adjust seat

height (up or

down) in

case there is

only one

actuator for

seat height,

0 means the

lowest

position,

100% means

the highest

position

Since v5.0

Seat-

Front

Vertical

Position

frontVertical

Position
0-100%

Get/Set/Noti

fication

Adjust seat

front height

(in case

there are two

actuators for

seat height),

0 means the

lowest

position,

100% means

the highest

position

Since v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Seat-Back

Vertical

Position

backVertical

Position
0-100%

Get/Set/Noti

fication

Adjust seat

back height

(in case

there are two

actuators for

seat height),

0 means the

lowest

position,

100% means

the highest

position

Since v5.0

Seat Back

Tilt Angle

backTiltAngl

e
0-100%

Get/Set/Noti

fication

Backrest

recline, 0

means the

angle that

back top is

nearest to

the steering

wheel, 100%

means the

angle that

back top is

furthest from

the steering

wheel

Since v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Head

Support

Horizonta

l Position

headSupport

HorizontalP

osition

0-100%
Get/Set/Noti

fication

Adjust head

support

forward/bac

kward, 0

means the

nearest

position to

the front,

100% means

the furthest

position

from the

front

Since v5.0

Head

Support

Vertical

Position

headSupport

VerticalPosit

ion

0-100%
Get/Set/Noti

fication

Adjust head

support

height (up or

down), 0

means the

lowest

position,

100% means

the highest

position

Since v5.0

Seat

Massagin

g Enabled

massageEn

abled
true, false

Get/Set/Noti

fication

Indicates

whether

massage is

enabled for a

seat

Since v5.0

Massage

Mode

massageMo

de

MassageMo

deData

struct

Get/Set/Noti

fication

List of

massage

mode of

each zone

Since v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Massage

Cushion

Firmness

massageCu

shionFirmne

ss

MassageCus

hionFirmnes

s struct

Get/Set/Noti

fication

List of

firmness of

each

massage

cushion

Since v5.0

Seat

memory
memory

SeatMemory

Action struct

Get/Set/Noti

fication

Seat

memory
Since v5.0

AU DIO

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Audio

Volume
volume 0%-100%

Get/Set/Noti

fication

The audio

source

volume level

Since SDL

v5.0

Audio

Source
source

PrimaryAudi

oSource

enum

Get/Set/Noti

fication

Defines one

of the

available

audio

sources

Since SDL

v5.0

Keep

Context
keepContext true, false Set only

Controls

whether the

HMI will keep

the current

application

context or

switch to the

default

media

UI/APP

associated

with the

audio source

Since SDL

v5.0

Equalizer

Settings

equalizerSett

ings

EqualizerSet

tings struct

Get/Set/Noti

fication

Defines the

list of

supported

channels

(band) and

their

current/desir

ed settings

on HMI

Since SDL

v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

L IGHT

Light

State
lightState

Array of

LightState

struct

Get/Set/Noti

fication

Since SDL

v5.0

HMI SETTINGS

Display

Mode
displayMode

Day, Night,

Auto

Get/Set/Noti

fication

Current

display

mode of the

HMI display

Since SDL

v5.0

Distance

Unit
distanceUnit

Miles,

Kilometers

Get/Set/Noti

fication

Distance

Unit used in

the HMI (for

maps/tracki

ng

distances)

Since SDL

v5.0

Temperat

ure Unit

temperature

Unit

Fahrenheit,

Celsius

Get/Set/Noti

fication

Temperature

Unit used in

the HMI (for

temperature

measuring

systems)

Since SDL

v5.0

The remote control framework also allows mobile applications to send simulated button

press events for the following common buttons in the vehicle.

Remote Control Button Presses

R C M O D U L E C O N T R O L B U T T O N

Climate AC

AC MAX

RECIRCULATE

FAN UP

FAN DOWN

TEMPERATURE UP

TEMPERATURE DOWN

DEFROST

DEFROST REAR

DEFROST MAX

UPPER VENT

LOWER VENT

Radio VOLUME UP

VOLUME DOWN

EJECT

SOURCE

R C M O D U L E C O N T R O L B U T T O N

For remote control to work, the head unit must support SDL RPC v4.4+. In addition, your

app's appType / additionalAppTypes must include REMOTE_CONTROL .

Each module type can have multiple modules in RPC v6.0+. In previous versions, only one

module was available for each module type. A specific module is controlled using the

unique id assigned to the module. When sending remote control RPCs to a RPC v6.0+

head unit, the moduleInfo.moduleId must be stored and provided to control the desired

module. If no moduleId is set, the HMI will use the default module of that module type.

When connected to <6.0 systems, the moduleInfo struct will be nil , and only the default

module will be available for control.

Prior to using any remote control RPCs, you must check that the head unit has the remote

control capability. As you will encounter head units that do not support remote control, or

head units that do not give your application permission to read and write remote control

data, this check is important.

SHUFFLE

REPEAT

Integration

Multiple Modules (RPC v6.0+)

Getting Remote Control Module Information

When connected to head units supporting RPC v6.0+, you should save this information for

future use. The moduleId contained within the moduleInfo struct on each capability is

necessary to control that module.

With the saved remote control capabilities struct you can get the location of the each

module and the area that it services. This will map to the grid graphic below. This

information is useful for creating a custom UI.

This check can be performed once your SDL app has left the HMI state of

NONE . More information on how to monitor the HMI status can be found

in the Understanding Permissions guide.

NOT E

O B J C S WIF T

GETTING MODU L E DATA LOC ATION AND SERV IC E AREAS
(RP C V 6.0+)

This data is only available when connected to SDL RPC v6.0+ systems. On

previous systems, only one module per module type was available, so the

module's location didn't matter. You will not be able to build a custom UI for

those cases and should use a generic UI instead.

NOT E

O B J C S WIF T

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/understanding-permissions/#hmi-levels

You can also get an array of seats in the SDLSeatLocationCapability.seats array. Each S

DLSeatLocation object within the seats array will have a grid parameter. The grid

will tell you the location of that particular seat in the vehicle (See the graphic below).

The grid system starts with the front left corner of the bottom level of the vehicle being

(col=0, row=0, level=0) . For example, assuming a vehicle manufactured for sale in the

United States with three seats in the backseat, (0, 0, 0) would be the drivers' seat. The

front passenger location would be at (2, 0, 0) and the rear middle seat would be at (1, 1,

0) . The colspan and rowspan properties tell you how many rows and columns that

module or seat takes up. The level property tells you how many decks the vehicle has

(i.e. a double-decker bus would have 2 levels).

O B J C S WIF T

The Grid

C O L = 0 C O L = 1 C O L = 2

Seat location does not affect the ability to get data from a module. Once you know you

have permission to use the remote control feature and you have moduleId s (when

connected to RPC v6.0+ systems), you can retrieve the data for any module. The following

code is an example of how to subscribe to the data of a climate module.

When connected to head units that only support RPC versions older than v6.0, there can

only be one module for each module type (e.g. there can only be one climate module, light

module, radio module, etc.), so you will not need to pass a moduleId .

You can either subscribe to module data or receive it one time. If you choose to subscribe

to module data you will receive continuous updates on the vehicle data you have

subscribed to.

row=0

driver's seat: {col=0,

row=0, level=0,

colspan=1,

rowspan=1,

levelspan=1}

front passenger's

seat : {col=2,

row=0, level=0,

colspan=1,

rowspan=1,

levelspan=1}

row=1

rear-left seat : {col=0,

row=1, level=0,

colspan=1,

rowspan=1,

levelspan=1}

rear-middle seat :

{col=1, row=1, level=0,

colspan=1,

rowspan=1,

levelspan=1}

rear-right seat :

{col=2, row=1,

level=0, colspan=1,

rowspan=1,

levelspan=1}

Getting Module Data

SU BSC RIBING TO MODU L E DATA

After you subscribe to the SDLDidReceiveInteriorVehicleDataNotification you must also

subscribe to the module you wish to receive updates for. Subscribing to a module will

send a notification when that particular module is changed.

After you subscribe to the InteriorVehicleDataNotification you must also subscribe to

the module you wish to receive updates for. Subscribing to a module will send a

notification when that particular module is changed.

To get data from a module without subscribing send a SDLGetInteriorVehicleData

request with the subscribe flag set to false .

Subscribing to the OnInteriorVehicleData notification must be done before

sending the SDLGetInteriorVehicleData request.

NOT E

O B J C S WIF T

R P C < v 6 . 0

O B J C S WIF T

R P C v 6 . 0 +

O B J C S WIF T

GETTING ONE-TIME DATA

R P C < v 6 . 0

O B J C S WIF T

R P C v 6 . 0 +

O B J C S WIF T

Not only do you have the ability to get data from these modules, but, if you have the right

permissions, you can also set module data.

Before you attempt to take control of any module, you should have your user select their

seat location as this affects which modules they have permission to control. You may

wish to show the user a map or list of all available seats in your app in order to ask them

where they are located. See Getting Module Data Location and Service Areas for

information useful in creating a custom UI showing module location and service area. The

following example is only meant to show you how to access the available data and not

how to build your UI/UX.

When the user selects their seat, you must send an SDLSetGlobalProperties RPC with

the appropriate userLocation property in order to update that user's location within the

vehicle (The default seat location is Driver).

Some OEMs may wish to ask the driver for consent before a user can control a module.

The SDLGetInteriorVehicleDataConsent RPC will alert the driver in some OEM head units

if the module is not free (another user has control) and allowMultipleAccess (multiple

users can access/set the data at the same time) is true . The allowMultipleAccess

property is part of the moduleInfo in the module object.

Check the allowed property in the SDLGetInteriorVehicleDataConsentResponse to see

what modules can be controlled. Note that the order of the allowed array is 1-1 with the

moduleIds array you passed into the SDLGetInteriorVehicleDataConsent RPC.

Setting Module Data

SETTING THE U SER'S SEAT (RP C V 6.0+)

O B J C S WIF T

GETTING C ONSENT TO C ONTROL A MODU L E (RP C V 6.0+)

Below is an example of setting climate control data. It is likely that you will not need to

set all the data as in the code example below. When connected to RPC v6.0+ systems, you

must set the moduleId in SDLSetInteriorVehicleData.moduleData . When connected to

< v6.0 systems, there is only one module per module type, so you must only pass the type

of the module you wish to control.

When you received module information above in Getting Remote Control Module

Information on RPC v6.0+ systems, you received information on the location and servic

eArea of the module. The permission area of a module depends on that serviceArea .

The location of a module is like the seats array: it maps to the grid to tell you the

physical location of a particular module. The serviceArea maps to the grid to show how

far that module's scope reaches.

For example, a radio module usually serves all passengers in the vehicle, so its service

area will likely cover the entirety of the vehicle grid, while a climate module may only

cover a passenger area and not the driver or the back row. If a serviceArea is not

included, it is assumed that the serviceArea is the same as the module's location . If

neither is included, it is assumed that the serviceArea covers the whole area of the

vehicle. If a user is not sitting within the serviceArea 's grid , they will not receive

permission to control that module (attempting to set data will fail).

You should always try to get consent before setting any module data. If

consent is not granted you should not attempt to set any module's data.

NOT E

O B J C S WIF T

C ONTROL L ING A MODU L E

R P C < v 6 . 0

O B J C S WIF T

R P C v 6 . 0 +

Another unique feature of remote control is the ability to send simulated button presses

to the associated modules, imitating a button press on the hardware itself. Simply specify

the module, the button, and the type of press you would like to simulate.

When the user no longer needs control over a module, you should release the module so

other users can control it. If you do not release the module, other users who would

otherwise be able to control the module may be rejected from doing so.

O B J C S WIF T

BU TTON P RESSES

R P C < v 6 . 0

O B J C S WIF T

R P C v 6 . 0 +

O B J C S WIF T

SDLButtonPress *buttonPress = [[SDLButtonPress alloc]
initWithButtonName:SDLButtonNameTempUp moduleType:SDLModuleTypeClimate
moduleId:@"<#ModuleID#>" buttonPressMode:SDLButtonPressModeShort];

[self.sdlManager sendRequest:buttonPress withResponseHandler:^(__kindof
SDLRPCRequest * _Nullable request, __kindof SDLRPCResponse * _Nullable
response, NSError * _Nullable error) {
 if(!response.success) { return; }
}];

REL EASING THE MODU L E (RP C V 6.0+)

O B J C S WIF T

SDLReleaseInteriorVehicleDataModule *releaseInteriorVehicleDataModule =
[[SDLReleaseInteriorVehicleDataModule alloc] initWithModuleType:<#ModuleType#>
moduleId:@"<#ModuleID#>"];
[self.sdlManager sendRequest:releaseInteriorVehicleDataModule
withResponseHandler:^(__kindof SDLRPCRequest * _Nullable request, __kindof
SDLRPCResponse * Nullable response, NSError * Nullable error) {

App services is a powerful feature enabling both a new kind of vehicle-to-app

communication and app-to-app communication via SDL.

App services are used to publish navigation, weather and media data (such as

temperature, navigation waypoints, or the current playlist name). This data can then be

used by both the vehicle head unit and, if the publisher of the app service desires, other

SDL apps.

Vehicle head units may use these services in various ways. One app service for each type

will be the "active" service to the module. For media, for example, this will be the media

app that the user is currently using or listening to. For navigation, it would be a navigation

app that the user is using to navigate. For weather, it may be the last used weather app, or

a user-selected default. The system may then use that service's data to perform various

actions (such as navigating to an address with the active service or to display the

temperature as provided from the active weather service).

An SDL app can also subscribe to a published app service. Once subscribed, the app will

be sent the new data when the app service publisher updates its data. To find out more

about how to subscribe to an app service check out the Using App Services guide.

Subscribed apps can also send certain RPCs and generic URI-based actions (see the

section Supporting Service RPCs and Actions below) to your service.

Currently, there is no high-level API support for publishing an app service, so you will have

to use raw RPCs for all app service related APIs.

Using an app service is covered in another guide.

SDLRPCResponse _Nullable response, NSError _Nullable error) {
 if(!response.success) { return; }
 <#Module Was Released#>
}];

Creating an App Service (RPC
v5.1+)

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/using-app-services/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/using-app-services/

Apps are able to declare that they provide an app service by publishing an app service

manifest. Three types of app services are currently available and more will be made

available over time. The currently available types are: Media, Navigation, and Weather. An

app may publish multiple services (one for each of the different service types) if desired.

Publishing a service is a multi-step process. First, you need to create your app service

manifest. Second, you will publish your app service to the module. Third, you will publish

the service data using OnAppServiceData . Fourth, you must listen for data requests and

respond accordingly. Fifth, if your app service supports handling of RPCs related to your

service you must listen for these RPC requests and handle them accordingly. Sixth,

optionally, you can support URI-based app actions. Finally, if necessary, you can you

update or delete your app service manifest.

The first step to publishing an app service is to create an SDLAppServiceManifest

object. There is a set of generic parameters you will need to fill out as well as service type

specific parameters based on the app service type you are creating.

App Service Types

Publishing an App Service

Please note that if you are integrating an sdl_ios version less than v6.3, the

example code in this guide will not work. We recommend updating to the

latest release version.

NOT E

1. Creating an App Service Manifest

O B J C S WIF T

Currently, there's no information you have to provide in your media service manifest! You'll

just have to create an empty media service manifest and set it into your general app

service manifest.

You will need to create a navigation manifest if you want to publish a navigation service.

You will declare whether or not your navigation app will accept waypoints. That is, if your

app will support receiving multiple points of navigation (e.g. go to this McDonalds, then

this Walmart, then home).

You will need to create a weather service manifest if you want to publish a weather

service. You will declare the types of data your service provides in its SDLWeatherServic

eData .

Once you have created your service manifest, publishing your app service is simple.

C REATING A MEDIA SERV IC E MANIFEST

O B J C S WIF T

C REATING A NAV IGATION SERV IC E MANIFEST

O B J C S WIF T

C REATING A WEATHER SERV IC E MANIFEST

O B J C S WIF T

2. Publish Your Service

O B J C S WIF T

Once you have your publish app service response, you will need to store the information

provided in its appServiceRecord property. You will need the information later when you

want to update your service's data.

As noted in the introduction to this guide, one service for each type may become the

"active" service. If your service is the active service, your SDLAppServiceRecord

parameter serviceActive will be updated to note that you are now the active service.

After the initial app record is passed to you in the SDLPublishAppServiceResponse , you

will need to be notified of changes in order to observe whether or not you have become

the active service. To do so, you will have to observe the new SDLSystemCapabilityTypeA

ppServices using GetSystemCapability and OnSystemCapability .

For more information, see the Using App Services guide and go to the Getting and

Subscribing to Services section.

After your service is published, it's time to update your service data. First, you must send

an onAppServiceData RPC notification with your updated service data. RPC notifications

are different than RPC requests in that they will not receive a response from the

connected head unit , and must use a different SDLManager method call to send.

WATC HING FOR AP P REC ORD U P DATES

3. Update Your Service's Data

You should only update your service's data when you are the active service;

service consumers will only be able to see your data when you are the active

service.

NOT E

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/using-app-services/#getting-and-subscribing-to-services

First, you will have to create an SDLMediaServiceData , SDLNavigationServiceData or

SDLWeatherServiceData object with your service's data. Then, add that service-specific

data object to an SDLAppServiceData object. Finally, create an SDLOnAppServiceData

notification, append your SDLAppServiceData object, and send it.

If you choose to make your app service available to other apps, you will have to handle

requests to get your app service data when a consumer requests it directly.

Handling app service subscribers is a two step process. First, you must register for

notifications from the subscriber. Then, when you get a request, you will either have to

send a response to the subscriber with the app service data or if you have no data to send,

send a response with a relevant failure result code.

MEDIA SERV IC E DATA

O B J C S WIF T

NAV IGATION SERV IC E DATA

O B J C S WIF T

WEATHER SERV IC E DATA

O B J C S WIF T

4. Handling App Service Subscribers

L ISTENING FOR REQU ESTS

First, you will need to subscribe to GetAppServiceDataRequest notifications.. Then, when

you get the request, you will need to respond with your app service data. Therefore, you

will need to store your current service data after the most recent update using OnAppServ

iceData (see the section Update Your Service's Data).

Certain RPCs are related to certain services. The chart below shows the current

relationships:

O B J C S WIF T

__weak typeof(self) weakSelf = self;
[self.sdlManager subscribeToRPC:SDLDidReceiveGetAppServiceDataRequest
withBlock:^(__kindof SDLRPCMessage * _Nonnull message) {
 SDLGetAppServiceData *getAppServiceRequest = message;

 // Send a response
 SDLGetAppServiceDataResponse *response = [[SDLGetAppServiceDataResponse
alloc] initWithAppServiceData:<#Your App Service Data#>];
 response.correlationID = getAppServiceRequest.correlationID;
 response.success = @YES;
 response.resultCode = SDLResultSuccess;
 response.info = @"<#Use to provide more information about an error#>";
 [weakSelf.sdlManager sendRPC:response];
}];

Supporting Service RPCs and Actions

5. Service RPCs

M E D I A N A V I G A T I O N W E A T H E R

When you are the active service for your service's type (e.g. media), and you have declared

that you support these RPCs in your manifest (see the section Creating an App Service

Manifest), then these RPCs will be automatically routed to your app. You will have to set

up notifications to be aware that they have arrived, and you will then need to respond to

those requests.

ButtonPress (OK) SendLocation

ButtonPress (SEEKLEFT) GetWayPoints

ButtonPress (SEEKRIGHT) SubscribeWayPoints

ButtonPress (TUNEUP) OnWayPointChange

ButtonPress (TUNEDOWN)

ButtonPress (SHUFFLE)

ButtonPress (REPEAT)

O B J C S WIF T

SDLAppServiceManifest *manifest = [[SDLAppServiceManifest alloc] init];
// Everything else for your manifest
NSNumber *buttonPressRPCID = [[SDLFunctionID sharedInstance]
functionIdForName:SDLRPCFunctionNameButtonPress];
manifest.handledRPCs = @[buttonPressRPCID];

[self.sdlManager subscribeToRPC:SDLDidReceiveButtonPressRequest
withObserver:self selector:@selector(buttonPressRequestReceived:)];

- (void)buttonPressRequestReceived:(SDLRPCRequestNotification *)request {
 SDLButtonPress *buttonPressRequest = (SDLButtonPress *)request.request;
 // Check the request for the button name and long / short press

 // Send a response
 SDLButtonPressResponse *response = [[SDLButtonPressResponse alloc] init];

App actions are the ability for app consumers to use the SDL services system to send

URIs to app providers in order to activate actions on the provider. Service actions are

schema-less, i.e. there is no way to define the appropriate URIs through SDL. If you already

provide actions through your app and want to expose them to SDL, or if you wish to start

providing them, you will have to document your available actions elsewhere (such as your

website).

If you're wondering how to get started with actions and routing, this is a very common

problem in iOS! Many apps support the x-callback-URL format as a common inter-app

communication method. There are also many libraries available for the purpose of

supporting URL routing.

In order to support actions through SDL services, you will need to observe and respond to

the PerformAppServiceInteraction RPC request.

p p [[p]];
 response.correlationID = buttonPressRequest.correlationID;
 response.success = @YES;
 response.resultCode = SDLVehicleDataResultCodeSuccess;
 response.info = @"<#Use to provide more information about an error#>";

 [self.sdlManager sendRPC:response];
}

6. Service Actions

O B J C S WIF T

// Subscribe to PerformAppServiceInteraction requests
[self.sdlManager
subscribeToRPC:SDLDidReceivePerformAppServiceInteractionRequest
withObserver:self
selector:@selector(performAppServiceInteractionRequestReceived:)];

- (void)performAppServiceInteractionRequestReceived:(SDLRPCRequestNotification
*)notification {
 SDLPerformAppServiceInteraction *interactionRequest = notification.request;

 // If you have multiple services, this will let you know which of your services is
being addressed
 NSString *serviceID = interactionRequest.serviceID;

 // The app id of the service consumer app that sent you this message
 NSString *originAppId = interactionRequest.originApp;

 // The URL sent by the consumer. This must be something you understand, e.g. a

http://x-callback-url.com/
https://github.com/devxoul/URLNavigator
https://github.com/joeldev/JLRoutes
https://github.com/skyline75489/SwiftRouter

Once you have published your app service, you may decide to update its data. For example,

if you have a free and paid tier with different amounts of data, you may need to upgrade or

downgrade a user between these tiers and provide new data in your app service manifest.

If desired, you can also delete your app service by unpublishing the service.

URL scheme call. For example, if you were YouTube, it could be a URL to play a

specific video. If you were a music app, it could be a URL to play a specific song,
activate shuffle / repeat, etc.
 NSURLComponents *interactionURLComponents = [NSURLComponents
componentsWithString:interactionRequest.serviceUri];

 // A result you want to send to the consumer app.
 NSString *result = @"Uh oh";
 SDLPerformAppServiceInteractionResponse *response =
[[SDLPerformAppServiceInteractionResponse alloc]
initWithServiceSpecificResult:result];

 // These are very important, your response won't work properly without them.
 response.success = @NO;
 response.resultCode = SDLResultGenericError;
 response.correlationID = interactionRequest.correlationID;

 [self.sdlManager sendRPC:response];
}

Updating Your Published App Service

7. Updating a Published App Service Manifest (RPC
v6.0+)

O B J C S WIF T

SDLAppServiceManifest *manifest = [[SDLAppServiceManifest alloc]
initWithAppServiceType:SDLAppServiceTypeWeather];
manifest.weatherServiceManifest = <#Updated weather service manifest#>;

SDLPublishAppService *publishServiceRequest = [[SDLPublishAppService alloc]
initWithAppServiceManifest:manifest];
[self.sdlManager sendRequest:publishServiceRequest];

App services is a powerful feature enabling both a new kind of vehicle-to-app

communication and app-to-app communication via SDL.

App services are used to publish navigation, weather and media data (such as

temperature, navigation waypoints, or the current playlist name). This data can then be

used by both the vehicle head unit and, if the publisher of the app service desires, other

SDL apps. Creating an app service is covered in another guide.

Vehicle head units may use these services in various ways. One app service for each type

will be the "active" service to the module. For media, for example, this will be the media

app that the user is currently using or listening to. For navigation, it would be a navigation

app that the user is using to navigate. For weather, it may be the last used weather app, or

a user-selected default. The system may then use that service's data to perform various

actions (such as navigating to an address with the active service or to display the

temperature as provided from the active weather service).

An SDL app can also subscribe to a published app service. Once subscribed, the app will

be sent the new data when the app service publisher updates its data. This guide will cover

subscribing to a service. Subscribed apps can also send certain RPCs and generic URI-

based actions (see the section Sending an Action to a Service Provider, below) to your

service.

Currently, there is no high-level API support for using an app service, so you will have to

use raw RPCs for all app service related APIs.

8. Unpublishing a Published App Service Manifest (RPC
v6.0+)

O B J C S WIF T

SDLUnpublishAppService *unpublishAppService = [[SDLUnpublishAppService alloc]
initWithServiceID:@"<#The serviceID of the service to unpublish#>"];
[self.sdlManager sendRequest:unpublishAppService];

Using App Services (RPC v5.1+)

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/creating-an-app-service/

Once your app has connected to the head unit, you will first want to be notified of all

available services and updates to the metadata of all services on the head unit. Second,

you will narrow down your app to subscribe to an individual app service and subscribe to

its data. Third, you may want to interact with that service through RPCs, or fourth, through

service actions.

To get information on all services published on the system, as well as on changes to

published services, you will use the SystemCapabilityManager .

Once you've retrieved the initial list of app service capabilities or an updated list of app

service capabilities, you may want to inspect the data to find what you are looking for.

Below is example code with comments explaining what each part of the app service

capability is used for.

Getting and Subscribing to Services

Please note that if you are integrating an sdl_ios version less than v6.3, the

example code in this guide will not work. We recommend updating to the

latest release version.

NOT E

1. Getting and Subscribing to Available Services

O B J C S WIF T

C HEC KING THE AP P SERV IC E C APABIL ITY

O B J C S WIF T

Once you have information about all of the services available, you may want to view or

subscribe to a service type's data. To do so, you will use the GetAppServiceData RPC.

Note that you will currently only be able to get data for the active service of the service

type. You can attempt to make another service the active service by using the PerformAp

pServiceInteraction RPC, discussed below in Sending an Action to a Service Provider.

Once you have a service's data, you may want to interact with a service provider by

sending RPCs or actions.

Only certain RPCs are available to be passed to the service provider based on their service

type. See the Creating an App Service guide Supporting Service RPCs and Actions section

for a chart detailing which RPCs work with which service types. The RPC can only be sent

to the active service of a specific service type, not to any inactive service.

Sending an RPC works exactly the same as if you were sending the RPC to the head unit

system. The head unit will simply route your RPC to the appropriate app automatically.

2. Getting and Subscribing to a Service Type's Data

O B J C S WIF T

Interacting with a Service Provider

3. Sending RPCs to a Service Provider

Your app may need special permissions to use the RPCs that route to app

service providers.

NOT E

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/creating-an-app-service/#supporting-service-rpcs-and-actions

Actions are generic URI-based strings sent to any app service (active or not). You can also

use actions to request to the system that they make the service the active service for that

service type. Service actions are schema-less, i.e. there is no way to define the appropriate

URIs through SDL. The service provider must document their list of available actions

elsewhere (such as their website).

In some cases, a service may upload an image that can then be retrieved from the module.

First, you will need to get the image name from the SDLAppServiceData (see point 2

above). Then you will use the image name to retrieve the image data.

The SDLDialNumber RPC allows you make a phone call via the user's phone. In order to

dial a phone number you must be sure that the device is connected via Bluetooth (even if

your device is also connected using a USB cord) for this request to work. If the phone is

not connected via Bluetooth, you will receive a result of REJECTED from the module.

SDLDialNumber is an RPC that is usually restricted by OEMs. As a result, a module may

reject your request if your app does not have the correct permissions. Your SDL app may

O B J C S WIF T

4. Sending an Action to a Service Provider

O B J C S WIF T

5. Getting a File from a Service Provider

O B J C S WIF T

Calling a Phone Number

Checking Your App's Permissions

also be restricted to only being allowed to making a phone call when your app is open (i.e.

the hmiLevel is non- NONE) or when it is the currently active app (i.e. the hmiLevel is

FULL).

Since making a phone call is a newer feature, there is a possibility that some legacy

modules will reject your request because the module does not support the SDLDialNum

ber request. Once you have successfully connected to the module, you can check the

module's capabilities via the SDLManager.systemCapabilityManager as shown in the

example below. Please note that you only need to check once if the module supports

calling a phone number, however you must wait to perform this check until you know that

the SDL app has been opened (i.e. the hmiLevel is non- NONE).

O B J C S WIF T

Checking if the Module Supports
Calling a Phone Number

If you discover that the module does not support calling a phone number or

that your app does not have the right permissions, you should disable any

buttons, voice commands, menu items, etc. in your app that would send the

SDLDialNumber request.

NOT E

O B J C S WIF T

Sending a DialNumber Request

Once you know that the module supports dialing a phone number and that your SDL app

has permission to send the SDLDialNumber request, you can create and send the

request.

The SDLDialNumber request has three possible responses that you should expect:

1. SUCCESS - The request was successfully sent, and a phone call was initiated by the

user.

2. REJECTED - This can mean either:

The user rejected the request to make the phone call.

The phone is not connected to the module via Bluetooth.

3. DISALLOWED - Your app does not have permission to use the SDLDialNumber

request.

The SDLSendLocation RPC gives you the ability to send a GPS location to the active

navigation app on the module.

SDLDialNumber strips all characters except for 0 - 9 , * , # , , , ; , and

+ .

NOT E

O B J C S WIF T

Dial Number Responses

Setting the Navigation
Destination

When using the SDLSendLocation RPC, you will not have access to any information

about how the user interacted with this location, only if the request was successfully sent.

The request will be handled by the module from that point on using the active navigation

system.

The SDLSendLocation RPC is restricted by most OEMs. As a result, a module may reject

your request if your app does not have the correct permissions. Your SDL app may also be

restricted to only being allowed to send a location when your app is open (i.e. the hmiLe

vel is non- NONE) or when it is the currently active app (i.e. the hmiLevel is FULL).

Since some modules will not support sending a location, you should check if the module

supports this feature before trying to use it. Once you have successfully connected to the

module, you can check the module's capabilities via the SDLManager.systemCapabilityM

anager as shown in the example below. Please note that you only need to check once if

the module supports sending a location, however you must wait to perform this check

until you know that the SDL app has been opened (i.e. the hmiLevel is non- NONE).

Checking Your App's Permissions

O B J C S WIF T

Checking if the Module Supports
Sending a Location

If you discover that the module does not support sending a location or that

your app does not have the right permissions, you should disable any

buttons, voice commands, menu items, etc. in your app that would send the

SDLSendLocation request.

NOT E

To use the SDLSendLocation request, you must at minimum include the longitude and

latitude of the location.

The SDLSendLocation request has three possible responses that you should expect:

1. SUCCESS - Successfully sent.

2. INVALID_DATA - The request contains invalid data and was rejected.

3. DISALLOWED - Your app does not have permission to use the SDLSendLocation

request.

The SDLGetWayPoints and SDLSubscribeWayPoints RPCs are designed to allow you to

get the navigation destination(s) from the active navigation app when the user has

activated in-car navigation.

O B J C S WIF T

Using Send Location

O B J C S WIF T

Checking the Result of Send Location

Getting the Navigation
Destination (RPC v4.1+)

Checking Your App's Permissions

Both the SDLGetWayPoints and SDLSubscribeWayPoints RPCs are restricted by most

OEMs. As a result, a module may reject your request if your app does not have the correct

permissions. Your SDL app may also be restricted to only being allowed to get waypoints

when your app is open (i.e. the hmiLevel is non- NONE) or when it is the currently active

app (i.e. the hmiLevel is FULL).

Since some modules will not support getting waypoints, you should check if the module

supports this feature before trying to use it. Once you have successfully connected to the

module, you can check the module's capabilities via the SDLManager.systemCapabilityM

anager as shown in the example below. Please note that you only need to check once if

the module supports getting waypoints, however you must wait to perform this check until

you know that the SDL app has been opened (i.e. the hmiLevel is non- NONE).

O B J C S WIF T

Checking if the Module Supports
Waypoints

If you discover that the module does not support getting navigation

waypoints or that your app does not have the right permissions, you should

disable any buttons, voice commands, menu items, etc. in your app that

would send the SDLGetWayPoints or SDLSubscribeWayPoints requests.

NOT E

O B J C S WIF T

Subscribing to Waypoints

To subscribe to the navigation waypoints, you will have to set up your callback for

whenever the waypoints are updated, then send the SDLSubscribeWayPoints RPC.

To unsubscribe from waypoint data, you must send the SDLUnsubscribeWayPoints RPC.

If you only need waypoint data once without an ongoing subscription, you can use SDLGe

tWayPoints instead of SDLSubscribeWayPoints .

O B J C S WIF T

Unsubscribing from Waypoints

You do not have to unsubscribe from the sdlManager.subscribe method,

you must simply send the unsubscribe RPC and no more callbacks will be

received.

NOT E

O B J C S WIF T

One-Time Waypoints Request

O B J C S WIF T

Uploading Files

In almost all cases, you will not need to handle uploading images because the screen

manager API will do that for you. There are some situations, such as VR help-lists and

turn-by-turn directions, that are not currently covered by the screen manager so you will

have manually upload the image yourself in those cases. For more information about

uploading images, see the Uploading Images guide.

The SDLFileManager uploads files and keeps track of all the uploaded files names during

a session. To send data with the file manager you need to create either a SDLFile or SD

LArtwork object. SDLFile objects are created with a local NSURL or NSData ; SDLA

rtwork uses a UIImage .

If you want to upload a group of files, you can use the SDLFileManager 's batch upload

methods. Once all of the uploads have completed you will be notified if any of the uploads

failed. If desired, you can also track the progress of each file in the group.

SDLFile and its subclass SDLArtwork support uploading persistent files, i.e. files that

are not deleted when the car turns off. Persistence should be used for files that will be

used every time the user opens the app. If the file is only displayed for short time the file

should not be persistent because it will take up unnecessary space on the head unit. You

can check the persistence via:

Uploading an MP3 Using the File
Manager

O B J C S WIF T

Batching File Uploads

O B J C S WIF T

File Persistence

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/uploading-images/

If a file being uploaded has the same name as an already uploaded file, the new file will be

ignored. To override this setting, set the SDLFile 's overwrite property to true .

To find the amount of file storage left for your app on the head unit, use the SDLFileMana

ger ’s bytesAvailable property.

O B J C S WIF T

Be aware that persistence will not work if space on the head unit is limited.

The SDLFileManager will always handle uploading images if they are non-

existent.

NOT E

Overwriting Stored Files

O B J C S WIF T

Checking the Amount of File Storage
Left

O B J C S WIF T

Checking if a File Has Already Been
Uploaded

You can check out if an image has already been uploaded to the head unit via the SDLFile

Manager 's remoteFileNames property.

Use the file manager’s delete request to delete a file associated with a file name.

O B J C S WIF T

BOOL isFileOnHeadUnit = [self.sdlManager.fileManager.remoteFileNames
containsObject:<#Name Uploaded As#>];

Deleting Stored Files

O B J C S WIF T

[self.sdlManager.fileManager deleteRemoteFileWithName:@"<#Name Uploaded
As#>" completionHandler:^(BOOL success, NSUInteger bytesAvailable, NSError
*error) {
 if (success) {
 <#File was deleted successfully#>
 }
}];

Batch Deleting Files

O B J C S WIF T

[self.sdlManager.fileManager deleteRemoteFilesWithNames:@[@"<#Name Uploaded
As#>", @"<#Name Uploaded As 2#>"] completionHandler:^(NSError * _Nullable error)
{
 if (error == nil) {
 <#Images were deleted successfully#>
 }
}];

You should be aware of these four things when using images in your SDL app:

1. You may be connected to a head unit that does not have the ability to display

images.

2. You must upload images from your mobile device to the head unit before using

them in a template.

3. Persistent images are stored on a head unit between sessions. Ephemeral images

are destroyed when a session ends (i.e. when the user turns off their vehicle).

4. Images can not be uploaded when the app's hmiLevel is NONE. For more

information about permissions, please review Understanding Permissions.

Before uploading images to a head unit you should first check if the head unit supports

graphics. If not, you should avoid uploading unnecessary image data. To check if graphics

are supported, check the SDLManager.systemCapabilityManager.defaultMainWindowCap

ability property once the SDLManager has started successfully.

Uploading Images

If you use the SDLScreenManager , image uploading for template graphics,

soft buttons, and menu items is handled for you behind the scenes.

However, you will still need to manually upload your images if you need

images in an alert, VR help lists, turn-by-turn directions, or other features not

currently covered by the SDLScreenManager .

NOT E

Checking if Graphics are Supported

O B J C S WIF T

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/understanding-permissions/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/template-images/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/template-custom-buttons/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/main-menu/

The SDLFileManager uploads files and keeps track of all the uploaded files names during

a session. To send data with the SDLFileManager , you need to create either a SDLFile

or SDLArtwork object. SDLFile objects are created with a local NSURL or NSData ;

SDLArtwork a UIImage .

Similar to other files, artworks can be persistent, batched, overwrite, etc. See Uploading

Files for more information.

SDL allows OEMs to offer an app store that lets users browse and install remote cloud

apps. If the cloud app requires users to login with their credentials, the app store can use

an authentication token to automatically login users after their first session.

Uploading an Image Using the File
Manager

O B J C S WIF T

Batch File Uploads, Persistence, etc.

Creating an OEM Cloud App Store
(RPC v5.1+)

An OEM app store can be a mobile app or a cloud app.

NOT E

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/uploading-files/

App stores can handle user authentication for the installed cloud apps. For example, users

can log in after installing a cloud app using the app store. After that, the app store will

save an authentication token for the cloud app in the local policy table. Then, the cloud

app can retrieve the authentication token from the local policy table and use it to

authenticate a user with the application. If desired, an optional parameter, CloudAppVehi

cleID , can be used to identify the head unit.

An OEM's app store can manage the properties of a specific cloud app by setting and

getting its CloudAppProperties . This table summarizes the properties that are included

in CloudAppProperties :

User Authentication

Setting and Getting Cloud App
Properties

PA R A M E T E R N A M E D E S C R I P T I O N

appID appID for the cloud app

nicknames

List of possible names for the cloud app. The

cloud app will not be allowed to connect if its

name is not contained in this list

enabled If true, cloud app will be displayed on HMI

authToken
Used to authenticate the user, if the app

requires user authentication

cloudTransportType

Specifies the connection type Core should use.

Currently Core supports WS and WSS , but an

OEM can implement their own transport

adapter to handle different values

hybridAppPreference

Specifies the user preference to use the cloud

app version, mobile app version, or whichever

connects first when both are available

endpoint Remote endpoint for websocket connections

Only trusted app stores are allowed to set or get CloudAppProperties for

other cloud apps.

NOT E

Setting Cloud App Properties

App stores can set properties for a cloud app by sending a SetCloudAppProperties

request to Core to store them in the local policy table. For example, in this piece of code,

the app store can set the authToken to associate a user with a cloud app after the user

logs in to the app by using the app store:

To retrieve cloud properties for a specific cloud app from local policy table, app stores can

send GetCloudAppProperties and specify the appId for that cloud app as in this

example:

Cloud app developers don't need to add any code to download the app icon. The cloud app

icon will be automatically downloaded from the url provided by the policy table and sent to

Core to be later displayed on the HMI.

When users install cloud apps from an OEM's app store, they may be asked to login to that

cloud app using the app store. After logging in, app store can save the authToken in the

local policy table to be used later by the cloud app for user authentication.

A cloud app can retrieve its authToken from local policy table after starting the RPC

service. The authToken can be used later by the app to authenticate the user:

O B J C S WIF T

Getting Cloud App Properties

O B J C S WIF T

GETTING THE C LOU D AP P IC ON

Getting the Authentication Token

O B J C S WIF T

The CloudAppVehicleID is an optional parameter used by cloud apps to identify a head

unit. The content of CloudAppVehicleID is up to the OEM's implementation. Possible

values could be the VIN or a hashed VIN.

The CloudAppVehicleID value can be retrieved as part of the GetVehicleData RPC. To

find out more about how to retrieve CloudAppVehicleID , check out the Retrieving Vehicle

Data section.

Some OEMs may want to encrypt messages passed between your SDL app and the head

unit. If this is the case, when you submit your app to the OEM for review, they will ask you

to add a security library to your SDL app. It is also possible to encrypt messages even if

the OEM does not require encryption. In this case, you will have to work with the OEM to

get a security library. This section will show you how to add the security library to your

SDL app and configure optional encryption.

OEMs may want to encrypt all or some of the RPCs being transmitted between your SDL

app and SDL Core. The library will handle encrypting and decrypting RPCs that are required

to be encrypted.

OEMs may want to encrypt video and audio streaming. Information on how to set up

encrypted video and audio streaming can be found in Video Streaming for Navigation Apps

Getting CloudAppVehicleID (Optional)

Encryption

When Encryption is Needed

OEM Required Encrypted RPCs

OEM Required Encrypted Video and Audio

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/retrieving-vehicle-data/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/video-streaming-for-navigation-apps/introduction/

> Introduction. The library will handle encrypting the video and audio data sent to the head

unit.

You may want to encrypt some or all of the RPCs you send to the head unit even if the

OEM does not require that they be protected. In that case you will have to manually

configure the payload protection status of every RPC that you send. Please note that if you

require that an RPC be encrypted but there is no security manager configured for the

connected head unit, then the RPC will not be sent by the library.

Each OEM that supports SDL will have their own proprietary security library. You must add

all required security libraries in the encryption configuration when you are configuring the

SDL app.

Since it can take a few moments to set up the encryption manager, you must wait until you

know that setup has completed before sending encrypted RPCs. If your RPC is sent before

setup has completed, your RPC will not be sent. You can implement the SDLServiceEncry

Optional Encryption

For optional encryption to work, you must work with each OEM to obtain

their proprietary security library.

NOT E

Creating the Encryption Configuration

O B J C S WIF T

Getting the Encryption Status

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/video-streaming-for-navigation-apps/introduction/

ptionDelegate , which is set in SDLEncryptionConfiguration , to get updates to the

encryption manager state.

If you want to encrypt a specific RPC, you must configure the payload protected status of

the RPC before you send it to the head unit. In order to send RPCs with optional encryption

you must call startRPCEncryption on the sdlManager to make sure the encryption

manager gets started correctly. The best place to put startRPCEncryption is in the

successful callback of startWithReadyHandler .

Then, once you know the encryption manager has started successfully via encryption

manager state updates to your SDLServiceEncryptionDelegate object, you can start to

send encrypted RPCs by setting payloadProtected to true .

Mobile navigation allows map partners to easily display their maps as well as present

visual and audio turn-by-turn prompts on the head unit.

Navigation apps have different behavior on the head unit than normal applications. The

main differences are:

Navigation apps don't use base screen templates. Their main view is the video

stream sent from the device.

O B J C S WIF T

Setting Optional Encryption

O B J C S WIF T

O B J C S WIF T

Introduction

Navigation apps can send audio via a binary stream. This will attenuate the current

audio source and should be used for navigation commands.

Navigation apps can receive touch events from the video stream.

In order to view the stream, you need a head unit to connect with that supports streaming.

If this is a physical module created by an OEM, such as a Ford TDK, you may need special

permissions from that OEM to test streaming. Physical modules often have strict

permissions and/or encryption requirements to stream.

The alternative is to stream over TCP to open-source Core. For more details on setting up

open-source Core and an HMI, see the Install and Run guide, and to set up video streaming

for that Core and HMI, see the Audio and Video Streaming guide. We recommend using

the built-in Generic_HMI server streaming instead of GStreamer socket or pipe streaming.

The basic connection setup is similar for all apps. Please follow the Integration Basics

guide for more information.

In order to create a navigation app an appType of SDLAppHMITypeNavigation must be

set in the SDLManager 's SDLLifecycleConfiguration .

The second difference is that a SDLStreamingMediaConfiguration must be created and

passed to the SDLConfiguration . A property called securityManagers must be set if

connecting to a version of Core that requires secure video and audio streaming. This

property requires an array of classes of security managers, which will conform to the SDL

SecurityType protocol. These security libraries are provided by the OEMs themselves, and

will only work for that OEM. There is no general catch-all security library.

Configuring a Module to Stream

Configuring a Navigation App

O B J C S WIF T

https://smartdevicelink.com/en/guides/core/getting-started/install-and-run/
https://smartdevicelink.com/en/guides/core/feature-documentation/audio-and-video-streaming/
https://github.com/smartdevicelink/generic_hmi#hmi-backend
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/integration-basics-ios/

When building a navigation app, you should ensure that the device never sleeps while your

app is in the foreground of the device and is in an HMI level other than NONE . If your

device sleeps, it will be unable to stream video data. To do so, implement the following S

DLManagerDelegate method.

To present a keyboard (such as for searching for navigation destinations), you should use

the SDLScreenManager 's keyboard presentation feature. For more information, see the

Popup Keyboards guide.

Head units supporting RPC v6.0+ may support navigation-specific subscription buttons for

the navigation template. These subscription buttons allow your user to manipulate the

map using hard buttons located on car's center console or steering wheel. It is important

to support these subscription buttons in order to provide your user with the expected in-

car navigation user experience. This is especially true on head units that don't support

touch input as there will be no other way for your user to manipulate the map. See

Template Subscription Buttons for a list of these navigation buttons.

When compiling your app for production, make sure to include all possible

OEM security managers that you wish to support.

MUS T

Preventing Device Sleep

O B J C S WIF T

Keyboard Input

Navigation Subscription Buttons

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/popup-keyboards/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/template-subscription-buttons/

Between your navigation app, other navigation apps, and embedded navigation, only one

route should be in progress at a time. To know when the embedded navigation or another

navigation app has started a route, create a navigation service and when your service

becomes inactive, your app should cancel any active route.

To stream video from a SDL app use the SDLStreamingMediaManager class. A reference

to this class is available from the SDLManager . You can choose to create your own

video streaming manager or you can use the CarWindow API to easily stream video to

the head unit.

Transports are automatically handled for you. As of SDL v6.1+, the iOS library will

automatically manage primary transports and secondary transports for video streaming. If

When to Cancel Your Route

O B J C S WIF T

Video Streaming (RPC v4.5+)

Due to an iOS limitation, video can not be streamed when the app on the

phone is in the background or the screen is off. Text will automatically be

displayed telling the user that they must bring the application to the

foreground. This text can be disabled by setting the SDLStreamingMediaM

anager 's showVideoBackgroundDisplay property to false .

NOT E

Transports for Video Streaming

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/creating-an-app-service/

Wi-Fi is available, the app will automatically connect using it after connecting over USB /

Bluetooth. This is the only way that Wi-Fi will be used in a production setting.

CarWindow is a system to automatically video stream a view controller screen to the

head unit. When you set the view controller, CarWindow will resize the view controller's

frame to match the head unit's screen dimensions. Then, when the video service setup has

completed, it will capture the screen and send it to the head unit.

To start, you will have to set a rootViewController , which can easily be set using one of

the convenience initializers: autostreamingInsecureConfigurationWithInitialViewControll

er: or autostreamingSecureConfigurationWithSecurityManagers:initialViewController:

There are several customizations you can make to CarWindow to optimize it for your

video streaming needs:

1. Choose how CarWindow captures and renders the screen using the carWindowRend

eringType enum.

2. By default, when using CarWindow, the SDLTouchManager will sync its touch

updates to the framerate. To disable this feature, set SDLTouchManager.enableSync

edPanning to NO.

CarWindow

The view controller you are streaming must be a subclass of SDLCarWindo

wViewController or have only one supportedInterfaceOrientation . The SD

LCarWindowViewController class prevents the rootViewController from

rotating. This is necessary because rotation between landscape and portrait

modes can cause the app to crash while the CarWindow API is capturing

an image.

MUS T

3. As of SDL v7.1, if the HMI returns a desired framerate or max bitrate, the HMI's

preferred settings will be use to configure the video encoder. You do have the option

to change the default framerate and average bitrate via the SDLStreamingMediaCon

figuration.customVideoEncoderSettings. Please note that your custom settings will

override any settings received from the HMI except in the case where your custom

framerate or average bitrate is larger than what the HMI says it can support.

Below are the video encoder defaults:

 @{
 __bridge NSString *)kVTCompressionPropertyKey_ProfileLevel: (__bridge NSString
*)kVTProfileLevel_H264_Baseline_AutoLevel,
 (__bridge NSString *)kVTCompressionPropertyKey_RealTime: @YES,
 (__bridge NSString *)kVTCompressionPropertyKey_ExpectedFrameRate: @15,
 __bridge NSString *)kVTCompressionPropertyKey_AverageBitRate: @600000
};

Simply update sdlManager.streamManager.rootViewController to the new view

controller. This will also update the haptic parser.

It is recommended that you use an off-screen view controller for your UI. This view

controller will appear on-screen in the car, while remaining off-screen on the device. It is

possible to mirror your device screen, however we strongly recommend against this

course of action.

Showing a New View Controller

Mirroring the Device Screen vs. Off-Screen UI

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/video-streaming-for-navigation-apps/supporting-haptic-input/

To set an off-screen view controller all you have to do is instantiate a new UIViewContro

ller class and use it to set the rootViewController .

If you must use mirroring to stream video please be aware of the following limitations:

1. Getting the app's topmost view controller using UIApplication.shared.keyWindow.ro

otViewController will not work as this will give you SDL's lock screen view

controller. The projected image you see in the car will be distorted because the view

controller being projected will not be resized correctly. Instead, the rootViewControl

ler should be set in the viewDidAppear:animated method of the UIViewController.

2. If mirroring your device's screen, the rootViewController should only be set after vie

wDidAppear:animated is called. Setting the rootViewController in viewDidLoad or vi

ewWillAppear:animated can cause weird behavior when setting the new frame.

3. If setting the rootViewController when the app returns to the foreground, the app

should register for the UIApplicationDidBecomeActive notification and not the UIAp

plicationWillEnterForeground notification. Setting the frame after a notification from

the latter can also cause weird behavior when setting the new frame.

4. Configure your SDL app so the lock screen is always visible. If you do not do this,

video streaming can stop when the device is rotated.

If you are using off-screen rendering, it is recommended that your on-screen

view controller not rotate. If it does, the lock screen will also rotate. Nothing

will break in this case, but the UI won't look good if it rotates while your app

is streaming.

NOT E

OFF-SC REEN

O B J C S WIF T

MIRRORING THE DEV IC E SC REEN

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/adding-the-lock-screen/

Some HMIs support multiple view sizes and may resize your SDL app's view during video

streaming (i.e. to a collapsed view, split screen, preview mode or picture-in-picture). By

default, your app will support all the view sizes and the CarWindow will resize the view

controller's frame when the HMI notifies the app of the updated screen size. If you wish to

support only some screen sizes, you can configure the supportedPortraitStreamingRang

e and supportedLandscapeStreamingRange properties via the SDLStreamingMediaCon

figuration before starting the video stream. This will allow you to limit support to one or a

combination of minimum/maximum resolutions, minimum diagonal, or

minimum/maximum aspect ratios. If you want to support all possible landscape or

portrait sizes you can simply set nil for the streaming range. If you wish to disable

support for all possible landscape or portrait orientations you can disable the streaming

range using the SDLVideoStreamingRange.disabled configuration.

Below are some examples of how to configure a supported video streaming range:

Once you have configured a supported video streaming range, you can use it to set the su

pportedPortraitStreamingRange or supportedLandscapeStreamingRange properties

when you are configuring the SDLStreamingMediaConfiguration .

Supporting Different Video Streaming View Sizes (SDL
v7.1+, RPC v7.1+)

C REATING THE V IDEO STREAMING RANGES

O B J C S WIF T

SETTING THE V IDEO STREAMING RANGES

O B J C S WIF T

If the HMI resizes the view during streaming, the video stream will automatically restart

with the new size. If desired, you can subscribe to screen size updates via the SDLStream

ingVideoDelegate .

If you decide to send raw video data instead of relying on the CarWindow API to generate

that video data from a view controller, you must maintain the lifecycle of the video stream

as there are limitations to when video is allowed to stream. The app's HMI state on the

head unit and the app's application state on the device determines whether video can

stream. Due to an iOS limitation, video cannot be streamed when the app on the device is

no longer in the foreground and/or the device is locked/sleeping.

The lifecycle of the video stream is maintained by the SDL library. The SDLManager.strea

mingMediaManager can be accessed once the start method of SDLManager is called.

The SDLStreamingMediaManager automatically takes care of determining screen size

and encoding to the correct video format.

If you disable both the supportedLandscapeStreamingRange and supporte

dPortraitStreamingRange , video will not stream.

NOT E

GETTING THE U P DATED SC REEN SIZE

O B J C S WIF T

Sending Raw Video Data

To check whether or not you can start sending data to the video stream, watch for the SD

LVideoStreamDidStartNotification , SDLVideoStreamDidStopNotification , and SDLVideo

StreamSuspendedNotification notifications. When you receive the start notification, start

sending video data; stop when you receive the suspended or stop notifications. You will

receive a video stream suspended notification when the app on the device is

backgrounded. There are parallel start and stop notifications for audio streaming.

Video data must be provided to the SDLStreamingMediaManager as a CVImageBufferR

ef (Apple documentation here). Once the video stream has started, you will not see video

appear until Core has received a few frames. Refer to the code sample below for an

example of how to send a video frame:

A constant stream of map frames is not necessary to maintain an image on the

screen. Because of this, we advise that a batch of frames are only sent on map

movement or location movement. This will keep the application's memory

consumption lower.

It is not recommended to alter the default video format and resolution

behavior as it can result in distorted video or the video not showing up at all

on the head unit. However, that option is available to you by implementing S

DLStreamingMediaConfiguration.dataSource .

NOT E

Sending Video Data

O B J C S WIF T

CVPixelBufferRef imageBuffer = <#Acquire Image Buffer#>;

if ([self.sdlManager.streamManager sendVideoData:imageBuffer] == NO) {
 NSLog(@"Could not send Video Data");
}

Best Practices

https://developer.apple.com/library/mac/documentation/QuartzCore/Reference/CVImageBufferRef/

For the best user experience, we recommend sending at least 15 frames per second.

If the HMI scales the video stream, you will have to handle scaling the projected view,

touches and haptic rectangles yourself (this is all handled for you behind the scenes in the

CarWindow API). To find out if the HMI scales the video stream, you must for query and

check the SDLVideoStreamingCapability for the scale property. Please check the

Adaptive Interface Capabilities section for more information on how to query for this

property using the system capability manager.

A navigation app can stream raw audio to the head unit. This audio data is played

immediately. If audio is already playing, the current audio source will be attenuated and

your audio will play. Raw audio must be played with the following parameters:

Format: PCM

Sample Rate: 16k

Number of Channels: 1

Bits Per Second (BPS): 16 bits per sample / 2 bytes per sample

To stream audio from a SDL app, use the SDLStreamingMediaManager class. A

reference to this class is available from the SDLManager 's streamManager property.

The SDLAudioStreamManager will help you to do on-the-fly transcoding and streaming

of your files in mp3 or other formats, or prepare raw PCM data to be queued and played.

Like the lifecycle of the video stream, the lifecycle of the audio stream is maintained by

the SDL library, therefore, you do not need to start the audio stream if you've set a

Handling HMI Scaling (RPC v6.0+)

Audio Streaming

Audio Stream Manager

Starting the Audio Manager

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/adaptive-interface-capabilities/

streaming configuration when starting your SDLManager. When you receive the

SDLAudioStreamDidStartNotification, you can begin streaming audio.

Once the audio stream is connected, data may be easily passed to the Head Unit. The

function sendAudioData: provides us with whether or not the PCM Audio Data was

successfully transferred to the Head Unit. If your app is in a state that it is unable to send

audio data, this method will return a failure. If successful playback will begin immediately.

P L AYING FROM FIL E

O B J C S WIF T

P L AYING FROM DATA

O B J C S WIF T

IMP L EMENTING THE DEL EGATE

O B J C S WIF T

Manually Sending Data

O B J C S WIF T

Touch Input

Navigation applications support touch events like single taps, double-taps, panning, and

pinch gestures. You can use the SDLTouchManager class to get touch events, or you can

manage the touch events yourself by listening for the SDLDidReceiveTouchEventNotifica

tion notification.

SDLTouchManager has multiple callbacks that will ease the implementation of touch

events. You can register for callbacks through the stream manager:

The following callbacks are provided:

You must have a valid and approved appId from an OEM in order to receive

touch events.

NOT E

Using SDLTouchManager

O B J C S WIF T

The view passed from the following callbacks are dependent on using the

built-in focusable item manager to send haptic rects. See supporting haptic

input "Automatic Focusable Rects" for more information.

NOT E

O B J C S WIF T

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/video-streaming-for-navigation-apps/supporting-haptic-input/

If you want access to the raw touch data, you can subscribe to the touch event

notifications. The notification will contain the following data:

T O U C H T Y P E W H A T D O E S T H I S M E A N ?

Points that are provided via these callbacks are in the head unit's coordinate

space. This is likely to correspond to your own streaming coordinate space.

You can retrieve the head unit dimensions from SDLStreamingMediaManag

er.screenSize .

NOT E

Implementing onTouchEvent Yourself

T Y PE

BEGIN Sent for the first touch event of a touch.

MOVE Sent if the touch moved.

END Sent when the touch is lifted.

CANCEL

Sent when the touch is canceled (for example, if

a dialog appeared over the touchable screen

while the touch was in progress).

EVENT

T O U C H E V E N T W H A T D O E S T H I S M E A N ?

touchEventId
Unique ID of the touch. Increases for multiple

touches (0, 1, 2, ...).

timeStamp
Timestamp of the head unit time. Can be used

to compare time passed between touches.

coord
X and Y coordinates in the head unit coordinate

system. (0, 0) is the top left.

EXAMP L E

Please note that if you are integrating an sdl_ios version less than v6.3, the

following example code will not work. We recommend updating to the latest

release version.

NOT E

O B J C S WIF T

Supporting Haptic Input (RPC
v4.5+)

SDL now supports "haptic" input: input from something other than a touch screen. This

could include trackpads, click-wheels, etc. These kinds of inputs work by knowing which

views on the screen are touchable and focusing / highlighting on those areas when the

user moves the trackpad or click wheel. When the user selects within a view, the center of

that area will be "touched".

You will also need to implement touch input support in order to receive touches on the

views. In addition, you must support the automatic focusable item manager in order to

receive a touched UIView in the SDLTouchManagerDelegate in addition to the CGPoin

t .

SDL has support for automatically detecting focusable views within your UI and sending

that data to the head unit. You will still need to tell SDL when your UI changes so that it

can re-scan and detect the views to be sent.

In order to use the automatic focusable item locator, you must set the UIWindow of your

streaming content on SDLStreamingMediaConfiguration.window . So long as the window

is set, the focusable item locator will start running. Whenever your app UI updates, you will

need to send a notification:

Currently, there are no RPCs for knowing which view is highlighted, so your

UI will have to remain static (i.e. you should not create a scrolling menu in

your SDL app).

NOT E

Automatic Focusable Rectangles

O B J C S WIF T

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/video-streaming-for-navigation-apps/touch-input/

If you need to supplement the automatic focusable item locator, or do all of the location

yourself (e.g. views that are not focusable such as custom UIViews or OpenGL views),

then you will have to manually send and update the focusable rects using SDLSendHapti

cData . This request, when sent replaces all current rects with new rects; so, if you want

to clear all of the rects, you would send the RPC with an empty array. Or, if you want to add

a single rect, you must re-send all previous rects in the same request.

Usage is simple, you create the rects using SDLHapticRect , add a unique id, and send all

the rects using SDLSendHapticData .

When your renderingType is SDLCarWindowRenderingTypeLayer , the SDLD

idUpdateProjectionView notification should only be sent in the overridden

viewDidLayoutSubviews method of your rootViewController . If you do

not, your haptic rects may not update as you expect.

SDL can only automatically detect UIButton s and anything else that

responds true to canBecomeFocused . This means that custom UIView

objects will not be found. You must send these objects manually, see

"Manual Focusable Rects".

Before Xcode 12.5, some built-in UIView subclasses, such as UITextField ,

responded true to canBecomeFocused . That is not longer true, and you

must subclass these built-in views and implement canBecomeFocused to

return true .

NOT E

Manual Focusable Rects

O B J C S WIF T

While your app is navigating the user, you will also want to send turn by turn directions.

This is useful for if your app is in the background or if the user is in the middle of a phone

call, and gives the system additional information about the next maneuver the user must

make.

When your navigation app is guiding the user to a specific destination, you can provide the

user with visual and audio turn-by-turn prompts. These prompts will be presented even

when your SDL app is backgrounded or a phone call is ongoing.

While your app is navigating the user, you will also want to send turn by turn directions.

This is useful if your app is in the background or if the user is in the middle of a phone call,

and gives the system additional information about the next maneuver the user must make.

To create a turn-by-turn direction that provides both a visual and audio cues, a

combination of the SDLShowConstantTBT and SDLAlertManeuver RPCs must should

be sent to the head unit.

The visual data is sent using the SDLShowConstantTBT RPC. The main properties that

should be set are navigationText1 , navigationText2 , and turnIcon . A best practice for

navigation apps is to use the navigationText1 as the direction to give (i.e. turn right) and

navigationText2 to provide the distance to that direction (i.e. 3 mi.).

Displaying Turn Directions

If the connected device has received a phone call in the vehicle, the SDLAler

tManeuver is the only way for your app to inform the user of the next turn.

NOT E

Visual Turn Directions

Audio Turn Directions

The audio data is sent using the SDLAlertManeuver RPC. When sent, the head unit will

speak the text you provide (e.g. In 3 miles turn right).

Remember when sending a SDLImage , that the image must first be uploaded to the head

unit with the SDLFileManager .

To clear a navigation direction from the screen, send a SDLShowConstantTBT with the

maneuverComplete property set to true. This will also clear the accompanying SDLAlert

Maneuver .

When building a video-streaming navigation application, you can choose to create a

custom menu using your own UI or use the built-in SDL menu system. The SDL menu

allows you to display a menu structure so users can select menu options or submenus.

For more information about the SDL menu system, see menus. It's recommended to use

the built-in SDL menu system to have better performance, automatic driver distraction

support - such as list limitations and text sizing, and more.

Sending Audio and Visual Turn
Directions

O B J C S WIF T

Clearing the Turn Directions

O B J C S WIF T

Video Streaming Menu

https://smartdevicelink.com/en/guides/iOS/displaying-a-user-interface/main-menu/

To open the SDL built-in menu from your video streaming UI, see 'Opening the Built-In

Menu' below.

The Show Menu RPC allows you to open the menu programmatically. That way, you can

open the menu from your own UI.

To show the top level menu use sdlManager.screenManager.openMenu .

You can also open the menu directly to a sub-menu. This is further down the tree than the

top-level menu. To open a sub-menu, pass a cell that contains sub-cells. If the cell has no

sub-cells the method call will fail.

Opening the Built-In Menu

Show Top Level Menu

O B J C S WIF T

Show Sub-Menu

The sub-cell you use in openSubMenu must be included in sdlManager.scr

eenManager.menu array. If it is not included in the array, the method call will

fail.

NOT E

O B J C S WIF T

Close Application

If you choose to not use the built-in SDL menu system and instead want to use your own

menu UI, you need to have a way for users to close your application. This should be done

through a menu option in your UI that sends the CloseApplication RPC.

A powerful built-in logging framework is available to make debugging your SDL app easier.

It provides many of the features common to other 3rd party logging frameworks for iOS

and can be used by your own app as well. We recommend that your app's integration with

SDL provide logging using this framework rather than any other 3rd party framework your

app may be using or NSLog . This will consolidate all SDL related logs in a common

format and to common destinations.

SDL will configure its logging into a production-friendly configuration by default. If you

wish to use a debug or a custom configuration, then you will have to specify this yourself.

SDLConfiguration allows you to pass a SDLLogConfiguration with custom values. A

few of these values will be covered in this section, the others are in their own sections

below.

When setting up your SDLConfiguration you can pass a different log configuration:

This RPC is unnecessary if you are using OpenMenu because OEMs will

take care of providing a close button into your menu themselves.

NOT E

O B J C S WIF T

Configuring SDL Logging

O B J C S WIF T

Currently, SDL provides three output formats for logs (for example into the console or file

log), these are "Simple", "Default", and "Detailed".

Simple:

09:52:07:324 � (SDL)Protocol – I'm a log!

Default:

09:52:07:324 � (SDL)Protocol:SDLV2ProtocolHeader:25 – I'm also a log!

Detailed:

09:52:07:324 � DEBUG com.apple.main-thread:(SDL)Protocol:[SDLV2ProtocolHeader
parse:]:74 – Me three!

The configuration provides two properties, asynchronous and errorsAsynchronous . By

default asynchronous is true and errorsAsynchronous is false. This means that any

logs that are not logged at the error log level will be logged asynchronously on a separate

serial queue, while those on the error log level will be logged synchronously on the

separate queue (but the thread that logged it will be blocked until that log completes).

The globalLogLevel defines which logs will be logged to the target outputs. For example,

if you set the log level to debug , all error, warning, and debug level logs will be logged,

Format Type

Log Synchronicity

Log level

but verbose level logs will not be logged.

S D L L O G L E V E L V I S I B L E L O G S

Targets are the output locations where the log will appear. By default only the OSLog log

target will be enabled in both default and debug configurations. You may configure

additional pre-built targets or create your own targets and add them.

Off none

Error error

Warning error and warning

Debug error, warning and debug

Verbose error, warning, debug and verbose

Although the default log level is defined in the SDLLogLevel enum, it

should not be used as a global log level. See the API documentation for

more detail.

NOT E

Targets

AP P L E SYSTEM LOG TARGET (DEP REC ATED)

https://smartdevicelink.com/en/docs/iOS/master/Enums/SDLLogLevel/

The Apple System Logger target, SDLLogTargetAppleSystemLogger is now deprecated in

favor of the OS Log target which will do the same thing. It will be removed in a future

release. This target will log to the Xcode console and the device console.

The OSLog target, SDLLogTargetOSLog , is the default log target in both default and

debug configurations. For more information on this logging system see Apple's

documentation. SDL's OSLog target will take advantage of subsystems and levels to allow

you powerful runtime filtering capabilities through the MacOS Console app with a

connected device.

The File target, SDLLogTargetFile , allows you to log messages to a rolling set of files

which will be stored on the device, specifically in the Documents/smartdevicelink/log/

folder. The file names will be timestamped with the start time.

To access the file, you can either access it from runtime on the device (for example, to

attach it to an email that the user sends), or if you have access to the device, you can

access them via iTunes (pre-Catalina) or the MacOS Finder (post-Catalina). To access the

files on the device you must make the following small modifications to your app:

1. Add the key UIFileSharingEnabled to your info.plist. Set the value to YES.

2. Connect the device to a MacOS computer.

3. Open the Finder, click on the device in the sidebar, then click on "Files" > "Your App

Name".

4. You should see a folder called "smartdevicelink". Drag and drop the folder to your

desktop (or somewhere in your file system). When you open the folder on your

computer, you will see the log files for each session (default maxes out at 3).

1. Add the key UIFileSharingEnabled to your info.plist. Set the value to YES.

OS LOG TARGET

FIL E TARGET

MA COS CATA L I NA OR L AT ER

MA COS PR E-CATA L I NA

https://developer.apple.com/reference/os/logging

2. Connect the device to a computer that has iTunes installed.

3. Open iTunes, click on the icon for the device, then click on "File Sharing" > "Your App

Name".

4. You should see a folder called "smartdevicelink". Select the folder and click "Save".

When you open the folder on your computer, you will see the log files for each

session (default maxes out at 3).

1. You should remove the file sharing enabled info.plist key before submitting your app

to Apple.

2. If you are testing an archive build, you will only be able to view error and warning

logs if the build configuration was set to "release". To get debug and/or verbose logs

you must create the archive build with the build configuration set to "debug".

The protocol all log targets conform to, SDLLogTarget , is public. If you wish to make a

custom log target in order to, for example, log to a server, it should be fairly easy to do so.

If it can be used by other developers and is not specific to your app, then submit it back to

the SmartDeviceLink iOS library project! If you want to add targets in addition to the

default target that will output to the console:

A module is a set of files packaged together. Create modules using the SDLLogFileModu

le class and add it to the configuration. Modules are used when outputting a log

message. The log message may specify a module instead of a specific file name for

clarity's sake. The SDL library will automatically add the modules corresponding to its own

files after you submit your configuration. For your specific use case, you may wish to

provide a module corresponding to your whole app's integration and simply name it with

F I L E L OG G I NG A ND PR ODUCT I ON R EL EA S ES

C U STOM LOG TARGETS

O B J C S WIF T

logConfig.targets = [logConfig.targets
setByAddingObjectsFromArray:@[[SDLLogTargetFile logger]]];

Modules

your app's name, or, you could split it up further if desired. To add modules to the

configuration:

Filters are a compile-time concept of filtering in or out specific log messages based on a

variety of possible factors. Call SDLLogFilter to easily set up one of the default filters or

to create your own using a custom SDLLogFilterBlock . You can filter to only allow

certain files or modules to log, only allow logs with a certain string contained in the

message, or use regular expressions.

In addition to viewing the library logs, you also have the ability to log with the SDL logger.

All messages logged through the SDL logger, including your own, will use your SDLLogCo

nfiguration settings.

First, import the SDLLogMacros header.

#import "SDLLogMacros.h"

O B J C S WIF T

logConfig.modules = [logConfig.modules
setByAddingObjectsFromArray:@[[SDLLogFileModule moduleWithName:@"Test"
files:[NSSet setWithArray:@[@"File1", @"File2"]]]]];

Filters

O B J C S WIF T

SDLLogFilter *filter = [SDLLogFilter filterByDisallowingString:@"Test"
caseSensitive:NO];

Logging with the SDL Logger

Objective-C Projects

Then, simply use the convenient log macros to create a custom SDL log in your project.

SDLLogV(@"This is a verbose log");
SDLLogD(@"This is a debug log");
SDLLogW(@"This is a warning log");
SDLLogE(@"This is an error log");

To add custom SDL logs to your Swift project you must first install a submodule called

SmartDeviceLink/Swift.

If the SDL iOS library was installed using CocoaPods, simply add the submodule to the

Podfile and then install by running pod install in the root directory of the project.

target '<#Your Project Name#>' do
 pod 'SmartDeviceLink', '~> <#SDL Version#>'
 pod 'SmartDeviceLink/Swift', '~> <#SDL Version#>'
end

If the SDL iOS library was installed using Swift Package Manager, install the SmartDevice

LinkSwift target to your SPM installation. Then, where you want to log, import SmartDevi

ceLinkSwift .

Swift Projects

C OC OAP ODS

SWIFT PAC KAGE MANAGER

https://cocoapods.org/
https://swift.org/package-manager/

Once you have access to the SmartDeviceLinkSwift enhancements, you can use the SDL

Log functions in your project.

SDLLog.v("This is a verbose log")
SDLLog.d("This is a debug log")
SDLLog.w("This is a warning log")
SDLLog.e("This is an error log")

The iOS library has made a number of breaking changes in SDL v7.0. This means that your

project is unlikely to compile without changes.

SDL iOS 7.0 now requires that your app's minimum supported version be iOS 10.0 or

greater – previously it was iOS 8.0. If your app's minimum version is already iOS 10.0 or

greater, then there's nothing you need to do! However, if you target a lower iOS version as

your minimum version, you will need to stay on SDL iOS v6.7 until you can move up your

minimum version. SDL iOS 7.0 has removed functionality shims necessary to allow it to

function properly on iOS versions below 10.0.

All deprecated methods have been removed. Most of the removed methods are RPC

initializers. If you are affected by this change, please look at the new available initializers

and choose one of those to use.

For example:

LOGGING IN SWIFT

Updating from v6.7 to v7.0

iOS Minimum Version Changes

Changes to RPC Initializers

// This was deprecated and now removed
SDLAlert *alert = [[SDLAlert alloc] initWithAlertText1:@"Text1" alertText2:@"Text2"
alertText3:@"Text3"];

// Replacement
SDLAlert *alert = [[SDLAlert alloc] init];
alert.alertText1 = @"Text1";
alert.alertText2 = @"Text2";
alert.alertText3 = @"Text3";

We will be looking to improve RPC initializers in the future.

Previously deprecated SDLConfiguration and other configuration APIs have been

removed.

In SDLLifecycleConfiguration , the SDLLifecycleConfiguration defaultConfigurationWithA

ppName:appId: method and it's debugConfiguration counterpart have been officially

removed. You must now use defaultConfigurationWithAppName:fullAppId: and it's debu

gConfiguration counterpart. Note that if you set a legacy app id into the fullAppId field,

everything will continue to work as it did on the previous API.

Several SDLStreamingMediaConfiguration APIs have also been removed. Any API that

took a security manager is now gone. In their stead, add your security manager onto an S

DLEncryptionConfiguration instance and pass it to the SDLConfiguration .

Delegate API removals require special attention because if you still implement the

deprecated method, that method will no longer work and there will no longer be a warning.

Other API Removals

C ONFIGU RATIONS

DEL EGATE AP I REMOVAL S

SDLKeyboardDelegate updateAutocompleteWithInput:completionHandler: has been

removed and is superseded by updateAutocompleteWithInput:autoCompleteResultsHan

dler: . The new method allows you to return a list of results. On older head units, only the

top result will be used.

SDLManagerDelegate managerShouldUpdateLifecycleToLanguage: has been removed

and is superseded by managerShouldUpdateLifecycleToLanguage:hmiLangugage: . The

new method will alert you if either the VR language or the text language changes.

The SDLPermissionManager has had several API removals. The primary change is to use

the SDLRPCFunctionName enum in place of the SDLPermissionRPCName NSString

typedef. This provides additional type safety when checking permissions for an RPC. Also

note that subscribeToRPCPermissions:groupType:withHandler: has slightly different

behavior than addObserverForRPCs:groupType:withHandler: when the groupType is SD

LPermissionGroupTypeAllAllowed for the initial callback. It will now only callback if all

items are allowed, whereas before it would callback no matter the initial status of the

group.

We did also deprecate a few APIs in this release.

1. SDLServiceUpdateReason enums were not correctly formed. We deprecated the

previous APIs and introduced new ones that are correctly formed.

2. Existing SDLCharacterSet sets were not standards-compliant and are deprecated.

New character sets have been added and will be used in future head units to

describe text fields.

3. The SDLLockScreenStatus notification now has a new type of payload. It has

changed from an SDLOnLockScreenStatus RPC to a SDLLockScreenStatusInfo

object. This is only important if you have built your own lock screen management

system instead of using the one provided through the SDL iOS library.

P ERMISSION MANAGER

Other Deprecations

New Features

The primary new feature is SDLManager.screenManager changeLayout:withCompletionHa

ndler: . This wraps the SDLSetDisplayLayout and SDLShow (on RPC v6.0+) ability to

change the template layout and color scheme. SDLSetDisplayLayout will be deprecated

in a future release, and this is now the preferred API to manage layouts.

SDL does work and can be integrated into a React Native application.

Please follow the React Native Getting Started guide for how to create a new React Native

application if you need one. To install SDL into your React Native app, you will need to

follow the React Native Native Module's guide to integrate the SDL library into your

application using React Native's Native Modules feature. You must make sure you have

Native Modules installed as a dependency in order to use 3rd party APIs in a React Native

application. If this is not done your app will not work with SmartDeviceLink. Native API

methods are not exposed to JavaScript automatically, this must be done manually by you.

Then see the SDL Installation Guide for more information on installing SDL's native library.

C HANGING TEMP L ATE L AYOU T

Can I Integrate SDL into a React
Native App?

This guide is not meant to walk you through how to make a React Native

app but help you integrate SDL into an existing application. We will show you

a basic example of how to communicate between your app's JavaScript

code and SDL's native Obj-C code. For more advanced features, please refer

to the React Native documentation linked above.

NOT E

https://facebook.github.io/react-native/docs/getting-started
https://facebook.github.io/react-native/docs/native-modules-ios
https://facebook.github.io/react-native/docs/native-modules-setup
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/installation/

Native API methods are not exposed automatically to JavaScript. This means you must

expose methods you wish to use from SDL to your React Native app. You must implement

the RCTBridgeModule protocol into a bridge class (see below for an example). Please

follow SmartDeviceLink Integration Basics guide for the basic setup of a native SDL Prox

yManager class that your bridge code will communicate with. This is the necessary

starting point in order to continue with this example. Also set up a simple UI with buttons

and some text on the SDL side.

To create a native module you must implement the RCTBridgeModule protocol. Update

your ProxyManager to include RCTBridgeModule .

#import <React/RCTBridgeModule.h>

@interface ProxyManager : NSObject <RCTBridgeModule>

<#Proxy Manager code#>

@end

An RCT_EXPORT_MODULE() macro must be added to the implementation file to expose

the class to React Native.

@implementation ProxyManager

RCT_EXPORT_MODULE();
<#Proxy Manager code#>

@end

Integration Basics

Creating the RCTBridge

OBJ ECT I VE-C
P r o x y M a n a g er. h

P r o x y M a n a g er. m

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/integration-basics-ios/

Before you move forward, you must add #import "React/RCTBridgeModule.h" to your Bri

dging Header . When creating a Swift application and importing Objective-C code, Xcode

should ask if it should create this header file for you. You can create this file manually as

well. You must include this bridging header for your React Native app to work.

@objc(ProxyManager)

class ProxyManager: NSObject {

<#Proxy Manager Code#>

}

Next, to expose the above Swift class to React Native, you must create an Objective-C file

and wrap the Swift class name in a RCT_EXTERN_MODULE in order to use the Swift

class in a React Native app.

#import "React/RCTBridgeModule.h"

@interface RCT_EXTERN_MODULE(ProxyManager, NSObject)

@end

Inside the ProxyManger class, post a notification for a particular event you wish to

execute. The 'Event Emitter' class, which you will see later in the documentation, will

observe this event notification and will call the React Native listener that you will set up

later in the documentation below.

Inside the ProxyManager add a soft button to your SDL HMI. Inside the soft button

handler, post the notification and pass along a reference to the sdlManager in order to

S WI F T

P r o x y M a n a g er. m

Emitting Event Notifications to JavaScript

update your React Native UI through the bridge.

Create the class that will be the listener for the notification you created above. This class

will be sending and receiving messages from your JavaScript code (React Native). The

required supportedEvents method returns an array of supported event names. Sending

an event name that is not included in the array will result in an error. An "event" is sending

a message from native code to React Native code.

#import <React/RCTEventEmitter.h>
#import <React/RCTBridgeModule.h>
#import <Foundation/Foundation.h>

NS_ASSUME_NONNULL_BEGIN

@interface SDLEventEmitter : RCTEventEmitter

@end

NS_ASSUME_NONNULL_END

O B J C S WIF T

SDLSoftButtonObject *softButton = [[SDLSoftButtonObject alloc]
initWithName:@"Button" state:[[SDLSoftButtonState alloc]
initWithStateName:@"State 1" text:@"Data" artwork:nil] handler:^(SDLOnButtonPress
* _Nullable buttonPress, SDLOnButtonEvent * _Nullable buttonEvent) {
 if (buttonPress == nil) { return; }

 NSDictionary *userInfo = @{@"sdlManager": self.sdlManager};
 [[NSNotificationCenter defaultCenter] postNotificationName:<#Notification
Name#> object:nil userInfo:managers];
}];

self.sdlManager.screenManager.softButtonObjects = @[softButton];

C REATE THE EV ENTEMITTER BRIDGE C L ASS

OBJ ECT I VE-C
SD L E v en t E m it t er. h

#import "SDLEventEmitter.h"
#import "ProxyManager.h"
#import <React/RCTConvert.h>
#import <SmartDeviceLink/SmartDeviceLink.h>

@implementation SDLEventEmitter

RCT_EXPORT_MODULE()

- (instancetype)init {
 self = [super init];
 // Subscribe to event notifications sent from ProxyManager
 [[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(getDoActionNotification:) name:<#Notification Name#>
object:nil];

 return self;
}

// Required Method defining known action names
- (NSArray<NSString *> *)supportedEvents {
 return @[@"DoAction"];
}

// Run this code when the subscribed event notification is received
- (void)getDoActionNotification:(NSNotification *)notification {
 if(self.sdlManager == nil) {
 self.sdlManager = notification.userInfo[@"sdlManager"];
 }

 // Send the event to your React Native code with a dictionary of information
 [self sendEventWithName:@"DoAction" body:@{@"type": @"actionType"}];
}

@end

SD L E v en t E m it t er. m

S WI F T

@objc(SDLEventEmitter)
class SDLEventEmitter: RCTEventEmitter {

 override init() {
 // Subscribe to event notifications sent from ProxyManager
 NotificationCenter.default.addObserver(self, selector: #selector(doAction(_:)),
name: Notification.Name(rawValue: "<#Notification Name#>", object: nil)
 super.init()
 }

 // Required Method defining known action names
 override func supportedEvents() -> [String]! {
 return ["DoAction"]
 }

 // Run this code when the subscribed event notification is received
 @objc func doAction(_ notification: Notification) {
 if self.sdlManger == nil {
 self.sdlManager = notification.userInfo["sdlManager"]
 }

 // Send the event to your React Native code with a dictionary of information
 sendEvent(withName: "DoAction", body: ["type": "actionType"])
 }

}

The above example will call into your JavaScript code with an event type DoAction .

Inside your React Native (JavaScript) code, create a NativeEventEmitter object within

your EventEmitter module and add a listener for the event.

J AVA S CR I PT

import { NativeEventEmitter, NativeModules } from 'react-native';
const { SDLEventEmitter } = NativeModules;

const testEventEmitter = new NativeEventEmitter(SDLEventEmitter);

// Build a listener to listen for events
const testData = testEventEmitter.addListener(
 'DoAction',
 () => SDLEventEmitter.eventCall({
 "data": {
 "low": "77",
 "high": "87",
 "currentTemp": "82",
 "rain": "50%"
 }
 }
)
)

The last step is to wrap any native code methods you wish to expose to your JavaScript

code inside RCT_EXPORT_METHOD for Objective-C and RCT_EXTERN_METHOD for

Swift. We've seen above how native code can send notifications to your JavaScript code,

now we will see how your JavaScript code can send notifications into your native

SmartDeviceLink code. Inside the SDLEventEmitter.m file add the following method:

Exposing Native Methods to JavaScript

OBJ ECT I VE-C

RCT_EXPORT_METHOD(eventCall:(NSDictionary *)dict) {
 [self.sdlManager.screenManager beginUpdates];

 self.sdlManager.screenManager.textField1 = [NSString stringWithFormat:@"Low:
%@ ºF", [RCTConvert NSString:dict[@"data"][@"low"]]];
 self.sdlManager.screenManager.textField2 = [NSString stringWithFormat:@"High:
%@ ºF", [RCTConvert NSString:dict[@"data"][@"high"]]];

 [self.sdlManager.screenManager endUpdatesWithCompletionHandler:^(NSError *
_Nullable error) {
 if (error != nil) {
 <#Error#>
 } else {
 <#Success#>
 }
 }];
}

If you're making a React Native application and using native Swift code, you will need to

create the Objective-C bridger for the SDLEventEmitter class you created above. Wrap

the method(s) you wish to expose in a RCT_EXTERN_METHOD macro inside your

wrapper class. This wrapper will allow the JavaScript code to talk with your native code.

#import "React/RCTBridgeModule.h"
#import "React/RCTEventEmitter.h"

@interface RCT_EXTERN_MODULE(SDLEventEmitter, RCTEventEmitter)

RCT_EXTERN_METHOD(eventCall:(eventCall: (id)dict))

@end

S WI F T

Make sure you add #import "React/RCTEventEmitter.h" to the apps

bridging header.

NOT E

Add the following method to SDLEventEmitter.swift :

@objc func eventCall(_ dict: NSDictionary) {
 self.sdlManager.screenManager.beginUpdates()
 let data = dict["data"]! as! NSDictionary
 self.sdlManager.screenManager.textField1 = "Low: \(data["low"]!) °F")"
 self.sdlManager.screenManager.textField2 = "High: \(data["high"]!) °F")"
 self.sdlManager.screenManager.endUpdates()
}

By now you should have a basic React Native application that can send a message from

the Native side to the React Native layer. If done correctly the application should update

the SDL UI when clicking the soft button on the head unit. The above documentation

walked you through how to send a message to React Native and receive a message

containing data back.

