SE

i0S Guides

Document current as of 11/18/2025 03:05 PM.

Installation

In order to build your app on a SmartDeviceLink (SDL) Core, the SDL software
development kit (SDK) must be installed in your app. The following steps will guide you
through adding the SDL SDK to your workspace and configuring the environment.

O NOTE

v

The SDL SDK is currently supported on iOS 10.0 and above.

Install SDL SDK

There are four different ways to install the SDL SDK in your project: Carthage, CocoaPods,

Swift Package Manager, or manually.

CocoaPods Installation

https://sdl-devportal-media-production.s3.amazonaws.com/

1. Xcode should be closed for the following steps.
2. Open the terminal app on your Mac.

3. Make sure you have the latest version of CocoaPods installed. For more information on

installing CocoaPods on your system please consult: https://cocoapods.org.

sudo gem install cocoapods

4. Navigate to the root directory of your app. Make sure your current folder contains the

.xcodeproj file.

5. Create a new Podfile.

pod init

6. In the Podfile, add the following text. This tells CocoaPods to install SDL SDK for iOS.

SDL Versions are available on Github. We suggest always using the latest release.

target ‘<#Your Project Name#>' do
pod ‘SmartDeviceLink’, ‘~> <#SDL Version#>’
end

7. Install SDL SDK for iOS:

pod install

8. There will be a newly created .xcworkspace file in the directory in addition to the

.xcodeproj file. Always use the .xcworkspace file from now on.

https://cocoapods.org/
https://cocoapods.org/
https://github.com/smartdevicelink/sdl_ios/releases

9. Open the .xcworkspace file. To open from the terminal, type:

open <#Your Project Name#>.xcworkspace

Swift Package Manager Installation

You can install this library using the Swift Package Manager. You can install SDL into your

iOS project using Xcode 12 by following these steps:
1. Open File -> Swift Packages -> Add Package Dependency...
2. Enter the URL https://github.com/smartdevicelink/sdl_ios.git into the search box.

3. Use the default rules or customize the rules to use a specific version or branch. This

library added SPM support in version 7.0.0, so please use at least that version.

4. You will be asked which package project to use. If you are using a Swift project, then
you should use the SmartDeviceLinkSwift project. If not, then you should use the Smart
DeviceLink project. You can use the SmartDeviceLink project in a Swift project as well,
but you will miss some Swift specific customizations, which are currently limited to

logging enhancements.

5. In your SDL related code, use import SmartDeviceLink to call most SDL-related code.
If you want to use the Swift-specific logging enhancements you must also use import Sm

artDeviceLinkSwift .

Carthage Installation

SDL iOS supports Carthage! Install using Carthage by following this guide.

Manual Installation

Tagged to our releases is a dynamic framework file that can be drag-and-dropped into the

application.

https://swift.org/package-manager/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/developer-tools/configuring-sdl-logging/#logging-with-the-sdl-logger
https://github.com/Carthage/Carthage#adding-frameworks-to-an-application

NOTE

You cannot submit your app to the app store with the framework as is. You
MUST strip the simulator part of the framework first.

You can check the architectures of your built framework like so:

lipo -info SmartDeviceLink.framework/SmartDeviceLink

Use a script like this to strip the simulator part of the framework.

lipo -remove i386 -remove x86_64 -0 SmartDevicelLink.framework/SmartDeviceLink

SmartDeviceLink.framework/SmartDevicelLink

SDK Configuration

1. Get an App Id

An app id is required for production level apps. The app id gives your app special
permissions to access vehicle data. If your app does not need to access vehicle data, a
dummy app id (i.e. creating a fake id like "1234") is sufficient during the development

stage. However, you must get an app id before releasing the app to the public.

To obtain an app id, sign up at smartdevicelink.com.

https://www.smartdevicelink.com/

2. Enable Background Capabilities

Your application must be able to maintain a connection to the SDL Core even when it is in
the background. This capability must be explicitly enabled for your application (available
for iOS 5+). To enable the feature, select your application's build target, go to Capabilities,
Background Modes, and select External accessory communication mode.

3. Add SDL Protocol Strings

Your application must support a set of SDL protocol strings in order to be connected to
SDL enabled head units. Go to your application's .plist file and add the following code

under the top level dictionary.

O NOTE

This is only required for USB and Bluetooth enabled head units. It is not
necessary during development using SDL Core.

<key>UISupportedExternalAccessoryProtocols</key>
<array>
<string>com.smartdevicelink.prot29</string>
<string>com.smartdevicelink.prot28</string>
<string>com.smartdevicelink.prot27</string>
<string>com.smartdevicelink.prot26</string>
<string>com.smartdevicelink.prot25</string>
<string>com.smartdevicelink.prot24</string>
<string>com.smartdevicelink.prot23</string>
<string>com.smartdevicelink.prot22</string>
<string>com.smartdevicelink.prot21</string>
<string>com.smartdevicelink.prot20</string>
<string>com.smartdevicelink.prot19</string>
<string>com.smartdevicelink.prot18</string>
<string>com.smartdevicelink.prot17</string>
<string>com.smartdevicelink.prot16</string>
<string>com.smartdevicelink.prot15</string>
<string>com.smartdevicelink.prot14</string>
<string>com.smartdevicelink.prot13</string>
<string>com.smartdevicelink.prot12</string>
<string>com.smartdevicelink.prot11</string>
<string>com.smartdevicelink.prot10</string>
<string>com.smartdevicelink.prot9</string>
<string>com.smartdevicelink.prot8</string>
<string>com.smartdevicelink.prot7</string>
<string>com.smartdevicelink.proté</string>
<string>com.smartdevicelink.prot5</string>
<string>com.smartdevicelink.prot4</string>
<string>com.smartdevicelink.prot3</string>
<string>com.smartdevicelink.prot2</string>
<string>com.smartdevicelink.prot1</string>
<string>com.smartdevicelink.prot0</string>
<string>com.smartdevicelink.multisession</string>
<string>com.ford.sync.prot0</string>
</array>

Integration Basics

Set Up a Proxy Manager Class

You will need a class that manages the connection between your app and SDL Core. Since
there should be only one active connection to the SDL Core, you may wish to implement
this proxy class using the singleton pattern.

OBJC | SWIFT

Your app should always start passively watching for a connection with a SDL Core as
soon as the app launches. The easy way to do this is by instantiating the ProxyManager
class in the didFinishLaunchingWithOptions() method in your AppDelegate class.

The connect method will be implemented later. To see a full example, navigate to the
bottom of this page.

| 0BJC | SWIFT |

Importing the SDL Library

At the top of the ProxyManager class, import the SDL for iOS library.

| 0BJC | SWIFT |

Creating the SDL Manager

The SDLManager is the main class of SmartDeviceLink. It will handle setting up the

initial connection with the head unit. It will also help you upload images and send RPCs.

| OBJC | SWIFT |

1. Create a Lifecycle Configuration

In order to instantiate the SDLManager class, you must first configure an SDLConfigura
tion . To start, we will look at the SDLLifecycleConfiguration . You will at minimum need
a SDLLifecycleConfiguration instance with the application name and application id.

During the development stage, a dummy app id is usually sufficient. For more information
about obtaining an application id, please consult the SDK Configuration section of this
guide. You must also decide which network configuration to use to connect the app to the
SDL Core. Optional, but recommended, configuration properties include short app name,

app icon, and app type.

NETWORK CONNECTION TYPE

There are two different ways to connect your app to a SDL Core: with a TCP (Wi-Fi)
network connection or with an iAP (USB / Bluetooth) network connection. Use TCP for
debugging and use iAP for production level apps.

IAP

OBJC | SWIFT

TCP

OBJC | SWIFT

O NOTE

If you are connecting your app to an emulator using a TCP connection, the IP
address is your computer or virtual machine’s IP address, and the port
number is usually 12345. If you are connecting to Manticore, the Manticore

Ul will give you your IP / Port to connect to.

2. Short App Name (optional)

This is a shortened version of your app name that is substituted when the full app name
will not be visible due to character count constraints. You will want to make this as short

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/sdk-configuration/
https://smartdevicelink.com/resources/manticore/

as possible.

| 0BJC | SWIFT |

3. App Icon

This is a custom icon for your application. Please refer to Adaptive Interface Capabilities

foricon sizes.

OBJC | SWIFT

O NOTE

Persistent files are used when the image ought to remain on the remote
system between ignition cycles. This is commonly used for menu artwork,
soft button artwork and app icons. Non-persistent artwork is usually used
for dynamic images like music album artwork.

4. App Type (optional)

The app type is used by car manufacturers to decide how to categorize your app. Each car
manufacturer has a different categorization system. For example, if you set your app type
as media, your app will also show up in the audio tab as well as the apps tab of Ford'’s
SYNC® 3 head unit. The app type options are: default, communication, media (i.e.
music/podcasts/radio), messaging, navigation, projection, information, and social.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/adaptive-interface-capabilities/

O NOTE

Navigation and projection applications both use video and audio byte
streaming. However, navigation apps require special permissions from
OEMs, and projection apps are only for internal use by OEMs.

OBJC | SWIFT

ADDITIONAL APP TYPES

If one app type doesn't cover your full app use-case, you can add additional
AppHMIType s as well.

| 0BJC | SWIFT |

5. Template Coloring

You can customize the color scheme of your templates. For more information, see the

Customizing the Template guide section.

6. Configure Module Support

You have the ability to determine a minimum SDL protocol and minimum SDL RPC version
that your app supports. You can also check the connected vehicle type and disconnect if
the vehicle module is not supported. We recommend not setting these values until your
app is ready for production. The OEMs you support will help you configure correct values
during the application review process.

BLOCKING BY VERSION

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/customizing-look-and-functionality/customizing-the-template/

If a head unit is blocked by protocol version, your app icon will never appear on the head
unit's screen. If you configure your app to block by RPC version, it will appear and then
quickly disappear. So while blocking with minimumProtocolVersion is preferable, mini

mumRPCVersion allows you more granular control over which RPCs will be present.

OBJC | SWIFT

BLOCKING BY VEHICLE TYPE

If you are blocking by vehicle type and you are connected over RPC v7.1+, your app icon
will never appear on the head unit's screen. If you are connected over RPC v7.0 or below, it
will appear and then quickly disappear. To implement this type of blocking, you need to
implement the SDLManager delegate. You will then implement the optional didReceiveSy
steminfo method and return YES if you want to continue the connection and NO if you
wish to disconnect. See the section example implementation of a proxy class for an
example.

7. Lock Screen

A lock screen is used to prevent the user from interacting with the app on the smartphone
while they are driving. When the vehicle starts moving, the lock screen is activated.
Similarly, when the vehicle stops moving, the lock screen is removed. You must
implement a lock screen in your app for safety reasons. Any application without a lock

screen will not get approval for release to the public.

The SDL SDK can take care of the lock screen implementation for you, automatically
using your app logo and the connected vehicle logo. If you do not want to use the default

lock screen, you can implement your own custom lock screen.

For more information, please refer to the Adding the Lock Screen section; for this guide
we will be using SDLLockScreenConfiguration 's basic enabledConfiguration .

| OBJC | SWIFT |

8. Logging

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/adding-the-lock-screen/

A logging configuration is used to define where and how often SDL will log. It will also
allow you to set your own logging modules and filters. For more information about setting
up logging, see the logging guide.

| OBJC | SWIFT |

9. File Manager

The file manager configuration allows you to configure retry behavior for uploading files
and images. The default configuration attempts one re-upload, but will fail after that.

| 0BJC | SWIFT |

10. Set the Configuration

The SDLConfiguration class is used to set the lifecycle, lock screen, logging, and
optionally (dependent on if you are a Navigation or Projection app) streaming media
configurations for the app. Use the lifecycle configuration settings above to instantiate a
SDLConfiguration instance.

| 0BJC | SWIFT |

11. Create a SDLManager

Now you can use the SDLConfiguration instance to instantiate the SDLManager .

| OBJC | SWIFT |

12. Start the SDLManager

The manager should be started as soon as possible in your application's lifecycle. We
suggest doing this in the didFinishLaunchingWithOptions() method in your AppDelegat
e class. Once the manager has been initialized, it will immediately start watching for a
connection with the remote system. The manager will passively search for a connection
with a SDL Core during the entire lifespan of the app. If the manager detects a connection
with a SDL Core, the startWithReadyHandler will be called.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/developer-tools/configuring-sdl-logging/

Create a new function in the ProxyManager class called connect .

OBJC | SWIFT

O NOTE

In production, your app will be watching for connections using iAP, which will
not use any more battery power than normal.

If the connection is successful, you can start sending RPCs to the SDL Core. However,
some RPCs can only be sent when the HMI is inthe FULL or LIMITED state. If the SDL
Core's HMI is not ready to accept these RPCs, your requests will be ignored. If you want to
make sure that the SDL Core will not ignore your RPCs, use the SDLManagerDelegate
methods in the next section.

IMPLEMENT THE SDL MANAGER DELEGATE

The ProxyManager class should conform to the SDLManagerDelegate protocol. This

means that the ProxyManager class must implement the following required methods:

1. managerDidDisconnect This function is called when the proxy disconnects from the
SDL Core. Do any cleanup you need to do in this function.

2. hmiLevel:didChangeToLevel: This function is called when the HMI level changes for
the app. The HMI level can be FULL, LIMITED, BACKGROUND, or NONE. It is
important to note that most RPCs sent while the HMI is in BACKGROUND or NONE
mode will be ignored by the SDL Core. For more information, please refer to
Understanding Permissions.

In addition, there are several optional methods:

1. audioStreamingState:didChangeToState: Called when the audio streaming state of
this application changes on the remote system. For more information, please refer

to Understanding Permissions.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/understanding-permissions/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/understanding-permissions/

2. videoStreamingState:didChangeToState: Called when the video streaming state of
this application changes on the remote system. For more information, please refer
to Understanding Permissions.

3. systemContext:didChangeToContext: Called when the system context (i.e. a menu
is open, an alert is visible, a voice recognition session is in progress) of this
application changes on the remote system. For more information, please refer to
Understanding Permissions.

4. managerShouldUpdateLifecycleToLanguage:hmiLanguage: Called when the
module's HMI language or voice recognition language does not match the language
set in the SDLLifecycleConfiguration but does match a language included in languag
esSupported. If desired, you can customize the appName, the shortAppName, and tt
sName for the head unit's current language. For more information about supporting
more than one language in your app please refer to Getting Started/Adapting to the
Head Unit Language.

5. didReceiveSysteminfo Called when the module receives vehicle information, which
is before RPC connection on RPC v7.1+ and after RPC connection on RPC v7.0 or
below. Returning YES will continue the connection, and returning NO will cause your
app to disconnect from the module.

Example Implementation of a Proxy Class

The following code snippet has an example of setting up both a TCP and iAP connection.

| OBJC | SWIFT |

Where to Go From Here

You should now be able to connect to a head unit or emulator. For more guidance on
connecting, see Connecting to an Infotainment System. To start building your app, learn

about designing your interface. Please also review the best practices for building an SDL

app.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/understanding-permissions/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/understanding-permissions/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/adapting-to-the-head-unit-language/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/connecting-to-an-infotainment-system/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/main-screen-templates/
https://smartdevicelink.com/en/guides/sdl-overview-guides/best-practices/display-information/

Connecting to an Infotainment
System

In order to view your SDL app, you must connect your device to a head unit that supports
SDL Core. If you do not have access to a head unit, we recommend using the Manticore
web-based emulator for testing how your SDL app reacts to real-world vehicle events, on-

screen interactions and voice recognition.

You will have to configure different connection types based on whether you are connecting
to a head unit or an emulator. When connecting to a head unit, you must configure an iAP
connection. Likewise, when connecting to an emulator,a TCP connection must be

configured.

Connecting to an Emulator

To connect to an emulator such as Manticore or a local Ubuntu SDL Core-based emulator
you must implement a TCP connection when configuring your SDL app.

Getting the IP Address and Port

GENERIC SDL CORE

To connect to a virtual machine running the Ubuntu SDL Core-based emulator, you will use
the IP address of the Ubuntu OS and 12345 for the port. You may have to enable port
forwarding on your virtual machine if you want to connect using a real device instead of a

simulated device.

MANTICORE

https://smartdevicelink.com/resources/manticore/
https://smartdevicelink.com/resources/manticore/
https://github.com/smartdevicelink/sdl_core
https://github.com/smartdevicelink/sdl_core

Once you launch an instance of Manticore, you will be given an IP address and port
number that you can use to configure your TCP connection.

Setting the IP Address and Port

| OBJC | SWIFT |

Connecting to a Head Unit

To connect your device directly to a production vehicle head unit or Test Development Kit
(TDK), make sure to implement an iAP connection. Then connect the device using a USB
cord or, if the head unit supports it, Bluetooth.

| 0BJC | SWIFT |

Viewing Realtime Logs

If you are testing with a vehicle head unit or TDK and wish to see realtime debug logs in

the Xcode console, you should use wireless debugging.

Running the SDL App

Build and run the project in Xcode, targeting the device or simulator that you want to test
your app with. Your app should compile and launch on your device of choosing. If your
connection configuration is setup correctly, you should see your SDL app icon appear on

the HMI screen:

https://developer.apple.com/videos/play/wwdc2017/404/

SDL Example App

To open your app, click on your app's icon in the HMIL.

APPS SDL Example App

SmartDeviceLink (SDL) Example App

This is the main screen of your SDL app. If you get to this point, your SDL app is working.

Troubleshooting

If you are having issues with connecting to an emulator or head unit, please see our
troubleshooting tips in the Example Apps section of the guide.

Adding the Lock Screen

The lock screen is a vital part of your SDL app because it prevents the user from using the
phone while the vehicle is in motion. SDL takes care of the lock screen for you. If you
prefer your own look, but still want the recommended logic that SDL provides for free, you

can also set your own custom lock screen.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/example-apps/

If you would not like to use any of the following code, you may use the SDLLockScreenC
onfiguration class function disabledConfiguration , and manage the entire lifecycle of
the lock screen yourself. However, it is strongly recommended that you use the provided

lock screen manager, even if you use your own view controller.

To see where the SDLLockScreenConfiguration is used, refer to the Integration Basics
guide.

Using the Provided Lock Screen

Using the default lock screen is simple. Using the lock screen this way will automatically
load an automaker's logo, if available, to show alongside your logo. If it is not, the default
lock screen will show your logo alone.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/integration-basics-ios/

To do this, instantiate a new SDLLockScreenConfiguration :

| 0BJC | SWIFT |

Customizing the Default Lock Screen

It is possible to customize the background color and app icon in the default provided
lockscreen. If you choose not to set your own app icon the library will use the SDL logo.

SEL

Locked for your safoty

Custom Background Color

| OBJC | SWIFT |

Custom App Icon

| OBJC | SWIFT |

Showing the OEM Logo

The default lock screen handles retrieving and setting the OEM logo from head units that
support this feature.

This feature can be disabled on the default lock screen by setting showDeviceLogo to
false.

| 0BJC | SWIFT |

Creating a Custom Lock Screen

If you would like to use your own lock screen instead of the one provided by the library, but
still use the logic we provide, you can use a new initializer within SDLLockScreenConfigu

ration . Any custom lock screen you create should be a subclass of SDLLockScreenView

Controller to ensure that it is configured correctly and can receive all of the information
necessary to customize your lock screen such as the OEM icon.

O NOTE
If you create a custom lock screen view controller, please note that the view
controller's default view background will be transparent, even if you set a
background color for it. You must place a custom view across the entire

view controller in order to make your lock screen opaque.

| OBJC | SWIFT |

Customizing the Lock Screen State

In SDL iOS v6.4, a new parameter displayMode has been added to the SDLLockScreenC
onfiguration to control the state of the lock screen and the older boolean parameters
have been deprecated.

The lock screen should never be shown. This
never should almost always mean that you will build

your own lock screen

The lock screen should only be shown when it

requiredOnl
Y is required by the head unit

The lock screen should be shown when required

by the head unit or when the head unit says
optionalOrRequired that its optional, but not in other cases, such as

before the user has interacted with your app on

the head unit

The lock screen should always be shown after

always]
connection

Disabling the Lock Screen

Please note that a lock screen will be required by most OEMs. You can disable the lock
screen manager, but you will then be required to implement your own logic for showing
and hiding the lock screen. This is not recommended as the SDLLockScreenConfiguratio
n adheres to most OEM lock screen requirements. However, if you must create a lock
screen manager from scratch, the library's lock screen manager can be disabled via the S
DLLockScreenConfiguration as follows:

| OBJC | SWIFT |

Making the Lock Screen Always On

The lock screen manager is configured to dismiss the lock screen when it is safe to do
so. To always have the lock screen visible when the device is connected to the head unit,
simply update the lock screen configuration.

| OBJC | SWIFT |

Enabling User Lockscreen Dismissal (Passenger Mode)

Starting in RPC v6.0+ users may now have the ability to dismiss the lock screen by
swiping the lock screen down. Not all OEMs support this new feature. A dismissible lock
screen is enabled by default if the head unit enables the feature, but you can disable it

manually as well.

S sdl

Swipo down to diamiss, acknowledging that you are
not the driver

To disable this feature, set SDLLockScreenConfiguration s enableDismissGesture to
false.

OBJC | SWIFT

Multiple Transports (Protocol
v5.1+)

The multiple transports feature allows apps to carry their SDL session over multiple
transports. The first transport that the app connects with is referred to as the primary
transport and a transport connected at a later point is the secondary transport. For
example, apps can register over Bluetooth or USB as a primary transport, then connect
over WiFi when necessary (ex. to allow video/audio streaming) as a secondary transport.
This feature is supported on connections with protocol version 5.1+, which is supported
on SDL iOS 6.1+ and SDL Core 5.0+.

Primary Transports

On head units that support multiple transports, the primary transport will be used for RPC
communication while the secondary transport will be used for high bandwidth services
such as streaming video data for navigation applications. If no high-bandwidth secondary
transport is present, the primary transport will be used for all needed services that the
transport supports.

The only primary transport available for iOS in production applications is iAP.

Secondary Transports

Secondary transports must be enabled by the module to which the app is connecting. TCP
over WiFi can be configured as a supported secondary transport.

By default, TCP is a configured secondary transport, but this can be disabled.

OBJC | SWIFT

Adapting to the Head Unit
Language

Since a head unit can support multiple languages, you may want to add support for more
than one language to your SDL app. The SDL library allows you to check which language is
currently used by the head unit. If desired, the app's name and the app's text-to-speech
(TTS) name can be customized to reflect the head unit's current language. If your app
name is not part of the current lexicon, you should tell the VR system how a native
speaker will pronounce your app name by setting the TTS name using phonemes from
either the Microsoft SAPI phoneme set or from the LHPLUS phoneme set.

Setting the Default Language

The initial configuration of the SDLManager requires a default language when setting the

SDLLifecycleConfiguration . If not set, the SDL library uses American English (EN_US) as
the default language. The connection will fail if the head unit does not support the langu
age setinthe SDLLifecycleConfiguration . The RegisterAppinterface response RPC will
return INVALID_DATA as the reason for rejecting the request.

What if My App Does Not Support the Head Unit
Language?

If your app does not support the current head unit language, you should decide on a default
language to use in your app. All text should be created using this default language.
Unfortunately, your VR commands will probably not work as the VR system will not

recognize your users' pronunciation.

Checking the Current Head Unit Language

https://en.wikipedia.org/wiki/Phoneme

After starting the SDLManager you can check the registerResponse property for the
head unit's language and hmiDisplayLanguage . The language property gives you the
current VR system language; hmiDisplayLanguage the current display text language.

| OBJC | SWIFT |

Updating the SDL App Name

To customize the app name for the head unit's current language, implement the following
steps:

1. Set the default language inthe SDLLifecycleConfiguration .

2. Add all languages your app supports to languagesSupported inthe SDLLifecycleC
onfiguration .

3. Implement the SDLManagerDelegate's managerShouldUpdateLifecycleToLanguage:
hmiLanguage: method. If the module's current HMI language or voice recognition
(VR) language is different from the app's default language, the method will be called
with the module's current HMI and/or VR language. Please note that the delegate
method will only be called if your app supports the head unit's current language.
Return a SDLLifecycleConfigurationUpdate object with the new appName and/or tts
Name.
method. If the module's current HMI language or voice recognition (VR) language is
different from the app's default language, the listener will be called with the module's
current HMI and/or VR language. Return a LifecycleConfigurationUpdate with the
new appName and/or ttsName.

OBJC | SWIFT

Understanding Permissions

While creating your SDL app, remember that just because your app is connected to a head
unit it does not mean that the app has permission to send the RPCs you want. If your app

does not have the required permissions, requests will be rejected. There are three
important things to remember in regards to permissions:

1. You may not be able to send a RPC when the SDL app is closed, in the background,
or obscured by an alert. Each RPC has a set of hmiLevels during which it can be
sent.

2. For some RPCs, like those that access vehicle data or make a phone call, you may
need special permissions from the OEM to use. This permission is granted when
you submit your app to the OEM for approval. Each OEM decides which RPCs it will
restrict access to, so it is up you to check if you are allowed to use the RPC with the
head unit.

3. Some head units may not support all RPCs.

HMI Levels

When your app is connected to the head unit you will receive notifications when the SDL
app's HMI status changes. Your app can be in one of four different hmiLevel s:

The user has not yet opened your app, or the

NONE
app has been killed.
The user has opened your app, but is currentl
BACKGROUND P J PP J
in another part of the head unit.
This level only applies to media and navigation
apps (i.e. apps with an appType of MEDIA
or NAVIGATION). The user has opened your
LIMITED

app, but is currently in another part of the head
unit. The app can receive button presses from

the play, seek, tune, and preset buttons.

FULL Your app is currently in focus on the screen.

Be careful with sending user interface related RPCs in the NONE and BACKGROUND
levels; some head units may reject RPCs sent in those states. We recommended that you
wait until your app's hmiLevel enters FULL to set up your app's Ul.

To get more detailed information about the state of your SDL app check the current
system context. The system context will let you know if a menu is open, a VR session is
in progress, an alert is showing, or if the main screen is unobstructed. You can find more
information about the system context below.

Monitoring the HMI Level

The easiest way to monitor the hmilLevel of your SDL app is through a required delegate
callback of SDLManagerDelegate . The function hmilLevel:didChangeTolLevel: is called

every time your app's hmilLevel changes.

| OBJC | SWIFT |

Permission Manager

The PermissionManager allows developers to easily query whether specific RPCs are
allowed or not in the current state of the app. It also allows a listener to be added for
RPCs or their parameters so that if there are changes in their permissions, the app will be
notified.

Checking Current Permissions of a Single RPC

| OBJC | SWIFT |

Checking Current Permissions of a Group of RPCs

You can also retrieve the status of a group of RPCs. First, you can retrieve the permission
status of the group of RPCs as a whole: whether or not those RPCs are all allowed, all
disallowed, or some are allowed and some are disallowed. This will allow you to know, for
example, if a feature you need is allowed based on the status of all the RPCs needed for

the feature.

OBJC | SWIFT

The previous snippet will give a quick generic status for all permissions together.
However, if you want to get a more detailed result about the status of every permission or
parameter in the group, you can use the statusesOfRPCPermissions: method.

| 0BJC | SWIFT |

Observing Permissions

If desired, you can subscribe to a group of permissions. The subscription's handler will be
called when the permissions for the group changes. If you want to be notified when the
permission status of any of RPCs in the group change, set the groupType to SDLPermis
sionGroupTypeAny . If you only want to be notified when all of the RPCs in the group are
allowed, or go from allowed to some/all not allowed, set the groupType to SDLPermissi
onGroupTypeAllAllowed .

| OBJC | SWIFT |

Stopping Observation of Permissions

When you set up the subscription, you will get a unique id back. Use this id to unsubscribe
to the permissions at a later date.

| 0BJC | SWIFT |

Additional HMI State Information

If you want more detail about the current state of your SDL app you can monitor the audio
playback state as well as get notifications when something blocks the main screen of

your app.

Audio Streaming State

The Audio Streaming State informs your app whether or not the driver will be able to hear
your app's audio. It will be either AUDIBLE , NOT_AUDIBLE , or ATTENUATED .

You will get these notifications when an alert pops up, when you start recording the in-car
audio, when voice recognition is active, when another app takes audio control, when a
navigation app is giving directions, etc.

Any audio you are playing will be audible to the

AUDIBLE
user
Some kind of audio mixing is occurring
between what you are playing, if anything, and
ATTENUATED Y S U J
some system level audio or navigation
application audio.
Your streaming audio is not audible. This could
NOT_AUDIBLE

occur during a VRSESSION System Context.

| OBJC | SWIFT |

System Context

The System Context informs your app if there is potentially a blocking HMI component
while your app is still visible. An example of this would be if your application is open and
you display an alert. Your app will receive a system context of ALERT whileitis
presented on the screen, followed by MAIN when it is dismissed.

No user interaction is in progress that could be

MAIN
blocking your app's visibility.
VRSESSION Voice recognition is currently in progress.
MENU A menu interaction is currently in-progress.
The app's display HMl is being blocked by
HMI_OBSCURED either a system or other app's overlay (another
app's alert, for instance).
ALERT An alert that you have sent is currently visible.

OBJC | SWIFT

Checking Supported Features

New features are always being added to SDL, however, you or your users may be
connecting to modules that do not support the newest features. If your SDL app attempts
to use an unsupported feature your request will be ignored by the module.

When you are implementing a feature you should always assume that some modules your
users connect to will not support the feature or that the user may have disabled
permissions for this feature on their head unit. The best way to deal with unsupported
features is to check if the feature is available before attempting to use it and to handle
error responses.

Checking the System Capability Manager

The easiest way to check if a feature is supported is to query the library's System
Capability Manager. For more details on how get this information, please see the Adaptive

Interface Capabilities guide.

Handling RPC Error Responses

When you are trying to use a feature, you can watch for an error response to the RPC
request you sent to the module. If the response contains an error, you may be able to
check the result enum to determine if the feature is disabled. If the response that comes

back is of the type GenericResponse , the module doesn't understand your request.

| OBJC | SWIFT |

Checking if a Feature is Supported by Version

When you connect successfully to a head unit, SDL will automatically negotiate the
maximum SDL RPC version supported by both the module and your SDL SDK. If the feature
you want to support was added in a version less than or equal to the version returned by
the head unit, then your head unit may support the feature. Remember that the module may
still disable the feature, or the user may still have disabled permissions for the feature in
some cases. It's best to check if the feature is supported through the System Capability
Manager first, but you may also check the negotiated version to know if the head unit was
built before the feature was designed.

Throughout these guides you may see headers that contain text like "RPC 6.0+". That
means that if the negotiated version is 6.0 or greater, then SDL supports the feature but
the above caveats may still apply.

OBJC | SWIFT

Example Apps

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/adaptive-interface-capabilities/

SDL provides two example apps: one written in Objective-C and one in Swift. Both
implement the same features.

The example apps are located in the sdl_ios repository. To try them, you can download the
repository and run the example app targets, or you can use pod try SmartDeviceLink with
CocoaPods installed on your Mac.

O NOTE
If you download or clone the SDL repository in order to run the example
apps, you must first obtain the BSON submodule. You can do so by running
git submodule init and git submodule update in your terminal when in the
main directory of the cloned repository.

The example apps implement soft buttons, template text and images, a main menu and
submenu, vehicle data, popup menus, voice commands, and capturing in-car audio.

Connecting to an Infotainment
System

Emulator

You can use a simulated or a real device to connect the example app to an emulator. To
connect the example app to Manticore or another emulator, make sure you are onthe TC
P Debug tab of the example app. Then type in the IP address and port number and press
the "Connect" button. The button will turn green when you are connected. Please check the
Connecting to an Infotainment System guide for more detailed instructions on how to get
the emulator's IP address and port number.

Head Unit

https://github.com/smartdevicelink/sdl_ios
https://cocoapods.org/
https://smartdevicelink.com/resources/manticore/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/connecting-to-an-infotainment-system/

You need a real device to connect the example app to production or debug hardware. After
building the running the app, make sure you are on the iAP tab of the example app and
press "Connect”. The button will turn green when you are connected.

If using the Bluetooth (BT) transport, make sure to first pair your phone to the hardware
before attempting to connect your SDL app. If using the USB transport, you will need to
connect your phone to the hardware using a USB cord.

If the hardware supports both BT and USB transports, only one transport will be supported
at once. If your phone is connected via BT and you then connect the phone to the head
unit via a USB cord, the library will close the BT session and open a new session over
USB. Likewise, when the USB cord is disconnected, the library will close the USB session
and open session over BT.

Troubleshooting

If your app compiles and but does not show up on the HMI, there are a few things you
should check:

TCP Debug Transport

1. Make sure the correct IP address and port number is set in the SDLLifecycleConfigur
ation.

2. Make sure the device and the SDL Core emulator are on the same network.

3. If you are running an SDL Core emulator on a virtual machine, and you are using port
forwarding to connect your device to the virtual machine, the IP address should be
the IP address of your machine hosting the VM, not the IP address of the VM. The
port number will be 12345.

4. Make sure there is no firewall blocking the incoming port 12345 on the machine or
VM running the SDL Core emulator. Also make sure your firewall allows that
outgoing port.

5. Your SDL app will not work when the device app is in the background, because the
OS will terminate background tasks after a short amount of time. This is not an
issue with production IAP connections because Apple's External Accessory

framework allows your app unlimited background time.

6. If you have a media SDL app, audio will not play on the emulator. Only production
IAP connections are currently able to play audio because this happens over the
standard Bluetooth / USB system audio channel.

7. You cannot connect to any of our open-source emulators using a USB cord or
Bluetooth because Apple's MFi Program is confidential and can not be used in open

source projects.

IAP Production Transport

1. Make sure to use the default SDLLifecycleConfiguration.

2. Make sure the protocol strings have been added to the app.

3. Make sure you have enabled background capabilities for your app.

4. If the head unit (emulators do not support IAP) does not support Bluetooth, an iAP
connection requires a USB cord.

IAP BLUETOOTH PRODUCTION TRANSPORT

1. Bluetooth transport support is automatic when you support the iAP production
transport. It cannot be turned on or off separately.

2. Make sure the head unit supports Bluetooth transport for iPhones. Currently, only
some head units support Bluetooth.

3. Make sure Bluetooth is turned on - both on the head unit hardware and your iPhone.

4. Ensure your iPhone is properly paired with the head unit.

Additional Examples

For more examples go to the SmartDeviceLink Examples GitHub organization. Download
or clone any of these projects.

The examples available include an example weather app and an example navigation app.

The example weather app uses the OpenWeather API to implement a basic connected

weather app with SDL Ul. This example showcases changing screen template items for

https://mfi.apple.com/en/faqs.html#qc1
https://smartdevicelink.com/en/guides/iOS/getting-started/sdk-configuration/
https://smartdevicelink.com/en/guides/iOS/getting-started/sdk-configuration/
https://github.com/SmartDeviceLink-Examples
https://github.com/SmartDeviceLink-Examples/example_weather_app_ios
https://github.com/SmartDeviceLink-Examples/example_navigation_app_ios
https://github.com/SmartDeviceLink-Examples/example_weather_app_ios

certain weather forecasts, displaying hourly and daily weather in popup menus, and
showing weather alerts with SDL Alerts.

The example navigation app utilizes the MapBox API to create a basic video streaming
map app. The example navigation app can be used as a reference for developers who want
to create their own navigation app.

O NOTE
Some examples require obtaining API tokens from third parties for data and
services. For all of these examples follow the setup instructions as outlined
in their README.md.

Adaptive Interface Capabilities

Since each car manufacturer has different user interface style guidelines, the number of
lines of text, soft and hard buttons, and images supported will vary between different types
of head units. The system will send information to your app about its capabilities for
various user interface elements. You should use this information to create the user
interface of your SDL app.

You can access these properties on the SDLManager.systemCapabilityManager
instance.

System Capability Manager
Properties

https://github.com/SmartDeviceLink-Examples/example_navigation_app_ios

displays

hmiZoneCapabilities

speechCapabilities

prerecordedSpeechCapabiliti

es

vrCapability

Specifies display related
information. The primary
display will be the first element
within the array. Windows
within that display are different
places that the app could be
displayed (such as the main
app window and various

widget windows).

Specifies HMI Zones in the
vehicle. There may be a HMI
available for back seat
passengers as well as front

seat passengers.

Contains information about
TTS capabilities on the SDL
platform. Platforms may
support text, SAPI phonemes,
LH PLUS phonemes, pre-

recorded speech, and silence.

A list of pre-recorded sounds
you can use in your app.
Sounds may include a help,
initial, listen, positive, or a

negative jingle.

The voicerecognition
capabilities of the connected
SDL platform. The platform
may be able to recognize
spoken text in the current

language.

RPC v6.0+

RPC v1.0+

RPC v1.0+

RPC v3.0+

RPC v1.0+

audioPassThruCapabilities

pcmStreamCapabilities

hmiCapabilities

appServicesCapabilities

navigationCapability

phoneCapability

videoStreamingCapability

remoteControlCapability

seatlLocationCapability

Describes the sampling rate,
bits per sample, and audio

types available.

Describes different audio type
configurations for the audio
PCM stream service, e.g.
{8kHz,8-bit,PCM}.

Returns whether or not the app
can support built-in navigation

and phone calls.

Describes the capabilities of
app services including what
service types are supported and

the current state of services.

Describes the built-in vehicle

navigation system's APIs.

Describes the built-in phone
calling capabilities of the IVI

system.

Describes the abilities of the
head unit to video stream

projection applications.

Describes the abilities of an
app to control built-in aspects

of the IVI system.

Describes the positioning of

each seat in a vehicle

RPC v2.0+

RPC v4.1+

RPC v3.0+

RPC v5.1+

RPC v4.5+

RPC v4.5+

RPC v4.5+

RPC v4.5+

RPC v6.0+

Deprecated Properties

The following properties are deprecated on SDL iOS 6.4 because as of RPC v6.0 they are
deprecated. However, these properties will still be filled with information. When connected
on RPC <6.0, the information will be exactly the same as what is returned in the RegisterA
ppinterfaceResponse and SetDisplayLayoutResponse . However, if connected on RPC
>6.0, the information will be converted from the newer-style display information, which

means that some information will not be available.

Information about the HMI display. This

includes information about available

templates, whether or not graphics are
displayCapabilities)

supported, and a list of all text fields and the

max number of characters allowed in each text

field.

A list of available buttons and whether the
buttonCapabilities buttons support long, short and up-down

presses.

A list of available soft buttons and whether the

button support images. Also, information
softButtonCapabilities

about whether the button supports long, short

and up-down presses.

o If returned, the platform supports custom on-
presetBankCapabilities
screen presets.

Image Specifics

Images may be formatted as PNG, JPEG, or BMP. You can find which image types and
resolutions are supported using the system capability manager.

Since the head unit connection is often relatively slow (especially over Bluetooth), you
should pay attention to the size of your images to ensure that they are not larger than they
need to be. If an image is uploaded that is larger than the supported size, the image will be

scaled down by Core.

OBJC | SWIFT

EXAMPLE IMAGE SIZES

Below is a table with example image sizes. Check the SystemCapabilityManager for the
exact image sizes desired by the system you are connecting to. The connected system
should be able to scale down larger sizes, but if the image you are sending is much larger
than desired, then performance will be impacted.

softButtonim

age

choicelmage

choiceSecon

darylmage

vrHelpltem

menulcon

cmdlcon

Show

Createlnteractio

nChoiceSet

Createlnteractio

nChoiceSet

SetGlobalProper

ties

SetGlobalProper

ties

AddCommand

Image shown on
softbuttons on 70x70px

the base screen

Image shown in

the manual part

of an

performinteracti

70x70px

on either big

(ICON_ONLY) or

small

(LIST_ONLY)

Image shown on
the right side of
an entry in
(LIST_ONLY)

performinteracti

35x35px

on

Image shown
during voice 35x35px

interaction

Image shown on
the “More..” 35x35px

button

Image shown for
commands in

35x35px
the "More..."

menu

png, jpg, bmp

png, jpg, bmp

png, jpg, bmp

png, jpg, bmp

png, jpg, bmp

png, jpg, bmp

Image shown as

Icon in the
applcon SetApplcon 70x70px png, jpg, bmp
"Mobile Apps"

menu

Image shown on
graphic Show the base screen 185x185px png, jpg, bmp

as cover art

Querying and Subscribing System
Capabilities

Capabilities that can be updated can be queried and subscribed to using the SDLSystemC
apabilityManager .

Determining Support for System Capabilities

You should check if the head unit supports your desired capability before subscribing to or

updating the capability.

| 0BJC | SWIFT |

Manual Querying for System Capabilities

Most head units provide features that your app can use: making and receiving phone calls,
an embedded navigation system, video and audio streaming, as well as supporting app

services. To pull information about this capability, use the SDLSystemCapabilityManager
to query the head unit for the desired capability. If a capability is unavailable, the query will

return nil .

OBJC | SWIFT

Subscribing to System Capabilities (RPC v5.1+)

In addition to getting the current system capabilities, it is also possible to subscribe for
updates when the head unit capabilities change. To get these notifications you must
register using a subscribeToCapabilityType: method.

O NOTE

If supportsSubscriptions == NO , you can still subscribe to capabilities,
however, you must manually poll for new capability updates using updateCa
pabilityType:completionHandler: . All subscriptions will be automatically
updated when that method returns a new value.

The DISPLAYS type can be subscribed on all SDL versions.

CHECKING IF THE HEAD UNIT SUPPORTS SUBSCRIPTIONS

| OBJC | SWIFT |

SUBSCRIBE TO A CAPABILITY

| 0BJC | SWIFT |

Main Screen Templates

Each head unit manufacturer supports a set of user interface templates. These templates
determine the position and size of the text, images, and buttons on the screen. Once the
app has connected successfully with an SDL enabled head unit, a list of supported
templates is available on SDLManager.systemCapabilityManager.defaultMainWindowCap

ability.templatesAvailable .

Change the Template

To change a template at any time, use [SDLScreenManager changeLayout:] . This guide
requires SDL i0S version 7.0. If using an older version, use the SetDisplayLayout RPC.

O NOTE

When changing the layout, you may get an error or failure if the update is
"superseded.” This isn't technically a failure, because changing the layout has
not yet been attempted. The layout or batched operation was cancelled
before it could be completed because another operation was requested. The
layout change will then be inserted into the future operation and completed
then.

OBJC | SWIFT

Template changes can also be batched with text and graphics updates:

OBJC | SWIFT

When changing screen layouts and template data (for example, to show a weather hourly
data screen vs. a daily weather screen), it is recommended to encapsulate these updates
into a class or method. Doing so is a good way to keep SDL Ul changes organized. A fully-
formed example of this can be seen in the example weather app. Below is a generic
example.

https://github.com/SmartDeviceLink-Examples/example_weather_app_ios

Screen Change Example Code

This example code creates an interface that can be implemented by various "screens" of
your SDL app. This is a recommended design pattern so that you can separate your code
to only involve the data models you need. This is just a simple example and your own
needs may be different.

Screen Change Example Interface

All screens will need to have access to the SDLScreenManager object and a function to
display the screen. Therefore, it is recommended to create a generic interface for all
screens to follow. For the example below, the CustomSDLScreen protocol requires an
initializer with the parameters SDLManager and a showScreen method.

| 0BJC | SWIFT |

Screen Change Example Implementations

The following example code shows a few implementations of the example screen
changing protocol. A good practice for screen classes is to keep screen data in a view
model. Doing so will add a layer of abstraction for exposing public properties and
commands to the screen.

For the example below, the HomeScreen class will inherit the CustomSDLScreen
interface and will have a property of type HomeDataViewModel . The screen manager will
change its text fields based on the view model's data. In addition, the home screen will
also create a navigation button to open the ButtonSDLScreen when pressed.

OBJC | SWIFT

The ButtonSDLScreen follows the same patterns as the HomeSDLScreen but has
minor implementation differences. The screen's view model ButtonDataViewModel
contains properties unique to the ButtonSDLScreen such as text fields and an array of
soft button objects. It also changes the template configuration to tiles only.

OBJC | SWIFT

Available Templates

There are fifteen standard templates to choose from, however some head units may only
support a subset of these templates. The following examples show how templates will
appear on the Generic HMI and Ford's SYNC® 3 HMI.

MEDIA

Odometer Data: 30 km

SmartDevicelLink (SDL)

MEDIA (WITH A PROGRESS BAR)

https://github.com/smartdevicelink/generic_hmi
https://developer.ford.com/

Livio Music

John Prine

Linda Goes to Mars

NON-MEDIA

APPS SDL Example App

SmartDeviceLink (SDL) Example App

GRAPHIC WITH TEXT

SDL Example App

SmartDevicelLink (SDL)
Example App

Odometer Data: 30 km

App — SDL — Car

TEXT WITH GRAPHIC

SDL Example App

SmartDevicelink (SDL)

Example App

Odometer Data: 30 km

App — SDL — Car

TILES ONLY

SDL Example App

GRAPHIC WITH TILES

2:96 10°

TILES WITH GRAPHIC

GRAPHIC WITH TEXT AND SOFT BUTTONS

TEXT AND SOFT BUTTONS WITH GRAPHIC

3:04 10°

J0F N

A

Audio Climate Fhone -

GRAPHIC WITH TEXT BUTTONS

SDL Example App

DOUBLE GRAPHIC WITH SOFT BUTTONS

SDL Example App

TEXT BUTTONS WITH GRAPHIC

SDL Example App

TEXT BUTTONS ONLY

SDL Example App

LARGE GRAPHIC WITH SOFT BUTTONS

SDL Example App

LARGE GRAPHIC ONLY

SDL Example App

Template Text

You can easily display text, images, and buttons using the SDLScreenManager . To
update the Ul, simply give the manager your new data and (optionally) sandwich the update
between the manager's beginUpdates and endUpdatesWithCompletionHandler
methods.

Text Fields

textField1
textField2
textField3
textField4
mediaTrackTextField

textAlignment

textField1Type
textField2Type
textField3Type
textField4Type

title

Showing Text

| OBJC | SWIFT |

The text displayed in a single-line display, or in

the upper display line of a multi-line display

The text displayed on the second display line of

a multi-line display

The text displayed on the third display line of a

multi-line display

The text displayed on the bottom display line of

a multi-line display

The text displayed in the in the track field; this

field is only valid for media applications

The text justification for the text fields; the text

alignment can be left, center, or right

The type of data provided in textField1

The type of data provided in textField2

The type of data provided in textField3

The type of data provided in textField4

The title of the displayed template

Removing Text

To remove text from the screen simply set the screen manager property to nil .

OBJC | SWIFT

Template Images

You can easily display text, images, and buttons using the SDLScreenManager . To
update the Ul, simply give the manager your new data and (optionally) sandwich the update
between the manager's beginUpdates and endUpdatesWithCompletionHandler
methods.

Image Fields

) o The primary image in a template that supports
primaryGraphic
Y images

The second image in a template that supports
secondaryGraphic
multiple images

Showing Images

Creating an SDLArtwork

Create an SDLArtwork object which can be manually uploaded or set into the SDLScree

nManager and automatically uploaded. An SDLArtwork includes information about

whether the image should be persisted between vehicle startups, whether the image is a
template image and should be re-colored, and more.

| OBJC | SWIFT |

Setting Primary Graphic

| 0BJC | SWIFT |

Removing Images

To remove an image from the screen you just need to set the screen manager property to
nil .

| OBJC | SWIFT |

Overwriting Images

When a file is to be uploaded to the module, the library checks if a file with the same name
has already been uploaded to module and skips the upload if it can. For cases where an
image by the same name needs to be re-uploaded, the SDLArtwork / SDLFile 's overwr
ite property should be used. Setting overwrite to true before passingthe imagetoa S
DLScreenManager method such as primaryGraphic and secondaryGraphic will force
the image to be re-uploaded. This includes methods such as preloadChoices:withComple
tionHandler: where the arguments passed in contain images.

O NOTE

Please note that many production modules on the road do not refresh the
HMI with the new image if the file name has not changed. If you want the
image to refresh on the screen immediately, we suggest using two image
names and toggling back and forth between the names each time you update
the image.

This issue may also extend to menus, alerts, and other Ul features even if
they're not on-screen at the time. Because of these issues, we do not
recommend that you try to overwrite an image. Instead, you can delete an
image file using the SDLFileManager and re-upload it once the deletion

completes, or you may use a different file name.

Templating Images (RPC v5.0+)

Templated images are tinted by Core so the image is visible regardless of whether your
user has set the head unit to day or night mode. For example, if a head unit is in night
mode with a dark theme (see Customizing the Template section for more details on how
to customize theme colors), then your templated images will be displayed as white. In the
day theme, the image will automatically change to black.

Soft buttons, menu icons, and primary / secondary graphics can all be templated. A
template image works very much like it does on iOS and in fact, it uses the same API as
i0S. Any SDLArtwork created witha Ullmage that has a renderingMode of alwaysTe
mplate will be templated via SDL as well. Images that you wish to template must be
PNGs with a transparent background and only one color for the icon. Therefore, templating
is only useful for things like icons and not for images that must be rendered in a specific
color.

Templated Images Example

In the screenshots below, the shuffle and repeat icons have been templated. In night mode,
the icons are tinted white and in day mode the icons are tinted black.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/customizing-look-and-functionality/customizing-the-template/
https://developer.apple.com/documentation/uikit/uiimage/1624153-imagewithrenderingmode

NIGHT MODE

APPS Livio Music

SN PRENE:

John Prine

Linda Goes to Mars

DAY MODE

]

APPS Livio Music .

John Prine
Linda Goes to Mars

German Afternoons

00:01:59 / 00:03:086

B

| OBJC | SWIFT |

Static Icons

Static icons are pre-existing images on the remote system that you may reference and use
in your own application. Each OEM will design their own custom static icons but you can
get an overview of the available icons from the icons designed for the open source
Generic HMI. Static icons are fully supported by the screen manager via an SDLArtwork
initializer. Static icons can be used in primary and secondary graphic fields, soft button
image fields, and menu icon fields.

OBJC | SWIFT

https://smartdevicelink.com/en/guides/sdl-overview-guides/user-interface/static-icons/

Template Custom Buttons

You can easily create and update custom buttons (called Soft Buttons in SDL) using the S
DLScreenManager . To update the Ul, simply give the manager your new data and
(optionally) sandwich the update between the manager's beginUpdates and endUpdates
WithCompletionHandler methods.

Soft Button Fields

An array of buttons. Each template supports a
softButtonObjects
different number of soft buttons

Creating Soft Buttons

To create a soft button using the SDLScreenManager , you only need to create a custom
name for the button and provide the text for the button's label and/or an image for the
button's icon. If your button cycles between different states (e.g. a button used to set the
repeat state of a song playlist can have three states: repeat-off, repeat-one, and repeat-all),
you can create all the states on initialization.

There are three different ways to create a soft button: with only text, with only an image, or
with both text and an image. If creating a button with an image, we recommend that you
template the image so its color works well with both the day and night modes of the head
unit. For more information on templating images please see the Template Images guide.

Text Only Soft Buttons

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/template-images/

APPS SDL Example App

SmartDevicelLink (SDL) Swift Example App

| OBJC | SWIFT |

Image Only Soft Buttons

You can use the SDLSystemCapabilityManager to check if the HMI supports soft
buttons with images. If you send image-only buttons to a HMI that does not support
images, then the library will not send the buttons as they will be rejected by the head unit.
If all your soft buttons have text in addition to images, the library will send the text-only
buttons if the head unit does not support images.

APPS SDL Example App

SmartDevicelLink (SDL) Swift Example App

OBJC | SWIFT

Once you know that the HMI supports images in soft buttons you can create and send the
image-only soft buttons.

| 0BJC | SWIFT |

Image and Text Soft Buttons

APPS SDL Example App

SmartDevicelink (SDL) Swift Example App

| OBJC | SWIFT |

Highlighting a Soft Button

When a button is highlighted its background color will change to indicate that it has been
selected.

HIGHLIGHT ON

12:01 10°

HIGHLIGHT OFF

12:03 10°

| OBJC | SWIFT |

Updating Soft Button States

When the soft button state needs to be updated, simply tell the SoftButtonObject to
transition to the next state. If your button states do not cycle in a predictable order, you
can also tell the soft button which state to transition to by passing the stateName of the
new soft button state.

| OBJC | SWIFT |

Deleting Soft Buttons

To delete soft buttons, simply pass the screen manager a new array of soft buttons. To

delete all soft buttons, simply pass the screen manager an empty array.

| OBJC | SWIFT |

Using RPCs

You can also send soft buttons manually using the Show RPC. Note that if you do so,
you must not mix the SDLScreenManager soft buttons and manually sending the Show
RPC. Additionally, the SDLScreenManager takes soft button ids 0 - 10000. Ensure that if
you use custom RPCs, that the soft button ids you use are outside of this range.

Template Subscription Buttons

This guide shows you how to subscribe and react to "subscription” buttons. Subscription
buttons are used to detect when the user has interacted with buttons located in the car's
center console or steering wheel. A subscription button may also show up as part of your
template, however, the text and/or image used in the button is determined by the template
and is (usually) not customizable.

In the screenshot below, the pause, seek left and seek right icons are subscription
buttons. Once subscribed to, for example, the seek left button, you will be notified when
the user selects the seek left button on the HMI or when they select the seek left button
on the car's center console and/or steering wheel.

]

APPS Livio Music .

John Prine

Linda Goes to Mars

German Afternoons

00:01:59 / 00:03:086

Types of Subscription Buttons

There are three general types of subscriptions buttons: audio related buttons only used for
media apps, navigation related buttons only used for navigation apps, and general buttons,
like preset buttons and the OK button, that can be used with all apps. Please note that if
your app type is not MEDIA or NAVIGATION , your attempt to subscribe to media-only
or navigation-only buttons will be rejected.

Ok

Preset 0-9

Search

Play / Pause

Seek left

Seek right

Tune up

Tune down

Center Location

Zoom In

Zoom Out

Pan Up

Pan Up-Right

Pan Right

Pan Down-Right

Pan Down

All

All

All

Media only

Media only

Media only

Media only

Media only

Navigation only

Navigation only

Navigation only

Navigation only

Navigation only

Navigation only

Navigation only

Navigation only

v1.0+

v1.0+

v1.0+

v5.0+

v1.0+

v1.0+

v1.0+

v1.0+

v6.0+

v6.0+

v6.0+

v6.0+

v6.0+

v6.0+

v6.0+

v6.0+

Pan Down-Left Navigation only v6.0+

Pan Left Navigation only v6.0+
Pan Up-Left Navigation only v6.0+
Toggle Tilt Navigation only v6.0+
Rotate Clockwise Navigation only v6.0+
Rotate Counter-Clockwise Navigation only v6.0+
Toggle Heading Navigation only v6.0+

Subscribing to Subscription Buttons

You can easily subscribe to subscription buttons using the SDLScreenManager . Simply
tell the manager which button to subscribe and you will be notified when the user selects
the button.

There are two different ways to receive button press notifications. The first is to pass a
block handler that will get called when the button is selected. The second is to pass a
selector that will be notified when the button is selected.

Subscribe with a Block Handler

Once you have subscribed to the button with a block handler, the handler will be called
whenever the button has been selected. If an error occurs attempting to subscribe to the
button, the error will be returned in the error parameter.

OBJC | SWIFT

Subscribe with a Selector

Once you have subscribed to the button, the selector will be called when the button has
been selected. If there is an error subscribing to the subscribe button it will be returned in

the error parameter.

The selector can be created with between zero and four parameters of types in the
following order: SDLButtonName , NSError , SDLOnButtonPress , and SDLOnButtonEv
ent . When the fourth parameter, SDLOnButtonEvent , is omitted from the selector, then
you will only be notified when a button press occurs. When the third parameter, SDLOnBut
tonPress is omitted from the selector, you will be unable to distinguish between short

and long button presses.

| OBJC | SWIFT |

| OBJC | SWIFT |

Unsubscribing from Subscription
Buttons

When unsubscribing, you will need to pass the observer object and which button name that
you want to unsubscribe. If you subscribed using a handler, use the observer object
returned when you subscribed. If you subscribed using a selector, use the same observer
object you passed when subscribing.

| OBJC | SWIFT |

Media Buttons

The play/pause, seek left, seek right, tune up, and tune down subscribe buttons can only be
used if the app type is MEDIA . Depending on the OEM, the subscribed button could show
up as an on-screen button in the MEDIA template, work as a physical button on the car
console or steering wheel, or both. For example, Ford's SYNC® 3 HMI will add the

play/pause, seek right, and seek left soft buttons to the media template when you
subscribe to those buttons. However, those buttons will also trigger when the user uses
the seek left / seek right buttons on the steering wheel.

If desired, you can change the style of the play/pause button image between a play, stop,

or pause icon by updating the audio streaming indicator, and you can also set the style of
the next/previous buttons between a track or time seek style. See the Media Clock guide
for more information.

O NOTE
Before library v.6.1 and RPC v5.0, Ok and PlayPause were combined into
Ok . Subscribingto Ok will, in v6.1+, also subscribe you to PlayPause .
This means that for the time being, you should not simultaneously subscribe
to Ok and PlayPause . In a future major version, this will change. For now,
only subscribe to either Ok or PlayPause and the library will execute the
right action based on the connected head unit.

| OBJC | SWIFT |

Preset Buttons

All app types can subscribe to preset buttons. Depending on the OEM, the preset buttons
may be added to the template when subscription occurs. Preset buttons can also be
physical buttons on the console that will notify the subscriber when selected. An OEM
may support only template buttons or only hard buttons or they may support both
template and hard buttons. The screenshot below shows how the Ford SYNC® 3 HMI
displays the preset buttons on the HMI.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/media-clock/

4:35 10°

Preset 2

Checking if Preset Buttons are Supported

You can check if a HMI supports subscribing to preset buttons, and if so, how many preset
buttons are supported, by checking the system capability manager.

| OBJC | SWIFT |

Subscribing to Preset Buttons

| 0BJC | SWIFT |

| OBJC | SWIFT |

Navigation Buttons

Head units supporting RPC v6.0+ may support subscription buttons that allow your user to
drag and scale the map using hard buttons located on car's center console or steering
wheel. Subscriptions to navigation buttons will only succeed if your app's type is NAVIG
ATION . If subscribing to these buttons succeeds, you can remove any buttons of your
own from your map screen. If subscribing to these buttons fails, you can display buttons

of your own on your map screen.

Subscribing to Navigation Buttons

| OBJC | SWIFT |

Main Menu

You have two different options when creating menus. One is to simply add items to the
default menu available in every template. The other is to create a custom menu that pops
up when needed. You can find more information about these popups in the Popup Menus

section. This guide will cover using the default menu / menu button.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/popup-menus/

O NOTE

Every template has a main menu button. The position of this button varies
between templates and cannot be removed from the template. Some OEMs
may format certain templates to not display the main menu button if you

have no menu items (such as the navigation map view).

Setting the Menu Layout (RPC v6.0+)

On some newer head units, you may have the option to display menu items as a grid of
tiles instead of the default list layout. To determine if the head unit supports the tiles
layout, check the SystemCapabilityManager 's defaultMainWindowCapability.menuLayou
tsAvailable property after successfully connecting to the head unit. To set the menu
layout using the screen manager, you will need to set the ScreenManager.menuConfigura

tion property.

LIST MENU LAYOUT

SDL Example App &

Acceleration Pedal Position

Airbag Status

Belt Status

Body Information

Cluster Mode Status

GRID MENU LAYOUT

SDL Example App ©

% “% %

Acceleration Pedal

Pasiflan Airbag Status Belt Status

% % %

Body Information Cluster Mode Status Device Status

| 0BJC | SWIFT |

Adding Menu Items

The best way to create and update your menu is to the use the Screen Manager API. The
screen manager contains two menu related properties: menu , and voiceCommands .
Setting an array of SDLMenuCell s into the menu property will automatically set and
update your menu and submenus, while setting an array of SDLVoiceCommand s into the
voiceCommands property allows you to use "hidden" menu items that only contain voice
recognition data. The user can then use the IVl system's voice engine to activate this
command even though it will not be displayed within the main menu.

To find out more information on how to create voiceCommands see the related

documentation.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/speech-and-audio/setting-up-voice-commands/

SDL Example App =

Speak App Name

@ Cet All Vehicle Data

NOTE

Head units supporting RPC v7.1+ may support displaying secondaryText , t
ertiaryText , and secondaryArtwork . This gives the user a richer experience
by displaying more data. Attempting to set this data on head units that do
not support RPC 7.1+ will result in that data not being displayed to the user.

To determine if the head unit supports displaying these fields, you can check
the SystemCapabilityManager 's defaultMainWindowCapability.textFields

/ defaultMainWindowCapability.imageFields properties after successfully
connecting to the head unit. Then check those arrays for objects with the

related text / image field names.

OBJC | SWIFT

Adding Submenus

Adding a submenu is as simple as adding subcells to a SDLMenuCell . The submenu is
automatically displayed when selected by the user. Currently menus only support one layer
of subcells. In RPC v6.0+ it is possible to set individual submenus to use different layouts

such as tiles or lists.

| OBJC | SWIFT |

Menu Item Artwork

Artworks will be automatically handled when using the screen manager API. First, a "non-
artwork" menu will be displayed, then, when the artworks have finished uploading, the
"artwork-ified" menu will be displayed. If you are doing this manually with RPCs, you will
have to upload artworks using the file manager yourself and send the correct menu when
they are ready.

Deleting and Changing Menu Items

The screen manager will intelligently handle deletions for you. If you want to show new
menu items, simply set a new array of menu cells. If you want to have a blank menu, set
an empty array. On supported systems, the library will calculate the optimal adds / deletes
to create the new menu. If the system doesn't support this sort of dynamic updating, the
entire list will be removed and re-added.

If you are doing this manually, you must use the DeleteCommand and DeleteSubMenu
RPCs, passing the cmdID s you wish to delete.

Duplicate Menu Titles

Starting with SDL v7.1+ menu cells and sub-menu cells no longer require unique titles in
order to be presented. For example, if you are trying to display points of interest as a list
you can now have multiple locations with the same name but are not the same location.
You cannot present multiple cells that are exactly the same. They must have some
property that makes them different, such as secondaryText or an artwork.

RPC V7.1+ CONNECTIONS

The titles on the menu will be displayed as provided even if there are duplicate titles.

BACK Hello Sdl »

Gas Station

Gas Station

Gas Station

Grocery Store

Grocery Store

RPC V7.0 AND BELOW CONNECTIONS

The titles on the menu will have a number appended to them when there are duplicate

titles.

BACK Hello Sdl »

Gas Station

Gas Station (2)

Gas Station (3)

Grocery Store

Grocery Store (2)

Using RPCs

The AddCommand RPC can be used to add items to the root menu or to a submenu.
Each AddCommand RPC must be sent with a unique id, a voice-recognition command,
and a set of menu parameters. The menu parameters include the menu name, the position
of the item in the menu, and the id of the menu item’s parent. If the menu item is being
added to the root menu, then the parent id is 0. If it is being added to a submenu, then the

parent id is the submenu’s id.

To create a submenu using RPCs, you must use a AddSubMenu RPC with a unique id.
When a response is received from the SDL Core, check if the submenu was added

successfully. If it was, send an AddCommand RPC for each item in the submenu.

O NOTE

You should not mix usage of the SDLScreenManager menu features and
menu RPCs described above. You must use either one system or the other,
but not both.

Popup Menus

SDL supports modal menus. The user can respond to the list of menu options via touch,
voice (if voice recognition is supported by the head unit), or by keyboard input to search or
filter the menu.

There are several UX considerations to take into account when designing your menus. The
main menu should not be updated often and should act as navigation for your app. Popup

menus should be used to present a selection of options to your user.

Presenting a Popup Menu

Presenting a popup menu is similar to presenting a modal view to request input from your
user. It is possible to chain together menus to drill down, however, it is recommended to
do so judiciously. Requesting too much input from a driver while they are driving is

distracting and may result in your app being rejected by OEMs.

Present as Icon A grid of buttons with images

A grid of buttons with images along with a

search field in the HMI

Present Searchable as Icon

Present as List A vertical list of text

A vertical list of text with a search field in the
HMI

Present Searchable as List

Creating Cells

An SDLChoiceCell is similarto a UlTableViewCell without the ability to configure your
own Ul. We provide several properties on the SDLChoiceCell to set your data, but the
layout itself is determined by the manufacturer of the head unit.

O NOTE

On many systems, including VR commands will be exponentially slower than
not including them. However, including them is necessary for a user to be
able to respond to your prompt with their voice.

| OBJC | SWIFT |

Preloading Cells

If you know the content you will show in the popup menu long before the menu is shown

to the user, you can "preload" those cells in order to speed up the popup menu

presentation at a later time. Once you preload a cell, you can reuse it in multiple popup
menus without having to send the cell content to Core again.

| OBJC | SWIFT |

Presenting a Menu

To show a popup menu to the user, you must present the menu. If some or all of the cells
in the menu have not yet been preloaded, calling the present API will preload the cells
and then present the menu once all the cells have been uploaded. Calling present
without preloading the cells can take longer than if the cells were preloaded earlier in the
app's lifecycle especially if your cell has voice commands. Subsequent menu
presentations using the same cells will be faster because the library will reuse those cells

(unless you have deleted them).

MENU - LIST

First Choice Tertiary Text
.- Secondary Text ‘!

Second Choice Tertiary Text @
Secondary Text

Third Choice Tertiary Text
o Secondary Text @

Audio

MENU - ICON

Second
First Choice Choice Third Choice

=1

NOTE

When you preload a cell, you do not need to maintain a reference to it. If you
reuse a cell with the same properties that has already been preloaded (or
previously presented), the cell will automatically be reused.

CREATING A CHOICE SET

In order to present a menu, you must bundle together a bunch of SDLChoiceCell s into an
SDLChoiceSet .

O NOTE

If the SDLChoiceSet contains aninvalid set of SDLChoiceCell s, the
initializer will return nil . This can happen, for example, if you have duplicate
title text or if some, but not all choices have voice commands.

Some notes on various parameters (full documentation is available as APl documentation
on this website):

o Title: This is the title of the menu when presented

o Delegate: You must implement this delegate to receive callbacks based on the
user's interaction with the menu

e Layout: You may present your menu as a set of tiles (like a UlCollectionView) or a
list (like a UlTableView). If you are using tiles, it's recommended to use artworks
on each item.

| OBJC | SWIFT |

IMPLEMENTING THE CHOICE SET DELEGATE

In order to present a menu, you must implement SDLChoiceSetDelegate in order to
receive the user's input. When a choice is selected, you will be passed the cell that was
selected, the manner in which it was selected (voice or text), and the index of the cell in
the SDLChoiceSet that was passed.

OBJC | SWIFT

PRESENTING THE MENU WITH A MODE

Finally, you will present the menu. When you do so, you must choose a mode to present
itin. If you have no vrCommands on the choice cell you should choose manualOnly . If

vrFCommands are available, you may choose voiceRecognitionOnly or both .

You may want to choose this based on the trigger source leading to the menu being
presented. For example, if the menu was presented via the user touching the screen, you
may want to use a mode of manualOnly or both , but if the menu was presented via
the user speaking a voice command, you may want to use a mode of voiceRecognition
Only or both .

It may seem that the answer is to always use both . However, remember that you must
provide vrCommand s on all cells to use both , which is exponentially slower than not
providing vrCommand s (this is especially relevant for large menus, but less important
for smaller ones). Also, some head units may not provide a good user experience for bot
h.

Manual only Interactions occur only through the display

Interactions occur only through text-to-speech
VR only) .
and voice recognition

Interactions can occur both manually or
through VR

Both

MENU - MANUAL ONLY MODE

First Choice Tertiary Text
—7 Secondary Text Q

Second Choice Tertiary Text @
Secondary Text

Third Choice Tertiary Text
-7 Secondary Text @

A

Nav

PN

Audio Climate Phone

MENU - VOICE ONLY MODE

"9 Select an item from the menu

First Choice

Second Choice

Third Choice

OBJC | SWIFT

Presenting a Searchable Menu

In addition to presenting a standard menu, you can also present a "searchable" menu, that
is, @ menu with a keyboard input box at the top. For more information on implementing the
keyboard callbacks, see the Popup Keyboards guide.

MENU WITH SEARCH

Select an item from the menu X

First Choice Tertiary Text
-7 Secondary Text ‘!’

Second Choice Tertiary Text @
Secondary Text

Third Choice Tertiary Text
.- Secondary Text @

Audio

| OBJC | SWIFT |

Deleting Cells

You can discover cells that have been preloaded on screenManager.preloadedCells . You
may then pass an array of cells to delete from the remote system. Many times this is not
necessary, but if you have deleted artwork used by cells, for example, you should delete
the cells as well.

| OBJC | SWIFT |

Dismissing the Popup Menu (RPC v6.0+)

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/popup-keyboards/

You can dismiss a displayed choice set before the timeout has elapsed by sendinga Can
cellnteraction request. If you presented the choice set using the screen manager, you can
dismiss the choice set by calling cancel onthe SDLChoiceCell object that you
presented.

O NOTE

If connected to older head units that do not support this feature, the cancel
request will be ignored, and the choice set will persist on the screen until the
timeout has elapsed or the user dismisses it by making a selection.

| OBJC | SWIFT |

Duplicate Cell Titles

Starting with SDL v7.1+ choice cells no longer require unique titles in order to be
presented. For example, if you are trying to display points of interest as a list you can now
have multiple locations with the same name but are not the same location. You cannot
present multiple cells that are exactly the same. They must have some property that
makes them different, such as secondaryText or an artwork.

RPC V7.1+ CONNECTIONS

The titles on the choice set will be displayed as provided even if there are duplicate titles.

BACK Hello Sdl

Gas Station

Gas Station

Gas Station

Grocery Store

Grocery Store

RPC V7.0 AND BELOW CONNECTIONS

The titles on the choice set will have a number appended to them when there are duplicate
titles.

BACK Hello Sdl

Gas Station

Gas Station (2)

Gas Station (3)

Grocery Store

Grocery Store (2)

Using RPCs

If you don't want to use the SDLScreenManager , you can do this manually using the Ch
oice , CreatelnteractionChoiceSet , and Performinteraction . You will need to create C
hoice s, bundle them into CreatelnteractionChoiceSet s. As this is no longer a

recommended course of action, we will leave it to you to figure out how to manually do it.

Note that if you do manually create a Performinteraction and want to set a cancel id, the
SDLScreenManager takes cancel ids 0 - 10000. Any cancel id you set must be outside of
that range.

Popup Keyboards

Presenting a keyboard or a popup menu with a search field requires you to implement the
SDLKeyboardDelegate . Note that the initialText in the keyboard case often acts as
"placeholder text" and not as true initial text.

Presenting a Keyboard

You should present a keyboard to users when your app contains a "search’ field. For
example, in a music player app, you may want to give the user a way to search for a song
or album. A keyboard could also be useful in an app that displays nearby points of interest,

or in other situations.

O NOTE

Keyboards are unavailable for use in many countries when the driver is
distracted. This is often when the vehicle is moving above a certain speed,
such as 5 miles per hour. This will be automatically managed by the system.
Your keyboard may be disabled or an error returned if the driver is distracted.

SDL Example App

W Mask Input

backspace

< enter

| OBJC | SWIFT |

Implementing the Keyboard Delegate

Using the SDLKeyboardDelegate is required for popup keyboards and popup menus with
search. It involves two required methods (for handling the user's input and the keyboard's

unexpected abort), as well as several optional methods for additional functionality.

| OBJC | SWIFT |

Configuring Keyboard Properties

You can change default keyboard properties by updating sdlManager.screenManager.keyb
oardConfiguration . If you want to change the keyboard configuration for only one
keyboard session and keep the default keyboard configuration unchanged, you can
implement the customKeyboardConfiguration delegate method and pass back the single-

use KeyboardProperties for that given keyboard presentation.

KEYBOARD LANGUAGE

You can modify the keyboard language by changing the keyboard configuration's languag
e . For example, you can set an EN_US keyboard. It will defaultto EN_US if not
otherwise set.

OBJC | SWIFT

LIMITED CHARACTER LIST

You can modify the keyboard to enable only some characters by responding to the update
CharacterSet:completionHandler: delegate method or by changing the keyboard
configuration before displaying the keyboard. For example, you can enable only "a", "b",

and "c" on the keyboard. All other characters will be greyed out (disabled).

OBJC | SWIFT

AUTOCOMPLETE LIST

You can modify the keyboard to allow an app to pre-populate the text field with a list of
suggested entries as the user types by responding to the updateAutocompleteWithinput:a
utoCompleteResultsHandler: delegate method or by changing the keyboard configuration
before displaying the keyboard. For example, you can display recommended searches
"test1", "test2", and "test3" if the user types "tes".

O NOTE

A list of autocomplete results is only available on RPC 6.0+ connections. On

connections < RPC 6.0, only the first item will be available to the user.

OBJC | SWIFT

KEYBOARD LAYOUT

You can modify the keyboard layout by changing the keyboard configuration's keyboardL
ayout . For example, you can set a NUMERIC keyboard. It will defaultto QWERTY if not
otherwise set.

O NOTE

The numeric keyboard layout is only available on RPC 7.1+. See the section
Checking Keyboard Capabilities to determine if this layout is available.

SDL Example App

OBJC | SWIFT

You can modify the keyboard to mask the entered characters by changing the keyboard

configuration's masklInputCharacters .

SDL Example App

< enter

backspace

OBJC | SWIFT

Each keyboard layout has a number of keys that can be customized to your app's needs.

For example, you could set two of the customizable keys in QWERTY layout to be "I" and
"?" as seen in the image below. The available number and location of these custom keys is
determined by the connected head unit. See the section to

determine how many custom keys are available for any given layout.

SDL Example App

B Mask Input

| 0BJC | SWIFT |

Checking Keyboard Capabilities (RPC v7.1+)

Each head unit may support different keyboard layouts and each layout can support a
different number of custom keys. Head units may not support masking input. If you want
to know which keyboard features are supported on the connected head unit, you can
check the KeyboardCapabilities :

| 0BJC | SWIFT |

Dismissing the Keyboard (RPC v6.0+)

You can dismiss a displayed keyboard before the timeout has elapsed by sending a Canc
elinteraction request. If you presented the keyboard using the screen manager, you can
dismiss the choice set by calling dismissKeyboard with the cancellD that was returned
(if one was returned) when presenting.

O NOTE

If connected to older head units that do not support this feature, the cancel
request will be ignored, and the keyboard will persist on the screen until the
timeout has elapsed or the user dismisses it by making a selection.

| OBJC | SWIFT |

Using RPCs

If you don't want to use the SDLScreenManager , you can do this manually using the Perf
orminteraction RPC request. As this is no longer a recommended course of action, we
will leave it to you to figure out how to manually do it.

Note that if you do manually create a Performinteraction and want to set a cancel id, the
SDLScreenManager takes cancel ids 0 - 10000. Any cancel id you set must be outside of
that range.

Alerts and Subtle Alerts

SDL supports two types of alerts: a large popup alert that typically takes over the whole
screen and a smaller subtle alert that only covers a small part of screen.

Checking if the Module Supports
Alerts

Your SDL app may be restricted to only being allowed to send an alert when your app is
open (i.e. the hmilLevel is non- NONE) or when it is the currently active app (i.e. the h
miLevel is FULL). Subtle alert is a new feature (RPC v7.0+) and may not be supported on
all modules.

| OBJC | SWIFT |

Alerts

An alert is a large pop-up window showing a short message with optional buttons. When
an alert is activated, it will abort any SDL operation that is in-progress, except the already-
in-progress alert. If an alert is issued while another alert is still in progress the newest
alert will wait until the current alert has finished.

Depending on the platform, an alert can have up to three lines of text, a progress indicator

(e.g. a spinning wheel or hourglass), and up to four soft buttons.

ALERT WITH NO SOFT BUTTONS

SDL Example App

NOTE

If no soft buttons are added to an alert some modules may add a default
"cancel” or "close" button.

ALERT WITH SOFT BUTTONS

SDL Example App

Button text Button 2 Text

Creating the AlertView

Use the SDLAlertView to set all the properties of the alert you want to present.

O NOTE

An SDLAlertView must contain at least either text, secondaryText or
audio for the alert to be presented.

TEXT

OBJC | SWIFT

BUTTONS

| OBJC | SWIFT |

ICON

An alert can include a custom or static (built-in) image that will be displayed within the
alert.

SDL Example App

You pushed the soft button!

OBJC | SWIFT

TIMEOUTS

An optional timeout can be added that will dismiss the alert when the duration is over.

Typical timeouts are between 3 and 10 seconds. If omitted, a default of 5 seconds is used.

OBJC | SWIFT

PROGRESS INDICATOR

Not all modules support a progress indicator. If supported, the alert will show an

animation that indicates that the user must wait (e.g. a spinning wheel or hourglass, etc).

If omitted, no progress indicator will be shown.

OBJECTIVE-C

OBJC | SWIFT

TEXT-TO-SPEECH

An alert can also speak a prompt or play a sound file when the alert appears on the
screen. This is done by creating an SDLAlertAudioData object and setting it in the SDLA

lertView

O NOTE

On Manticore, using alerts with audio (Text-To-Speech or Tones) work best
in Google Chrome, Mozilla Firefox, or Microsoft Edge. Alerts with audio
does not work in Apple Safari at this time.

OBJC | SWIFT

SDLAlertAudioData can also play an audio file.

OBJC | SWIFT

You can also play a combination of audio files and text-to-speech strings. The audio will
be played in the order you add them to the SDLAlertAudioData object.

OBJC | SWIFT

https://smartdevicelink.com/resources/manticore/

PLAY TONE

To play a notification sound when the alert appears, set playTone to true .

| 0BJC | SWIFT |

Showing the Alert

| OBJC | SWIFT |

Canceling/Dismissing the Alert

You can cancel an alert that has not yet been sent to the head unit.

On systems with RPC v6.0+ you can dismiss a displayed alert before the timeout has
elapsed. This feature is useful if you want to show users a loading screen while
performing a task, such as searching for a list for nearby coffee shops. As soon as you
have the search results, you can cancel the alert and show the results.

O NOTE

If connected to older head units that do not support this feature, the cancel
request will be ignored, and the alert will persist on the screen until the
timeout has elapsed or the user dismisses the alert by selecting a button.

O NOTE

Canceling the alert will only dismiss the displayed alert. If the alert has
audio, the speech will play in its entirety even when the displayed alert has
been dismissed. If you know you will cancel an alert, consider setting a
short audio message like "searching" instead of "searching for coffee shops,

please wait."

| 0BJC | SWIFT |

Using RPCs

You can also use RPCs to present alerts. You need to use the Alert RPC to do so. Note
that if you do so, you must avoid using soft button ids 0 - 10000 and cancel ids 0 - 10000
because these ranges are used by the ScreenManager .

Subtle Alerts (RPC v7.0+)

A subtle alert is a notification style alert window showing a short message with optional
buttons. When a subtle alert is activated, it will not abort other SDL operations that are in-
progress like the larger pop-up alert does. If a subtle alert is issued while another subtle
alert is still in progress the newest subtle alert will simply be ignored.

Touching anywhere on the screen when a subtle alert is showing will dismiss the alert. If
the SDL app presenting the alert is not currently the active app, touching inside the subtle
alert will open the app.

Depending on the platform, a subtle alert can have up to two lines of text and up to two
soft buttons.

NOTE

Because SubtleAlert is not currently supported in the ScreenManager ,
you need to be careful when setting soft buttons or cancel ids to ensure that
they do not conflict with those used by the ScreenManager . The ScreenM
anager takes soft button ids 0 - 10000 and cancel ids 0 - 10000. Ensure that
if you use custom RPCs that the soft button ids and cancel ids are outside

of this range.

SUBTLE ALERT WITH NO SOFT BUTTONS

SUBTLE ALERT WITH SOFT BUTTONS

Button Text

Button 2 Text

Creating the Subtle Alert

The following steps show you how to add text, images, buttons, and sound to your subtle
alert. Please note that at least one line of text or the "text-to-speech’ chunks must be set

in order for your subtle alert to work.

TEXT

OBJC | SWIFT

BUTTONS

| OBJC | SWIFT |

ICON

A subtle alert can include a custom or static (built-in) image that will be displayed within
the subtle alert. Before you add the image to the subtle alert, make sure the image is
uploaded to the head unit using the SDLFileManager . Once the image is uploaded, you
can show the alert with the icon.

@ You pushed the soft button!

OBJC | SWIFT

TIMEOUTS

An optional timeout can be added that will dismiss the subtle alert when the duration is

over. Typical timeouts are between 3 and 10 seconds. If omitted, a default of 5 seconds is

SWIFT

// Duration timeout is in milliseconds
subtleAlert.duration = @4000;

TEXT-TO-SPEECH

A subtle alert can also speak a prompt or play a sound file when the subtle alert appears
on the screen. This is done by setting the ttsChunks parameter.

O)-NIomm SWIFT

subtleAlert.ttsChunks = [SDLTTSChunk textChunksFromString:<#(nonnull NSString
¥)#>];

The ttsChunks parameter can also take a file to play/speak. For more information on

how to upload the file please refer to the Playing Audio Indications guide.

O)NIomm SWIFT

subtleAlert.ttsChunks = [SDLTTSChunk fileChunksWithName:<#(nonnull NSString
X)#>];

Showing the Subtle Alert

O)-NIom SWIFT

[self.sdIManager sendRequest:subtleAlert withResponseHandler:*(SDLRPCRequest
*request, SDLRPCResponse *response, NSError *error) {
if (Iresponse.success.boolValue) {
<#Print out the error if there is one#>
return;

}

<#Subtle alert was shown successfully#>

1;

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/speech-and-audio/playing-audio-indications/

Checking if the User Dismissed the Subtle Alert

If desired, you can be notified when the user tapped on the subtle alert by registering for
the SDLOnSubtleAlertPressed notification.

Of-NJomm SWIFT

[self.sdIManager subscribeToRPC:SDLDidReceiveSubtleAlertPressedNotification
withObserver:self selector:@selector(subtleAlertPressed)];

- (void) {
<#The subtle alert was pressed#>

}

Dismissing the Subtle Alert

You can dismiss a displayed subtle alert before the timeout has elapsed.

NOTE

Canceling the subtle alert will only dismiss the displayed alert. If you have
set the ttsChunk property, the speech will play in its entirety even when the
displayed subtle alert has been dismissed. If you know you will cancel a

subtle alert, consider setting a short ttsChunk .

There are two ways to dismiss a subtle alert. The first way is to dismiss a specific subtle
alert using a unique cancellD assigned to the subtle alert. The second way is to dismiss
whichever subtle alert is currently on-screen.

DISMISSING A SPECIFIC SUBTLE ALERT

OBJC SWIFT

// “cancellD" is the ID that you assigned when creating and sending the subtle alert
SDLCancellnteraction *cancellnteraction = [[SDLCancellnteraction alloc]
initWithSubtleAlertCancellD:cancellD];

[self.sdIManager sendRequest:cancellnteraction withResponseHandler:A(__kindof
SDLRPCRequest * _Nullable request, __kindof SDLRPCResponse * _Nullable
response, NSError * _Nullable error) {

if (response.success.boolValue) {
<#Print out the error if there is one#>
return;

}

<#The subtle alert was canceled successfully#>

1;

DISMISSING THE CURRENT SUBTLE ALERT

O)NIom SWIFT

SDLCancellnteraction *cancellnteraction = [SDLCancellnteraction subtleAlert];
[self.sdIManager sendRequest:cancellnteraction withResponseHandler:*(__kindof
SDLRPCRequest * _Nullable request, __kindof SDLRPCResponse * _Nullable
response, NSError * _Nullable error) {

if (Iresponse.success.boolValue) {
<#Print out the error if there is one#>
return;

}

<#The subtle alert was canceled successfully#>

1;

Media Clock

The media clock is used by media apps to present the current timing information of a

playing media item such as a song, podcast, or audiobook.

The media clock consists of three parts: the progress bar, a current position label and a
remaining time label. In addition, you may want to update the play/pause buttonicon to

reflect the current state of the audio or the media forward / back buttons to reflect if it will
skip tracks or time.

O NOTE
Media clock operations require the HMI status to be FULL . More
information on how to monitor the HMI status can be found in the

Understanding Permissions guide.

=1

NOTE

Ensure your app has an appType of media and you are using the media
template before implementing this feature.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/understanding-permissions/#hmi-levels

APPS Livio Music

JHLN PRENE:

John Prine

Linda Goes to Mars

Counting Up

In order to count up using the timer, you will need to set a start time that is less than the
end time. The "bottom end" of the media clock will always start at 0:00 and the "top end"
will be the end time you specified. The start time can be set to any position between 0 and
the end time. For example, if you are starting a song at 0:30 anditends at 4:13 the
media clock timer progress bar will start at the 0:30 position and start incrementing up
automatically every second until it reaches 4:13 . The current position label will start
counting upwards from 0:30 and the remaining time label will start counting down from
3:43 . When the end is reached, the current time label will read 4:13 , the remaining time
label will read 0:00 and the progress bar will stop moving.

The play / pause indicator parameter is used to update the play / pause button to your

desired button type. This is explained below in the section "Updating the Audio Indicator”

OBJC | SWIFT

Counting Down

Counting down is the opposite of counting up (I know, right?). In order to count down using
the timer, you will need to set a start time that is greater than the end time. The timer bar
moves from right to left and the timer will automatically count down. For example, if
you're counting down from 10:00 to 0:00 , the progress bar will be at the leftmost
position and start decrementing every second until it reaches 0:00 .

| 0BJC | SWIFT |

Pausing & Resuming

When pausing the timer, it will stop the timer as soon as the request is received and
processed. When a resume request is sent, the timer begins again at the paused time as
soon as the request is processed. You can update the start and end times using a pause

command to change the timer while remaining paused.

| OBJC | SWIFT |

Clearing the Timer

Clearing the timer removes it from the screen.

| OBJC | SWIFT |

Setting the Play / Pause Button Style
(RPC v5.0+)

The audio indicator is, essentially, the play / pause button. You can tell the system which
icon to display on the play / pause button to correspond with how your app works. For
example, if audio is currently playing you can update the play/pause button to show the
pause icon. On older head units, the audio indicator shows an icon with both the play and

pause indicators and the icon can not be updated.

For example, a radio app will probably want two button states: play and stop. A music app,
in contrast, will probably want a play and pause button. If you don't send any audio

indicator information, a play / pause button will be displayed.

Setting The Media Forward / Back
Button Style (RPC v7.1+)

As of RPC v7.1, you can set the style of the media forward / back buttons to show icons
for skipping time (in seconds) forward and backward instead of skipping tracks. The

skipping time style is common in podcast & audiobook media apps.

When you set the skip indicator style, you can set type TRACK , which is the default style
that shows "skip forward" and "skip back" indicators. This is the only style available on
RPC < 7.1 connections. You can also set the new type TIME , which will allow you to set

the number of seconds and display indicators for skipping forward and backward in time.

Track Style

APPS Livio Music

JHLN PRENE:

John Prine

Linda Goes to Mars

| OBJC | SWIFT |

Time Style

Livio Music

John Prine

Linda Goes To Mars

00:02:12 /00:03:08

| OBJC | SWIFT |

Adding Custom Playback Rate (RPC
v7.1+)

Many audio apps that support podcasts and audiobooks allow the user to adjust the audio
playback rate.

As of RPC v7.1, you can set the rate that the audio is playing at to ensure the media clock
accurately reflects the audio.

For example, a user can play a podcast at 125% speed or at 75% speed.

OBJC | SWIFT

O NOTE

CountRate has a default value of 1.0, and the CountRate will be reset to
1.0if any SetMediaClockTimer request does not have the parameter set.
To ensure that you maintain the correct CountRate in your application
make sure to set the parameter in all SetMediaClockTimer requests

(including when sending a RESUME request).

Slider

A SDLSlider creates a full screen or pop-up overlay (depending on platform) that a user
can control. There are two main SDLSlider layouts, one with a static footer and one with

a dynamic footer.

O NOTE

The slider will persist on the screen until the timeout has elapsed or the user

dismisses the slider by selecting a position or canceling.

A slider popup with a static footer displays a single, optional, footer message below the
slider Ul. A dynamic footer can show a different message for each slider position.

Slider Ul

10°

irl L A

Audio Climate Phone Nav

DYNAMIC SLIDER IN POSITION 1

10°

ir C A

Audio Climate Phone Nav

DYNAMIC SLIDER IN POSITION 2

4:30 10°

Creating the Slider

| OBJC | SWIFT |

Ticks

The number of selectable items on a horizontal axis.

| OBJC | SWIFT

Position

The initial position of slider control (cannot exceed numTicks).

| 0BJC | SWIFT

Header

The header to display.

| 0BJC | SWIFT |

Static Footer

The footer will have the same message across all positions of the slider.

| OBJC | SWIFT |

Dynamic Footer

This type of footer will have a different message displayed for each position of the slider.
The footer is an optional parameter. The footer message displayed will be based off of the
slider's current position. The footer array should be the same length as numTicks
because each footer must correspond to a tick value. Or, you can pass nil to have no
footer at all.

| 0BJC | SWIFT |

Cancel ID

An ID for this specific slider to allow cancellation through the Cancellnteraction RPC.
The ScreenManager takes cancel ids 0- 10000, so ensure any cancel id that you set is
outside of that range.

| OBJC | SWIFT |

Show the Slider

| 0BJC | SWIFT |

Dismissing a Slider (RPC v6.0+)

You can dismiss a displayed slider before the timeout has elapsed by dismissing either a
specific slider or the current slider.

O NOTE
If connected to older head units that do not support this feature, the cancel
request will be ignored, and the slider will persist on the screen until the
timeout has elapsed or the user dismisses by selecting a position or
canceling.

Dismissing a Specific Slider

| OBJC | SWIFT |

Dismissing the Current Slider

| OBJC | SWIFT |

Scrollable Message

A SDLScrollableMessage creates an overlay containing a large block of formatted text
that can be scrolled. It contains a body of text, a message timeout, and up to eight soft
buttons. To display a scrollable message in your SDL app, you simply send an SDLScrolla
bleMessage RPC request.

O NOTE

The message will persist on the screen until the timeout has elapsed or the
user dismisses the message by selecting a soft button or cancelling (if the
head unit provides cancel Ul).

Scrollable Message Ul

Button 1 | Button2 =
A 8 A

Audio Climate Phone Nav

Creating the Scrollable Message

Currently, you can only create a scrollable message view to display on the screen using
RPCs.

O NOTE

The SDLScreenManager uses soft buttonids 0 — 10000. Ensure that if you
use custom RPCs—such as this one—that the soft button ids you use are
outside of this range (i.e. > 10000).

| OBJC | SWIFT |

Dismissing a Scrollable Message
(RPC v6.0+)

You can dismiss a displayed scrollable message before the timeout has elapsed. You can
dismiss a specific scrollable message, or you can dismiss the scrollable message that is
currently displayed.

O NOTE

If connected to older head units that do not support this feature, the cancel
request will be ignored, and the scrollable message will persist on the
screen until the timeout has elapsed or the user dismisses the message by
selecting a button.

Dismissing a Specific Scrollable Message

| OBJC | SWIFT |

Dismissing the Current Scrollable Message

OBJC | SWIFT

Customizing the Template

You have the ability to customize the look and feel of the template. How much
customization is available depends on the RPC version of the head unit you are connected
with as well as the design of the HMI.

Customizing Template Colors (RPC
v5.0+)

You can customize the color scheme of your app using template coloring APIs.

Customizing the Default Layout

You can change the template colors of the initial template layout in the lifecycleConfigur
ation .

APPS SDL Example App

SmartDevicelink (SDL) Obj-C Example App

OBJC | SWIFT

O NOTE

You may only change the template coloring once per template; that is, you
cannot call changelLayout , SetDisplayLayout or Show for the template
you are already on and expect the color scheme to update.

Customizing Future Layouts

You can change the template color scheme when you change layouts. This guide requires
SDL iOS version 7.0. If using an older version, use SDLSetDisplayLayout (any RPC
version) or SDLShow (RPC v6.0+) request.

| OBJC | SWIFT |

Customizing the Menu Title and Icon

You can also customize the title and icon of the main menu button that appears on your
template layouts. The menu icon must first be uploaded with a specific name through the
file manager; see the Uploading Images section for more information on how to upload
your image.

OBJC | SWIFT

Customizing the Keyboard (RPC
v3.0+)

If you present keyboards in your app — such as in searchable interactions or another
custom keyboard — you may wish to customize the keyboard for your users. The best way
to do this is through the SDLScreenManager . For more information presenting
keyboards, see the Popup Keyboards section.

Setting Keyboard Properties

You can modify the language of the keyboard to change the characters that are displayed.

| OBJC | SWIFT |

Other Properties

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/uploading-images/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/popup-keyboards/

While there are other keyboard properties available on SDLKeyboardProperties , these
will be overridden by the screen manager. The keypressMode must be a specific
configuration for the screen manager's callbacks to work properly. The limitedCharacter
List , autoCompleteText , and autoCompleteList will be set on a per-keyboard basis in
the SDLKeyboardDelegate which is set onthe presentKeyboard and presentSearchabl
eChoiceSet methods.

Customizing Help Prompts

On some head units it is possible to display a customized help menu or speak a custom
command if the user asks for help while using your app. The help menu is commonly used
to let users know what voice commands are available, however, it can also be customized
to help your user navigate the app or let them know what features are available.

Configuring the Help Menu

You can customize the help menu with your own title and/or menu options. If you don't
customize these options, then the head unit's default menu will be used.

If you wish to use an image, you should check the sdIManager.systemCapabilityManager.
defaultMainWindowCapability.imageFields for an imageField.name of vrHelpltem to
see if that image is supported. If vrHelpltem is inthe imageFields array, then it can be
used. You will then need to upload the image using the file manager before using it in the
request. See the Uploading Images section for more information.

| 0BJC | SWIFT |

Configuring the Help Prompt

On head units that support voice recognition, a user can request assistance by saying

"Help." In addition to displaying the help menu discussed above a custom spoken text-to-

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/uploading-images/

speech response can be spoken to the user.

| 0BJC | SWIFT |

Configuring the Timeout Prompt

If you display any sort of popup menu or modal interaction that has a timeout — such as
an alert, interaction, or slider — you can create a custom text-to-speech response that will

be spoken to the user in the event that a timeout occurs.

| OBJC | SWIFT |

Clearing Help Menu and Prompt
Customizations

You can also reset your customizations to the help menu or spoken prompts. To do so,
you will send a ResetGlobalProperties RPC with the fields that you wish to clear.

OBJC | SWIFT

Playing Spoken Feedback

Since your user will be driving while interacting with your SDL app, speech phrases can
provide important feedback to your user. At any time during your app's lifecycle you can
send a speech phrase using the SDLSpeak request and the head unit's text-to-speech
(TTS) engine will produce synthesized speech from your provided text.

When using the SDLSpeak RPC, you will receive a response from the head unit once the
operation has completed. From the response you will be able to tell if the speech was
completed, interrupted, rejected or aborted. It is important to keep in mind that a speech
request can interrupt another ongoing speech request. If you want to chain speech
requests you must wait for the current speech request to finish before sending the next
speech request.

9 NOTE

On Manticore, spoken feedback works best in Google Chrome, Mozilla
Firefox, or Microsoft Edge. Spoken feedback does not work in Apple Safari

at this time.

Creating the Speak Request

The speech request you send can simply be a text phrase, which will be played back in
accordance with the user's current language settings, or it can consist of phoneme
specifications to direct SDL's TTS engine to speak a language-independent, speech-
sculpted phrase. It is also possible to play a pre-recorded sound file (such as an MP3)
using the speech request. For more information on how to play a sound file please refer to

Playing Audio Indications.

Getting the Supported Speech Capabilities

Once you have successfully connected to the module, you can access supported speech

capabilities properties on the SDLManager.systemCapabilityManager instance.

OBJC | SWIFT

Below is a list of commonly supported speech capabilities.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/speech-and-audio/playing-audio-indications/
https://smartdevicelink.com/resources/manticore/

Text Text phrases
SAPI Phonemes Microsoft speech synthesis API

File A pre-recorded sound file

Creating Different Types of Speak Requests

Once you know what speech capabilities are supported by the module, you can create the

speak requests.

TEXT PHRASE

| OBJC | SWIFT |

SAPI PHONEMES PHRASE

| OBJC | SWIFT |

Sending the Speak Request

| 0BJC | SWIFT |

Playing Audio Indications (RPC
v5.0+)

You can pass an uploaded audio file's name to SDLTTSChunk , allowing any API that
takes a text-to-speech parameter to pass and play your audio file. A sports app, for
example, could play a distinctive audio chime to notify the user of a score update

alongside an Alert request.

O NOTE

On Manticore, audio indications work best in Google Chrome, Mozilla
Firefox, or Microsoft Edge. Audio indications do not work in Apple Safari at
this time.

Uploading the Audio File

The first step is to make sure the audio file is available on the remote system. To upload
the file use the SDLFileManager .

OBJC | SWIFT

For more information about uploading files, see the Uploading Files guide.

Using the Audio File

Now that the file is uploaded to the remote system, it can be used in various RPCs, such
as Speak , Alert,and AlertManeuver . To use the audio file in an alert, you simply need
to construct a SDLTTSChunk referring to the file's name.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/uploading-files/
https://smartdevicelink.com/resources/manticore/

OBJC | SWIFT

Setting Up Voice Commands

Voice commands are global commands available anywhere on the head unit to users of
your app. Once the user has opened your SDL app (i.e. your SDL app has left the HMI state
of NONE) they have access to the voice commands you have setup. Your app will be
notified when a voice command has been triggered even if the SDL app has been
backgrounded.

O NOTE

v

The head unit manufacturer will determine how these voice commands are

triggered, and some head units will not support voice commands.

=1

NOTE

On Manticore, voice commands are viewed and activated by a tab in the right
hand section, not through a microphone.

You have the ability to create voice command shortcuts to your Main Menu cells which we
highly recommended that you implement. Global voice commands should be created for
functions that you wish to make available as voice commands that are not available as
menu cells. We recommend creating global voice commands for common actions such

as the actions performed by your Soft Buttons.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/main-menu/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/template-custom-buttons/
https://smartdevicelink.com/resources/manticore/

Creating Voice Commands

To create voice commands, you simply create and set SDLVoiceCommand objects to

the voiceCommands array on the screen manager.

| OBJC | SWIFT |

Unsupported Voice Commands

The library automatically filters out empty strings and whitespace-only strings from a
voice command's array of strings. For example, if a voice command has the following

array values: ["", "CommandA", ", "Command A"] the library will filter it to: ['CommandA",

"Command A"] .

If you provide an array of voice commands which only contains empty string and
whitespace-only strings across all of the voice commands, the upload request will be

aborted and the previous voice commands will remain available.

Duplicate Strings in Voice Commands

DUPLICATES BETWEEN DIFFERENT COMMANDS

Voice commands that are sent with duplicate strings in different voice commands, such
as:

Command1: ["Command A",

Command B'"],

Command2: ["Command B", "Command C"],

Command3: ["Command D", "Command E"]

Then the manager will abort the upload request. The previous voice commands will
remain available.

DUPLICATES IN THE SAME COMMAND

If any individual voice command contains duplicate strings, they will be reduced to one.
For example, if the voice commands to be sent are:

Command1: ["Command A",

Command A", "Command B'"],

Command2: ["Command C", "Command D"]

Then the manager will strip the duplicates to:

Command1: ["Command A", "

Command B'"],
Command D"]

Command2: ["Command C",

Deleting Voice Commands

To delete previously set voice commands, you just have to set an empty array to the voic

eCommands array on the screen manager.

OBJC | SWIFT

9 NOTE

Setting voice command strings composed only of whitespace characters

will be considered invalid (e.g.) and your request will be aborted by the

module.

Using RPCs

If you wish to do this without the aid of the screen manager, you can create SDLAddCom
mand objects without the menuParams parameter to create global voice commands.

Getting Microphone Audio

Capturing in-car audio allows developers to interact with users by requesting raw audio
data provided to them from the car's microphones. In order to gather the raw audio from
the vehicle, you must leverage the SDLPerformAudioPassThru RPC.

SDL does not support automatic speech cancellation detection, so if this feature is
desired, it is up to the developer to implement. The user may press an "OK" or "Cancel"
button, the dialog may timeout, or you may close the dialog with SDLEndAudioPassThru .

O NOTE
SDL does not support an open microphone. However, SDL is working on
wake-word support in the future. You may implement a voice command and
start an audio pass thru session when that voice command occurs.

https://smartdevicelink.com/en/docs/iOS/master/Classes/SDLPerformAudioPassThru/

9 NOTE

Manticore does not currently support the PerformAudioPassThru RPC
used for getting microphone audio.

Starting Audio Capture

Before you start an audio capture session you need to find out what audio pass thru
capabilities the module supports. You can then use that information to start an audio pass
thru session.

Getting the Supported Capabilities

You must use a sampling rate, bit rate, and audio type supported by the module. Once you
have successfully connected to the module, you can access these properties on the SDL
Manager.systemCapabilityManager instance.

OBJC | SWIFT

The module may return one or multiple supported audio pass thru capabilities. Each
capability will have the following properties:

Sampling Rate samplingRate The sampling rate

Bits Per Sample bitsPerSample The sample depth in bits

Audio Type audioType The audio type

https://smartdevicelink.com/resources/manticore/
https://smartdevicelink.com/resources/manticore/#support-notes

Sending the Audio Capture Request

To initiate audio capture, first construct a SDLPerformAudioPassThru request.

OBJC | SWIFT

RPC Builder

Ask me "What's the weather?"
or "What's 1 + 27"

Cancel

Gathering Audio Data

SDL provides audio data as fast as it can gather it and sends it to the developer in chunks.
In order to retrieve this audio data, the developer must add a handler to the SDLPerformA

udioPassThru .

NOTE

This audio data is only the current chunk of audio data, so the appis in
charge of saving previously retrieved audio data.

OBJC | SWIFT

FORMAT OF AUDIO DATA

The format of audio data is described as follows:

e It does not include a header (such as a RIFF header) at the beginning.

e The audio sample is in linear PCM format.

e The audio data includes only one channel (i.e. monaural).

o For bit rates of 8 bits, the audio samples are unsigned. For bit rates of 16 bits, the
audio samples are signed and are in little-endian.

Ending Audio Capture

SDLPerformAudioPassThru is a request that works in a different way than other RPCs.
For most RPCs, a request is followed by an immediate response, with whether that RPC
was successful or not. This RPC, however, will only send out the response when the audio

pass thru has ended.

Audio capture can be ended four ways:
1. The audio pass thru has timed out.

o If the audio pass thru surpasses the timeout duration, this request will be
ended with a resultCode of SUCCESS. You should handle the audio pass thru
as though it was successful.

2. The audio pass thru was closed due to user pressing "Cancel” (or other head-unit
provided cancellation button).

o If the audio pass thru was displayed, and the user pressed the "Cancel" button,
you will receive a resultCode of ABORTED. You should ignore the audio pass
thru.

3. The audio pass thru was closed due to user pressing "Done" (or other head-unit
provided completion button).

o If the audio pass thru was displayed and the user pressed the "Done" button,
you will receive a resultCode of SUCCESS. You should handle the audio pass

thru as though it was successful.
4. The audio pass thru was ended due to a request from the app for it to end.

o If the audio pass thru was displayed, but you have established on your own
that you no longer need to capture audio data, you can send an SDLEndAudioP
assThru RPC. You will receive a resultCode of SUCCESS. Depending on the
reason that you sent the SDLEndAudioPassThru RPC, you can choose whether
or not to handle the audio pass thru as though it were successful. See
Manually Stopping Audio Capture below for more details.

Manually Stopping Audio Capture

To force stop audio capture, simply send an SDLEndAudioPassThru request. Your SDLP
erformAudioPassThru request will receive response with a resultCode of SUCCESS
when the audio pass thru has ended.

| OBJC | SWIFT |

Handling the Response

To process the response received from an ended audio capture, make sure that you are
listening to the SDLPerformAudioPassThru response. If the response has a successful
result, all of the audio data for the audio pass thru has been received and is ready for
processing.

Batch Sending RPCs

There are two ways to send multiple requests to the head unit: concurrently and
sequentially. Which method you should use depends on the type of RPCs being sent.
Concurrently sent requests might finish in a random order and should only be used when

none of the requests in the group depend on the response of another, such as when
subscribing to several hard buttons. Sequentially sent requests only send the next request
in the group when a response has been received for the previously sent RPC. Requests
should be sent sequentially when you need to know the result of a previous request before
sending the next, like when sending the several different requests needed to create a

menu.

Both methods have optional progress and completion handlers. Use the progressHandle
r to check the status of each sent RPC; it will tell you if there was an error sending the
request and what percentage of the group has completed sending. The optional completi
onHandler is called when all RPCs in the group have been sent. Use it to check if all of
the requests have been sent successfully or not.

Sending Concurrent Requests

When you send multiple RPCs concurrently, it will not wait for the response of the previous
RPC before sending the next one. Therefore, there is no guarantee that responses will be
returned in order, and you will not be able to use information sent in a previous RPC for a
later RPC.

| 0BJC | SWIFT |

Sending Sequential Requests

Requests sent sequentially are sent in a set order. The next request is only sent when a
response has been received for the previously sent request.

The code example below shows how to create a perform interaction choice set. When
creating a perform interaction choice set, the SDLPerforminteraction RPC can only be
sent after the SDLCreatelnteractionChoiceSet RPC has been registered by Core, which is
why the requests must be sent sequentially.

OBJC | SWIFT

Retrieving Vehicle Data

You can use the SDLGetVehicleData and SDLSubscribeVehicleData RPC requests to
get vehicle data. Each vehicle manufacturer decides which data it will expose and to
whom they will expose it. Please check the response from Core to find out which data you
will have permission to access. Additionally, be aware that the user may have the ability to
disable vehicle data access through the settings menu of their head unit. It may be
possible to access vehicle data when the hmilLevel is NONE (i.e. the user has not
opened your SDL app) but you will have to request this permission from the vehicle
manufacturer.

O NOTE

You will only have access to vehicle data that is allowed to your appName
and appld combination. Permissions will be granted by each OEM

separately. See Understanding Permissions for more details.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/understanding-permissions/

Acceleration
Pedal

Position

Airbag Status

Belt Status

Body

Information

Climate Data

accPedalPositio

n

airbagStatus

beltStatus

bodyInformatio

n

climateData

Accelerator
pedal position
(percentage

depressed)

Status of each

of the airbagsin
the vehicle: yes,
no, no event, not

supported, fault

The status of
each of the seat
belts: no, yes,
not supported,

fault, or no event

Door ajar status
for each door.
Roof status.
Trunk & hood
Status. The
Ignition status.
The ignition
stable status.
The park brake

active status

Information
about cabin
temperature,
atmospheric
pressure, and
external

temperature

RPC v7.1+

Cloud App
Vehicle Id

Cluster Mode
Status

cloudAppVehicl
elD

clusterModeStat

us

Theid for the
vehicle when

connecting to
cloud

applications

Whether or not
the power mode
is active. The
power mode
qualification
status: power
mode undefined,
power mode
evaluation in
progress, not
defined, power
mode ok. The
car mode status:
normal, factory,
transport, or
crash. The
power mode
status: key out,
key recently out,
key approved,
post accessory,
accessory, post
ignition, ignition
on, running,

crank

RPC v5.1+

Device Status

Driver

Braking

deviceStatus

driverBraking

Contains
information
about the
smartphone
device. Is voice
recognition on
or off, has a
bluetooth
connection been
established, is a
call active, is the
phonein
roaming mode,
is a text
message
available, the
battery level, the
status of the
mono and
stereo output
channels, the
signal level, the
primary audio
source, whether
ornot an
emergency call
is currently

taking place

The status of the
brake pedal: yes,
no, no event,
fault, not

supported

E-Call

Information

Electronic
Parking
Brake Status

Emergency

event

eCallinfo

electronicParkin

gBrakeStatus

emergencyEvent

Information
about the status
of an emergency

call

The status of the
electronic
parking brake.
Available states:
closed,
transition, open,

drive active, fault

The type of
emergency:
frontal, side, rear,
rollover, no
event, not
supported, fault.
Fuel cutoff
status: normal
operation, fuel is
cut off, fault. The
roll over status:
yes, no, no event,
not supported,
fault. The
maximum
changein
velocity. Whether
or not multiple
emergency
events have

occurred

RPC v5.0+

Engine Oil
Life

Engine

Torque

External

Temperature

Fuel Level

Fuel Level
State

Fuel Range

engineQilLife

engineTorque

externalTempera

ture

fuelLevel

fuelLevel_State

fuelRange

The estimated
percentage (0% -
100%) of
remaining oil life

of the engine

Torque value for
engine (in Nm)
on non-diesel

variants

The external
temperature in

degrees celsius

The fuel level in
the tank

(percentage)

The fuel level
state: Unknown,
Normal, Low,
Fault, Alert, or

Not Supported

The estimate
range in KM the
vehicle can
travel based on
fuel level and
consumption.
As of RPC 7.0,
this also
contains Fuel
Level and Fuel
Level State

information.

RPC v5.0+

RPC v5.0+

RPC v7.1

RPC v7.0

RPC v7.0

Gear Status

GPS

Hands Off
Steering

gearStatus

gps

handsOffSteerin
g

Includes
information
about the
transmission,
the user's RPC v7.0+
selected gear,

and the actual

gear of the

vehicle.

Longitude and
latitude, current
time in UTC,
degree of
precision,
altitude,
heading, speed,
satellite data vs
dead reckoning,
and supported
dimensions of

the GPS

Status of hands
on steering

RPC v7.0+
wheels

capability

Head Lamp
Status

Instant Fuel

Consumption

My Key

Odometer

headLampStatu

S

instantFuelCons

umption

myKey

odometer

Status of the
head lamps:
whether or not
the low and high
beams are on or
off. The ambient
light sensor
status: night,
twilight 1,
twilight 2,
twilight 3,
twilight 4, day,

unknown, invalid

The
instantaneous
fuel
consumption in

microlitres

Information
about whether
or not the
emergency 911
override has

been activated

Odometer

reading in km

PRNDL

RPM

Seat

Occupancy

Speed

Stability
Control

Status

Steering
Wheel Angle

prndl

rpm

seatOccupancy

speed

stabilityControls
Status

steeringWheel A

ngle

The selected
gear thecaris
in: park, reverse,
neutral, drive,
sport, low gear,
first, second,
third, fourth,
fifth, sixth,
seventh or
eighth gear,
unknown, or

fault

The number of
revolutions per
minute of the

engine

The status of the
seats that show
whether each
seat is occupied
and belted or

not

Speed in KPH

Status of the
vehicle's stability
control and
trailer sway

control

Current angle of
the steering
wheel (in

degrees)

RPC v7.1+

RPC v7.0+

RPC v7.0

Tire Pressure

Turn Signal

VIN

Window
Status

tirePressure

turnSignal

vin

windowStatus

Tire status of
each wheel in
the vehicle:
normal, low,
fault, alert, or not
supported.
Warning light
status for the
tire pressure: off,
on, flash, or not

used

The status of the
turn signal.
Available states: RPC v5.0+
off, left, right,

both

The Vehicle
Identification

Number

An array of
window
locations and RPC v7.0+
approximate

position

The status of the
wipers: off,
automatic off,
off moving,
manual
interaction off,
manual
interaction on,
Wiper Status wiperStatus manual low,
manual high,
manual flick,
wash, automatic
low, automatic
high, courtesy
wipe, automatic
adjust, stalled,

no data exists

One-Time Vehicle Data Retrieval

To get vehicle data a single time, use the SDLGetVehicleData RPC.

| OBJC | SWIFT |

Subscribing to Vehicle Data

Subscribing to vehicle data allows you to get notifications whenever new data is available.
You should not rely upon getting this data in a consistent manner. New vehicle data is
available roughly every second but notification timing can vary between modules.

9 NOTE

Please note that if you are integrating an sdl_ios version less than v6.3, the
following example code will not work. We recommend updating to the latest

release version.

First, register to observe the SDLDidReceiveVehicleDataNotification notification:

OBJC | SWIFT

Second, send the SubscribeVehicleData request:

OBJC | SWIFT

Third, react to the notification when new vehicle data is received:

| OBJC | SWIFT |

Unsubscribing from Vehicle Data

We suggest that you only subscribe to vehicle data as needed. To stop listening to
specific vehicle data use the SDLUnsubscribeVehicleData RPC.

| 0BJC | SWIFT |

OEM-Specific Vehicle Data

OEM applications can access additional vehicle data published by their systems that is
not available via the SDL vehicle data APIs. This data is accessed using the same SDL

vehicle data RPCs, but instead of requesting a certain type of SDL-specified data, you must

request data using a custom vehicle data name. The type of object returned is up to the

OEM and must be parsed manually.

O NOTE

v

This feature is only for OEM-created applications and is not permitted for

3rd-party use.

Requesting One-Time OEM-Specific Vehicle Data

Below is an example of requesting a custom piece of vehicle data with the name OEM-X-
Vehicle-Data . To adapt this for subscriptions instead, you must look at the section
Subscribing to Vehicle Data above and adapt the example for subscribing to custom

vehicle data based on what you see in the examples below.

OBJC | SWIFT

Remote Control Vehicle Features

The remote control framework allows apps to control modules such as climate, radio,
seat, lights, etc., within a vehicle. Newer head units can support multi-zone modules that

allow customizations based on seat location.

9 NOTE

If you are using this feature in your app, you will most likely need to request
permission from the vehicle manufacturer. Not all head units support the
remote control framework and only the newest head units will support multi-
zone modules.

Why Use Remote Control?

Consider the following scenarios:

e A radio application wants to use the in-vehicle radio tuner. It needs the functionality
to select the radio band (AM/FM/XM/HD/DAB), tune the radio frequency or change
the radio station, as well as obtain general radio information for decision making.

¢ A climate control application needs to turn on the AC, control the air circulation
mode, change the fan speed and set the desired cabin temperature.

e A user profile application wants to remember users' favorite settings and apply it
later automatically when the users get into the same/another vehicle.

Supported Modules

Currently, the remote control feature supports these modules:

REMOTE CONTROL MODULES RPC VERSION

Climate v4.5+
Radio v4.5+
Seat v5.0+
Audio v5.0+
Light v5.0+
HMI Settings v5.0+

The following table lists which items are in each control module.

CLIMATE

Climate

Enable

Current
Cabin
Temperat

ure

Desired
Cabin
Temperat

ure

AC
Setting

AC MAX
Setting

Air
Recirculat
ion

Setting

climateEnab

le

currentTemp

erature

desiredTemp

erature

acEnable

acMaxEnabl

@

circulateAirE

nable

on, off

N/A

N/A

on, off

on, off

on, off

Get/Set/Noti

fication

Get/Notificat

ion

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Enabled to
turn on the
climate
system,
Disabled to
turn off the
climate
system. All
other climate
items need
climate
enabled to

work.

Read only,
value range
depends on
OEM

Valuerange
depends on
OEM

Since v6.0

Since v4.5

Since v4.5

Since v4.5

Since v4.5

Since v4.5

Auto AC
Mode
Setting

Defrost
Zone

Setting

Dual
Mode
Setting

Fan
Speed
Setting

Ventilatio
n Mode
Setting

Heated
Steering
Wheel
Enabled

Heated
Windshiel
d Enabled

Heated
Rear
Window
Enabled

autoModeEn

able

defrostZone

dualModeEn

able

fanSpeed

ventilationM

ode

heatedSteeri
ngWheelEna
ble

heatedWind
shieldEnable

heatedRear
WindowEna
ble

on, off

front, rear,

all, none

on, off

0%-100%

upper, lower,

both, none

on, off

on, off

on, off

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Since v4.5

Since v4.5

Since v4.5

Since v4.5

Since v4.5

Since v5.0

Since v5.0

Since v5.0

CONTR
oL
ITEM

Heated
Mirrors
Enabled

RADIO

RPC
ITEM
NAME

heatedMirror

sEnable

VALUE
RANGE

on, off

TYPE

Get/Set/Noti

fication

RPC

COMMEN VERSIO
TS .
CHANG
ES
Since v5.0

Radio
Enabled

Radio
Band

Radio

Frequenc

y

Radio
RDS Data

Available
HD

Channels

Available
HD
Channels
(DEPREC
ATED)

radioEnable

band

frequencyint
eger /
frequencyFr

action

rdsData

availableHd

Channels

availableHD

true, false

AM, FM, XM

0-1710,0-9

RdsData

struct

Array size 0-

8, values 0-7

1-7

(Deprecated
in v6.0) (1-3
before v5.0)

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Notificat

ion

Get/Notificat

ion

Get/Notificat

ion

Read only, all
other radio
control items
need radio
enabled to

work

Valuerange
depends on
band

Read only

Read only

Read only

Since v4.5

Since v4.5

Since v4.5

Since v4.5

Since
v6.0,
replaces
available
HDs

Since
v4.5,
updated
inv5.0,
deprecate

dinv6.0

Current
HD

Channel

Radio
Signal
Strength

Signal
Change
Threshold

Radio
State

SIS Data

SEAT

hdChannel

signalStreng
th

signalStreng

thThreshold

state

sisData

07 (1-3
before v.5.0)
(1-7 between
v.5.0-6.0)

0-100%

0-100%

Acquiring,
acquired,
multicast,

not_found

SisData

struct

Get/Set/Noti

fication

Get/Notificat

ion

Get/Notificat

ion

Get/Notificat

ion

Get/Notificat

ion

Read only

Read only

Read only

Read only

Since
v4.5,
updated
in v5.0,
updated
in v6.0

Since v4.5

Since v4.5

Since v4.5

Since v5.0

Seat
Heating
Enabled

Seat
Cooling
Enabled

Seat
Heating

level

Seat
Cooling

level

Seat

Horizonta

| Position

heatingEnab
led

coolingEnab
led

heatingLevel

coolingLevel

horizontalPo

sition

true, false

true, false

0-100%

0-100%

0-100%

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Indicates
whether
heating is
enabled for a

seat

Indicates
whether
cooling is
enabled for a

seat

Level of the

seat heating

Level of the

seat cooling

Adjust a seat
forward/bac
kward, 0
means the
nearest
position to
the steering
wheel, 100%
means the
furthest
position
from the
steering

wheel

Since v5.0

Since v5.0

Since v5.0

Since v5.0

Since v5.0

Seat
) verticalPositi
Vertical 0-100%
on
Position
Seat-
Front frontVertical
) - 0-100%
Vertical Position
Position

Get/Set/Noti

fication

Get/Set/Noti

fication

Adjust seat
height (up or
down) in
casethereis
only one
actuator for
seat height, Since v5.0
0 means the

lowest

position,

100% means

the highest

position

Adjust seat

front height

(in case

there are two
actuators for

seat height),]
B Since v5.0
lowest

position,

100% means

the highest

position

Seat-Back
Vertical

Position

Seat Back
Tilt Angle

backVertical

Position

backTiltAngl

€

0-100%

0-100%

Get/Set/Noti

fication

Get/Set/Noti

fication

Adjust seat
back height
(in case
there are two
actuators for
seat height),
0 means the
lowest
position,
100% means
the highest

position

Backrest
recline, 0
means the
angle that
back top is
nearest to
the steering
wheel, 100%
means the
angle that
back top is
furthest from
the steering

wheel

Since v5.0

Since v5.0

Head
Support
Horizonta

| Position

Head
Support
Vertical

Position

Seat
Massagin
g Enabled

Massage
Mode

headSupport
HorizontalP

osition

headSupport
VerticalPosit

ion

massageEn
abled

massageMo
de

0-100%

0-100%

true, false

MassageMo
deData

struct

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Adjust head
support
forward/bac
kward, 0
means the
nearest
position to
the front,
100% means
the furthest
position
from the

front

Adjust head
support
height (up or
down), 0
means the
lowest
position,
100% means
the highest

position

Indicates
whether
massage is
enabled for a

seat

List of
massage
mode of

each zone

Since v5.0

Since v5.0

Since v5.0

Since v5.0

CONTR
oL
ITEM

Massage
Cushion

Firmness

Seat

memory

AUDIO

RPC
ITEM
NAME

massageCu
shionFirmne

SS

memory

VALUE
RANGE

MassageCus
hionFirmnes

s struct

SeatMemory

Action struct

TYPE

Get/Set/Noti

fication

Get/Set/Noti

fication

COMMEN
TS

List of
firmness of
each
massage

cushion

Seat

memory

RPC
VERSIO
N
CHANG
ES

Since v5.0

Since v5.0

Audio

Volume

Audio

Source

Keep

Context

Equalizer

Settings

volume 0%-100%
PrimaryAudi

source oSource
enum

keepContext true, false

equalizerSett EqualizerSet

ings tings struct

Get/Set/Noti

fication

Get/Set/Noti

fication

Set only

Get/Set/Noti

fication

The audio
source

volume level

Defines one
of the
available
audio

sources

Controls
whether the
HMI will keep
the current
application
context or
switch to the
default
media
Ul/APP
associated
with the

audio source

Defines the
list of
supported
channels
(band) and
their
current/desir
ed settings

on HMI

Since SDL
v5.0

Since SDL
v5.0

Since SDL
v5.0

Since SDL
v5.0

LIGHT

CONTR
oL
ITEM

Light
State

RPC
ITEM
NAME

lightState

HMI SETTINGS

CONTR
oL
ITEM

Display
Mode

Distance

Unit

Temperat

ure Unit

RPC
ITEM
NAME

displayMode

distanceUnit

temperature
Unit

VALUE
RANGE

Array of
LightState

struct

VALUE
RANGE

Day, Night,
Auto

Miles,

Kilometers

Fahrenheit,

Celsius

TYPE

Get/Set/Noti

fication

TYPE

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

COMMEN
TS

COMMEN
TS

Current
display
mode of the
HMI display

Distance
Unit used in
the HMI (for
maps/tracki
ng
distances)

Temperature
Unit used in

the HMI (for

temperature
measuring

systems)

RPC
VERSIO
N
CHANG
ES

Since SDL
v5.0

RPC
VERSIO
N
CHANG
ES

Since SDL

v5.0

Since SDL
v5.0

Since SDL
v5.0

Remote Control Button Presses

The remote control framework also allows mobile applications to send simulated button
press events for the following common buttons in the vehicle.

Climate

Radio

AC

AC MAX

RECIRCULATE

FAN UP

FAN DOWN

TEMPERATURE UP

TEMPERATURE DOWN

DEFROST

DEFROST REAR

DEFROST MAX

UPPERVENT

LOWERVENT

VOLUME UP

VOLUME DOWN

EJECT

SOURCE

SHUFFLE

REPEAT

Integration

For remote control to work, the head unit must support SDL RPC v4.4+. In addition, your
app's appType / additionalAppTypes must include REMOTE_CONTROL .

Multiple Modules (RPC v6.0+)

Each module type can have multiple modules in RPC v6.0+. In previous versions, only one
module was available for each module type. A specific module is controlled using the
unique id assigned to the module. When sending remote control RPCs to a RPC v6.0+
head unit, the modulelnfo.moduleld must be stored and provided to control the desired
module. If no moduleld is set, the HMI will use the default module of that module type.
When connected to <6.0 systems, the modulelnfo struct will be nil , and only the default
module will be available for control.

Getting Remote Control Module Information

Prior to using any remote control RPCs, you must check that the head unit has the remote
control capability. As you will encounter head units that do not support remote control, or
head units that do not give your application permission to read and write remote control

data, this check is important.

O NOTE

This check can be performed once your SDL app has left the HMI state of
NONE . More information on how to monitor the HMI status can be found
in the Understanding Permissions guide.

When connected to head units supporting RPC v6.0+, you should save this information for
future use. The moduleld contained within the modulelnfo struct on each capability is
necessary to control that module.

OBJC | SWIFT

GETTING MODULE DATA LOCATION AND SERVICE AREAS
(RPC V6.0+)

With the saved remote control capabilities struct you can get the location of the each
module and the area that it services. This will map to the grid graphic below. This
information is useful for creating a custom Ul.

O NOTE

This data is only available when connected to SDL RPC v6.0+ systems. On
previous systems, only one module per module type was available, so the
module's location didn't matter. You will not be able to build a custom Ul for
those cases and should use a generic Ul instead.

OBJC | SWIFT

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/understanding-permissions/#hmi-levels

You can also get an array of seats in the SDLSeatLocationCapability.seats array. Each S
DLSeatLocation object withinthe seats array will have a grid parameter. The grid
will tell you the location of that particular seat in the vehicle (See the graphic below).

| OBJC | SWIFT

The Grid

The grid system starts with the front left corner of the bottom level of the vehicle being

(col=0, row=0, level=0) . For example, assuming a vehicle manufactured for sale in the
United States with three seats in the backseat, (0, 0, 0) would be the drivers' seat. The
front passenger location would be at (2, 0, 0) and the rear middle seat would be at (1, 1,
0) . The colspan and rowspan properties tell you how many rows and columns that
module or seat takes up. The level property tells you how many decks the vehicle has
(i.e. a double-decker bus would have 2 levels).

Col+

[
i

- 1
(o,o,oju@,o,o)' |

Y -‘I

-‘r

\

I 01,0 (21,0) I

front passenger's
driver's seat: {col=0,

seat : {col=2,
row=0, level=0,

row=0, level=0,

row=0 colspan=1,
colspan=1,
rowspan=1,
rowspan=1,
levelspan=1}
levelspan=1}
rear-left seat : {col=0, rear-middle seat : rear-right seat :
row=1, level=0, {col=1, row=1, level=0, {col=2, row=1,
row=1 colspan=1, colspan=1, level=0, colspan=1,
rowspan=1, rowspan=1, rowspan=1,
levelspan=1} levelspan=1} levelspan=1}

Getting Module Data

Seat location does not affect the ability to get data from a module. Once you know you
have permission to use the remote control feature and you have moduleld s (when
connected to RPC v6.0+ systems), you can retrieve the data for any module. The following

code is an example of how to subscribe to the data of a climate module.

When connected to head units that only support RPC versions older than v6.0, there can
only be one module for each module type (e.g. there can only be one climate module, light
module, radio module, etc.), so you will not need to pass a moduleld .

SUBSCRIBING TO MODULE DATA

You can either subscribe to module data or receive it one time. If you choose to subscribe
to module data you will receive continuous updates on the vehicle data you have
subscribed to.

O NOTE

Subscribing to the OninteriorVehicleData notification must be done before
sending the SDLGetInteriorVehicleData request.

OBJC | SWIFT

After you subscribe to the SDLDidReceivelnteriorVehicleDataNotification you must also
subscribe to the module you wish to receive updates for. Subscribing to a module will

send a notification when that particular module is changed.
RPC < v6.0

OBJC | SWIFT

RPC v6.0+

OBJC | SWIFT

After you subscribe to the InteriorVehicleDataNotification you must also subscribe to
the module you wish to receive updates for. Subscribing to a module will send a

notification when that particular module is changed.

GETTING ONE-TIME DATA

To get data from a module without subscribing send a SDLGetInteriorVehicleData

request with the subscribe flag setto false .
RPC < v6.0

OBJC | SWIFT

RPC v6.0+

OBJC | SWIFT

Setting Module Data

Not only do you have the ability to get data from these modules, but, if you have the right
permissions, you can also set module data.

SETTING THE USER'S SEAT (RPC V6.0+)

Before you attempt to take control of any module, you should have your user select their
seat location as this affects which modules they have permission to control. You may
wish to show the user a map or list of all available seats in your app in order to ask them
where they are located. See Getting Module Data Location and Service Areas for
information useful in creating a custom Ul showing module location and service area. The
following example is only meant to show you how to access the available data and not
how to build your Ul/UX.

When the user selects their seat, you must send an SDLSetGlobalProperties RPC with
the appropriate userLocation property in order to update that user's location within the
vehicle (The default seat location is Driver).

| OBJC | SWIFT

GETTING CONSENT TO CONTROL A MODULE (RPC V6.0+)

Some OEMs may wish to ask the driver for consent before a user can control a module.
The SDLGetInteriorVehicleDataConsent RPC will alert the driver in some OEM head units
if the module is not free (another user has control) and allowMultipleAccess (multiple
users can access/set the data at the same time) is true . The allowMultipleAccess
property is part of the modulelnfo in the module object.

Check the allowed property inthe SDLGetInteriorVehicleDataConsentResponse to see
what modules can be controlled. Note that the order of the allowed array is 1-1 with the

modulelds array you passed into the SDLGetInteriorVehicleDataConsent RPC.

O NOTE

You should always try to get consent before setting any module data. If
consent is not granted you should not attempt to set any module's data.

OBJC | SWIFT

CONTROLLING A MODULE

Below is an example of setting climate control data. It is likely that you will not need to
set all the data as in the code example below. When connected to RPC v6.0+ systems, you
must set the moduleld in SDLSetlInteriorVehicleData.moduleData . When connected to
< v6.0 systems, there is only one module per module type, so you must only pass the type
of the module you wish to control.

When you received module information above in Getting Remote Control Module
Information on RPC v6.0+ systems, you received information on the location and servic
eArea of the module. The permission area of a module depends on that serviceArea .
The location of a module is like the seats array: it maps to the grid to tell you the
physical location of a particular module. The serviceArea maps to the grid to show how
far that module's scope reaches.

For example, a radio module usually serves all passengers in the vehicle, so its service
area will likely cover the entirety of the vehicle grid, while a climate module may only
cover a passenger area and not the driver or the back row. If a serviceArea is not
included, it is assumed that the serviceArea is the same as the module's location . If
neither is included, it is assumed that the serviceArea covers the whole area of the
vehicle. If a user is not sitting within the serviceArea 's grid , they will not receive

permission to control that module (attempting to set data will fail).
RPC < v6.0

OBJC | SWIFT

RPC v6.0+

OBJC | SWIFT

BUTTON PRESSES

Another unique feature of remote control is the ability to send simulated button presses
to the associated modules, imitating a button press on the hardware itself. Simply specify

the module, the button, and the type of press you would like to simulate.
RPC < v6.0

OBJC | SWIFT

RPC v6.0+

OJ-NIom SWIFT

SDLButtonPress *buttonPress = [[SDLButtonPress alloc]
initWithButtonName:SDLButtonNameTempUp moduleType:SDLModuleTypeClimate
moduleld: buttonPressMode:SDLButtonPressModeShort];

[self.sdIManager sendRequest:buttonPress withResponseHandler:*(__kindof
SDLRPCRequest * _Nullable request, __kindof SDLRPCResponse * _Nullable
response, NSError * _Nullable error) {

if(lresponse.success) { return; }

1;

RELEASING THE MODULE (RPC V6.0+)

When the user no longer needs control over a module, you should release the module so
other users can control it. If you do not release the module, other users who would

otherwise be able to control the module may be rejected from doing so.

O)-NIom SWIFT

SDLReleaselnteriorVehicleDataModule *releaselnteriorVehicleDataModule =
[[SDLReleaselnteriorVehicleDataModule alloc] initWithModuleType:<#ModuleType#>

moduleld: I;
[self.sdIManager sendRequest:releaselnteriorVehicleDataModule
withResponseHandler:*(__kindof SDLRPCRequest * _Nullable request

kindof

[——

if(!response.succéss) {return; }
<#Module Was Released#>

1;

Creating an App Service (RPC
v5.1+)

App services is a powerful feature enabling both a new kind of vehicle-to-app

communication and app-to-app communication via SDL.

App services are used to publish navigation, weather and media data (such as
temperature, navigation waypoints, or the current playlist name). This data can then be
used by both the vehicle head unit and, if the publisher of the app service desires, other
SDL apps.

Vehicle head units may use these services in various ways. One app service for each type
will be the "active" service to the module. For media, for example, this will be the media
app that the user is currently using or listening to. For navigation, it would be a navigation
app that the user is using to navigate. For weather, it may be the last used weather app, or
a user-selected default. The system may then use that service's data to perform various
actions (such as navigating to an address with the active service or to display the
temperature as provided from the active weather service).

An SDL app can also subscribe to a published app service. Once subscribed, the app will
be sent the new data when the app service publisher updates its data. To find out more
about how to subscribe to an app service check out the Using App Services guide.
Subscribed apps can also send certain RPCs and generic URI-based actions (see the
section Supporting Service RPCs and Actions below) to your service.

Currently, there is no high-level API support for publishing an app service, so you will have

to use raw RPCs for all app service related APIs.

Using an app service is covered in another guide.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/using-app-services/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/using-app-services/

App Service Types

Apps are able to declare that they provide an app service by publishing an app service
manifest. Three types of app services are currently available and more will be made
available over time. The currently available types are: Media, Navigation, and Weather. An

app may publish multiple services (one for each of the different service types) if desired.

Publishing an App Service

Publishing a service is a multi-step process. First, you need to create your app service
manifest. Second, you will publish your app service to the module. Third, you will publish
the service data using OnAppServiceData . Fourth, you must listen for data requests and
respond accordingly. Fifth, if your app service supports handling of RPCs related to your
service you must listen for these RPC requests and handle them accordingly. Sixth,
optionally, you can support URI-based app actions. Finally, if necessary, you can you
update or delete your app service manifest.

O NOTE

Please note that if you are integrating an sdl_ios version less than v6.3, the
example code in this guide will not work. We recommend updating to the

latest release version.

1. Creating an App Service Manifest

The first step to publishing an app service is to create an SDLAppServiceManifest
object. There is a set of generic parameters you will need to fill out as well as service type
specific parameters based on the app service type you are creating.

OBJC | SWIFT

CREATING A MEDIA SERVICE MANIFEST

Currently, there's no information you have to provide in your media service manifest! You'll
just have to create an empty media service manifest and set it into your general app
service manifest.

OBJC | SWIFT

CREATING A NAVIGATION SERVICE MANIFEST

You will need to create a navigation manifest if you want to publish a navigation service.
You will declare whether or not your navigation app will accept waypoints. That is, if your
app will support receiving multiple points of navigation (e.g. go to this McDonalds, then
this Walmart, then home).

OBJC | SWIFT |

CREATING A WEATHER SERVICE MANIFEST

You will need to create a weather service manifest if you want to publish a weather
service. You will declare the types of data your service provides in its SDLWeatherServic
eData .

| OBJC | SWIFT |

2. Publish Your Service

Once you have created your service manifest, publishing your app service is simple.

OBJC | SWIFT

Once you have your publish app service response, you will need to store the information
provided in its appServiceRecord property. You will need the information later when you
want to update your service's data.

WATCHING FOR APP RECORD UPDATES

As noted in the introduction to this guide, one service for each type may become the
"active" service. If your service is the active service, your SDLAppServiceRecord
parameter serviceActive will be updated to note that you are now the active service.

After the initial app record is passed to you in the SDLPublishAppServiceResponse , you
will need to be notified of changes in order to observe whether or not you have become
the active service. To do so, you will have to observe the new SDLSystemCapabilityTypeA
ppServices using GetSystemCapability and OnSystemCapability .

For more information, see the Using App Services guide and go to the Getting and

Subscribing to Services section.

3. Update Your Service's Data

After your service is published, it's time to update your service data. First, you must send
an onAppServiceData RPC notification with your updated service data. RPC notifications
are different than RPC requests in that they will not receive a response from the
connected head unit, and must use a different SDLManager method call to send.

O NOTE

You should only update your service's data when you are the active service;
service consumers will only be able to see your data when you are the active

service.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/using-app-services/#getting-and-subscribing-to-services

First, you will have to create an SDLMediaServiceData , SDLNavigationServiceData or
SDLWeatherServiceData object with your service's data. Then, add that service-specific
data object to an SDLAppServiceData object. Finally, create an SDLOnAppServiceData
notification, append your SDLAppServiceData object, and send it.

MEDIA SERVICE DATA

| OBJC | SWIFT |

NAVIGATION SERVICE DATA

| OBJC | SWIFT |

WEATHER SERVICE DATA

| 0BJC | SWIFT |

4. Handling App Service Subscribers

If you choose to make your app service available to other apps, you will have to handle

requests to get your app service data when a consumer requests it directly.

Handling app service subscribers is a two step process. First, you must register for
notifications from the subscriber. Then, when you get a request, you will either have to
send a response to the subscriber with the app service data or if you have no data to send,

send a response with a relevant failure result code.

LISTENING FOR REQUESTS

First, you will need to subscribe to GetAppServiceDataRequest notifications.. Then, when
you get the request, you will need to respond with your app service data. Therefore, you
will need to store your current service data after the most recent update using OnAppServ

iceData (see the section Update Your Service's Data).

OJ-NJomm SWIFT

__weak (self) weakSelf = self;

[self.sdIManager subscribeToRPC:SDLDidReceiveGetAppServiceDataRequest

withBlock:*(__kindof SDLRPCMessage * _Nonnull message) {
SDLGetAppServiceData *getAppServiceRequest = message;

// Send a response

SDLGetAppServiceDataResponse *response = [[SDLGetAppServiceDataResponse
alloc] initWithAppServiceData:<#Your App Service Data#>];

response.correlationlD = getAppServiceRequest.correlationID;

response.success = @YES;

response.resultCode = SDLResultSuccess;

response.info =

[weakSelf.sdIManager sendRPC:response];

1;

Supporting Service RPCs and Actions

5. Service RPCs

Certain RPCs are related to certain services. The chart below shows the current
relationships:

ButtonPress (OK) SendLocation

ButtonPress (SEEKLEFT) GetWayPoints
ButtonPress (SEEKRIGHT) SubscribeWayPoints
ButtonPress (TUNEUP) OnWayPointChange

ButtonPress (TUNEDOWN)

ButtonPress (SHUFFLE)

ButtonPress (REPEAT)

When you are the active service for your service's type (e.g. media), and you have declared
that you support these RPCs in your manifest (see the section Creating an App Service
Manifest), then these RPCs will be automatically routed to your app. You will have to set
up notifications to be aware that they have arrived, and you will then need to respond to

those requests.

OJ-NJomN SWIFT

SDLAppServiceManifest *manifest = [[SDLAppServiceManifest alloc] init];
// Everything else for your manifest

NSNumber *buttonPressRPCID = [[SDLFunctionID sharedinstance]
functionldForName:SDLRPCFunctionNameButtonPress];
manifest.handledRPCs = @[buttonPressRPCID];

[self.sdIManager subscribeToRPC:SDLDidReceiveButtonPressRequest
withObserver:self selector:@selector(buttonPressRequestReceived:)];

- (void) (SDLRPCRequestNotification *) {
SDLButtonPress *buttonPressRequest = (SDLButtonPress *)request.request;
// Check the request for the button name and long / short press

// Send a response
SDLButtonPressResponse *response =

response.correlationID = buttonPressRequest.correlationID;
response.success = @YES;

response.resultCode = SDLVehicleDataResultCodeSuccess;
response.info =

[self.sdIManager sendRPC:response];

6. Service Actions

App actions are the ability for app consumers to use the SDL services system to send
URIs to app providers in order to activate actions on the provider. Service actions are
schema-less, i.e. there is no way to define the appropriate URIs through SDL. If you already
provide actions through your app and want to expose them to SDL, or if you wish to start
providing them, you will have to document your available actions elsewhere (such as your

website).

If you're wondering how to get started with actions and routing, this is a very common
problem in iOS! Many apps support the x-callback-URL format as a common inter-app
communication method. There are also many libraries available for the purpose of

supporting URL routing.

In order to support actions through SDL services, you will need to observe and respond to
the PerformAppServicelnteraction RPC request.

O)NIom SWIFT

// Subscribe to PerformAppServicelnteraction requests
[self.sdIManager
subscribeToRPC:SDLDidReceivePerformAppServicelnteractionRequest
withObserver:self
selector:@selector(performAppServicelnteractionRequestReceived:)];

- (void) (SDLRPCRequestNotification
%) {

SDLPerformAppServicelnteraction *interactionRequest = notification.request;

// 1f you have multiple services, this will let you know which of your services is
being addressed
NSString *servicelD = interactionRequest.servicelD;

// The app id of the service consumer app that sent you this message
NSString *originAppld = interactionRequest.originApp;

// The URL sent by the consumer. This must be something you understand, e.g. a

http://x-callback-url.com/
https://github.com/devxoul/URLNavigator
https://github.com/joeldev/JLRoutes
https://github.com/skyline75489/SwiftRouter

URL scheme call. For example, if you were YouTube, it could be a URL to play a

specific video. If you were a music app, it could be a URL to play a specific song,
activate shuffle / repeat, etc.

NSURLComponents *interactionURLComponents = [NSURLComponents
componentsWithString:interactionRequest.serviceUri];

// A result you want to send to the consumer app.

NSString *result = ;

SDLPerformAppServicelnteractionResponse *response =
[[SDLPerformAppServicelnteractionResponse alloc]
initWithServiceSpecificResult:result];

// These are very important, your response won't work properly without them.
response.success = @NO;

response.resultCode = SDLResultGenericError;

response.correlationID = interactionRequest.correlationliD;

[self.sdIManager sendRPC:response];

Updating Your Published App Service

Once you have published your app service, you may decide to update its data. For example,
if you have a free and paid tier with different amounts of data, you may need to upgrade or
downgrade a user between these tiers and provide new data in your app service manifest.

If desired, you can also delete your app service by unpublishing the service.

7. Updating a Published App Service Manifest (RPC
v6.0+)

O)NIom SWIFT

SDLAppServiceManifest *manifest = [[SDLAppServiceManifest alloc]
initWithAppServiceType:SDLAppServiceTypeWeather];
manifest.weatherServiceManifest = <#Updated weather service manifest#>;

SDLPublishAppService *publishServiceRequest = [[SDLPublishAppService alloc]
initWithAppServiceManifest:manifest];
[self.sdIManager sendRequest:publishServiceRequest];

8. Unpublishing a Published App Service Manifest (RPC
v6.0+)

OJ-NIomm SWIFT

SDLUnpublishAppService *unpublishAppService = [[SDLUnpublishAppService alloc]

initWithServicelD: I;
[self.sdIManager sendRequest:unpublishAppService];

Using App Services (RPC v5.1+)

App services is a powerful feature enabling both a new kind of vehicle-to-app

communication and app-to-app communication via SDL.

App services are used to publish navigation, weather and media data (such as
temperature, navigation waypoints, or the current playlist name). This data can then be
used by both the vehicle head unit and, if the publisher of the app service desires, other

SDL apps. Creating an app service is covered in another guide.

Vehicle head units may use these services in various ways. One app service for each type
will be the "active" service to the module. For media, for example, this will be the media
app that the user is currently using or listening to. For navigation, it would be a navigation
app that the user is using to navigate. For weather, it may be the last used weather app, or
a user-selected default. The system may then use that service's data to perform various
actions (such as navigating to an address with the active service or to display the
temperature as provided from the active weather service).

An SDL app can also subscribe to a published app service. Once subscribed, the app will
be sent the new data when the app service publisher updates its data. This guide will cover
subscribing to a service. Subscribed apps can also send certain RPCs and generic URI-
based actions (see the section Sending an Action to a Service Provider, below) to your

service.

Currently, there is no high-level API support for using an app service, so you will have to
use raw RPCs for all app service related APIs.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/creating-an-app-service/

Getting and Subscribing to Services

Once your app has connected to the head unit, you will first want to be notified of all
available services and updates to the metadata of all services on the head unit. Second,
you will narrow down your app to subscribe to an individual app service and subscribe to
its data. Third, you may want to interact with that service through RPCs, or fourth, through

service actions.

9 NOTE
Please note that if you are integrating an sdl_ios version less than v6.3, the

example code in this guide will not work. We recommend updating to the

latest release version.

1. Getting and Subscribing to Available Services

To get information on all services published on the system, as well as on changes to
published services, you will use the SystemCapabilityManager .

OBJC | SWIFT

CHECKING THE APP SERVICE CAPABILITY

Once you've retrieved the initial list of app service capabilities or an updated list of app
service capabilities, you may want to inspect the data to find what you are looking for.
Below is example code with comments explaining what each part of the app service
capability is used for.

OBJC | SWIFT

2. Getting and Subscribing to a Service Type's Data

Once you have information about all of the services available, you may want to view or
subscribe to a service type's data. To do so, you will use the GetAppServiceData RPC.

Note that you will currently only be able to get data for the active service of the service
type. You can attempt to make another service the active service by using the PerformAp
pServicelnteraction RPC, discussed below in Sending an Action to a Service Provider.

| OBJC | SWIFT |

Interacting with a Service Provider

Once you have a service's data, you may want to interact with a service provider by

sending RPCs or actions.

3. Sending RPCs to a Service Provider

Only certain RPCs are available to be passed to the service provider based on their service
type. See the Creating an App Service guide Supporting Service RPCs and Actions section
for a chart detailing which RPCs work with which service types. The RPC can only be sent

to the active service of a specific service type, not to any inactive service.

Sending an RPC works exactly the same as if you were sending the RPC to the head unit

system. The head unit will simply route your RPC to the appropriate app automatically.

O NOTE

Your app may need special permissions to use the RPCs that route to app
service providers.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/creating-an-app-service/#supporting-service-rpcs-and-actions

| OBJC | SWIFT |

4. Sending an Action to a Service Provider

Actions are generic URI-based strings sent to any app service (active or not). You can also
use actions to request to the system that they make the service the active service for that
service type. Service actions are schema-less, i.e. there is no way to define the appropriate
URIs through SDL. The service provider must document their list of available actions
elsewhere (such as their website).

| 0BJC | SWIFT |

5. Getting a File from a Service Provider

In some cases, a service may upload an image that can then be retrieved from the module.
First, you will need to get the image name from the SDLAppServiceData (see point 2

above). Then you will use the image name to retrieve the image data.

| OBJC | SWIFT

Calling a Phone Number

The SDLDialNumber RPC allows you make a phone call via the user's phone. In order to
dial a phone number you must be sure that the device is connected via Bluetooth (even if
your device is also connected using a USB cord) for this request to work. If the phone is

not connected via Bluetooth, you will receive a result of REJECTED from the module.

Checking Your App's Permissions

SDLDialNumber is an RPC that is usually restricted by OEMs. As a result, a module may
reject your request if your app does not have the correct permissions. Your SDL app may

also be restricted to only being allowed to making a phone call when your app is open (i.e.
the hmilLevel is non- NONE) or when it is the currently active app (i.e. the hmiLevel is
FULL).

| OBJC | SWIFT |

Checking if the Module Supports
Calling a Phone Number

Since making a phone call is a newer feature, there is a possibility that some legacy
modules will reject your request because the module does not support the SDLDialNum
ber request. Once you have successfully connected to the module, you can check the
module's capabilities via the SDLManager.systemCapabilityManager as shown in the
example below. Please note that you only need to check once if the module supports
calling a phone number, however you must wait to perform this check until you know that

the SDL app has been opened (i.e. the hmiLevel is non- NONE).

O NOTE

If you discover that the module does not support calling a phone number or

that your app does not have the right permissions, you should disable any
buttons, voice commands, menu items, etc. in your app that would send the
SDLDialNumber request.

| OBJC | SWIFT |

Sending a DialNumber Request

Once you know that the module supports dialing a phone number and that your SDL app
has permission to send the SDLDialNumber request, you can create and send the

request.
O NOTE
SDLDialNumber strips all characters exceptfor 0-9, *, #, ,, ;,and
+ .

| OBJC | SWIFT |

Dial Number Responses

The SDLDialNumber request has three possible responses that you should expect:

1. SUCCESS - The request was successfully sent, and a phone call was initiated by the

user.
2. REJECTED - This can mean either:

o The user rejected the request to make the phone call.
o The phone is not connected to the module via Bluetooth.

3. DISALLOWED - Your app does not have permission to use the SDLDialNumber

request.

Setting the Navigation
Destination

The SDLSendLocation RPC gives you the ability to send a GPS location to the active

navigation app on the module.

When using the SDLSendLocation RPC, you will not have access to any information
about how the user interacted with this location, only if the request was successfully sent.
The request will be handled by the module from that point on using the active navigation
system.

Checking Your App's Permissions

The SDLSendLocation RPC is restricted by most OEMs. As a result, a module may reject
your request if your app does not have the correct permissions. Your SDL app may also be
restricted to only being allowed to send a location when your app is open (i.e. the hmilLe

vel is non- NONE) or when it is the currently active app (i.e. the hmilLevel is FULL).

| OBJC | SWIFT |

Checking if the Module Supports
Sending a Location

Since some modules will not support sending a location, you should check if the module
supports this feature before trying to use it. Once you have successfully connected to the
module, you can check the module's capabilities via the SDLManager.systemCapabilityM
anager as shown in the example below. Please note that you only need to check once if

the module supports sending a location, however you must wait to perform this check

until you know that the SDL app has been opened (i.e. the hmilLevel is non- NONE).

O NOTE

If you discover that the module does not support sending a location or that

your app does not have the right permissions, you should disable any
buttons, voice commands, menu items, etc. in your app that would send the
SDLSendLocation request.

| OBJC | SWIFT |

Using Send Location

To use the SDLSendLocation request, you must at minimum include the longitude and

latitude of the location.

| OBJC | SWIFT |

Checking the Result of Send Location

The SDLSendLocation request has three possible responses that you should expect:

1. SUCCESS - Successfully sent.

2. INVALID_DATA - The request contains invalid data and was rejected.

3. DISALLOWED - Your app does not have permission to use the SDLSendLocation
request.

Getting the Navigation
Destination (RPC v4.1+)

The SDLGetWayPoints and SDLSubscribeWayPoints RPCs are designed to allow you to
get the navigation destination(s) from the active navigation app when the user has

activated in-car navigation.

Checking Your App's Permissions

Both the SDLGetWayPoints and SDLSubscribeWayPoints RPCs are restricted by most
OEMs. As a result, a module may reject your request if your app does not have the correct
permissions. Your SDL app may also be restricted to only being allowed to get waypoints
when your app is open (i.e. the hmiLevel is non- NONE) or when it is the currently active
app (i.e. the hmilLevel is FULL).

| OBJC | SWIFT |

Checking if the Module Supports
Waypoints

Since some modules will not support getting waypoints, you should check if the module
supports this feature before trying to use it. Once you have successfully connected to the
module, you can check the module's capabilities via the SDLManager.systemCapabilityM
anager as shown in the example below. Please note that you only need to check once if
the module supports getting waypoints, however you must wait to perform this check until

you know that the SDL app has been opened (i.e. the hmilLevel is non- NONE).

O NOTE

If you discover that the module does not support getting navigation
waypoints or that your app does not have the right permissions, you should
disable any buttons, voice commands, menu items, etc. in your app that
would send the SDLGetWayPoints or SDLSubscribeWayPoints requests.

| 0BJC | SWIFT |

Subscribing to Waypoints

To subscribe to the navigation waypoints, you will have to set up your callback for
whenever the waypoints are updated, then send the SDLSubscribeWayPoints RPC.

| OBJC | SWIFT |

Unsubscribing from Waypoints

To unsubscribe from waypoint data, you must send the SDLUnsubscribeWayPoints RPC.

9 NOTE

You do not have to unsubscribe from the sdlManager.subscribe method,
you must simply send the unsubscribe RPC and no more callbacks will be

received.

| 0BJC | SWIFT |

One-Time Waypoints Request

If you only need waypoint data once without an ongoing subscription, you can use SDLGe
tWayPoints instead of SDLSubscribeWayPoints .

OBJC | SWIFT

Uploading Files

In almost all cases, you will not need to handle uploading images because the screen
manager API will do that for you. There are some situations, such as VR help-lists and
turn-by-turn directions, that are not currently covered by the screen manager so you will
have manually upload the image yourself in those cases. For more information about

uploading images, see the Uploading Images guide.

Uploading an MP3 Using the File
Manager

The SDLFileManager uploads files and keeps track of all the uploaded files names during
a session. To send data with the file manager you need to create either a SDLFile or SD

LArtwork object. SDLFile objects are created with alocal NSURL or NSData ; SDLA

rtwork uses a Ullmage .

| 0BJC | SWIFT |

Batching File Uploads

If you want to upload a group of files, you can use the SDLFileManager 's batch upload
methods. Once all of the uploads have completed you will be notified if any of the uploads
failed. If desired, you can also track the progress of each file in the group.

| OBJC | SWIFT |

File Persistence

SDLFile andits subclass SDLArtwork support uploading persistent files, i.e. files that
are not deleted when the car turns off. Persistence should be used for files that will be
used every time the user opens the app. If the file is only displayed for short time the file
should not be persistent because it will take up unnecessary space on the head unit. You
can check the persistence via:

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/uploading-images/

OBJC | SWIFT

9 NOTE

Be aware that persistence will not work if space on the head unit is limited.
The SDLFileManager will always handle uploading images if they are non-
existent.

Overwriting Stored Files

If a file being uploaded has the same name as an already uploaded file, the new file will be
ignored. To override this setting, set the SDLFile 's overwrite property to true .

| 0BJC | SWIFT |

Checking the Amount of File Storage
Left

To find the amount of file storage left for your app on the head unit, use the SDLFileMana

ger 's bytesAvailable property.

| OBJC | SWIFT |

Checking if a File Has Already Been
Uploaded

You can check out if an image has already been uploaded to the head unit via the SDLFile

Manager 's remoteFileNames property.

O)-NIomm SWIFT

BOOL isFileOnHeadUnit = [self.sdIManager.fileManager.remoteFileNames
containsObject:<#Name Uploaded As#>];

Deleting Stored Files

Use the file manager’s delete request to delete a file associated with a file name.

OJ-NJomm SWIFT

[self.sdIManager.fileManager deleteRemoteFileWithName:
completionHandler:A(BOOL success, NSUInteger bytesAvailable, NSError

*error) {
if (success) {
<#File was deleted successfully#>

}
1;

Batch Deleting Files

O)NIom SWIFT

[self.sdIManager.fileManager deleteRemoteFilesWithNames: @[
] completionHandler:A(NSError * _Nullable error)

U

{

if (error == nil) {
<#lmages were deleted successfully#>
}
il

Uploading Images

O NOTE

If you use the SDLScreenManager , image uploading for template graphics,
soft buttons, and menu items is handled for you behind the scenes.
However, you will still need to manually upload your images if you need
images in an alert, VR help lists, turn-by-turn directions, or other features not
currently covered by the SDLScreenManager .

You should be aware of these four things when using images in your SDL app:

1. You may be connected to a head unit that does not have the ability to display
images.

2. You must upload images from your mobile device to the head unit before using
them in a template.

3. Persistent images are stored on a head unit between sessions. Ephemeral images
are destroyed when a session ends (i.e. when the user turns off their vehicle).

4. Images can not be uploaded when the app's hmiLevel is NONE. For more

information about permissions, please review Understanding Permissions.

Checking if Graphics are Supported

Before uploading images to a head unit you should first check if the head unit supports
graphics. If not, you should avoid uploading unnecessary image data. To check if graphics
are supported, check the SDLManager.systemCapabilityManager.defaultMainWindowCap
ability property once the SDLManager has started successfully.

OBJC | SWIFT

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/understanding-permissions/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/template-images/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/template-custom-buttons/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/main-menu/

Uploading an Image Using the File
Manager

The SDLFileManager uploads files and keeps track of all the uploaded files names during

a session. To send data with the SDLFileManager , you need to create either a SDLFile
or SDLArtwork object. SDLFile objects are created with alocal NSURL or NSData ;
SDLArtwork a Ullmage .

| 0BJC | SWIFT |

Batch File Uploads, Persistence, etc.

Similar to other files, artworks can be persistent, batched, overwrite, etc. See Uploading

Files for more information.

Creating an OEM Cloud App Store
(RPC v5.1+)

SDL allows OEMs to offer an app store that lets users browse and install remote cloud
apps. If the cloud app requires users to login with their credentials, the app store can use
an authentication token to automatically login users after their first session.

O NOTE

v

An OEM app store can be a mobile app or a cloud app.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/uploading-files/

User Authentication

App stores can handle user authentication for the installed cloud apps. For example, users
can log in after installing a cloud app using the app store. After that, the app store will
save an authentication token for the cloud app in the local policy table. Then, the cloud
app can retrieve the authentication token from the local policy table and use it to
authenticate a user with the application. If desired, an optional parameter, CloudAppVehi
clelD , can be used to identify the head unit.

Setting and Getting Cloud App
Properties

An OEM's app store can manage the properties of a specific cloud app by setting and
getting its CloudAppProperties . This table summarizes the properties that are included
in CloudAppProperties :

appID

nicknames

enabled

authToken

cloudTransportType

hybridAppPreference

endpoint

O NOTE

v

applD for the cloud app

List of possible names for the cloud app. The
cloud app will not be allowed to connect if its

name is not contained in this list

If true, cloud app will be displayed on HMI

Used to authenticate the user, if the app

requires user authentication

Specifies the connection type Core should use.
Currently Core supports WS and WSS, but an
OEM can implement their own transport

adapter to handle different values

Specifies the user preference to use the cloud
app version, mobile app version, or whichever

connects first when both are available

Remote endpoint for websocket connections

Only trusted app stores are allowed to set or get CloudAppProperties for

other cloud apps.

Setting Cloud App Properties

App stores can set properties for a cloud app by sending a SetCloudAppProperties
request to Core to store them in the local policy table. For example, in this piece of code,
the app store can set the authToken to associate a user with a cloud app after the user
logs in to the app by using the app store:

| OBJC | SWIFT |

Getting Cloud App Properties

To retrieve cloud properties for a specific cloud app from local policy table, app stores can
send GetCloudAppProperties and specify the appld for that cloud app as in this
example:

OBJC | SWIFT

GETTING THE CLOUD APP ICON

Cloud app developers don't need to add any code to download the app icon. The cloud app
icon will be automatically downloaded from the url provided by the policy table and sent to
Core to be later displayed on the HMI.

Getting the Authentication Token

When users install cloud apps from an OEM's app store, they may be asked to login to that
cloud app using the app store. After logging in, app store can save the authToken in the
local policy table to be used later by the cloud app for user authentication.

A cloud app can retrieve its authToken from local policy table after starting the RPC

service. The authToken can be used later by the app to authenticate the user:

OBJC | SWIFT

Getting CloudAppVehiclelD (Optional)

The CloudAppVehiclelD is an optional parameter used by cloud apps to identify a head
unit. The content of CloudAppVehiclelD is up to the OEM's implementation. Possible
values could be the VIN or a hashed VIN.

The CloudAppVehiclelD value can be retrieved as part of the GetVehicleData RPC. To
find out more about how to retrieve CloudAppVehiclelD , check out the Retrieving Vehicle
Data section.

Encryption

Some OEMs may want to encrypt messages passed between your SDL app and the head
unit. If this is the case, when you submit your app to the OEM for review, they will ask you
to add a security library to your SDL app. It is also possible to encrypt messages even if
the OEM does not require encryption. In this case, you will have to work with the OEM to
get a security library. This section will show you how to add the security library to your

SDL app and configure optional encryption.

When Encryption is Needed

OEM Required Encrypted RPCs

OEMs may want to encrypt all or some of the RPCs being transmitted between your SDL
app and SDL Core. The library will handle encrypting and decrypting RPCs that are required
to be encrypted.

OEM Required Encrypted Video and Audio

OEMs may want to encrypt video and audio streaming. Information on how to set up
encrypted video and audio streaming can be found in Video Streaming for Navigation Apps

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/retrieving-vehicle-data/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/video-streaming-for-navigation-apps/introduction/

> Introduction. The library will handle encrypting the video and audio data sent to the head
unit.

Optional Encryption

You may want to encrypt some or all of the RPCs you send to the head unit even if the
OEM does not require that they be protected. In that case you will have to manually
configure the payload protection status of every RPC that you send. Please note that if you
require that an RPC be encrypted but there is no security manager configured for the

connected head unit, then the RPC will not be sent by the library.

O NOTE

For optional encryption to work, you must work with each OEM to obtain
their proprietary security library.

Creating the Encryption Configuration

Each OEM that supports SDL will have their own proprietary security library. You must add
all required security libraries in the encryption configuration when you are configuring the
SDL app.

| 0BJC | SWIFT |

Getting the Encryption Status

Since it can take a few moments to set up the encryption manager, you must wait until you
know that setup has completed before sending encrypted RPCs. If your RPC is sent before

setup has completed, your RPC will not be sent. You can implement the SDLServiceEncry

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/video-streaming-for-navigation-apps/introduction/

ptionDelegate , which is set in SDLEncryptionConfiguration , to get updates to the
encryption manager state.

| OBJC | SWIFT |

Setting Optional Encryption

If you want to encrypt a specific RPC, you must configure the payload protected status of
the RPC before you send it to the head unit. In order to send RPCs with optional encryption
you must call startRPCEncryption onthe sdlManager to make sure the encryption
manager gets started correctly. The best place to put startRPCEncryption is in the
successful callback of startWithReadyHandler .

OBJC | SWIFT

Then, once you know the encryption manager has started successfully via encryption
manager state updates to your SDLServiceEncryptionDelegate object, you can start to

send encrypted RPCs by setting payloadProtected to true .

OBJC | SWIFT

Introduction

Mobile navigation allows map partners to easily display their maps as well as present
visual and audio turn-by-turn prompts on the head unit.

Navigation apps have different behavior on the head unit than normal applications. The
main differences are:

¢ Navigation apps don't use base screen templates. Their main view is the video
stream sent from the device.

¢ Navigation apps can send audio via a binary stream. This will attenuate the current
audio source and should be used for navigation commands.
o Navigation apps can receive touch events from the video stream.

Configuring a Module to Stream

In order to view the stream, you need a head unit to connect with that supports streaming.
If this is a physical module created by an OEM, such as a Ford TDK, you may need special
permissions from that OEM to test streaming. Physical modules often have strict
permissions and/or encryption requirements to stream.

The alternative is to stream over TCP to open-source Core. For more details on setting up
open-source Core and an HMI, see the Install and Run guide, and to set up video streaming
for that Core and HMI, see the Audio and Video Streaming guide. We recommend using

the built-in Generic_HMI server streaming instead of GStreamer socket or pipe streaming.

Configuring a Navigation App

The basic connection setup is similar for all apps. Please follow the Integration Basics
guide for more information.

In order to create a navigation app an appType of SDLAppHMITypeNavigation must be
setinthe SDLManager 's SDLLifecycleConfiguration .

The second difference is that a SDLStreamingMediaConfiguration must be created and
passed to the SDLConfiguration . A property called securityManagers must be set if
connecting to a version of Core that requires secure video and audio streaming. This
property requires an array of classes of security managers, which will conform to the SDL
SecurityType protocol. These security libraries are provided by the OEMs themselves, and
will only work for that OEM. There is no general catch-all security library.

OBJC | SWIFT

https://smartdevicelink.com/en/guides/core/getting-started/install-and-run/
https://smartdevicelink.com/en/guides/core/feature-documentation/audio-and-video-streaming/
https://github.com/smartdevicelink/generic_hmi#hmi-backend
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/integration-basics-ios/

S, MUST

When compiling your app for production, make sure to include all possible

OEM security managers that you wish to support.

Preventing Device Sleep

When building a navigation app, you should ensure that the device never sleeps while your
app is in the foreground of the device and is in an HMI level other than NONE . If your
device sleeps, it will be unable to stream video data. To do so, implement the following S
DLManagerDelegate method.

| 0BJC | SWIFT |

Keyboard Input

To present a keyboard (such as for searching for navigation destinations), you should use
the SDLScreenManager 's keyboard presentation feature. For more information, see the

Popup Keyboards guide.

Navigation Subscription Buttons

Head units supporting RPC v6.0+ may support navigation-specific subscription buttons for
the navigation template. These subscription buttons allow your user to manipulate the
map using hard buttons located on car's center console or steering wheel. It is important
to support these subscription buttons in order to provide your user with the expected in-
car navigation user experience. This is especially true on head units that don't support
touch input as there will be no other way for your user to manipulate the map. See
Template Subscription Buttons for a list of these navigation buttons.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/popup-keyboards/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/template-subscription-buttons/

When to Cancel Your Route

Between your navigation app, other navigation apps, and embedded navigation, only one
route should be in progress at a time. To know when the embedded navigation or another
navigation app has started a route, create a navigation service and when your service

becomes inactive, your app should cancel any active route.

OBJC | SWIFT

Video Streaming (RPC v4.5+)

To stream video from a SDL app use the SDLStreamingMediaManager class. A reference
to this class is available from the SDLManager . You can choose to create your own
video streaming manager or you can use the CarWindow API to easily stream video to
the head unit.

O NOTE

Due to an iOS limitation, video can not be streamed when the app on the
phone is in the background or the screen is off. Text will automatically be
displayed telling the user that they must bring the application to the
foreground. This text can be disabled by setting the SDLStreamingMediaM

anager 's showVideoBackgroundDisplay property to false .

Transports for Video Streaming

Transports are automatically handled for you. As of SDL v6.1+, the iOS library will
automatically manage primary transports and secondary transports for video streaming. If

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/other-sdl-features/creating-an-app-service/

Wi-Fi is available, the app will automatically connect using it after connecting over USB /
Bluetooth. This is the only way that Wi-Fi will be used in a production setting.

CarWindow

CarWindow is a system to automatically video stream a view controller screen to the
head unit. When you set the view controller, CarWindow will resize the view controller's
frame to match the head unit's screen dimensions. Then, when the video service setup has
completed, it will capture the screen and send it to the head unit.

To start, you will have to set a rootViewController , which can easily be set using one of
the convenience initializers: autostreaminglnsecureConfigurationWithinitialViewControll
er. or autostreamingSecureConfigurationWithSecurityManagers:initialViewController:

S, MUST

The view controller you are streaming must be a subclass of SDLCarWindo
wViewController or have only one supportedinterfaceQOrientation . The SD
LCarWindowViewController class prevents the rootViewController from
rotating. This is necessary because rotation between landscape and portrait
modes can cause the app to crash while the CarWindow API is capturing

an image.

There are several customizations you can make to CarWindow to optimize it for your
video streaming needs:

1. Choose how CarWindow captures and renders the screen using the carWindowRend
eringType enum.

2. By default, when using CarWindow, the SDLTouchManager will sync its touch
updates to the framerate. To disable this feature, set SDLTouchManager.enableSync

edPanning to NO.

3. As of SDL v7.1, if the HMI returns a desired framerate or max bitrate, the HMI's
preferred settings will be use to configure the video encoder. You do have the option
to change the default framerate and average bitrate via the SDLStreamingMediaCon
figuration.customVideoEncoderSettings. Please note that your custom settings will
override any settings received from the HMI except in the case where your custom

framerate or average bitrate is larger than what the HMI says it can support.

Below are the video encoder defaults:

@f
__bridge NSString *)kVTCompressionPropertyKey_ProfileLevel: (__bridge NSString

*kVTProfileLevel_H264_Baseline_AutoLevel,
(__bridge NSString *)kVTCompressionPropertyKey_RealTime: @YES,

(__bridge NSString *)kVTCompressionPropertyKey_ExpectedFrameRate: @15,
__bridge NSString *)kVTCompressionPropertyKey_AverageBitRate: @600000

%

Showing a New View Controller

Simply update sdIManager.streamManager.rootViewController to the new view

controller. This will also update the haptic parser.

Mirroring the Device Screen vs. Off-Screen Ul

It is recommended that you use an off-screen view controller for your Ul. This view
controller will appear on-screen in the car, while remaining off-screen on the device. It is
possible to mirror your device screen, however we strongly recommend against this

course of action.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/video-streaming-for-navigation-apps/supporting-haptic-input/

O NOTE

If you are using off-screen rendering, it is recommended that your on-screen
view controller not rotate. If it does, the lock screen will also rotate. Nothing
will break in this case, but the Ul won't look good if it rotates while your app

is streaming.

OFF-SCREEN

To set an off-screen view controller all you have to do is instantiate a new UIViewContro
ller class and use it to set the rootViewController .

OBJC | SWIFT

MIRRORING THE DEVICE SCREEN

If you must use mirroring to stream video please be aware of the following limitations:

1. Getting the app's topmost view controller using UlApplication.shared.keyWindow.ro
otViewController will not work as this will give you SDLs lock screen view
controller. The projected image you see in the car will be distorted because the view
controller being projected will not be resized correctly. Instead, the rootViewControl
ler should be set in the viewDidAppear:animated method of the UlViewController.

2. If mirroring your device's screen, the rootViewController should only be set after vie
wDidAppear:animated is called. Setting the rootViewController in viewDidLoad or vi
ewWillAppear:animated can cause weird behavior when setting the new frame.

3. If setting the rootViewController when the app returns to the foreground, the app
should register for the UlApplicationDidBecomeActive notification and not the UIAp
plicationWillEnterForeground notification. Setting the frame after a notification from
the latter can also cause weird behavior when setting the new frame.

4. Configure your SDL app so the lock screen is always visible. If you do not do this,

video streaming can stop when the device is rotated.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/adding-the-lock-screen/

Supporting Different Video Streaming View Sizes (SDL
v7.1+, RPC v7.1+)

Some HMIs support multiple view sizes and may resize your SDL app's view during video
streaming (i.e. to a collapsed view, split screen, preview mode or picture-in-picture). By
default, your app will support all the view sizes and the CarWindow will resize the view
controller's frame when the HMI notifies the app of the updated screen size. If you wish to
support only some screen sizes, you can configure the supportedPortraitStreamingRang
e and supportedLandscapeStreamingRange properties viathe SDLStreamingMediaCon
figuration before starting the video stream. This will allow you to limit support to one or a
combination of minimum/maximum resolutions, minimum diagonal, or
minimum/maximum aspect ratios. If you want to support all possible landscape or
portrait sizes you can simply set nil for the streaming range. If you wish to disable
support for all possible landscape or portrait orientations you can disable the streaming
range using the SDLVideoStreamingRange.disabled configuration.

CREATING THE VIDEO STREAMING RANGES

Below are some examples of how to configure a supported video streaming range:

OBJC | SWIFT

SETTING THE VIDEO STREAMING RANGES

Once you have configured a supported video streaming range, you can use it to set the su
pportedPortraitStreamingRange or supportedLandscapeStreamingRange properties

when you are configuring the SDLStreamingMediaConfiguration .

OBJC | SWIFT

O NOTE

If you disable both the supportedLandscapeStreamingRange and supporte
dPortraitStreamingRange , video will not stream.

GETTING THE UPDATED SCREEN SIZE

If the HMI resizes the view during streaming, the video stream will automatically restart
with the new size. If desired, you can subscribe to screen size updates via the SDLStream

ingVideoDelegate .

| OBJC | SWIFT |

Sending Raw Video Data

If you decide to send raw video data instead of relying on the CarWindow API to generate
that video data from a view controller, you must maintain the lifecycle of the video stream
as there are limitations to when video is allowed to stream. The app's HMI state on the
head unit and the app's application state on the device determines whether video can
stream. Due to an iOS limitation, video cannot be streamed when the app on the device is

no longer in the foreground and/or the device is locked/sleeping.

The lifecycle of the video stream is maintained by the SDL library. The SDLManager.strea
mingMediaManager can be accessed once the start method of SDLManager is called.
The SDLStreamingMediaManager automatically takes care of determining screen size

and encoding to the correct video format.

NOTE

It is not recommended to alter the default video format and resolution
behavior as it can result in distorted video or the video not showing up at all
on the head unit. However, that option is available to you by implementing S

DLStreamingMediaConfiguration.dataSource .

Sending Video Data

To check whether or not you can start sending data to the video stream, watch for the SD
LVideoStreamDidStartNotification , SDLVideoStreamDidStopNotification , and SDLVideo
StreamSuspendedNotification notifications. When you receive the start notification, start
sending video data; stop when you receive the suspended or stop notifications. You will
receive a video stream suspended notification when the app on the device is

backgrounded. There are parallel start and stop notifications for audio streaming.

Video data must be provided to the SDLStreamingMediaManager as a CVImageBufferR
ef (Apple documentation here). Once the video stream has started, you will not see video
appear until Core has received a few frames. Refer to the code sample below for an

example of how to send a video frame:

O)NJomm SWIFT

CVPixelBufferRef imageBuffer = <#Acquire Image Buffer#>;

if ([self.sdIManager.streamManager sendVideoData:imageBuffer] == NO) {
NSLog();

}

Best Practices

¢ A constant stream of map frames is not necessary to maintain an image on the
screen. Because of this, we advise that a batch of frames are only sent on map
movement or location movement. This will keep the application's memory

consumption lower.

https://developer.apple.com/library/mac/documentation/QuartzCore/Reference/CVImageBufferRef/

e For the best user experience, we recommend sending at least 15 frames per second.

Handling HMI Scaling (RPC v6.0+)

If the HMI scales the video stream, you will have to handle scaling the projected view,
touches and haptic rectangles yourself (this is all handled for you behind the scenes in the
CarWindow API). To find out if the HMI scales the video stream, you must for query and
check the SDLVideoStreamingCapability for the scale property. Please check the
Adaptive Interface Capabilities section for more information on how to query for this

property using the system capability manager.

Audio Streaming

A navigation app can stream raw audio to the head unit. This audio data is played
immediately. If audio is already playing, the current audio source will be attenuated and
your audio will play. Raw audio must be played with the following parameters:

e Format: PCM

e Sample Rate: 16k

¢ Number of Channels: 1

» Bits Per Second (BPS): 16 bits per sample / 2 bytes per sample

To stream audio from a SDL app, use the SDLStreamingMediaManager class. A

reference to this class is available from the SDLManager 's streamManager property.

Audio Stream Manager

The SDLAudioStreamManager will help you to do on-the-fly transcoding and streaming

of your files in mp3 or other formats, or prepare raw PCM data to be queued and played.

Starting the Audio Manager

Like the lifecycle of the video stream, the lifecycle of the audio stream is maintained by
the SDL library, therefore, you do not need to start the audio stream if you've set a

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/displaying-a-user-interface/adaptive-interface-capabilities/

streaming configuration when starting your SDLManager. When you receive the
SDLAudioStreamDidStartNotification, you can begin streaming audio.

PLAYING FROM FILE

OBJC | SWIFT |

PLAYING FROM DATA

| OBJC | SWIFT |

IMPLEMENTING THE DELEGATE

| OBJC | SWIFT |

Manually Sending Data

Once the audio stream is connected, data may be easily passed to the Head Unit. The
function sendAudioData: provides us with whether or not the PCM Audio Data was
successfully transferred to the Head Unit. If your app is in a state that it is unable to send

audio data, this method will return a failure. If successful playback will begin immediately.

OBJC | SWIFT

Touch Input

Navigation applications support touch events like single taps, double-taps, panning, and
pinch gestures. You can use the SDLTouchManager class to get touch events, or you can
manage the touch events yourself by listening for the SDLDidReceiveTouchEventNotifica

tion notification.

O NOTE

You must have a valid and approved appld from an OEM in order to receive

touch events.

Using SDLTouchManager

SDLTouchManager has multiple callbacks that will ease the implementation of touch

events. You can register for callbacks through the stream manager:

OBJC | SWIFT

O NOTE
The view passed from the following callbacks are dependent on using the

built-in focusable item manager to send haptic rects. See supporting haptic

input "Automatic Focusable Rects" for more information.

The following callbacks are provided:

OBJC | SWIFT

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/video-streaming-for-navigation-apps/supporting-haptic-input/

O NOTE

Points that are provided via these callbacks are in the head unit's coordinate

space. This is likely to correspond to your own streaming coordinate space.

You can retrieve the head unit dimensions from SDLStreamingMediaManag

er.screenSize .

Implementing onTouchEvent Yourself

If you want access to the raw touch data, you can subscribe to the touch event

notifications. The notification will contain the following data:

TYPE

BEGIN

MOVE

END

CANCEL

EVENT

Sent for the first touch event of a touch.

Sent if the touch moved.

Sent when the touch is lifted.

Sent when the touch is canceled (for example, if
a dialog appeared over the touchable screen

while the touch was in progress).

Unique ID of the touch. Increases for multiple
touches (0,1, 2, ...).

touchEventld

Timestamp of the head unit time. Can be used

timeStamp
to compare time passed between touches.
X and Y coordinates in the head unit coordinate
coord
system. (0, 0) is the top left.
EXAMPLE
O NOTE

Please note that if you are integrating an sdl_ios version less than v6.3, the
following example code will not work. We recommend updating to the latest
release version.

OBJC | SWIFT

Supporting Haptic Input (RPC
v4.5+)

SDL now supports "haptic" input: input from something other than a touch screen. This
could include trackpads, click-wheels, etc. These kinds of inputs work by knowing which
views on the screen are touchable and focusing / highlighting on those areas when the
user moves the trackpad or click wheel. When the user selects within a view, the center of
that area will be "touched".

O NOTE

Currently, there are no RPCs for knowing which view is highlighted, so your
Ul will have to remain static (i.e. you should not create a scrolling menu in
your SDL app).

You will also need to implement touch input support in order to receive touches on the
views. In addition, you must support the automatic focusable item manager in order to
receive a touched UlIView inthe SDLTouchManagerDelegate in addition to the CGPoin
t.

Automatic Focusable Rectangles

SDL has support for automatically detecting focusable views within your Ul and sending
that data to the head unit. You will still need to tell SDL when your Ul changes so that it
can re-scan and detect the views to be sent.

In order to use the automatic focusable item locator, you must set the UIWindow of your
streaming content on SDLStreamingMediaConfiguration.window . So long as the window
is set, the focusable item locator will start running. Whenever your app Ul updates, you will
need to send a notification:

OBJC | SWIFT

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/video-streaming-for-navigation-apps/touch-input/

=1

NOTE

When your renderingType is SDLCarWindowRenderingTypelLayer , the SDLD
idUpdateProjectionView notification should only be sent in the overridden
viewDidLayoutSubviews method of your rootViewController . If you do

not, your haptic rects may not update as you expect.

SDL can only automatically detect UlIButton s and anything else that
responds true to canBecomeFocused . This means that custom UlView
objects will not be found. You must send these objects manually, see

"Manual Focusable Rects".

Before Xcode 12.5, some built-in UIView subclasses, such as UlTextField ,
responded true to canBecomeFocused . That is not longer true, and you
must subclass these built-in views and implement canBecomeFocused to

return true .

Manual Focusable Rects

If you need to supplement the automatic focusable item locator, or do all of the location
yourself (e.g. views that are not focusable such as custom UlViews or OpenGL views),
then you will have to manually send and update the focusable rects using SDLSendHapti
cData . This request, when sent replaces all current rects with new rects; so, if you want
to clear all of the rects, you would send the RPC with an empty array. Or, if you want to add

a single rect, you must re-send all previous rects in the same request.

Usage is simple, you create the rects using SDLHapticRect , add a unique id, and send all
the rects using SDLSendHapticData .

OBJC | SWIFT

Displaying Turn Directions

While your app is navigating the user, you will also want to send turn by turn directions.
This is useful for if your app is in the background or if the user is in the middle of a phone
call, and gives the system additional information about the next maneuver the user must
make.

When your navigation app is guiding the user to a specific destination, you can provide the
user with visual and audio turn-by-turn prompts. These prompts will be presented even
when your SDL app is backgrounded or a phone call is ongoing.

While your app is navigating the user, you will also want to send turn by turn directions.
This is useful if your app is in the background or if the user is in the middle of a phone call,
and gives the system additional information about the next maneuver the user must make.

To create a turn-by-turn direction that provides both a visual and audio cues, a
combination of the SDLShowConstantTBT and SDLAlertManeuver RPCs must should
be sent to the head unit.

O NOTE

v

If the connected device has received a phone call in the vehicle, the SDLAler

tManeuver is the only way for your app to inform the user of the next turn.

Visual Turn Directions

The visual data is sent using the SDLShowConstantTBT RPC. The main properties that

should be set are navigationText1 , navigationText2 , and turnlcon . A best practice for

navigation apps is to use the navigationText1 as the direction to give (i.e. turn right) and
navigationText2 to provide the distance to that direction (i.e. 3 mi.).

Audio Turn Directions

The audio data is sent using the SDLAlertManeuver RPC. When sent, the head unit will
speak the text you provide (e.g. In 3 miles turn right).

Sending Audio and Visual Turn
Directions

| OBJC | SWIFT |

Remember when sending a SDLImage , that the image must first be uploaded to the head
unit with the SDLFileManager .

Clearing the Turn Directions

To clear a navigation direction from the screen, send a SDLShowConstantTBT with the
maneuverComplete property set to true. This will also clear the accompanying SDLAlert
Maneuver .

OBJC | SWIFT

Video Streaming Menu

When building a video-streaming navigation application, you can choose to create a
custom menu using your own Ul or use the built-in SDL menu system. The SDL menu
allows you to display a menu structure so users can select menu options or submenus.
For more information about the SDL menu system, see menus. It's recommended to use
the built-in SDL menu system to have better performance, automatic driver distraction
support - such as list limitations and text sizing, and more.

https://smartdevicelink.com/en/guides/iOS/displaying-a-user-interface/main-menu/

To open the SDL built-in menu from your video streaming Ul, see 'Opening the Built-In
Menu' below.

Opening the Built-In Menu

The Show Menu RPC allows you to open the menu programmatically. That way, you can

open the menu from your own UL

Show Top Level Menu

To show the top level menu use sdlManager.screenManager.openMenu .

| 0BJC | SWIFT |

Show Sub-Menu

You can also open the menu directly to a sub-menu. This is further down the tree than the
top-level menu. To open a sub-menu, pass a cell that contains sub-cells. If the cell has no
sub-cells the method call will fail.

9 NOTE

The sub-cell you use in openSubMenu must be included in sdIManager.scr
eenManager.menu array. If it is not included in the array, the method call will
fail.

| 0BJC | SWIFT |

Close Application

If you choose to not use the built-in SDL menu system and instead want to use your own
menu Ul, you need to have a way for users to close your application. This should be done
through a menu option in your Ul that sends the CloseApplication RPC.

O NOTE

v

This RPC is unnecessary if you are using OpenMenu because OEMs will
take care of providing a close button into your menu themselves.

OBJC | SWIFT

Configuring SDL Logging

A powerful built-in logging framework is available to make debugging your SDL app easier.
It provides many of the features common to other 3rd party logging frameworks for iOS
and can be used by your own app as well. We recommend that your app's integration with
SDL provide logging using this framework rather than any other 3rd party framework your
app may be using or NSLog . This will consolidate all SDL related logs in a common
format and to common destinations.

SDL will configure its logging into a production-friendly configuration by default. If you
wish to use a debug or a custom configuration, then you will have to specify this yourself.
SDLConfiguration allows you to pass a SDLLogConfiguration with custom values. A
few of these values will be covered in this section, the others are in their own sections
below.

When setting up your SDLConfiguration you can pass a different log configuration:

OBJC | SWIFT

Format Type

Currently, SDL provides three output formats for logs (for example into the console or file

log), these are "Simple", "Default”, and "Detailed".

Simple:

09:52:07:324 1 (SDL)Protocol - I'm a log!

Default:

09:52:07:324 1 (SDL)Protocol:SDLV2ProtocolHeader:25 — I'm also a log!

Detailed:

09:52:07:324 [i DEBUG com.apple.main-thread:(SDL)Protocol:[SDLV2ProtocolHeader

parse:]:74 — Me three!

Log Synchronicity

The configuration provides two properties, asynchronous and errorsAsynchronous . By
default asynchronous is true and errorsAsynchronous is false. This means that any
logs that are not logged at the error log level will be logged asynchronously on a separate
serial queue, while those on the error log level will be logged synchronously on the
separate queue (but the thread that logged it will be blocked until that log completes).

Log level

The globalLoglLevel defines which logs will be logged to the target outputs. For example,

if you set the log level to debug , all error, warning, and debug level logs will be logged,

but verbose level logs will not be logged.

Off none

Error error

Warning error and warning

Debug error, warning and debug

Verbose error, warning, debug and verbose
O NOTE

Although the default log level is defined in the SDLLogLevel enum, it
should not be used as a global log level. See the APl documentation for
more detail.

Targets

Targets are the output locations where the log will appear. By default only the OSLog log
target will be enabled in both default and debug configurations. You may configure
additional pre-built targets or create your own targets and add them.

APPLE SYSTEM LOG TARGET (DEPRECATED)

https://smartdevicelink.com/en/docs/iOS/master/Enums/SDLLogLevel/

The Apple System Logger target, SDLLogTargetAppleSystemLogger is now deprecated in
favor of the OS Log target which will do the same thing. It will be removed in a future
release. This target will log to the Xcode console and the device console.

OS LOG TARGET

The OSLog target, SDLLogTargetOSLog , is the default log target in both default and
debug configurations. For more information on this logging system see Apple's
documentation. SDL's OSLog target will take advantage of subsystems and levels to allow
you powerful runtime filtering capabilities through the MacOS Console app with a
connected device.

FILE TARGET

The File target, SDLLogTargetFile , allows you to log messages to a rolling set of files
which will be stored on the device, specifically in the Documents/smartdevicelink/log/
folder. The file names will be timestamped with the start time.

To access the file, you can either access it from runtime on the device (for example, to
attach it to an email that the user sends), or if you have access to the device, you can
access them via iTunes (pre-Catalina) or the MacOS Finder (post-Catalina). To access the
files on the device you must make the following small modifications to your app:

MACOS CATALINA OR LATER

1. Add the key UlFileSharingEnabled to your info.plist. Set the value to YES.

2. Connect the device to a MacOS computer.

3. Open the Finder, click on the device in the sidebar, then click on "Files" > "Your App
Name".

4. You should see a folder called "smartdevicelink". Drag and drop the folder to your
desktop (or somewhere in your file system). When you open the folder on your

computer, you will see the log files for each session (default maxes out at 3).
MACOS PRE-CATALINA

1. Add the key UlFileSharingEnabled to your info.plist. Set the value to YES.

https://developer.apple.com/reference/os/logging

2. Connect the device to a computer that has iTunes installed.

3. Open iTunes, click on the icon for the device, then click on "File Sharing" > "Your App
Name".

4. You should see a folder called "smartdevicelink". Select the folder and click "Save".
When you open the folder on your computer, you will see the log files for each

session (default maxes out at 3).

FILE LOGGING AND PRODUCTION RELEASES

1. You should remove the file sharing enabled info.plist key before submitting your app
to Apple.

2. If you are testing an archive build, you will only be able to view error and warning
logs if the build configuration was set to "release". To get debug and/or verbose logs

you must create the archive build with the build configuration set to "debug".

CUSTOM LOG TARGETS

The protocol all log targets conform to, SDLLogTarget , is public. If you wish to make a
custom log target in order to, for example, log to a server, it should be fairly easy to do so.
If it can be used by other developers and is not specific to your app, then submit it back to
the SmartDeviceLink iOS library project! If you want to add targets in addition to the

default target that will output to the console:

e)-NIomm SWIFT

logConfig.targets = [logConfig.targets
setByAddingObjectsFromArray:@[[SDLLogTargetFile loggerl]];

Modules

A module is a set of files packaged together. Create modules using the SDLLogFileModu
le class and add it to the configuration. Modules are used when outputting a log
message. The log message may specify a module instead of a specific file name for
clarity's sake. The SDL library will automatically add the modules corresponding to its own
files after you submit your configuration. For your specific use case, you may wish to

provide a module corresponding to your whole app's integration and simply name it with

your app's name, or, you could split it up further if desired. To add modules to the
configuration:

O)-NIomm SWIFT

logConfig.modules = [logConfig.modules

setByAddingObjectsFromArray:@[[SDLLogFileModule moduleWithName:
files:[NSSet setWithArray: @[, il

Filters

Filters are a compile-time concept of filtering in or out specific log messages based on a
variety of possible factors. Call SDLLogFilter to easily set up one of the default filters or
to create your own using a custom SDLLogFilterBlock . You can filter to only allow
certain files or modules to log, only allow logs with a certain string contained in the

message, or use regular expressions.

O)-NIom SWIFT

SDLLogFilter *filter = [SDLLogFilter filterByDisallowingString:
caseSensitive:NO|;

Logging with the SDL Logger

In addition to viewing the library logs, you also have the ability to log with the SDL logger.
All messages logged through the SDL logger, including your own, will use your SDLLogCo
nfiguration settings.

Objective-C Projects

First, import the SDLLogMacros header.

#import "SDLLogMacros.h"

Then, simply use the convenient log macros to create a custom SDL log in your project.

SDLLogV(
SDLLogD(

SDLLogW(
SDLLogE(

Swift Projects

To add custom SDL logs to your Swift project you must first install a submodule called
SmartDeviceLink/Swift.

COCOAPODS

If the SDL iOS library was installed using CocoaPods, simply add the submodule to the
Podfile and then install by running pod install in the root directory of the project.

target '<#Your Project Name#>' do
pod 'SmartDeviceLink', '~> <#SDL Version#>'

pod ‘SmartDeviceLink/Swift', '~> <#SDL Version#>'
end

SWIFT PACKAGE MANAGER

If the SDL iOS library was installed using Swift Package Manager, install the SmartDevice
LinkSwift target to your SPM installation. Then, where you want to log, import SmartDevi
celLinkSwift .

https://cocoapods.org/
https://swift.org/package-manager/

LOGGING IN SWIFT

Once you have access to the SmartDeviceLinkSwift enhancements, you can use the SDL
Log functions in your project.

SDLLog.v(
SDLLog.d(

SDLLog.w(
SDLLog.e(

Updating from v6.7 to v/7.0

The iOS library has made a number of breaking changes in SDL v7.0. This means that your
project is unlikely to compile without changes.

iI0S Minimum Version Changes

SDL i0S 7.0 now requires that your app's minimum supported version be iOS 10.0 or
greater — previously it was i0S 8.0. If your app's minimum version is already iOS 10.0 or
greater, then there's nothing you need to do! However, if you target a lower iOS version as
your minimum version, you will need to stay on SDL iOS v6.7 until you can move up your
minimum version. SDL iOS 7.0 has removed functionality shims necessary to allow it to

function properly on iOS versions below 10.0.

Changes to RPC Initializers

All deprecated methods have been removed. Most of the removed methods are RPC
initializers. If you are affected by this change, please look at the new available initializers

and choose one of those to use.

For example:

// This was deprecated and now removed
SDLAlert *alert = [[SDLAlert alloc] initWithAlertText1: alertText2:
alertText3: I;

// Replacement
SDLAlert *alert = [[SDLAlert alloc] init];
alert.alertText1 = ;
alert.alertText2 = :
alert.alertText3 =

1

We will be looking to improve RPC initializers in the future.

Other APl Removals

CONFIGURATIONS

Previously deprecated SDLConfiguration and other configuration APIs have been
removed.

In SDLLifecycleConfiguration , the SDLLifecycleConfiguration defaultConfigurationWithA
ppName:appld: method and it's debugConfiguration counterpart have been officially
removed. You must now use defaultConfigurationWithAppName:fullAppld: andit's debu
gConfiguration counterpart. Note that if you set a legacy app id into the fullAppld field,
everything will continue to work as it did on the previous API.

Several SDLStreamingMediaConfiguration APIs have also been removed. Any API that
took a security manager is now gone. In their stead, add your security manager onto an S
DLEncryptionConfiguration instance and pass it to the SDLConfiguration .

DELEGATE API REMOVALS

Delegate API removals require special attention because if you still implement the

deprecated method, that method will no longer work and there will no longer be a warning.

SDLKeyboardDelegate updateAutocompleteWithinput:completionHandler: has been
removed and is superseded by updateAutocompleteWithinput:autoCompleteResultsHan
dler: . The new method allows you to return a list of results. On older head units, only the

top result will be used.

SDLManagerDelegate managerShouldUpdateLifecycleToLanguage: has been removed
and is superseded by managerShouldUpdatelLifecycleToLanguage:hmiLangugage: . The
new method will alert you if either the VR language or the text language changes.

PERMISSION MANAGER

The SDLPermissionManager has had several APl removals. The primary change is to use
the SDLRPCFunctionName enum in place of the SDLPermissionRPCName NSString
typedef. This provides additional type safety when checking permissions for an RPC. Also
note that subscribeToORPCPermissions:groupType:withHandler: has slightly different
behavior than addObserverForRPCs:groupType:withHandler: when the groupType is SD
LPermissionGroupTypeAllAllowed for the initial callback. It will now only callback if all
items are allowed, whereas before it would callback no matter the initial status of the

group.
Other Deprecations

We did also deprecate a few APIs in this release.

1. SDLServiceUpdateReason enums were not correctly formed. We deprecated the
previous APIs and introduced new ones that are correctly formed.

2. Existing SDLCharacterSet sets were not standards-compliant and are deprecated.
New character sets have been added and will be used in future head units to
describe text fields.

3. The SDLLockScreenStatus notification now has a new type of payload. It has
changed from an SDLOnLockScreenStatus RPC to a SDLLockScreenStatusinfo
object. This is only important if you have built your own lock screen management

system instead of using the one provided through the SDL iOS library.

New Features

CHANGING TEMPLATE LAYOUT

The primary new feature is SDLManager.screenManager changelLayout:withCompletionHa
ndler: . This wraps the SDLSetDisplayLayout and SDLShow (on RPC v6.0+) ability to
change the template layout and color scheme. SDLSetDisplayLayout will be deprecated
in a future release, and this is now the preferred APl to manage layouts.

Can | Integrate SDL into a React
Native App?

SDL does work and can be integrated into a React Native application.

Please follow the React Native Getting Started guide for how to create a new React Native
application if you need one. To install SDL into your React Native app, you will need to
follow the React Native Native Module's guide to integrate the SDL library into your
application using React Native's Native Modules feature. You must make sure you have
Native Modules installed as a dependency in order to use 3rd party APIs in a React Native
application. If this is not done your app will not work with SmartDeviceLink. Native API
methods are not exposed to JavaScript automatically, this must be done manually by you.
Then see the SDL Installation Guide for more information on installing SDLs native library.

9 NOTE

This guide is not meant to walk you through how to make a React Native
app but help you integrate SDL into an existing application. We will show you
a basic example of how to communicate between your app's JavaScript
code and SDL's native Obj-C code. For more advanced features, please refer

to the React Native documentation linked above.

https://facebook.github.io/react-native/docs/getting-started
https://facebook.github.io/react-native/docs/native-modules-ios
https://facebook.github.io/react-native/docs/native-modules-setup
https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/installation/

Integration Basics

Native APl methods are not exposed automatically to JavaScript. This means you must
expose methods you wish to use from SDL to your React Native app. You must implement
the RCTBridgeModule protocol into a bridge class (see below for an example). Please
follow SmartDeviceLink Integration Basics guide for the basic setup of a native SDL Prox
yManager class that your bridge code will communicate with. This is the necessary
starting point in order to continue with this example. Also set up a simple Ul with buttons
and some text on the SDL side.

Creating the RCTBridge

To create a native module you must implement the RCTBridgeModule protocol. Update
your ProxyManager to include RCTBridgeModule .

OBJECTIVE-C
ProxyManager.h

#import <React/RCTBridgeModule.h>

@interface ProxyManager : NSObject <RCTBridgeModule>

<#Proxy Manager code#>

@end

ProxyManager.m
An RCT_EXPORT_MODULE() macro must be added to the implementation file to expose

the class to React Native.

@implementation ProxyManager

RCT_EXPORT_MODULE();
<#Proxy Manager code#>

@end

https://sdl-devportal-media-production.s3.amazonaws.com/guides/iOS/getting-started/integration-basics-ios/

SWIFT

Before you move forward, you must add #import "React/RCTBridgeModule.h" to your Bri
dging Header . When creating a Swift application and importing Objective-C code, Xcode
should ask if it should create this header file for you. You can create this file manually as

well. You must include this bridging header for your React Native app to work.

@objc(ProxyManager)

ProxyManager: NSObject {

<#Proxy Manager Code#>

}

Next, to expose the above Swift class to React Native, you must create an Objective-C file
and wrap the Swift class name ina RCT_EXTERN_MODULE in order to use the Swift

class in a React Native app.
ProxyManager.m

#import "React/RCTBridgeModule.h"

@interface RCT_EXTERN_MODULE(ProxyManager, NSObject)

@end

Emitting Event Notifications to JavaScript

Inside the ProxyManger class, post a notification for a particular event you wish to
execute. The 'Event Emitter' class, which you will see later in the documentation, will
observe this event notification and will call the React Native listener that you will set up
later in the documentation below.

Inside the ProxyManager add a soft button to your SDL HMI. Inside the soft button
handler, post the notification and pass along a reference to the sdlManager in order to

update your React Native Ul through the bridge.

O)NIom SWIFT

SDLSoftButtonObject *softButton = [[SDLSoftButtonObject alloc]
initWithName: state:[[SDLSoftButtonState alloc]
initWithStateName: text: artwork:nil] handler:*(SDLOnButtonPress
* _Nullable buttonPress, SDLOnButtonEvent * _Nullable buttonEvent) {
if (buttonPress == nil) { return; }

NSDictionary *userinfo = @{ : self.sdIManager};
[[NSNotificationCenter defaultCenter] postNotificationName:<#Notification
Name#> object:nil userinfo:managers];

1;

self.sdIManager.screenManager.softButtonObjects = @[softButton];

CREATE THE EVENTEMITTER BRIDGE CLASS

Create the class that will be the listener for the notification you created above. This class
will be sending and receiving messages from your JavaScript code (React Native). The
required supportedEvents method returns an array of supported event names. Sending
an event name that is not included in the array will result in an error. An "event" is sending

a message from native code to React Native code.

OBJECTIVE-C
SDLEventEmitter.h

#import <React/RCTEventEmitter.h>
#import <React/RCTBridgeModule.h>
#import <Foundation/Foundation.h>

NS_ASSUME_NONNULL_BEGIN

@interface SDLEventEmitter : RCTEventEmitter

(@le

NS_ASSUME_NONNULL_END

SDLEventEmitter.m

#import "SDLEventEmitter.h"

#import "ProxyManager.h"

#import <React/RCTConvert.h>

#import <SmartDeviceLink/SmartDeviceLink.h>

@implementation SDLEventEmitter

RCT_EXPORT_MODULE()

- (instancetype)init {

self = [super init];

// Subscribe to event notifications sent from ProxyManager

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(getDoActionNotification:) name:<#Notification Name#>
object:nil];

return self;

}

// Required Method defining known action names

- (NSArray<NSString *> *)supportedEvents {
return @[I;

}

// Run this code when the subscribed event notification is received
- (void)getDoActionNotification:(NSNotification *)notification {
if(self.sdIManager == nil) {
self.sdIManager = notification.userinfo[I;

}

// Send the event to your React Native code with a dictionary of information
[self sendEventWithName: body:@{ : H;

}
@end

SWIFT

@objc(SDLEventEmitter)
SDLEventEmitter: RCTEventEmitter {

override 1nit() {
// Subscribe to event notifications sent from ProxyManager
NotificationCenter.default.addObserver(self, selector: #selector(doAction(_:)),
name: Notification.Name(rawValue: , object: nil)
super.init()
}

// Required Method defining known action names
override () -> [String]! {
return []

}

// Run this code when the subscribed event notification is received
@objc (_ notification: Notification) {
if self.sdIManger == nil {
self.sdIManager = notification.userinfo[
}

// Send the event to your React Native code with a dictionary of information
sendEvent(withName: , body: [: 1)

}

JAVASCRIPT

The above example will call into your JavaScript code with an event type DoAction .
Inside your React Native (JavaScript) code, create a NativeEventEmitter object within
your EventEmitter module and add a listener for the event.

import { NativeEventEmitter, NativeModules } from 'react-native’,
const { SDLEventEmitter } = NativeModules;

const testEventEmitter = new NativeEventEmitter(SDLEventEmitter);

// Build a listener to listen for events
const testData = testEventEmitter.addListener(
'DoAction),
() => SDLEventEmitter.eventCall({

{

Exposing Native Methods to JavaScript

The last step is to wrap any native code methods you wish to expose to your JavaScript
code inside RCT_EXPORT_METHOD for Objective-C and RCT_EXTERN_METHOD for
Swift. We've seen above how native code can send notifications to your JavaScript code,
now we will see how your JavaScript code can send notifications into your native
SmartDevicelLink code. Inside the SDLEventEmitterm file add the following method:

OBJECTIVE-C

RCT_EXPORT_METHOD(eventCall:(NSDictionary *)dict) {
[self.sdIManager.screenManager beginUpdates];

self.sdIManager.screenManager.textField1 = [NSString stringWithFormat:
, [RCTConvert NSString:dict| Il 1;

self.sdIManager.screenManager.textField2 = [NSString stringWithFormat:
, [RCTConvert NSString:dict[Il 11;

[self.sdIManager.screenManager endUpdatesWithCompletionHandler:*(NSError *
Nullable error) {
if (error != nil) {
<#Error#>
} else {
<#Success#>
}

1;
}

SWIFT

If you're making a React Native application and using native Swift code, you will need to
create the Objective-C bridger for the SDLEventEmitter class you created above. Wrap
the method(s) you wish to expose ina RCT_EXTERN_METHOD macro inside your

wrapper class. This wrapper will allow the JavaScript code to talk with your native code.

NOTE

Make sure you add #import "React/RCTEventEmitter.h" to the apps
bridging header.

#import "React/RCTBridgeModule.h”
#import "React/RCTEventEmitter.h"

@interface RCT_EXTERN_MODULE(SDLEventEmitter, RCTEventEmitter)

RCT_EXTERN_METHOD(eventCall:(eventCall: (id)dict))

(@e

Add the following method to SDLEventEmitter.swift :

@objc (_ dict: NSDictionary) {
self.sdIManager.screenManager.beginUpdates()
= dict[]! as! NSDictionary

self.sdIManager.screenManager.textField1 = \(data[
High: \(data[
self.sdIManager.screenManager.endUpdates()

}

1) °F")
1) °F

By now you should have a basic React Native application that can send a message from

the Native side to the React Native layer. If done correctly the application should update

the SDL Ul when clicking the soft button on the head unit. The above documentation

walked you through how to send a message to React Native and receive a message

containing data back.

