
iOS Documentation
Document current as of 11/20/2018 03:14 PM.

Installation

In order to build your app on a SmartDeviceLink (SDL) Core, the SDL software

development kit (SDK) must be installed in your app. The following steps will

guide you through adding the SDL SDK to your workspace and configuring the

environment.

Install SDL SDK

There are three different ways to install the SDL SDK in your project:

CocoaPods, Carthage, or manually.

CocoaPods Installation

1. Xcode should be closed for the following steps.
2. Open the terminal app on your Mac.
3. Make sure you have the latest version of CocoaPods installed. For more

information on installing CocoaPods on your system please consult:

https://cocoapods.org.

sudo gem install cocoapods

https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://cocoapods.org
https://cocoapods.org

4. Navigate to the root directory of your app. Make sure your current folder

contains the .xcodeproj file
5. Create a new Podfile.

6. In the Podfile, add the following text. This tells CocoaPods to install SDL

SDK for iOS. SDL Versions are available on Github. We suggest always

using the latest release.

7. Install SDL SDK for iOS:

8. There will be a newly created .xcworkspace file in the directory in

addition to the .xcodeproj file. Always use the .xcworkspace file from

now on.
9. Open the .xcworkspace file. To open from the terminal, type:

pod init

target ‘<#Your Project Name#>’ do
 pod ‘SmartDeviceLink’, ‘~> <#SDL Version#>’
end

pod install

open <#Your Project Name#>.xcworkspace

https://github.com/smartdevicelink/sdl_ios/releases

Carthage Installation

SDL iOS supports Carthage! Install using Carthage by following this guide.

Manual Installation

Tagged to our releases is a dynamic framework file that can be drag-and-

dropped into the application.

SDK Configuration

1. Connect to a Remote System

If you do not have an SDL enabled head unit for testing, Manticore may work

for you. Manticore is a web-based emulator for testing how your app reacts to

real-world vehicle events, on-screen interactions, and voice recognition—just

like it would in a vehicle.

You can also build the sdl_core project on an Ubuntu VM or computer. The

sdl_core project is an emulator that lets you simulate sending and receiving

remote procedure calls between a smartphone app and a SDL Core.

NOTE

You cannot submit your app to the app store with the framework as

is. You MUST strip the simulator part of the framework first. Use a

script such as Carthage's to accomplish this.

https://github.com/Carthage/Carthage#adding-frameworks-to-an-application
https://smartdevicelink.com/resources/manticore/
https://github.com/smartdevicelink/sdl_core

2. Enable Background Capabilities

Your application must be able to maintain a connection to the SDL Core even

when it is in the background. This capability must be explicitly enabled for your

application (available for iOS 5+). To enable the feature, select your

application's build target, go to Capabilities, Background Modes, and select

External accessory communication mode.

3. Add SDL Protocol Strings

Your application must support a set of SDL protocol strings in order to be

connected to SDL enabled head units. Go to your application's .plist file and

add the following code under the top level dictionary.

NOTE

This is only required for USB and Bluetooth enabled head units. It is

not necessary during development using SDL Core.

4. Get an App Id

An app id is required for production level apps. The app id gives your app

special permissions to access vehicle data. If your app does not need to access

vehicle data, a dummy app id (i.e. create a fake id like "1234") is sufficient

during the development stage. However, you must get an app id before

releasing the app to the public.

<key>UISupportedExternalAccessoryProtocols</key>
<array>
<string>com.smartdevicelink.prot29</string>
<string>com.smartdevicelink.prot28</string>
<string>com.smartdevicelink.prot27</string>
<string>com.smartdevicelink.prot26</string>
<string>com.smartdevicelink.prot25</string>
<string>com.smartdevicelink.prot24</string>
<string>com.smartdevicelink.prot23</string>
<string>com.smartdevicelink.prot22</string>
<string>com.smartdevicelink.prot21</string>
<string>com.smartdevicelink.prot20</string>
<string>com.smartdevicelink.prot19</string>
<string>com.smartdevicelink.prot18</string>
<string>com.smartdevicelink.prot17</string>
<string>com.smartdevicelink.prot16</string>
<string>com.smartdevicelink.prot15</string>
<string>com.smartdevicelink.prot14</string>
<string>com.smartdevicelink.prot13</string>
<string>com.smartdevicelink.prot12</string>
<string>com.smartdevicelink.prot11</string>
<string>com.smartdevicelink.prot10</string>
<string>com.smartdevicelink.prot9</string>
<string>com.smartdevicelink.prot8</string>
<string>com.smartdevicelink.prot7</string>
<string>com.smartdevicelink.prot6</string>
<string>com.smartdevicelink.prot5</string>
<string>com.smartdevicelink.prot4</string>
<string>com.smartdevicelink.prot3</string>
<string>com.smartdevicelink.prot2</string>
<string>com.smartdevicelink.prot1</string>
<string>com.smartdevicelink.prot0</string>
<string>com.smartdevicelink.multisession</string>
<string>com.ford.sync.prot0</string>
</array>

To obtain an app id, sign up at smartdevicelink.com.

Integration Basics

How SDL Works

SmartDeviceLink works by sending remote procedure calls (RPCs) back and

forth between a smartphone application and the SDL Core. These RPCs allow

you to build the user interface, detect button presses, play audio, and get

vehicle data, among other things. You will use the SDL library to build your app

on the SDL Core.

Set Up a Proxy Manager Class

You will need a class that manages the RPCs sent back and forth between your

app and SDL Core. Since there should be only one active connection to the SDL

Core, you may wish to implement this proxy class using the singleton pattern.

OBJECTIVE-C

ProxyManager.h

#import <Foundation/Foundation.h>

NS_ASSUME_NONNULL_BEGIN

@interface ProxyManager : NSObject

+ (instancetype)sharedManager;

@end

NS_ASSUME_NONNULL_END

https://www.smartdevicelink.com

ProxyManager.m

SWIFT

#import "ProxyManager.h"

NS_ASSUME_NONNULL_BEGIN

@interface ProxyManager ()

@end

@implementation ProxyManager

+ (instancetype)sharedManager {
 static ProxyManager* sharedManager = nil;
 static dispatch_once_t onceToken;
 dispatch_once(&onceToken, ^{
 sharedManager = [[ProxyManager alloc] init];
 });

 return sharedManager;
}

- (instancetype)init {
 self = [super init];
 if (!self) {
 return nil;
 }
}

@end

NS_ASSUME_NONNULL_END

class ProxyManager: NSObject {
 // Singleton
 static let sharedManager = ProxyManager()

 private override init() {
 super.init()
 }
}

Your app should always start passively watching for a connection with a SDL

Core as soon as the app launches. The easy way to do this is by instantiating

the ProxyManager class in the didFinishLaunchingWithOptions() method in

your AppDelegate class.

The connect method will be implemented later. To see a full example, navigate

to the bottom of this page.

OBJECTIVE-C

SWIFT

@implementation AppDelegate

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 // Initialize and start the proxy
 [[ProxyManager sharedManager] connect];
}

@end

class AppDelegate: UIResponder, UIApplicationDelegate {
 func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [
UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 // Initialize and start the proxy
 ProxyManager.sharedManager.connect()

 return true
 }
}

Importing the SDL Library

At the top of the ProxyManager class, import the SDL for iOS library.

OBJECTIVE-C

SWIFT

Creating the SDL Manager

The SDLManager is the main class of SmartDeviceLink. It will handle setting

up the initial connection with the head unit. It will also help you upload images

and send RPCs.

#import <SmartDeviceLink/SmartDeviceLink.h>

import SmartDeviceLink

OBJECTIVE-C

#import "ProxyManager.h"
#import "SmartDeviceLink.h"

NS_ASSUME_NONNULL_BEGIN

@interface ProxyManager ()

@property (nonatomic, strong) SDLManager *sdlManager;

@end

@implementation ProxyManager

+ (instancetype)sharedManager {
 static ProxyManager *sharedManager = nil;
 static dispatch_once_t onceToken;
 dispatch_once(&onceToken, ^{
 sharedManager = [[ProxyManager alloc] init];
 });

 return sharedManager;
}

- (instancetype)init {
 self = [super init];
 if (!self) {
 return nil;
 }

 return self
}

@end

NS_ASSUME_NONNULL_END

SWIFT

1. Create a Lifecycle Configuration

In order to instantiate the SDLManager class, you must first configure an SDL

Configuration . To start, we will look at the SDLLifecycleConfiguration . You will

at minimum need a SDLLifecycleConfiguration instance with the application

name and application id. During the development stage, a dummy app id is

usually sufficient. For more information about obtaining an application id,

please consult the SDK Configuration section of this guide. You must also

decide which network configuration to use to connect the app to the SDL Core.

Optional, but recommended, configuration properties include short app name,

app icon, and app type.

There are two different ways to connect your app to a SDL Core: with a TCP (Wi-

Fi) network connection or with an iAP (USB / Bluetooth) network connection.

Use TCP for debugging and use iAP for production level apps.

IAP

class ProxyManager: NSObject {
 // Manager
 fileprivate var sdlManager: SDLManager!

 // Singleton
 static let sharedManager = ProxyManager()

 private override init() {
 super.init()
 }
}

NETWORK CONNECTION TYPE

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/getting-started/sdk-configuration/

OBJECTIVE-C

SWIFT

TCP

OBJECTIVE-C

SWIFT

SDLLifecycleConfiguration* lifecycleConfiguration = [
SDLLifecycleConfiguration defaultConfigurationWithAppName:
@"<#App Name#>" fullAppId:@"<#App Id#>"];

let lifecycleConfiguration = SDLLifecycleConfiguration(appName:
"<#App Name#>", fullAppId: "<#App Id#>")

SDLLifecycleConfiguration* lifecycleConfiguration = [
SDLLifecycleConfiguration debugConfigurationWithAppName:
@"<#App Name#>" fullAppId:@"<#App Id#>" ipAddress:@"<#IP
Address#>" port:<#Port#>];

let lifecycleConfiguration = SDLLifecycleConfiguration(appName:
"<#App Name#>", fullAppId: "<#App Id#>", ipAddress: "<#IP
Address#>", port: <#Port#>))

2. Short App Name (optional)

This is a shortened version of your app name that is substituted when the full

app name will not be visible due to character count constraints. You will want to

make this as short as possible.

OBJECTIVE-C

SWIFT

3. App Icon

This is a custom icon for your application. Please refer to Adaptive Interface

Capabilities for icon sizes.

NOTE

If you are connecting your app to an emulator using a TCP

connection, the IP address is your computer or virtual machine’s IP

address, and the port number is usually 12345.

lifecycleConfiguration.shortAppName = @"<#Shortened App Name#>"
;

lifecycleConfiguration.shortAppName = "<#Shortened App Name#>"

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/displaying-a-user-interface/adaptive-interface-capabilities/
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/displaying-a-user-interface/adaptive-interface-capabilities/

OBJECTIVE-C

SWIFT

UIImage* appImage = [UIImage imageNamed:@"<#AppIcon Name#>"
];
if (appImage) {
 SDLArtwork* appIcon = [SDLArtwork persistentArtworkWithImage:
appImage name:@"<#Name to Upload As#>" asImageFormat:
SDLArtworkImageFormatPNG /* or SDLArtworkImageFormatJPG */];
 lifecycleConfiguration.appIcon = appIcon;
}

if let appImage = UIImage(named: "<#AppIcon Name#>") {
 let appIcon = SDLArtwork(image: appImage, name: "<#Name to
Upload As#>", persistent: true, as: .JPG /* or .PNG */)
 lifecycleConfiguration.appIcon = appIcon
}

NOTE

Persistent files are used when the image ought to remain on the

remote system between ignition cycles. This is commonly used for

menu artwork, soft button artwork and app icons. Non-persistent

artwork is usually used for dynamic images like music album

artwork.

4. App Type (optional)

The app type is used by car manufacturers to decide how to categorize your

app. Each car manufacturer has a different categorization system. For example,

if you set your app type as media, your app will also show up in the audio tab

as well as the apps tab of Ford’s SYNC3 head unit. The app type options are:

default, communication, media (i.e. music/podcasts/radio), messaging,

navigation, projection, information, and social.

OBJECTIVE-C

SWIFT

NOTE

Navigation and projection applications both use video and audio

byte streaming. However, navigation apps require special

permissions from OEMs, and projection apps are only for internal

use by OEMs.

lifecycleConfiguration.appType = SDLAppHMITypeMedia;

lifecycleConfiguration.appType = .media

5. Template Coloring

You can alter the appearance of your app on a head unit in a consistent way

using template coloring APIs.

OBJECTIVE-C

NOTE

This will only work when connected to head units running SDL Core

v5.0 or later.

SDLRGBColor *green = [[SDLRGBColor alloc] initWithRed:126 green:188
 blue:121];
SDLRGBColor *white = [[SDLRGBColor alloc] initWithRed:249 green:251
 blue:254];
SDLRGBColor *darkGrey = [[SDLRGBColor alloc] initWithRed:57 green:
78 blue:96];
SDLRGBColor *grey = [[SDLRGBColor alloc] initWithRed:186 green:198
blue:210];
lifecycleConfiguration.dayColorScheme = [[SDLTemplateColorScheme
alloc] initWithPrimaryRGBColor:green secondaryRGBColor:grey
backgroundRGBColor:white];
lifecycleConfiguration.nightColorScheme = [[SDLTemplateColorScheme
alloc] initWithPrimaryRGBColor:green secondaryRGBColor:grey
backgroundRGBColor:darkGrey];

SWIFT

6. Lock Screen

A lock screen is used to prevent the user from interacting with the app on the

smartphone while they are driving. When the vehicle starts moving, the lock

screen is activated. Similarly, when the vehicle stops moving, the lock screen is

removed. You must implement a lock screen in your app for safety reasons. Any

application without a lock screen will not get approval for release to the public.

The SDL SDK can take care of the lock screen implementation for you,

automatically using your app logo and the connected vehicle logo. If you do not

want to use the default lock screen, you can implement your own custom lock

screen.

let green = SDLRGBColor(red: 126, green: 188, blue: 121)
let white = SDLRGBColor(red: 249, green: 251, blue: 254)
let grey = SDLRGBColor(red: 186, green: 198, blue: 210)
let darkGrey = SDLRGBColor(red: 57, green: 78, blue: 96)
lifecycleConfiguration.dayColorScheme = SDLTemplateColorScheme(
primaryRGBColor: green, secondaryRGBColor: grey,
backgroundRGBColor: white)
lifecycleConfiguration.nightColorScheme = SDLTemplateColorScheme(
primaryRGBColor: green, secondaryRGBColor: grey,
backgroundRGBColor: darkGrey)

NOTE

You may only change the template coloring in the lifecycleConfigur

ation and in SetDisplayLayout RPC requests. You may only

change the template coloring once per template. i.e. You cannot

change to the same template you are already on using SetDisplay

Layout and expect the coloring to change.

For more information, please refer to the Adding the Lock Screen section, for

this guide we will be using SDLLockScreenConfiguration 's basic enabledConfi

guration .

OBJECTIVE-C

SWIFT

7. Logging

A logging configuration is used to define where and how often SDL will log. It

will also allow you to set your own logging modules and filters. For more

information about setting up logging, see the logging guide.

OBJECTIVE-C

SWIFT

[SDLLockScreenConfiguration enabledConfiguration]

SDLLockScreenConfiguration.enabled()

[SDLLogConfiguration defaultConfiguration]

SDLLogConfiguration.default()

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/getting-started/adding-the-lock-screen/
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/developer-tools/configuring-sdl-logging/

8. Set the Configuration

The SDLConfiguration class is used to set the lifecycle, lock screen, logging,

and optionally (dependent on if you are a Navigation or Projection app)

streaming media configurations for the app. Use the lifecycle configuration

settings above to instantiate a SDLConfiguration instance.

OBJECTIVE-C

SWIFT

9. Create a SDLManager

Now you can use the SDLConfiguration instance to instantiate the SDLManag

er .

OBJECTIVE-C

SDLConfiguration* configuration = [SDLConfiguration
configurationWithLifecycle:lifecycleConfiguration lockScreen:[
SDLLockScreenConfiguration enabledConfiguration] logging:[
SDLLogConfiguration defaultConfiguration] fileManager:[
SDLFileManagerConfiguration defaultConfiguration]];

let configuration = SDLConfiguration(lifecycle: lifecycleConfiguration,
lockScreen: .enabled(), logging: .default(), fileManager: .default())

self.sdlManager = [[SDLManager alloc] initWithConfiguration:
configuration delegate:self];

SWIFT

10. Start the SDLManager

The manager should be started as soon as possible in your application's

lifecycle. We suggest doing this in the didFinishLaunchingWithOptions()

method in your AppDelegate class. Once the manager has been initialized, it

will immediately start watching for a connection with the remote system. The

manager will passively search for a connection with a SDL Core during the

entire lifespan of the app. If the manager detects a connection with a SDL Core,

the startWithReadyHandler will be called.

Create a new function in the ProxyManager class called connect .

OBJECTIVE-C

sdlManager = SDLManager(configuration: configuration, delegate: self)

- (void)connect {
 [self.sdlManager startWithReadyHandler:^(BOOL success, NSError *
_Nullable error) {
 if (success) {
 // Your app has successfully connected with the SDL Core
 }
 }];
}

SWIFT

If the connection is successful, you can start sending RPCs to the SDL Core.

However, some RPCs can only be sent when the HMI is in the FULL or LIMITE

D state. If the SDL Core's HMI is not ready to accept these RPCs, your requests

will be ignored. If you want to make sure that the SDL Core will not ignore your

RPCs, use the SDLManagerDelegate methods in the next section.

Example Implementation of a Proxy Class

The following code snippet has an example of setting up both a TCP and iAP

connection.

OBJECTIVE-C

func connect() {
 // Start watching for a connection with a SDL Core
 sdlManager.start { (success, error) in
 if success {
 // Your app has successfully connected with the SDL Core
 }
 }
}

NOTE

In production, your app will be watching for connections using iAP,

which will not use any more battery power than normal.

ProxyManager.h

#import <Foundation/Foundation.h>

NS_ASSUME_NONNULL_BEGIN

@interface ProxyManager : NSObject

+ (instancetype)sharedManager;
- (void)start;

@end

NS_ASSUME_NONNULL_END

ProxyManager.m

#import <SmartDeviceLink/SmartDeviceLink.h>

NS_ASSUME_NONNULL_BEGIN

static NSString* const AppName = @"<#App Name#>";
static NSString* const AppId = @"<#App Id#>";
@interface ProxyManager () <SDLManagerDelegate>

@property (nonatomic, strong) SDLManager* sdlManager;

@end

@implementation ProxyManager

+ (instancetype)sharedManager {
 static ProxyManager *sharedManager = nil;
 static dispatch_once_t onceToken;
 dispatch_once(&onceToken, ^{
 sharedManager = [[ProxyManager alloc] init];
 });

 return sharedManager;
}

- (instancetype)init {
 self = [super init];
 if (!self) {
 return nil;
 }

 // Used for USB Connection
 SDLLifecycleConfiguration* lifecycleConfiguration = [
SDLLifecycleConfiguration defaultConfigurationWithAppName:AppName
 fullAppId:AppId];

 // Used for TCP/IP Connection
// SDLLifecycleConfiguration* lifecycleConfiguration =
[SDLLifecycleConfiguration
debugConfigurationWithAppName:AppName fullAppId:AppId
ipAddress:@"<#IP Address#>" port:<#Port#>];

 UIImage* appImage = [UIImage imageNamed:@"<#AppIcon
Name#>"];
 if (appImage) {
 SDLArtwork* appIcon = [SDLArtwork persistentArtworkWithImage:
appImage name:@"<#Name to Upload As#>" asImageFormat:
SDLArtworkImageFormatJPG /* or SDLArtworkImageFormatPNG */];
 lifecycleConfiguration.appIcon = appIcon;
 }

 lifecycleConfiguration.shortAppName = @"<#Shortened App
Name#>";
 lifecycleConfiguration.appType = [SDLAppHMIType MEDIA];

 SDLConfiguration* configuration = [SDLConfiguration
configurationWithLifecycle:lifecycleConfiguration lockScreen:[
SDLLockScreenConfiguration enabledConfiguration] logging:[
SDLLogConfiguration defaultConfiguration] fileManager:[
SDLFileManager defaultConfiguration]];

 self.sdlManager = [[SDLManager alloc] initWithConfiguration:
configuration delegate:self];

 return self;
}

- (void)connect {
 [self.sdlManager startWithReadyHandler:^(BOOL success, NSError *
_Nullable error) {
 if (success) {
 // Your app has successfully connected with the SDL Core
 }
 }];
}

#pragma mark SDLManagerDelegate
- (void)managerDidDisconnect {
 NSLog(@"Manager disconnected!");
}

- (void)hmiLevel:(SDLHMILevel *)oldLevel didChangeToLevel:(
SDLHMILevel *)newLevel {
 NSLog(@"Went from HMI level %@ to HMI Level %@", oldLevel,
newLevel);
}

@end

NS_ASSUME_NONNULL_END

SWIFT

import SmartDeviceLink

class ProxyManager: NSObject {
 private let appName = "<#App Name#>"
 private let appId = "<#App Id#>"

 // Manager
 fileprivate var sdlManager: SDLManager!

 // Singleton
 static let sharedManager = ProxyManager()

 private override init() {
 super.init()

 // Used for USB Connection
 let lifecycleConfiguration = SDLLifecycleConfiguration(appName:
appName, fullAppId: appId)

 // Used for TCP/IP Connection
 // let lifecycleConfiguration = SDLLifecycleConfiguration
(appName: appName, fullAppId: appId, ipAddress: "<#IP Address#>",
port: <#Port#>)

 // App icon image
 if let appImage = UIImage(named: "<#AppIcon Name#>") {
 let appIcon = SDLArtwork(image: appImage, name: "<#Name
to Upload As#>", persistent: true, as: .JPG /* or .PNG */)
 lifecycleConfiguration.appIcon = appIcon
 }

 lifecycleConfiguration.shortAppName = "<#Shortened App
Name#>"
 lifecycleConfiguration.appType = .media

 let configuration = SDLConfiguration(lifecycle:
lifecycleConfiguration, lockScreen: .enabled(), logging: .default(),
fileManager: .default())

 sdlManager = SDLManager(configuration: configuration, delegate:
self)
 }

 func connect() {
 // Start watching for a connection with a SDL Core
 sdlManager.start { (success, error) in
 if success {
 // Your app has successfully connected with the SDL Core
 }

Implement the SDL Manager
Delegate

The ProxyManager class should conform to the SDLManagerDelegate protocol.

This means that the ProxyManager class must implement the following required

methods:

1. managerDidDisconnect This function is called when the proxy disconnects

from the SDL Core. Do any cleanup you need to do in this function.
2. hmiLevel:didChangeToLevel: This function is called when the HMI level

changes for the app. The HMI level can be FULL, LIMITED, BACKGROUND,

or NONE. It is important to note that most RPCs sent while the HMI is in

BACKGROUND or NONE mode will be ignored by the SDL Core. For more

information, please refer to Understanding Permissions.

In addition, there are three optional methods:

1. audioStreamingState:didChangeToState: Called when the audio streaming

state of this application changes on the remote system. For more

information, please refer to Understanding Permissions.
2. systemContext:didChangeToContext: Called when the system context (i.e.

a menu is open, an alert is visible, a voice recognition session is in

 }
 }
}

//MARK: SDLManagerDelegate
extension ProxyManager: SDLManagerDelegate {
 func managerDidDisconnect() {
 print("Manager disconnected!")
 }

 func hmiLevel(_ oldLevel: SDLHMILevel, didChangeToLevel newLevel:
SDLHMILevel) {
 print("Went from HMI level \(oldLevel) to HMI level \(newLevel)")
 }
}

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/getting-started/understanding-permissions/
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/getting-started/understanding-permissions/

progress) of this application changes on the remote system. For more

information, please refer to Understanding Permissions.
3. managerShouldUpdateLifecycleToLanguage: Called when the head unit

language does not match the language set in the

SDLLifecycleConfiguration but does match a language included in

languagesSupported. If desired, you can customize the appName, the

shortAppName, and ttsName for the head unit's current language. For

more information about supporting more than one language in your app

please refer to Getting Started/Adapting to the Head Unit Language.

Where to Go From Here

You should now be able to connect to a head unit or emulator. From here, learn

about designing your main interface. For further details on connecting, see

Connecting to a SDL Core.

Connecting to an
Infotainment System

To connect to an emulator, such as Manticore or a local Ubuntu SDL Core-based

emulator, make sure to implement a TCP (debug) connection. The emulator

and app should be on the same network (i.e. remember to set the correct IP

address and port number in the SDLLifecycleConfiguration). The IP will most

likely be the IP address of the operating system running the emulator. The port

will most likely be 12345 .

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/getting-started/understanding-permissions/
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/getting-started/adapting-to-the-head-unit-language/
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/displaying-a-user-interface/main-screen-templates/
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/displaying-a-user-interface/main-screen-templates/
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/getting-started/connecting-to-an-infotainment-system/

Connecting with a Vehicle Head
Unit or a Development Kit (TDK)

Production

To connect your iOS device directly to a vehicle head unit or TDK, make sure to

implement an iAP (default) connection in the SDLLifecycleConfiguration .

Then connect the iOS device to the head unit or TDK using a USB cord or

Bluetooth if the head unit supports it.

Debugging

If you are testing with a vehicle head unit or TDK and wish to see debug logs in

Xcode while the app is running, you must either use another app called the

relay app to help you connect to the device, or you may use Xcode 9 / iOS 11

wireless debugging. When using the relay app, make sure to implement a TCP

connection, if using iOS 11 wireless debugging, implement a IAP connection.

Please see the guide for the relay app to learn how to set up the connection

between the device, the relay app and your app.

NOTE

Known issues due to using a TCP connection:

• When app is in the background mode, the app will be unable to
communicate with SDL Core. This will work on IAP connections.

• Audio will not play on the emulator. Only IAP connections are
currently able to play audio because this happens over the
standard Bluetooth / USB system audio channel.

• You cannot connect to an emulator using a USB connection due
to Apple limitations with IAP connections.

https://github.com/smartdevicelink/relay_app_ios
https://developer.apple.com/videos/play/wwdc2017/404/
https://developer.apple.com/videos/play/wwdc2017/404/
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/developer-tools/relay-app/

Adding the Lock Screen

The lock screen is a vital part of SmartDeviceLink, as the lock screen prevents

the user from using your application while the vehicle is in motion. SDL takes

care of the lock screen for you. It still allows you to use your own view

controller if you prefer your own look, but still want the recommended logic that

SDL provides for free.

A benefit to using the provided Lock Screen is that we also handle retrieving a

lock screen icon for versions of Core that support it, so that you do not have to

be concerned with what car manufacturer you are connected to. If you subclass

the provided lock screen, you can do the same in your own lock screen view

controller.

If you would not like to use any of the following code, you may use the SDLLoc

kScreenConfiguration class function disabledConfiguration , and manage the

entire lifecycle of the lock screen yourself. However, it is strongly recommended

that you use the provided lock screen manager, even if you use your own view

controller.

To see where the SDLLockScreenConfiguration is used, refer to the Integration

Basics guide.

NOTE

The same issues apply when connecting the relay app with a TDK

or head unit as do when connecting to SDL Core. Please see the

issues above, under the Connect with an Emulator heading.

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/getting-started/integration-basics/
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/getting-started/integration-basics/

Using the Provided Lock Screen

Using the default lock screen is simple. Using the lock screen this way will

automatically load an automaker's logo, if available, to show alongside your

logo. If it is not, the default lock screen will show your logo alone.

To do this, instantiate a new SDLLockScreenConfiguration :

OBJECTIVE-C

SDLLockScreenConfiguration *lockScreenConfiguration = [
SDLLockScreenConfiguration enabledConfiguration];

SWIFT

Customizing the Provided Lock
Screen

If you would like to use the provided lock screen but would like to add your own

appearance to it, we provide that as well. SDLLockScreenConfiguration allows

you to customize the background color as well as your app's icon. If the app

icon is not included, we will use the SDL logo.

let lockScreenConfiguration = SDLLockScreenConfiguration.enabled()

OBJECTIVE-C

SWIFT

Using Your Own Lock Screen

If you would like to use your own lock screen instead of the provided SDL one,

but still use the logic we provide, you can use a new initializer within SDLLockS

creenConfiguration :

OBJECTIVE-C

UIImage *appIcon = <# Retreive App Icon #>
UIColor *backgroundColor = <# Desired Background Color #>
SDLLockScreenConfiguration *lockScreenConfiguration = [
SDLLockScreenConfiguration enabledConfigurationWithAppIcon:appIcon
 backgroundColor:backgroundColor];

let appIcon: UIImage = <# Retrieve App Icon #>
let backgroundColor: UIColor = <# Desired Background Color #>
let lockScreenConfiguration = SDLLockScreenConfiguration.
enabledConfiguration(withAppIcon: appIcon, backgroundColor:
backgroundColor)

UIViewController *lockScreenViewController = <# Initialize Your View
Controller #>;
SDLLockScreenConfiguration *lockScreenConfiguration = [
SDLLockScreenConfiguration enabledConfigurationWithViewController:
lockScreenViewController];

SWIFT

Using the Vehicle's Icon

If you want to build your own lock screen view controller, it is recommended

that you subclass SDLLockScreenViewController and use the public appIcon ,

vehicleIcon , and backgroundColor properties.

Adapting to the Head Unit
Language

Since a head unit can support multiple languages, you may want to add

support for more than one language to your SDL app. The SDL library allows

you to check which language is currently be used by the head unit. If desired,

the app's name and the app's text-to-speech (TTS) name can be customized to

reflect the head unit's current language. If your app name is not part of the

current lexicon, you should tell the VR system how a native speaker will

pronounce your app name by setting the TTS name using phonemes from

either the Microsoft SAPI phoneme set or from the LHPLUS phoneme set.

Setting the Default Language

The initial configuration of the SDLManager requires a default language when

setting the SDLLifecycleConfiguration . If not set, the SDL library uses

American English (EN_US) as the default language. The connection will fail if

let lockScreenViewController = <# Initialize Your View Controller #>
let lockScreenConfiguration = SDLLockScreenConfiguration.
enabledConfiguration(with: lockScreenViewController)

https://en.wikipedia.org/wiki/Phoneme

the head unit does not support the language set in the SDLLifecycleConfigura

tion . The RegisterAppInterfaceResponse RPC will return INVALID_DATA as

the reason for rejecting the request.

What if My App Does Not Support the Head
Unit Language?

If your app does not support the current head unit language, you should decide

on a default language to use in your app. All text should be created using this

default language. Unfortunately, your VR commands will probably not work as

the VR system will not recogize your users' pronunciation.

Checking the Current Head Unit Language

After starting the SDLManager you can check the registerResponse property

for the head unit's language and hmiDisplayLanguage . The language

property gives you the current VR system language; hmiDisplayLanguage the

current display text language.

OBJECTIVE-C

SWIFT

SDLLanguage headUnitLanguage = self.sdlManager.registerResponse.
language;
SDLLanguage headUnitHMIDisplayLanguage = self.sdlManager.
registerResponse.hmiDisplayLanguage;

let headUnitLanguage = sdlManager.registerResponse?.language
let headUnitHMIDisplayLanguage = sdlManager.registerResponse?.
hmiDisplayLanguage

Updating the SDL App Name

To customize the app name for the head unit's current language, implement the

following steps:

1. Set the default language in the SDLLifecycleConfiguration.
2. Add all languages your app supports to languagesSupported in the

SDLLifecycleConfiguration.
3. Implement the SDLManagerDelegate's

managerShouldUpdateLifecycleToLanguage: method. If the head unit's

language is different from the default language and is a supported

language, the method will be called with the head unit's current language.

Return a SDLLifecycleConfigurationUpdate object with the new appName

and/or ttsName.

OBJECTIVE-C

- (nullable SDLLifecycleConfigurationUpdate *)
managerShouldUpdateLifecycleToLanguage:(SDLLanguage)language {
 SDLLifecycleConfigurationUpdate *configurationUpdate = [[
SDLLifecycleConfigurationUpdate alloc] init];

 if ([language isEqualToEnum:SDLLanguageEnUs]) {
 update.appName = <#App Name in English#>;
 } else if ([language isEqualToEnum:SDLLanguageEsMx]) {
 update.appName = <#App Name in Spanish#>;
 } else if ([language isEqualToEnum:SDLLanguageFrCa]) {
 update.appName = <#App Name in French#>;
 } else {
 return nil;
 }

 return configurationUpdate;
}

SWIFT

Understanding Permissions

While creating your SDL app, remember that just because your app is

connected to a head unit it does not mean that the app has permission to send

any RPCs you want. If your app does not have the required permissions,

requests will be rejected. There are three important things to remember in

regards to permissions:

1. You may not be able to send a RPC when the SDL app is closed, in the

background, or obscured by an alert. Each RPC has a set of hmiLevels

during which it can be sent.
2. For some RPCs, like those that access vehicle data or make a phone call,

you may need special permissions from the OEM to use. This permission is

granted when you submit your app to the OEM for approval. Each OEM

func managerShouldUpdateLifecycle(toLanguage language:
SDLLanguage) -> SDLLifecycleConfigurationUpdate? {
 let configurationUpdate = SDLLifecycleConfigurationUpdate()

 switch language {
 case .enUs:
 configurationUpdate.appName = <#App Name in English#>
 case .esMx:
 configurationUpdate.appName = <#App Name in Spanish#>
 case .frCa:
 configurationUpdate.appName = <#App Name in French#>
 default:
 return nil
 }

 return configurationUpdate
}

decides which RPCs it will restrict access to, so it is up you to check if you

are allowed to use the RPC with the head unit.
3. Some head units may not support all RPCs.

HMI Levels

When your app is connected to the head unit you will receive notifications when

the SDL app's HMI status changes. Your app can be in one of four different hmi

Level s:

H M I L E V E L W H AT D O E S T H I S M E A N ?

Be careful with sending user interface related RPCs in the NONE and BACKGR

OUND levels; some head units may reject RPCs sent in those states. We

recommended that you wait until your app's hmiLevel enters FULL to set up

your app's UI.

To get more detailed information about the state of your SDL app check the

current system context. The system context will let you know if a menu is open,

NONE
The user has not yet opened your app, or

the app has been killed.

BACKGROUND

The user has opened your app, but is

currently in another part of the head

unit.

LIMITED

This level only applies to media and

navigation apps (i.e. apps with an appT

ype of MEDIA or NAVIGATION). The

user has opened your app, but is

currently in another part of the head

unit. The app can receive button presses

from the play, seek, tune, and preset

buttons.

FULL
Your app is currently in focus on the

screen.

a VR session is in progress, an alert is showing, or if the main screen is

unobstructed. You can find more information about the system context below.

Monitoring the HMI Level

The easiest way to monitor the hmiLevel of your SDL app is through a

required delegate callback of SDLManagerDelegate . The function hmiLevel:di

dChangeToLevel: is called every time your app's hmiLevel changes.

OBJECTIVE-C

- (void)hmiLevel:(SDLHMILevel)oldLevel didChangeToLevel:(
SDLHMILevel)newLevel {
 if (![newLevel isEqualToEnum:SDLHMILevelNone] && (self.
firstHMILevel == SDLHMIFirstStateNone)) {
 // This is our first time in a non-`NONE` state
 self.firstHMILevel = newLevel;
 <#Send static menu RPCs#>
 }

 if ([newLevel isEqualToEnum:SDLHMILevelFull]) {
 <#Send user interface RPCs#>
 } else if ([newLevel isEqualToEnum:SDLHMILevelLimited]) {
 <#Code#>
 } else if ([newLevel isEqualToEnum:SDLHMILevelBackground]) {
 <#Code#>
 } else if ([newLevel isEqualToEnum:SDLHMILevelNone]) {
 <#Code#>
 }
}

SWIFT

Permission Manager

When your app first connects to the head unit, it will receive an OnPermissions

Change notification. This notification contains all RPCs the head unit supports

and the hmiLevel permissions for each RPC. Use the SDLManager 's

permission manager to check the current permission status of a specific RPC or

group of RPCs. If desired, you may also subscribe to get notifications when the

RPC(s) permission status changes.

Checking Current Permissions of a Single
RPC

fileprivate var firstHMILevel: SDLHMILevel = .none
func hmiLevel(_ oldLevel: SDLHMILevel, didChangeToLevel newLevel:
SDLHMILevel) {
 if newLevel != .none && firstHMILevel == .none {
 // This is our first time in a non-`NONE` state
 firstHMILevel = newLevel
 <#Send static menu RPCs#>
 }

 switch newLevel {
 case .full:
 <#Send user interface RPCs#>
 case .limited: break
 case .background: break
 case .none: break
 default: break
 }
}

OBJECTIVE-C

SWIFT

Checking Current Permissions of a Group of
RPCs

OBJECTIVE-C

SWIFT

BOOL isAllowed = [self.sdlManager.permissionManager isRPCAllowed:<
#RPC name#>];

let isAllowed = sdlManager.permissionManager.isRPCAllowed(<#RPC
name#>)

SDLPermissionGroupStatus groupPermissionStatus = [self.sdlManager.
permissionManager groupStatusOfRPCs:@[<#RPC name#>, <#RPC
name#>]];
NSDictionary *individualPermissionStatuses = [self.sdlManager.
permissionManager statusOfRPCs:@[<#RPC name#>, <#RPC name#
>]];

let groupPermissionStatus = sdlManager.permissionManager.
groupStatus(ofRPCs:[<#RPC name#>, <#RPC name#>])
let individualPermissionStatuses = sdlManager.permissionManager.
status(ofRPCs:[<#RPC name#>, <#RPC name#>])

Observing Permissions

If desired, you can set an observer for a group of permissions. The observer's

handler will be called when the permissions for the group changes. If you want

to be notified when the permission status of any of RPCs in the group change,

set the groupType to SDLPermissionGroupTypeAny . If you only want to be

notified when all of the RPCs in the group are allowed, set the groupType to S

DLPermissionGroupTypeAllAllowed .

OBJECTIVE-C

SWIFT

Stopping Observation of Permissions

When you set up the observer, you will get an unique id back. Use this id to

unsubscribe to the permissions at a later date.

SDLPermissionObserverIdentifier observerId = [self.sdlManager.
permissionManager addObserverForRPCs:@[<#RPC name#>, <#RPC
name#>] groupType:<#SDLPermissionGroupType#> withHandler:^(
NSDictionary<SDLPermissionRPCName, NSNumber<SDLBool> *> *
_Nonnull change, SDLPermissionGroupStatus status) {
 <#RPC group status changed#>
}];

let observerId = sdlManager.permissionManager.addObserver(forRPCs:
<#RPC name#>, <#RPC name#>, groupType:<#
SDLPermissionGroupType#>, withHandler: { (individualStatuses,
groupStatus) in
 <#RPC group status changed#>
})

OBJECTIVE-C

SWIFT

Additional HMI State Information

If you want more detail about the current state of your SDL app you can

monitor the audio playback state as well as get notifications when something

blocks the main screen of your app.

Audio Streaming State

The Audio Streaming State informs your app whether or not the driver will be

able to hear your app's audio. It will be either AUDIBLE , NOT_AUDIBLE , or A

TTENUATED .

You will get these notifications when an alert pops up, when you start recording

the in-car audio, when voice recognition is active, when another app takes

audio control, when a navigation app is giving directions, etc.

[self.sdlManager.permissionManager removeObserverForIdentifier:
observerId];

sdlManager.permissionManager.removeObserver(forIdentifier:
observerId)

AU D I O S T R E A M I N G S TAT E W H AT D O E S T H I S M E A N ?

OBJECTIVE-C

SWIFT

System Context

The System Context informs your app if there is potentially a blocking HMI

component while your app is still visible. An example of this would be if your

application is open and you display an alert. Your app will receive a system

context of ALERT while it is presented on the screen, followed by MAIN when

it is dismissed.

AUDIBLE
Any audio you are playing will be audible

to the user.

ATTENUATED

Some kind of audio mixing is occuring

between what you are playing, if

anything, and some system level audio

or navigation application audio.

NOT_AUDIBLE

Your streaming audio is not audible. This

could occur during a VRSESSION

System Context.

- (void)audioStreamingState:(nullable SDLAudioStreamingState)
oldState didChangeToState:(SDLAudioStreamingState)newState {
 <#code#>
}

func audioStreamingState(_ oldState: SDLAudioStreamingState?,
didChangeToState newState: SDLAudioStreamingState) {
 <#code#>
}

S Y S T E M C O N T E X T S TAT E W H AT D O E S T H I S M E A N ?

OBJECTIVE-C

SWIFT

MAIN
No user interaction is in progress that

could be blocking your app's visibility.

VRSESSION Voice recognition is currently in progress.

MENU
A menu interaction is currently in-

progress.

HMI_OBSCURED

The app's display HMI is being blocked

by either a system or other app's overlay

(another app's alert, for instance).

ALERT
An alert that you have sent is currently

visible.

- (void)systemContext:(nullable SDLSystemContext)oldContext
didChangeToContext:(SDLSystemContext)newContext {
 <#code#>
}

func systemContext(_ oldContext: SDLSystemContext?,
didChangeToContext newContext: SDLSystemContext) {
 <#code#>
}

Example Apps

SDL provides two example apps: one written in Objective-C and one in Swift.

Both implement the same features.

The example apps are located in the sdl_ios repository. To try them, you can

download the repository and run the example app targets, or you may use

pod try SmartDeviceLink with CocoaPods installed on your Mac.

The example apps implement soft buttons, template text and images, a main

menu and submenu, vehicle data, popup menus, voice commands, and

capturing in-car audio.

Connecting to Hardware

To connect the example app to Manticore or another emulator, make sure you

are on the TCP Debug tab and type in the IP address and port, then press

"Connect". The button will turn green when you are connected.

NOTE

If you download or clone the SDL repository in order to run the

example apps, you must first obtain the BSON submodule. You can

do so by running git submodule init and git submodule update

in your terminal when in the main directory of the cloned

repository.

https://github.com/smartdevicelink/sdl_ios
https://cocoapods.org
https://smartdevicelink.com/resources/manticore/

To connect the example app to production or debug hardware, make sure you

are on the iAP tab and press "Connect". The button will turn green when you

are connected.

Adaptive Interface
Capabilities

Designing for Different Head
Units

Since each car manufacturer has different user interface style guidelines, the

number of lines of text, soft and hard buttons, and images supported will vary

between different types of head units. When the app first connects to the SDL

Core, a RegisterAppInterface RPC will be sent by the SDL Core containing the

displayCapability , buttonCapabilites , etc., properties. You can use this

information to determine how to lay out the user interface.

You may access these properties on the SDLManager.systemCapabilityManage

r instance as of SDL iOS library 6.0. More advanced capabilities, such as the S

DLRemoteControlCapability must be updated through the systemCapabilityMa

nager .

System Capability Manager
Properties

The SystemCapabilityManager is a new feature available as of version 6.0. If

using previous versions of the library, you can find most of the SystemCapabili

tyManager properties in the SDLRegisterAppInterfaceResponse object. You

will have to manually extract the desired capability from the SDLManager.regis

terResponse property.

PA R A M E T E R S D E S C R I P T I O N N O T E S

displayCapabilities

Information about the

Sync display. This includes

information about

available templates,

whether or not graphics

are supported, and a list

of all text fields and the

max number of characters

allowed in each text field.

Check

SDLDisplayCapabilities.h

for more information

buttonCapabilities

A list of available buttons

and whether the buttons

support long, short and

up-down presses.

Check

SDLButtonCapabilities.h

for more information

softButtonCapabilities

A list of available soft

buttons and whether the

button support images.

Also information about

whether the button

supports long, short and

up-down presses.

Check

SDLSoftButtonCapabiliti

es.h for more

information

presetBankCapabilities

If returned, the platform

supports custom on-

screen presets.

Check

SDLPresetBankCapabiliti

es.h for more

information

hmiZoneCapabilities

Specifies HMI Zones in the

vehicle. There may be a

HMI available for back

seat passengers as well as

front seat passengers.

Check

SDLHMIZoneCapabilitie

s.h for more information

speechCapabilities

Contains information

about TTS capabilities on

the SDL platform.

Platforms may support

text, SAPI phonemes, LH

PLUS phonemes, pre-

recorded speech, and

silence.

Check

SDLSpeechCapabilities.h

for more information

PA R A M E T E R S D E S C R I P T I O N N O T E S

prerecordedSpeechCapa

bilities

A list of pre-recorded

sounds you can use in

your app. Sounds may

include a help, initial,

listen, positive, or a

negative jingle.

Check

SDLPrerecordedSpeech.

h for more information

vrCapability

The voice-recognition

capabilities of the

connected SDL platform.

The platform may be able

to recognize spoken text

in the current language.

Check

SDLVRCapabilities.h for

more information

audioPassThruCapabiliti

es

Describes the sampling

rate, bits per sample, and

audio types available.

Check

SDLAudioPassThruCapab

ilities.h for more

information

hmiCapabilities

Returns whether or not

the app can support built-

in navigation and phone

calls.

Check

SDLHMICapabilities.h for

more information

navigationCapability

Describes the built-in

vehicle navigation

system's APIs

Check

SDLNavigationCapabilit

y.h for more information

phoneCapability

Describes the built-in

phone calling capabilities

of the IVI system.

Check

SDLPhoneCapability.h

for more information

videoStreamingCapabilit

y

Describes the abilities of

the head unit to video

stream projection

applications

Check

SDLVideoStreamingCapa

bility.h for more

information

remoteControlCapability

Describes the abilities of

an app to control built-in

aspects of the IVI system

Check

SDLRemoteControlCapa

bility.h for more

information

The Register App Interface RPC

The RegisterAppInterface response contains information about the display

type, the type of images supported, the number of text fields supported, the

HMI display language, and a lot of other useful properties. The table below has

a list of properties beyond those available on the SystemCapabilityManager

returned by the RegisterAppInterface response. Each property is optional, so

you may not get information for all the parameters in the table.

PA R A M E T E R S D E S C R I P T I O N N O T E S

Image Specifics

Image File Type

Images may be formatted as PNG, JPEG, or BMP. Check the RegisterAppInterfac

eResponse.displayCapability properties to find out what image formats the

head unit supports.

syncMsgVersion

Specifies the version

number of the SDL V4

interface. This is used by

both the application and

SDL to declare what

interface version each is

using.

Check

SDLSyncMsgVersion.h

for more information

language

The currently active voice-

recognition and text-to-

speech language on Sync.

Check SDLLanguage.h

for more information

vehicleType

The make, model, year,

and the trim of the

vehicle.

Check SDLVehicleType.h

for more information

supportedDiagModes

Specifies the white-list of

supported diagnostic

modes (0x00-0xFF)

capable for

DiagnosticMessage

requests. If a mode

outside this list is

requested, it will be

rejected.

Check

SDLDiagnosticMessage.

h for more information

sdlVersion
The SmartDeviceLink

version
String

systemSoftwareVersion

The software version of

the system that

implements the

SmartDeviceLink core

String

Image Sizes

If an image is uploaded that is larger than the supported size, that image will

be scaled down to accommodate. All image sizes are available from the SDLMa

nager 's registerResponse property once in the completion handler for startW

ithReadyHandler .

I M A G E
N A M E

U S E D I N
R P C

D E TA I L S H E I G H T W I D T H T Y P E

softButt

onImag

e

Show

Will be

shown on

softbutto

ns on the

base

screen

70px 70px

png,

jpg,

bmp

choiceI

mage

CreateInt

eractionC

hoiceSet

Will be

shown in

the

manual

part of an

performIn

teraction

either big

(ICON_ON

LY) or

small

(LIST_ONL

Y)

70px 70px

png,

jpg,

bmp

choiceS

econdar

yImage

CreateInt

eractionC

hoiceSet

Will be

shown on

the right

side of an

entry in

(LIST_ONL

Y)

performIn

teraction

35px 35px

png,

jpg,

bmp

vrHelpIt

em

SetGlobal

Propertie

s

Will be

shown

during

voice

interactio

n

35px 35px

png,

jpg,

bmp

menuIc

on

SetGlobal

Propertie

s

Will be

shown on

the

“More…”

button

35px 35px

png,

jpg,

bmp

I M A G E
N A M E

U S E D I N
R P C

D E TA I L S H E I G H T W I D T H T Y P E

Main Screen Templates

Each car manufacturer supports a set of templates for the user interface. These

templates determine the position and size of the text, images, and buttons on

the screen. A list of supported templates is sent in SDLManager.systemCapabili

tyManager.displayCapabilities.templatesAvailable .

To change a template at any time, send a SDLSetDisplayLayout RPC to the

SDL Core. If you want to ensure that the new template is used, wait for a

response from the SDL Core before sending any more user interface RPCs.

cmdIco

n

AddCom

mand

Will be

shown for

command

s in the

"More…"

menu

35px 35px

png,

jpg,

bmp

appIcon
SetAppIc

on

Will be

shown as

Icon in

the

"Mobile

Apps"

menu

70px 70px

png,

jpg,

bmp

graphic Show

Will be

shown on

the

basescre

en as

cover art

185px 185px

png,

jpg,

bmp

OBJECTIVE-C

SWIFT

Available Templates

There are fifteen standard templates to choose from, however some head units

may only support a subset of these templates. Please check SystemCapability

Manager for the supported templates. The following examples show how

templates will appear on the Generic HMI and Ford's SYNC 3 HMI.

MEDIA - WITH AND WITHOUT PROGRESS BAR

SDLSetDisplayLayout* display = [[SDLSetDisplayLayout alloc]
initWithPredefinedLayout:SDLPredefinedLayoutGraphicWithText];
[self.sdlManager sendRequest:display withResponseHandler:^(
SDLRPCRequest *request, SDLRPCResponse *response, NSError *error)
{
 if ([response.resultCode isEqualToEnum:SDLResultSuccess]) {
 // The template has been set successfully
 }
}];

let display = SDLSetDisplayLayout(predefinedLayout: .graphicWithText)
sdlManager.send(request: display) { (request, response, error) in
 if response?.resultCode == .success {
 // The template has been set successfully
 }
}

https://github.com/smartdevicelink/generic_hmi
https://developer.ford.com

Gener i c HMI

Ford HMI

NON-MEDIA - WITH AND WITHOUT SOFT BUTTONS

Gener i c HMI

Ford HMI

GRAPHIC_WITH_TEXT

Ford HMI

TEXT_WITH_GRAPHIC

Ford HMI

T ILES_ONLY

Ford HMI

GRAPHIC_WITH_TILES

Ford HMI

T ILES_WITH_GRAPHIC

Ford HMI

GRAPHIC_WITH_TEXT_AND_SOFTBUTTONS

Ford HMI

TEXT_AND_SOFTBUTTONS_WITH_GRAPHIC

Ford HMI

GRAPHIC_WITH_TEXTBUTTONS

Ford HMI

DOUBLE_GRAPHIC_SOFTBUTTONS

Ford HMI

TEXTBUTTONS_WITH_GRAPHIC

Ford HMI

TEXTBUTTONS_ONLY

Ford HMI

LARGE_GRAPHIC_WITH_SOFTBUTTONS

Gener i c HMI

Ford HMI

LARGE_GRAPHIC_ONLY

Gener i c HMI

Ford HMI

Text, Images, and Buttons

Template Fields

The SDLScreenManager is a manager for easily creating and sending text,

images and soft buttons for your SDL app. To update the UI, simply give the

manager the new UI data and sandwich the update between the manager's be

ginUpdates and endUpdatesWithCompletionHandler: methods.

S D L S C R E E N M A N A G E R PA R A M E T E R
N A M E

D E S C R I P T I O N

textField1

The text displayed in a single-line

display, or in the upper display line of a

multi-line display

textField2
The text displayed on the second display

line of a multi-line display

textField3
The text displayed on the third display

line of a multi-line display

textField4
The text displayed on the bottom display

line of a multi-line display

mediaTrackTextField

The text displayed in the in the track

field. This field is only valid for media

applications

primaryGraphic
The primary image in a template that

supports images

secondaryGraphic
The second image in a template that

supports multiple images

textAlignment

The text justification for the text fields.

The text alignment can be left, center, or

right

softButtonObjects

An array of buttons. Each template

supports a different number of soft

buttons

textField1Type The type of data provided in textField1

textField2Type The type of data provided in textField2

textField3Type The type of data provided in textField3

textField4Type The type of data provided in textField4

OBJECTIVE-C

[self.sdlManager.screenManager beginUpdates];

self.sdlManager.screenManager.textField1 = @"<#Line 1 of Text#>";
self.sdlManager.screenManager.textField2 = @"<#Line 2 of Text#>";
self.sdlManager.screenManager.primaryGraphic = [SDLArtwork
persistentArtworkWithImage:[UIImage imageNamed:@"<#Image
Name#>"] asImageFormat:<#SDLArtworkImageFormat#>]
SDLSoftButtonObject *softButton = [[SDLSoftButtonObject alloc]
initWithName:@"<#Soft Button Name#>" state:[[SDLSoftButtonState
alloc] initWithStateName:@"<#Soft Button State Name#>" text:
@"<#Button Text#>" artwork:<#SDLArtwork#>] handler:^(
SDLOnButtonPress * _Nullable buttonPress, SDLOnButtonEvent *
_Nullable buttonEvent) {
 if (buttonPress == nil) { return; }
 <#Button Selected#>
}];
self.sdlManager.screenManager.softButtonObjects = @[softButton];

[self.sdlManager.screenManager endUpdatesWithCompletionHandler:^(
NSError * _Nullable error) {
 if (error != nil) {
 <#Error Updating UI#>
 } else {
 <#Update to UI was Successful#>
 }
}];

SWIFT

Soft Button Objects

To create a soft button using the SDLScreenManager , you only need to create

a custom name for the button and provide the text for the button's label and/or

an image for the button's icon. If your button cycles between different states

(e.g. a button used to set the repeat state of a song playlist can have three

states: repeat-off, repeat-one, and repeat-all) you can upload all the states on

initialization.

Updating the Soft Button State

When the soft button state needs to be updated, simply tell the SDLSoftButton

Object to transition to the next state. If your button states do not cycle in a

predictable order, you can also tell the soft button the state to transition to by

passing the stateName of the new soft button state.

sdlManager.screenManager.beginUpdates()

sdlManager.screenManager.textField1 = "<#Line 1 of Text#>"
sdlManager.screenManager.textField2 = "<#Line 2 of Text#>"
sdlManager.screenManager.primaryGraphic = <#SDLArtwork#>
sdlManager.screenManager.softButtonObjects = [<#SDLButtonObject#
>, <#SDLButtonObject#>]

sdlManager.screenManager.endUpdates { (error) in
 if error != nil {
 <#Error Updating UI#>
 } else {
 <#Update to UI was Successful#>
 }
}

OBJECTIVE-C

SDLSoftButtonState *softButtonState1 = [[SDLSoftButtonState alloc]
initWithStateName:@"<#Soft Button State Name#>" text:
@"<#Button Label Text#>" artwork:<#SDLArtwork#>];
SDLSoftButtonState *softButtonState2 = [[SDLSoftButtonState alloc]
initWithStateName:@"<#Soft Button State Name#>" text:
@"<#Button Label Text#>" artwork:<#SDLArtwork#>];
SDLSoftButtonObject *softButtonObject = [[SDLSoftButtonObject alloc]
initWithName:@"<#Soft Button Object Name#>" states:@[
softButtonState1, softButtonState2] initialStateName:@"<#Soft Button
State Name#>" handler:^(SDLOnButtonPress * _Nullable buttonPress,
SDLOnButtonEvent * _Nullable buttonEvent) {
 if (buttonPress == nil) { return; }
 <#Button Selected#>
}];
self.sdlManager.screenManager.softButtonObjects = @[
softButtonObject];

// Transition to a new state
SDLSoftButtonObject *retrievedSoftButtonObject = [self.sdlManager.
screenManager softButtonObjectNamed:@"<#Soft Button Object
Name#>"];
[retrievedSoftButtonObject transitionToNextState];

SWIFT

Deleting Soft Buttons

To delete soft buttons, simply pass the SDLScreenManager an empty array of

soft buttons.

Template Images

As of SDL iOS library v6.1, when connected to a remote system running SDL

Core 5.0+, you may be able to use template images. A template image works

very much like it does on iOS and in fact, it uses the same API as iOS. Any SDL

Artwork created with a UIImage that has a renderingMode of alwaysTempla

te will be templated via SDL as well.

let softButtonState1 = SDLSoftButtonState(stateName: "<#Soft Button
State Name#>", text: "<#Button Label Text#>", artwork: <#
SDLArtwork#>)
let softButtonState2 = SDLSoftButtonState(stateName: "<#Soft Button
State Name#>", text: "<#Button Label Text#>", artwork: <#
SDLArtwork#>)
let softButtonObject = SDLSoftButtonObject(name: "<#Soft Button
Object Name#>", states: [softButtonState1, softButtonState2],
initialStateName: "") { (buttonPress, buttonEvent) in
 guard buttonPress != nil else { return }
 <#Button Selected#>
}
sdlManager.screenManager.softButtonObjects = [softButtonObject]

// Transition to a new state
let retrievedSoftButtonObject = sdlManager.screenManager.
softButtonObjectNamed("<#Soft Button Object Name#>")
retrievedSoftButtonObject?.transitionToNextState()

https://developer.apple.com/documentation/uikit/uiimage/1624153-imagewithrenderingmode

OBJECTIVE-C

SWIFT

Static Icons

Static icons are pre-existing images on the remote system that you may

reference and use in your own application. Static icons will be supported by the

screen manager in a future update. Until then, you must send them using RPC

request APIs Image and Show .

OBJECTIVE-C

UIImage *image = [[UIImage imageNamed:<#String#>]
imageWithRenderingMode:UIImageRenderingModeAlwaysTemplate];
SDLArtwork *artwork = [SDLArtwork artworkWithImage:image
asImageFormat:SDLArtworkImageFormatPNG];

let image = UIImage(named: <#T##String#>)?.withRenderingMode(.
alwaysTemplate)
let artwork = SDLArtwork(image: image, persistent: true, as: .PNG)

SDLImage *image = [[SDLImage alloc] initWithStaticIconName:<#(
nonnull SDLStaticIconName)#>];
SDLShow *show = [[SDLShow alloc] init];
show.graphic = image;
[self.sdlManager sendRequest:show];

SWIFT

Using RPCs

If you don't want to use the screen manager, you can use raw RPC requests

using the Show RPC.

Subscribing to System
Buttons

Subscribe buttons are used to detect changes to hard buttons located in the

car's center console or steering wheel. You can subscribe to the following hard

buttons:

let image = SDLImage(staticIconName: <#SDLStaticIconName#>)
let show = SDLShow()
show.graphic = image
sdlManager.send(show)

B U T T O N T E M P L AT E B U T T O N T Y P E

Audio-Related Buttons

The play/pause, seek left, seek right, tune up, and tune down subscribe buttons

can only be used in the MEDIA template. Depending on the manufacturer of

the head unit, the subscribe button might also show up as a soft button in the

media template. For example, the SYNC 3 HMI will add the ok, seek right, and

seek left soft buttons to the media template when you subscribe to those

buttons. You will automatically be assigned the media template if you set your

app's configuration appType to MEDIA .

Play / Pause media template only
soft button and hard

button

Ok any template
soft button and hard

button

Seek left media template only
soft button and hard

button

Seek right media template only
soft button and hard

button

Tune up media template only hard button

Tune down media template only hard button

Preset 0-9 any template hard button

Search any template hard button

NOTE

There is no way to customize a subscribe button's image or text.

OBJECTIVE-C

NOTE

Before iOS library v6.1 and SDL Core 5.0, Ok and PlayPause

were combined into Ok . Subscribing to Ok will, in v6.1, also

subscribe you to PlayPause . This means that for the time being,

you should not simultaneously subscribe to Ok and PlayPause .

In a future major version, this will change. For now, only subscribe

to either Ok or PlayPause and the library will do the right thing

based on the version of Core to which you are subscribed.

SDLSubscribeButton *subscribeButton = [[SDLSubscribeButton alloc]
initWithButtonName:SDLButtonNamePlayPause handler:^(
SDLOnButtonPress * _Nullable buttonPress, SDLOnButtonEvent *
_Nullable buttonEvent) {
 <#subscribe button selected#>
}];
[manager sendRequest:subscribeButton withResponseHandler:^(
__kindof SDLRPCRequest * _Nullable request, __kindof SDLRPCResponse
 * _Nullable response, NSError * _Nullable error) {
 if (error != nil) { return; }
 <#subscribe button sent successfully#>
}];

SWIFT

Main Menu

You have two different options when creating menus. One is to simply add

items to the default menu available in every template. The other is to create a

custom menu that pops up when needed. You can find more information about

these popups in the Popup Menus and Keyboards section.

Every template has a main menu button. The position of this button varies

between templates, and can not be removed from the template. The default

menu is initially empty except for an "Exit {App Name}" button. Items can be

added to the menu at the root level or to a submenu.

let subscribeButton = SDLSubscribeButton(buttonName: .ok) { (
buttonPress, buttonEvent) in
 <#subscribe button selected#>
}
sdlManager.send(request: subscribeButton) { (request, response, error)
 in
 guard error == nil else { return }
 <#subscribe button sent successfully#>
}

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/displaying-a-user-interface/popup-menus-and-keyboards/

Gener i c HMI

Ford HMI

Adding Menu Items

As of iOS library v6.0, the best way to create and update your menu is the use

the Screen Manager API. The screen manager contains two menu related

properties: menu , and voiceCommands . Setting an array of SDLMenuCell s

into the menu property will automatically set and update your menu and

submenus, while setting an array of SDLVoiceCommand s into the voiceComm

ands property allows you to use "hidden" menu items that only contain voice

recognition data. The user can then use the IVI system's voice engine to

activate this command even though it will not be displayed within the main

menu.

To find out more information on how to create voiceCommands see the

related documentation.

OBJECTIVE-C

// Create the menu cell
SDLMenuCell *cell = [[SDLMenuCell alloc] initWithTitle:<#Menu Item
Text#> icon:<#Menu Item Artwork#> voiceCommands:@[<#Menu
Item #>] handler:^(SDLTriggerSource _Nonnull triggerSource) {
 // Menu item was selected, check the `triggerSource` to know if the
user used touch or voice to activate it
 <#Handle the cell's selection#>
}];

self.sdlManager.screenManager.menu = @[cell];

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/displaying-a-user-interface/global-voice-commands/

SWIFT

Adding Submenus

Adding a submenu is as simple as adding subcells to an SDLMenuCell . This

can currently only be done with one layer of subcells, and automatically

displays the submenu when selected.

OBJECTIVE-C

// Create the menu cell
let cell = SDLMenuCell(title: <#String#>, icon: <#SDLArtwork?#>,
voiceCommands: <#[String]?#>) { (triggerSource: SDLTriggerSource)
in
 // Menu item was selected, check the `triggerSource` to know if the
user used touch or voice to activate it
 <#Handle the Cell's Selection#>
}

self.sdlManager.screenManager.menu = [cell]

// Create the inner menu cell
SDLMenuCell *cell = [[SDLMenuCell alloc] initWithTitle:<#Menu Item
Text#> icon:<#Menu Item Artwork#> voiceCommands:@[<#Menu
Item #>] handler:^(SDLTriggerSource _Nonnull triggerSource) {
 // Menu item was selected, check the `triggerSource` to know if the
user used touch or voice to activate it
 <#Handle the cell's selection#>
}];

// Create and set the submenu cell
SDLMenuCell *submenuCell = [[SDLMenuCell alloc] initWithTitle:<#
Menu Item Text#> icon:<#SDLArtwork#> subCells:@[cell]];
self.sdlManager.screenManager.menu = @[submenuCell];

SWIFT

Artworks

Artworks will be automatically handled when using the screen manager API.

First, a "non-artwork" menu will be displayed, then, when the artworks have

finished uploading, the "artwork-ified" menu will be displayed. If you are doing

this manually with RPCs, you will have to upload artworks using the file

manager yourself, and send the correct menu when they are ready.

Deleting Menu Items

When using the screen manager, this will be intelligently handled for you. If you

want to show new menu items, simply set a new array of menu cells. If you

want to have a blank menu, set an empty array. The screen manager will

handle deleting and adding new commands and submenus for you. If you are

// Create the inner menu cell
let cell = SDLMenuCell(title: <#T##String#>, icon: <#T##SDLArtwork
?#>, voiceCommands: <#T##[String]?#>) { (triggerSource:
SDLTriggerSource) in
 // Menu item was selected, check the `triggerSource` to know if the
user used touch or voice to activate it
 <#code#>
}

let submenuCell = SDLMenuCell(title: <#T##String#>, icon: <#
SDLArtwork#>, subCells:<#T##[SDLMenuCell]#>)
self.sdlManager.screenManager.menu = @[submenuCell]

doing this manually, you must use the SDLDeleteCommand and SDLDeleteSu

bMenu RPCs, passing the cmdID s you wish to delete.

Using RPCs

The SDLAddCommand RPC can be used to add items to the root menu or to a

submenu. Each SDLAddCommand RPC must be sent with a unique id, a voice-

recognition command, and a set of menu parameters. The menu parameters

include the menu name, the position of the item in the menu, and the id of the

menu item’s parent. If the menu item is being added to the root menu, then the

parent id is 0. If it is being added to a submenu, then the parent id is the

submenu’s id.

To create a submenu using RPCs, you must use a SDLAddSubMenu RPC with a

unique id. When a response is received from the SDL Core, check if the

submenu was added successfully. If it was, send an SDLAddCommand RPC for

each item in the submenu.

Voice Commands

Voice commands are global commands available anywhere on the head unit to

users of your app. If your app has left the HMI state of NONE because the user

has interacted with your app, they may speak the commands you have setup

and trigger actions in your app. How these commands are triggered (and

whether they are supported at all) will depend on the head unit you connect to,

but you don't have to worry about those intracacies when setting up your

global commands.

You have the ability to create voice command shortcuts to your Main Menu

cells, and it is recommended that you do so. If you have additional functions

that you wish to make available as voice commands that are not available as

menu cells, you can create pure global voice commands.

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/displaying-a-user-interface/main-menu/

You simply must create and set SDLVoiceCommand objects to the voiceCom

mands array on the screen manager.

OBJECTIVE-C

SWIFT

NOTE

We recommend creating global voice commands for common

actions such as the actions performed by your Soft Buttons.

// Create the voice command
SDLVoiceCommand *voiceCommand = [[SDLVoiceCommand alloc]
initWithVoiceCommands:<#(nonnull NSArray<NSString *> *)#>
handler:<#^(void)handler#>];

self.sdlManager.screenManager.voiceCommands = @[voiceCommand];

// Create the voice command
let voiceCommand = SDLVoiceCommand(voiceCommands: <#T##[
String]#>) {
 <#code#>
}

self.sdlManager.screenManager.voiceCommands = [voiceCommand]

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/displaying-a-user-interface/text-images-and-buttons/

Using RPCs

If you wish to do this without the aid of the screen manager, you can create SD

LAddCommand objects without the menuParams parameter to create global

voice commands.

Popup Menus and Keyboards

SDL supports modal menus and keyboards. These are requests for input from

the user based on a list of options you present to the user – that they can

respond to via touch or voice (if supported) – or via their own keyboard input.

There are several advantages and disadvantages to this kind of menu

compared to the main menu. The main menu should remain more static and

should not be updated often and only in predictable ways. The main menu is

the best way to perform navigation for your app. By contrast, a popup menu is

better for a selection of options for your app, and allows for a keyboard to be

available for search or other user input.

Presenting a Popup Menu

You may think of presenting a popup menu as presenting a modal UITableView

Controller to request input from the user. You may chain together menus to

drill down, however, it is recommended to do so judiciously, as requesting too

much input from the driver while he is driving will be distracting and may result

in your app being rejected by OEMs.

L AYO U T M O D E F O R M AT T I N G D E S C R I P T I O N

Creating Cells

An SDLChoiceCell is similar to a UITableViewCell without the ability to

arrange your own UI. We provide several properties on the SDLChoiceCell to

set your data, but the layout itself is determined by the company making the

head unit system.

Present as Icon A grid of buttons with images

Present Searchable as Icon
A grid of buttons with images along with

a search field in the HMI

Present as List A vertical list of text

Present Searchable as List
A vertical list of text with a search field in

the HMI

Present Keyboard
A keyboard shows up immediately in the

HMI

NOTE

On many systems, including VR commands will be exponentially

slower than not including them. However, including them is

necessary for a user to be able to respond to your prompt with

their voice.

OBJECTIVE-C

SWIFT

Preloading Cells

If you know what some or all cells should contain before they are used, you can

"preload" these cells in order to speed up their presentation at a later time. The

cells you preload may be used individually or a group.

OBJECTIVE-C

SDLChoiceCell *cell = [[SDLChoiceCell alloc] initWithText:<#(nonnull
NSString *)#>];
SDLChoiceCell *fullCell = [[SDLChoiceCell alloc] initWithText:<#(
nonnull NSString *)#> secondaryText:<#(nullable NSString *)#>
tertiaryText:<#(nullable NSString *)#> voiceCommands:<#(nullable
NSArray<NSString *> *)#> artwork:<#(nullable SDLArtwork *)#>
secondaryArtwork:<#(nullable SDLArtwork *)#>];

let cell = SDLChoiceCell(text: <#T##String#>)
let cell = SDLChoiceCell(text: <#T##String#>, secondaryText: <#T##
String?#>, tertiaryText: <#T##String?#>, voiceCommands: <#T##[
String]?#>, artwork: <#T##SDLArtwork?#>, secondaryArtwork: <#T
##SDLArtwork?#>)

[self.sdlManager.screenManager preloadChoices:<#(nonnull NSArray<
SDLChoiceCell *> *)#> withCompletionHandler:^(NSError * _Nullable
error) {
 <#code#>
}];

SWIFT

Presenting a Menu

Whether or not you preloaded cells, you may present a menu. If you did not

preload cells, calling a present API will cause them to be preloaded and then

presented once they are available. Therefore, this call may take longer than if

the cells were preloaded earlier in the app's lifecycle. On later presentations

using the same cells, it will reuse those cells (unless you deleted them of

course), so later presentations will be faster.

MENU - ICON

Ford HMI

MENU - L IST

sdlManager.screenManager.preloadChoices(<#T##choices: [
SDLChoiceCell]##[SDLChoiceCell]#>) { (error) in
 <#code#>
}

Ford HMI

In order to present a menu, you must bundle together a bunch of SDLChoiceCe

ll s into an SDLChoiceSet .

NOTE

When you preload a cell, you do not need to maintain a reference

to it. If you reuse a cell with the same properties that has already

been preloaded (or previously presented), the cell will

automatically be reused.

CREATING A CHOICE SET

Some notes on various parameters (full documentation is available as API

documentation on this website):

• Title: This is the title of the menu when presented
• Delegate: You must implement this delegate to receive callbacks based on

the user's interaction with the menu
• Layout: You may present your menu as a set of tiles (like a

UICollectionView) or a list (like a UITableView). If you are using tiles, it's

recommended to use artworks on each item.

OBJECTIVE-C

NOTE

If the SDLChoiceSet contains an invalid set of SDLChoiceCell s,

the initializer will return nil . This can happen, for example, if you

have duplicate title text or if some, but not all choices have voice

commands.

SDLChoiceSet *choiceSet = [[SDLChoiceSet alloc] initWithTitle:<#(
nonnull NSString *)#> delegate:<#(nonnull id<SDLChoiceSetDelegate
>)#> layout:<#(SDLChoiceSetLayout)#> timeout:<#(NSTimeInterval)
#> initialPromptString:<#(nullable NSString *)#> timeoutPromptString
:<#(nullable NSString *)#> helpPromptString:<#(nullable NSString *)#
> vrHelpList:<#(nullable NSArray<SDLVRHelpItem *> *)#> choices:<#
(nonnull NSArray<SDLChoiceCell *> *)#>];

SWIFT

In order to present a menu, you must implement SDLChoiceSetDelegate in

order to receive the user's input. When a choice is selected, you will be passed

the cell that was selected, the manner in which it was selected (voice or text),

and the index of the cell in the SDLChoiceSet that was passed.

OBJECTIVE-C

let choiceSet = SDLChoiceSet(title: <#T##String#>, delegate: <#T##
SDLChoiceSetDelegate#>, layout: <#T##SDLChoiceSetLayout#>,
timeout: <#T##TimeInterval#>, initialPromptString: <#T##String?#>
, timeoutPromptString: <#T##String?#>, helpPromptString: <#T##
String?#>, vrHelpList: <#T##[SDLVRHelpItem]?#>, choices: <#T##[
SDLChoiceCell]#>)

IMPLEMENTING THE CHOICE SET DELEGATE

#pragma mark - SDLChoiceSetDelegate

- (void)choiceSet:(SDLChoiceSet *)choiceSet didSelectChoice:(
SDLChoiceCell *)choice withSource:(SDLTriggerSource)source
atRowIndex:(NSUInteger)rowIndex {
 <#Code#>
}

- (void)choiceSet:(SDLChoiceSet *)choiceSet didReceiveError:(NSError *)
error {
 <#Code#>
}

SWIFT

Finally, you will present the menu. When you do so, you must choose a mode

to present it in. If you have no vrCommands on the SDLChoiceCell you

should choose SDLInteractionModeManualOnly . If vrCommands are

available, you may choose SDLInteractionModeVoiceRecognitionOnly or SDLI

nteractionModeBoth .

You may want to choose this based on the trigger source leading to the menu

being presented. For example, if the menu was presented via the user touching

the screen, you may want to use a mode of .manualOnly or .both , but if

the menu was presented via the user speaking a voice command, you may

want to use a mode of .voiceRecognitionOnly or .both .

It may seem that the answer is to always use .both . However, remember that

you must provide vrCommand s on all SDLChoiceCell s to use .both , which is

exponentially slower than not providing vrCommand s (this is especially

relevant for large menus, but less important for smaller ones). Also, some head

units may not provide a good user experience for .both .

extension <#Class Name#>: SDLChoiceSetDelegate {
 func choiceSet(_ choiceSet: SDLChoiceSet, didSelectChoice choice:
SDLChoiceCell, withSource source: SDLTriggerSource, atRowIndex
rowIndex: UInt) {
 <#Code#>
 }

 func choiceSet(_ choiceSet: SDLChoiceSet, didReceiveError error:
Error) {
 <#Code#>
 }
}

PRESENTING THE MENU WITH A MODE

I N T E R A C T I O N M O D E D E S C R I P T I O N

MENU - MANUAL ONLY

Ford HMI

MENU - VOICE ONLY

Manual only
Interactions occur only through the

display

VR only
Interactions occur only through text-to-

speech and voice recognition

Both
Interactions can occur both manually or

through VR

Ford HMI

OBJECTIVE-C

SWIFT

[self.manager.screenManager presentChoiceSet:<#(nonnull
SDLChoiceSet *)#> mode:<#(nonnull SDLInteractionMode)#>];

manager.screenManager.present(<#T##choiceSet: SDLChoiceSet##
SDLChoiceSet#>, mode: <#T##SDLInteractionMode#>)

Presenting a Searchable Menu

In addition to presenting a standard menu, you can also present a "searchable"

menu, that is, a menu with a keyboard input box at the top. For more

information on implementing the keyboard portion of this menu, see Presenting

a Keyboard below.
Ford HMI

OBJECTIVE-C

SWIFT

[self.sdlManager.screenManager presentSearchableChoiceSet:<#(
nonnull SDLChoiceSet *)#> mode:<#(nonnull SDLInteractionMode)#>
withKeyboardDelegate:<#(nonnull id<SDLKeyboardDelegate>)#>];

sdlManager.screenManager.presentSearchableChoiceSet(<#T##
choiceSet: SDLChoiceSet##SDLChoiceSet#>, mode: <#T##
SDLInteractionMode#>, with: <#T##SDLKeyboardDelegate#>)

Deleting Cells

You can discover cells that have been preloaded on screenManager.preloadedC

ells . You may then pass an array of cells to delete from the remote system.

Many times this is not necessary, but if you have deleted artwork used by cells,

for example, you should delete the cells as well.

OBJECTIVE-C

SWIFT

Presenting a Keyboard

Presenting a keyboard or a searchable menu requires you to additionally

implement the SDLKeyboardDelegate . Note that the initialText in the

keyboard case often acts as "placeholder text" not as true initial text.

[self.sdlManager.screenManager deleteChoices:<#(nonnull NSArray<
SDLChoiceCell *> *)#>];

sdlManager.screenManager.deleteChoices(<#T##choices: [
SDLChoiceCell]##[SDLChoiceCell]#>)

OBJECTIVE-C

SWIFT

Implementing the Keyboard Delegate

Using the SDLKeyboardDelegate involves two required methods (for handling

the user's input and the keyboard's unexpected abort), as well as several

optional methods for additional functionality.

NOTE

Keyboards are unavailable for use in many countries when the

driver is distracted. This is often when the vehicle is moving above

a certain speed, such as 5 miles per hour.

[self.sdlManager.screenManager presentKeyboardWithInitialText:<#(
nonnull NSString *)#> delegate:<#(nonnull id<SDLKeyboardDelegate>
)#>];

sdlManager.screenManager.presentKeyboard(withInitialText: <#T##
String#>, delegate: <#T##SDLKeyboardDelegate#>)

OBJECTIVE-C

#pragma mark - SDLKeyboardDelegate

/// Required Methods
- (void)keyboardDidAbortWithReason:(SDLKeyboardEvent)event {
 if ([event isEqualToEnum:SDLKeyboardEventCancelled]) {
 <#The user cancelled the keyboard interaction#>
 } else if ([event isEqualToEnum:SDLKeyboardEventAborted]) {
 <#The system aborted the keyboard interaction#>
 }
}

- (void)userDidSubmitInput:(NSString *)inputText withEvent:(
SDLKeyboardEvent)source {
 if ([source isEqualToEnum:SDLKeyboardEventSubmitted]) {
 <#The user submitted some text with the keyboard#>
 } else if ([source isEqualToEnum:SDLKeyboardEventVoice]) {
 <#The user decided to start voice input, you should start an
AudioPassThru session if supported#>
 }
}

/// Optional Methods
- (void)updateAutocompleteWithInput:(NSString *)currentInputText
completionHandler:(SDLKeyboardAutocompleteCompletionHandler)
completionHandler {
 <#Check the input text and return a string with the current
autocomplete text#>
}

- (void)updateCharacterSetWithInput:(NSString *)currentInputText
completionHandler:(SDLKeyboardCharacterSetCompletionHandler)
completionHandler {
 <#Check the input text and return a set of characters to allow the
user to enter#>
}

- (void)keyboardDidSendEvent:(SDLKeyboardEvent)event text:(NSString
 *)currentInputText {
 <#This is sent upon every event, such as keypresses, cancellations,
and aborting#>
}

- (SDLKeyboardProperties *)customKeyboardConfiguration {
 <#Use an alternate keyboard configuration. The keypressMode,
limitedCharacterSet, and autoCompleteText will be overridden by the
screen manager#>
}

SWIFT

extension <#Class Name#>: SDLKeyboardDelegate {
 /// Required Methods
 func keyboardDidAbort(withReason event: SDLKeyboardEvent) {
 switch event {
 case .cancelled:
 <#The user cancelled the keyboard interaction#>
 case .aborted:
 <#The system aborted the keyboard interaction#>
 default: break
 }
 }

 func userDidSubmitInput(_ inputText: String, withEvent source:
SDLKeyboardEvent) {
 switch source {
 case .voice:
 <#The user decided to start voice input, you should start an
AudioPassThru session if supported#>
 case .submitted:
 <#The user submitted some text with the keyboard#>
 default: break
 }
 }

 /// Optional Methods
 func updateAutocomplete(withInput currentInputText: String,
completionHandler: @escaping
SDLKeyboardAutocompleteCompletionHandler) {
 <#Check the input text and return a string with the current
autocomplete text#>
 }

 func updateCharacterSet(withInput currentInputText: String,
completionHandler: @escaping
SDLKeyboardCharacterSetCompletionHandler) {
 <#Check the input text and return a set of characters to allow the
user to enter#>
 }

 func keyboardDidSendEvent(_ event: SDLKeyboardEvent, text
currentInputText: String) {
 <#This is sent upon every event, such as keypresses,
cancellations, and aborting#>
 }

 func customKeyboardConfiguration() -> SDLKeyboardProperties {
 <#Use an alternate keyboard configuration. The keypressMode,
limitedCharacterSet, and autoCompleteText will be overridden by the
screen manager#>

Using RPCs

If you don't want to use the SDLScreenManager , you can do this manually

using the SDLChoice , SDLCreateInteractionChoiceSet , and SDLPerformInter

action RPC requests. You will need to create SDLChoice s, bundle them into S

DLCreateInteractionChoiceSet s, and then present those choice sets via SDLPe

rformInteraction . As this is no longer a recommended course of action, we will

leave it to you to figure out how to manually do it.

Alerts

An alert is a pop-up window with some lines of text and optional soft buttons.

When an alert is activated, it will abort any SDL operation that is in-progress,

except the already-in-progress alert. If an alert is issued while another alert is

still in progress, the newest alert will simply be ignored.

 }
}

NOTE

The alert will persist on the screen until the timeout has elapsed, or

the user dismisses the alert by selecting a button. There is no way

to dismiss the alert programmatically other than to set the timeout

length.

Alert UI

Depending the platform, an alert can have up to three lines of text, a progress

indicator (e.g. a spinning wheel or hourglass), and up to four soft buttons.
Ford HMI

Ford HMI

Alert TTS

The alert can also be formatted to speak a prompt when the alert appears on

the screen. Do this by setting the ttsChunks parameter. To play the alert tone

before the text-to-speech is spoken, set playTone to true .

OBJECTIVE-C

SDLAlert *alert = [[SDLAlert alloc] initWithAlertText1:@"<#Line 1#>"
alertText2:@"<#Line 2#>" alertText3:@"<#Line 3#>"];

// Maximum time alert appears before being dismissed
// Timeouts are must be between 3-10 seconds
// Timeouts may not work when soft buttons are also used in the alert
alert.duration = @5000;

// A progress indicator (e.g. spinning wheel or hourglass)
// Not all head units support the progress indicator
alert.progressIndicator = @YES;

// Text-to-speech
alert.ttsChunks = [SDLTTSChunk textChunksFromString:@"<#Text to
speak#>"];

// Special tone played before the tts is spoken
alert.playTone = @YES;

// Soft buttons
SDLSoftButton *okButton = [[SDLSoftButton alloc] init];
okButton.text = @"OK";
okButton.type = SDLSoftButtonTypeText;
okButton.softButtonID = @<#Soft Button Id#>;
okButton.handler = ^(SDLOnButtonPress *_Nullable buttonPress,
SDLOnButtonEvent *_Nullable buttonEvent) {
 if (buttonPress == nil) {
 return;
 }

 // create a custom action for the selected button
};

alert.softButtons = @[okButton];

// Send the alert
[self.sdlManager sendRequest:alert withResponseHandler:^(
SDLRPCRequest *request, SDLRPCResponse *response, NSError *error)
{
 if ([response.resultCode isEqualToEnum:SDLResultSuccess]) {
 // alert was dismissed successfully
 }
}];

SWIFT

let alert = SDLAlert(alertText1: "<#Line 1#>", alertText2: "<#Line
2#>", alertText3: "<#Line 3#>")

// Maximum time alert appears before being dismissed
// Timeouts are must be between 3-10 seconds
// Timeouts may not work when soft buttons are also used in the alert
alert.duration = 5000

// A progress indicator (e.g. spinning wheel or hourglass)
// Not all head units support the progress indicator
alert.progressIndicator = true

// Text-to-speech
alert.ttsChunks = SDLTTSChunk.textChunks(from: "<#Text to speak#>"
)

// Special tone played before the tts is spoken
alert.playTone = true

// Soft buttons
let okButton = SDLSoftButton()
okButton.text = "OK"
okButton.type = .text
okButton.softButtonID = <#Soft Button Id#>
okButton.handler = { (buttonPress, buttonEvent) in
 guard let press = buttonPress else { return }

 // create a custom action for the selected button
}

alert.softButtons = [okButton]

// Send the alert
sdlManager.send(request: alert) { (request, response, error) in
 if response?.resultCode == .success {
 // alert was dismissed successfully
 }
}

Media Clock

The media clock is used by media apps to present the current timing

information of a playing media item – such as a song, podcast, or audiobook. It

is controlled via the SetMediaClockTimer RPC.

The media timer works like a timer. You set the start and end time and you set

the timer to start ticking automatically either up or down.

NOTE

Ensure your app is a media type app and you are using the media

template before implementing this feature.

Gener i c HMI

Ford HMI

Counting Up

In order to count up using the timer, the "bottom end" of the time will be 0:00,

you can set the progress "start time", and the "top end". For example, if you

are starting a song at 0:00 and it will end at 4:13 , you will end with a timer

starting at 0:00 , ending at 0:00 with zero progress. This timer will

automatically increment every second.

OBJECTIVE-C

NOTE

The end time must be larger than the start time, or the request will

be rejected

SDLSetMediaClockTimer *mediaClock = [[SDLSetMediaClockTimer alloc
] initWithUpdateMode:SDLUpdateModeCountUp];mediaClock.startTime
= [[SDLStartTime alloc] initWithHours:0 minutes:0 seconds:0];
mediaClock.endTime = [[SDLStartTime alloc] initWithHours:0 minutes:4
 seconds:13];
[self.sdlManager sendRequest:mediaClock];

SWIFT

The following code will create a timer starting at 0:00 , ending at 4:13 and

already at 2:20 of progress.

OBJECTIVE-C

SWIFT

let mediaClock = SDLSetMediaClockTimer(updateMode: .countUp)
mediaClock.startTime = SDLStartTime(hours: 0, minutes: 0, seconds: 0)
mediaClock.endTime = SDLStartTime(hours: 0, minutes: 4, seconds: 13
)
sdlManager.send(mediaClock)

SDLSetMediaClockTimer *mediaClock = [[SDLSetMediaClockTimer alloc
] initWithUpdateMode:SDLUpdateModeCountUp];
mediaClock.startTime = [[SDLStartTime alloc] initWithHours:0 minutes:
2 seconds:20];
mediaClock.endTime = [[SDLStartTime alloc] initWithHours:0 minutes:4
 seconds:13];
[self.sdlManager sendRequest:mediaClock];

let mediaClock = SDLSetMediaClockTimer(updateMode: .countUp)
mediaClock.startTime = SDLStartTime(hours: 0, minutes: 2, seconds:
20)
mediaClock.endTime = SDLStartTime(hours: 0, minutes: 4, seconds: 13
)
sdlManager.send(mediaClock)

Counting Down

Counting down is the opposite of counting up (I know, right?). The timer bar

moves from right to left and the timer will count down. For example, if you're

counting down from 10:00 to 0:00 , the timer will auto-update every second.

OBJECTIVE-C

SWIFT

NOTE

The end time must be larger than the start time, or the request will

be rejected

SDLSetMediaClockTimer *mediaClock = [[SDLSetMediaClockTimer alloc
] initWithUpdateMode:SDLUpdateModeCountDown];
mediaClock.startTime = [[SDLStartTime alloc] initWithHours:0 minutes:
10 seconds:0];
mediaClock.endTime = [[SDLStartTime alloc] initWithHours:0 minutes:0
 seconds:0];
[self.sdlManager sendRequest:mediaClock];

let mediaClock = SDLSetMediaClockTimer(updateMode: .countDown)
mediaClock.startTime = SDLStartTime(hours: 0, minutes: 10, seconds:
0)
mediaClock.endTime = SDLStartTime(hours: 0, minutes: 0, seconds: 0)
sdlManager.send(mediaClock)

Pausing & Resuming

When pausing the timer, it will stop the timer as soon as the request is received

and processed. When a resume request is sent, the timer begins again at the

paused time as soon as the request is processed. You can update the start and

end times using a pause command to change the timer while remaining

paused.

OBJECTIVE-C

SWIFT

SDLSetMediaClockTimer *mediaClock = [[SDLSetMediaClockTimer alloc
] initWithUpdateMode:SDLUpdateModePause];
[self.sdlManager sendRequest:mediaClock];

SDLSetMediaClockTimer *mediaClock = [[SDLSetMediaClockTimer alloc
] initWithUpdateMode:SDLUpdateModeResume];
[self.sdlManager sendRequest:mediaClock];

let mediaClock = SDLSetMediaClockTimer(updateMode: .pause)
sdlManager.send(mediaClock)

let mediaClock = SDLSetMediaClockTimer(updateMode: .resume)
sdlManager.send(mediaClock)

Clearing the Timer

Clearing the timer removes it from the screen.

OBJECTIVE-C

SWIFT

Updating the Audio Indicator

The audio indicator is, essentially, the play / pause button. As of SDL v6.1,

when connected to an SDL v5.0+ head unit, you can tell the system what icon

to display on the play / pause button to correspond with how your app works.

For example, a radio app will probably want two button states: play and stop. A

music app, in contrast, will probably want a play and pause button. If you don't

send any audio indicator information, a play / pause button will be displayed.

The code below will pause the media clock and set the audio indicator to show

a play symbol.

SDLSetMediaClockTimer *mediaClock = [[SDLSetMediaClockTimer alloc
] initWithUpdateMode:SDLUpdateModeClear];
[self.sdlManager sendRequest:mediaClock];

let mediaClock = SDLSetMediaClockTimer(updateMode: .clear)
sdlManager.send(mediaClock)

OBJECTIVE-C

SWIFT

Batch Sending RPCs

There are two ways to send multiple requests to the head unit: concurrently

and sequentially. Which method you should use depends on the type of RPCs

being sent. Concurrently sent requests might finish in a random order and

should only be used when none of the requests in the group depend on the

response of another, such as when uploading a group of artworks. Sequentially

sent requests only send the next request in the group when a response has

been received for the previously sent RPC. Requests should be sent

sequentially when you need to know the result of a previous request before

sending the next, like when sending the several different requests needed to

create a menu.

Both methods have optional progress and completion handlers. Use the progre

ssHandler to check the status of each sent RPC; it will tell you if there was an

SDLSetMediaClockTimer *mediaClock = [[SDLSetMediaClockTimer alloc
] initWithUpdateMode:SDLUpdateModePause];
mediaClock.audioStreamingIndicator =
SDLAudioStreamingIndicatorPlay;
[self.sdlManager sendRequest:mediaClock];

let mediaClock = SDLSetMediaClockTimer(updateMode: .pause)
mediaClock.audioStreamingIndicator = .play
sdlManager.send(mediaClock)

error sending the request and what percentage of the group has completed

sending. The optional completionHandler is called when all RPCs in the group

have been sent. Use it to check if all of the requests have been sent

successfully or not.

Sending Concurrent Requests

When you send multiple RPCs concurrently there is no guarantee of the order in

which the RPCs will be sent or in which order Core will return responses.

OBJECTIVE-C

SDLArtwork *artwork1 = [SDLArtwork artworkWithImage:[UIImage
imageNamed:@"<#Image name#>"] asImageFormat:<#
SDLArtworkImageFormat#>];
SDLArtwork *artwork2 = [SDLArtwork artworkWithImage:[UIImage
imageNamed:@"<#Image name#>"] asImageFormat:<#
SDLArtworkImageFormat#>];
[self.sdlManager sendRequests:@[artwork1, artwork2] progressHandler:
^(__kindof SDLRPCRequest * _Nonnull request, __kindof
SDLRPCResponse * _Nullable response, NSError * _Nullable error, float
percentComplete) {
 NSLog(@"Command %@ sent %@, percent complete %f%%",
request.name, response.resultCode == SDLResultSuccess ?
@"successfully" : @"unsuccessfully", percentComplete * 100);
} completionHandler:^(BOOL success) {
 NSLog(@"All requests sent %@", success ? @"successfully" :
@"unsuccessfully");
}];

SWIFT

Sending Sequential Requests

Requests sent sequentially are sent in a set order. The next request is only sent

when a response has been received for the previously sent request.

The code example below shows how to create a perform interaction choice set.

When creating a perform interaction choice set, the SDLPerformInteraction

RPC can only be sent after the SDLCreateInteractionChoiceSet RPC has been

registered by Core, which is why the requests must be sent sequentially.

let artwork1 = SDLArtwork(image: <#UIImage#>, persistent: <#Bool#
>, as: <#SDLArtworkImageFormat#>)
let artwork2 = SDLArtwork(image: <#UIImage#>, persistent: <#Bool#
>, as: <#SDLArtworkImageFormat#>)
sdlManager.send([artwork1, artwork2], progressHandler: { (request,
response, error, percentComplete) in
 print("Command \(request.name) sent \(response?.resultCode == .
success ? "successfully" : "unsuccessfully"), percent complete \(
percentComplete * 100)")
}) { success in
 print("All requests sent \(success ? "successfully" : "unsuccessfully")"
)
}

OBJECTIVE-C

SWIFT

SDLChoice *choice = [[SDLChoice alloc] initWithId:<#Choice Id#>
menuName:@"<#Menu Name#>" vrCommands:@[@"<#VR
Command#>"]];
SDLCreateInteractionChoiceSet *createInteractionChoiceSet = [[
SDLCreateInteractionChoiceSet alloc] initWithId:<#Choice Set Id#>
choiceSet:@[choice]];
SDLPerformInteraction *performInteraction = [[SDLPerformInteraction
alloc] initWithInteractionChoiceSetId:<#Choice Set Id#>];

[self.sdlManager sendSequentialRequests:@[
createInteractionChoiceSet, performInteraction] progressHandler:^
BOOL(__kindof SDLRPCRequest * _Nonnull request, __kindof
SDLRPCResponse * _Nullable response, NSError * _Nullable error, float
percentComplete) {
 NSLog(@"Command %@ sent %@, percent complete %f%%",
request.name, response.resultCode == SDLResultSuccess ?
@"successfully" : @"unsuccessfully", percentComplete * 100);
} completionHandler:^(BOOL success) {
 NSLog(@"All requests sent %@", success ? @"successfully" :
@"unsuccessfully");
}];

let choice = SDLChoice(id: <#Choice Id#>, menuName: "<#Menu
Name#>", vrCommands: ["<#VR Command#>"])
let createInteractionChoiceSet = SDLCreateInteractionChoiceSet(id: <#
Choice Set Id#>, choiceSet: [choice])
let performInteraction = SDLPerformInteraction(interactionChoiceSetId:
<#Choice Set Id#>)

sdlManager.sendSequential(requests: [createInteractionChoiceSet,
performInteraction], progressHandler: { (request, response, error,
percentageCompleted) -> Bool in
 print("Command \(request.name) sent \(response?.resultCode == .
success ? "successfully" : "unsuccessfully"), percent complete \(
percentComplete * 100)")
}) { success in
 print("All requests sent \(success ? "successfully" : "unsuccessfully")"
)
}

Retrieving Vehicle Data

Use the SDLGetVehicleData RPC call to get vehicle data. The HMI level must

be FULL , LIMITED , or BACKGROUND in order to get data.

Each vehicle manufacturer decides which data it will expose and to whom they

will expose it. Please check the response to find out which data you will have

access to in your head unit. Additionally, be aware the the driver / user may

have the ability to disable vehicle data through the settings menu of their

infotainment head unit.

NOTE

You may only ask for vehicle data that is available to your appNam

e & appId combination. These will be specified by each OEM

separately. See Understanding Permissions for more details.

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/getting-started/understanding-permissions/

V E H I C L E D ATA PA R A M E T E R N A M E D E S C R I P T I O N

Acceleration Pedal

Position
accPedalPosition

Accelerator pedal

position (percentage

depressed)

Airbag Status airbagStatus

Status of each of the

airbags in the vehicle:

yes, no, no event, not

supported, fault

Belt Status beltStatus

The status of each of the

seat belts: no, yes, not

supported, fault, or no

event

Body Information bodyInformation

Door ajar status for each

door. The Ignition status.

The ignition stable

status. The park brake

active status.

Cluster Mode Status clusterModeStatus

Whether or not the

power mode is active.

The power mode

qualification status:

power mode undefined,

power mode evaluation

in progress, not defined,

power mode ok. The car

mode status: normal,

factory, transport, or

crash. The power mode

status: key out, key

recently out, key

approved, post

accessory, accessory,

post ignition, ignition on,

running, crank

V E H I C L E D ATA PA R A M E T E R N A M E D E S C R I P T I O N

Device Status deviceStatus

Contains information

about the smartphone

device. Is voice

recognition on or off,

has a bluetooth

connection been

established, is a call

active, is the phone in

roaming mode, is a text

message available, the

battery level, the status

of the mono and stereo

output channels, the

signal level, the primary

audio source, whether or

not an emergency call is

currently taking place

Driver Braking driverBraking

The status of the brake

pedal: yes, no, no event,

fault, not supported

E-Call Infomation eCallInfo

Information about the

status of an emergency

call

Electronic Parking Brake

Status

electronicParkingBrakeSta

tus

The status of the

electronic parking brake.

Available states: closed,

transition, open, drive

active, fault

V E H I C L E D ATA PA R A M E T E R N A M E D E S C R I P T I O N

Emergency event emergencyEvent

The type of emergency:

frontal, side, rear,

rollover, no event, not

supported, fault. Fuel

cutoff status: normal

operation, fuel is cut off,

fault. The roll over

status: yes, no, no

event, not supported,

fault. The maximum

change in velocity.

Whether or not multiple

emergency events have

occurred

Engine Oil Life engineOilLife

The estimated

percentage (0% - 100%)

of remaining oil life of

the engine

Engine Torque engineTorque

Torque value for engine

(in Nm) on non-diesel

variants

External Temperature externalTemperature

The external

temperature in degrees

celsius

Fuel Level fuelLevel
The fuel level in the tank

(percentage)

Fuel Level State fuelLevel_State

The fuel level state:

Unknown, Normal, Low,

Fault, Alert, or Not

Supported

Fuel Range fuelRange

The estimate range in

KM the vehicle can

travel based on fuel

level and consumption

V E H I C L E D ATA PA R A M E T E R N A M E D E S C R I P T I O N

GPS gps

Longitude and latitude,

current time in UTC,

degree of precision,

altitude, heading, speed,

satellite data vs dead

reckoning, and

supported dimensions of

the GPS

Head Lamp Status headLampStatus

Status of the head

lamps: whether or not

the low and high beams

are on or off. The

ambient light sensor

status: night, twilight 1,

twilight 2, twilight 3,

twilight 4, day,

unknown, invalid

Instant Fuel

Consumption
instantFuelConsumption

The instantaneous fuel

consumption in

microlitres

My Key myKey

Information about

whether or not the

emergency 911 override

has been activated

Odometer odometer Odometer reading in km

PRNDL prndl

The selected gear the

car is in: park, reverse,

neutral, drive, sport, low

gear, first, second, third,

fourth, fifth, sixth,

seventh or eighth gear,

unknown, or fault

Speed speed Speed in KPH

Steering Wheel Angle steeringWheelAngle

Current angle of the

steering wheel (in

degrees)

V E H I C L E D ATA PA R A M E T E R N A M E D E S C R I P T I O N

One-Time Vehicle Data Retrieval

Using SDLGetVehicleData , we can ask for vehicle data a single time, if

needed.

Tire Pressure tirePressure

Tire status of each

wheel in the vehicle:

normal, low, fault, alert,

or not supported.

Warning light status for

the tire pressure: off, on,

flash, or not used

Turn Signal turnSignal

The status of the turn

signal. Available states:

off, left, right, both

RPM rpm

The number of

revolutions per minute

of the engine

VIN vin
The Vehicle

Identification Number

Wiper Status wiperStatus

The status of the wipers:

off, automatic off, off

moving, manual

interaction off, manual

interaction on, manual

low, manual high,

manual flick, wash,

automatic low,

automatic high, courtesy

wipe, automatic adjust,

stalled, no data exists

OBJECTIVE-C

SDLGetVehicleData *getVehicleData = [[SDLGetVehicleData alloc] init];
getVehicleData.prndl = @YES;
[self.sdlManager sendRequest:getVehicleData withResponseHandler:^(
__kindof SDLRPCRequest * _Nullable request, __kindof SDLRPCResponse
 * _Nullable response, NSError * _Nullable error) {
 if (error || ![response isKindOfClass:SDLGetVehicleDataResponse.
class]) {
 NSLog(@"Encountered Error sending GetVehicleData: %@", error);
 return;
 }

 SDLGetVehicleDataResponse* getVehicleDataResponse = (
SDLGetVehicleDataResponse *)response;
 SDLResult *resultCode = getVehicleDataResponse.resultCode;
 if (![resultCode isEqualToEnum:SDLResultSuccess]) {
 if ([resultCode isEqualToEnum:SDLResultRejected]) {
 NSLog(@"GetVehicleData was rejected. Are you in an
appropriate HMI?");
 } else if ([resultCode isEqualToEnum:SDLResultDisallowed]) {
 NSLog(@"Your app is not allowed to use GetVehicleData");
 } else {
 NSLog(@"Some unknown error has occured!");
 }
 return;
 }

 SDLPRNDL *prndl = getVehicleDataResponse.prndl;
}];

SWIFT

Subscribing to Vehicle Data

Subscribing to vehicle data allows you to get notified whenever we have new

data available. This data should not be relied upon being received in a

consistent manner. New vehicle data is available roughly every second.

First, register to observe the SDLDidReceiveVehicleDataNotification

notification:

let getVehicleData = SDLGetVehicleData()
getVehicleData.prndl = true
sdlManager.send(getVehicleData) { (request, response, error) in
 guard let response = response as? SDLGetVehicleDataResponse else
{ return }

 if let error = error {
 print("Encountered Error sending GetVehicleData: \(error)")
 return
 }

 if !response.resultCode == .success {
 if response.resultCode == .rejected {
 print("GetVehicleData was rejected. Are you in an appropriate
HMI?")
 } else if response.resultCode == .disallowed {
 print("Your app is not allowed to use GetVehicleData")
 } else {
 print("Some unknown error has occured!")
 }
 return
 }

 guard let prndl = response.prndl else { return }
}

OBJECTIVE-C

SWIFT

Then send the Subscribe Vehicle Data Request:

[[NSNotificationCenter defaultCenter] addObserver:self selector:
@selector(vehicleDataAvailable:) name:
SDLDidReceiveVehicleDataNotification object:nil];

NotificationCenter.default.addObserver(self, selector: #selector(
vehicleDataAvailable(_:)), name: .SDLDidReceiveVehicleData, object: nil
)

OBJECTIVE-C

SDLSubscribeVehicleData *subscribeVehicleData = [[
SDLSubscribeVehicleData alloc] init];
subscribeVehicleData.prndl = @YES;

[self.sdlManager sendRequest:subscribeVehicleData
withResponseHandler:^(__kindof SDLRPCRequest * _Nullable request,
__kindof SDLRPCResponse * _Nullable response, NSError * _Nullable
error) {
 if (![response isKindOfClass:[SDLSubscribeVehicleDataResponse class
]]) {
 return;
 }

 SDLSubscribeVehicleDataResponse *subscribeVehicleDataResponse
= (SDLSubscribeVehicleDataResponse*)response;
 SDLVehicleDataResult *prndlData = subscribeVehicleDataResponse.
prndl;
 if (!response.success.boolValue) {
 if ([response.resultCode isEqualToEnum:SDLResultDisallowed]) {
 // Not allowed to register for this vehicle data.
 } else if ([response.resultCode isEqualToEnum:
SDLResultUserDisallowed]) {
 // User disabled the ability to give you this vehicle data
 } else if ([response.resultCode isEqualToEnum:SDLResultIgnored])
{
 if ([prndlData.resultCode isEqualToEnum:
SDLVehicleDataResultCodeDataAlreadySubscribed]) {
 // You have access to this data item, and you are already
subscribed to this item so we are ignoring.
 } else if ([prndlData.resultCode isEqualToEnum:
SDLVehicleDataResultCodeVehicleDataNotAvailable]) {
 // You have access to this data item, but the vehicle you are
connected to does not provide it.
 } else {
 NSLog(@"Unknown reason for being ignored: %@", prndlData
.resultCode.value);
 }
 } else if (error) {
 NSLog(@"Encountered Error sending SubscribeVehicleData: %
@", error);
 }

 return;
 }

 // Successfully subscribed
}];

SWIFT

Finally, react to the notification when Vehicle Data is received:

let subscribeVehicleData = SDLSubscribeVehicleData()
subscribeVehicleData.prndl = true

sdlManager.send(request: subscribeVehicleData) { (request, response,
error) in
 guard let response = response as?
SDLSubscribeVehicleDataResponse else { return }

 guard response.success.boolValue == true else {
 if response.resultCode == .disallowed {
 // Not allowed to register for this vehicle data.
 } else if response.resultCode == .userDisallowed {
 // User disabled the ability to give you this vehicle data
 } else if response.resultCode == .ignored {
 if let prndlData = response.prndl {
 if prndlData.resultCode == .dataAlreadySubscribed {
 // You have access to this data item, and you are already
subscribed to this item so we are ignoring.
 } else if prndlData.resultCode == .vehicleDataNotAvailable {
 // You have access to this data item, but the vehicle you
are connected to does not provide it.
 } else {
 print("Unknown reason for being ignored: \(prndlData.
resultCode)")
 }
 } else {
 print("Unknown reason for being ignored: \(String(describing:
response.info))")
 }
 } else if let error = error {
 print("Encountered Error sending SubscribeVehicleData: \(error)"
)
 }
 return
 }

 // Successfully subscribed
}

OBJECTIVE-C

SWIFT

Unsubscribing from Vehicle Data

Sometimes you may not always need all of the vehicle data you are listening

to. We suggest that you only are subscribing when the vehicle data is needed.

To stop listening to specific vehicle data items, utilize SDLUnsubscribeVehicleD

ata .

- (void)vehicleDataAvailable:(SDLRPCNotificationNotification *)
notification {
 if (![notification.notification isKindOfClass:SDLOnVehicleData.class]) {
 return;
 }

 SDLOnVehicleData *onVehicleData = (SDLOnVehicleData *)
notification.notification;

 SDLPRNDL *prndl = onVehicleData.prndl;
}

func vehicleDataAvailable(_ notification: SDLRPCNotificationNotification
) {
 guard let onVehicleData = notification.notification as?
SDLOnVehicleData else {
 return
 }

 let prndl = onVehicleData.prndl
}

OBJECTIVE-C

SDLUnsubscribeVehicleData *unsubscribeVehicleData = [[
SDLUnsubscribeVehicleData alloc] init];
unsubscribeVehicleData.prndl = @YES;

[self.sdlManager sendRequest:unsubscribeVehicleData
withResponseHandler:^(__kindof SDLRPCRequest * _Nullable request,
__kindof SDLRPCResponse * _Nullable response, NSError * _Nullable
error) {
 if (![response isKindOfClass:[SDLUnsubscribeVehicleDataResponse
class]]) {
 return;
 }

 SDLUnsubscribeVehicleDataResponse *
unsubscribeVehicleDataResponse = (
SDLUnsubscribeVehicleDataResponse*)response;
 SDLVehicleDataResult *prndlData =
unsubscribeVehicleDataResponse.prndl;

 if (!response.success.boolValue) {
 if ([response.resultCode isEqualToEnum:SDLResultDisallowed]) {
 // Not allowed to register for this vehicle data, so unsubscribe
also will not work.
 } else if ([response.resultCode isEqualToEnum:
SDLResultUserDisallowed]) {
 // User disabled the ability to give you this vehicle data, so
unsubscribe also will not work.
 } else if ([response.resultCode isEqualToEnum:SDLResultIgnored])
{
 if ([prndlData.resultCode isEqualToEnum:
SDLVehicleDataResultCodeDataNotSubscribed]) {
 // You have access to this data item, but it was never
subscribed to so we ignored it.
 } else {
 NSLog(@"Unknown reason for being ignored: %@", prndlData
.resultCode.value);
 }
 } else if (error) {
 NSLog(@"Encountered Error sending UnsubscribeVehicleData:
%@", error);
 }
 return;
 }

 // Successfully unsubscribed
}];

SWIFT

let unsubscribeVehicleData = SDLUnsubscribeVehicleData()
unsubscribeVehicleData.prndl = true

sdlManager.send(request: unsubscribeVehicleData) { (request,
response, error) in
 guard let response = response as?
SDLUnsubscribeVehicleDataResponse else { return }

 guard response.success.boolValue == true else {
 if response.resultCode == .disallowed {

 } else if response.resultCode == .userDisallowed {

 } else if response.resultCode == .ignored {
 if let prndlData = response.prndl {
 if prndlData.resultCode == .dataNotSubscribed {
 // You have access to this data item, and you are already
unsubscribed to this item so we are ignoring.
 } else if prndlData.resultCode == .vehicleDataNotAvailable {
 // You have access to this data item, but the vehicle you
are connected to does not provide it.
 } else {
 print("Unknown reason for being ignored: \(prndlData.
resultCode)")
 }
 } else {
 print("Unknown reason for being ignored: \(String(describing:
response.info))")
 }
 } else if let error = error {
 print("Encountered Error sending UnsubscribeVehicleData: \(
error)")
 }
 return
 }

 // Successfully unsubscribed
}

Calling a Phone Number

Dialing a Phone Number allows you to send a phone number to dial on the

user's phone. Regardless of platform (Android or iOS), you must be sure that a

device is connected via Bluetooth (even if using iOS/USB) for this RPC to work.

If it is not connected, you will receive a REJECTED resultCode .

Detecting if DialNumber is
Available

DialNumber is a newer RPC, so there is a possibility that not all head units will

support it. To see if DialNumber is supported, you may look at SDLManager 's

systemCapabilityManager.hmiCapabilities.phoneCall property after the ready

handler is called.

NOTE

DialNumber is an RPC that is usually restricted by OEMs. As a

result, the OEM you are connecting to may limit app functionality if

not approved for usage.

OBJECTIVE-C

SWIFT

BOOL isPhoneCallSupported = NO;

[self.sdlManager startWithReadyHandler:^(BOOL success, NSError *
_Nullable error) {
 if (!success) {
 NSLog(@"SDL errored starting up: %@", error);
 return;
 }

 SDLHMICapabilities *hmiCapabilities = self.sdlManager.
systemCapabilityManager.hmiCapabilities;
 if (hmiCapabilities != nil) {
 isPhoneCallSupported = hmiCapabilities.phoneCall.boolValue;
 }
}];

var isPhoneCallSupported = false

sdlManager.start { (success, error) in
 if !success {
 print("SDL errored starting up: \(error.debugDescription)")
 return
 }

 if let hmiCapabilities = self.sdlManager.systemCapabilityManager.
hmiCapabilities, let phoneCallsSupported = hmiCapabilities.phoneCall?.
boolValue {
 isPhoneCallSupported = phoneCallsSupported
 }
}

Sending a DialNumber Request

OBJECTIVE-C

NOTE

For DialNumber, all characters are stripped except for 0 - 9 , * ,

, , , ; , and +

SDLDialNumber *dialNumber = [[SDLDialNumber alloc] init];
dialNumber.number = @"1238675309";

[self.sdlManager sendRequest:dialNumber withResponseHandler:^(
__kindof SDLRPCRequest * _Nullable request, __kindof SDLRPCResponse
 * _Nullable response, NSError * _Nullable error) {
 if (error != nil || ![response isKindOfClass:SDLDialNumberResponse.
class]) {
 NSLog(@"Encountered Error sending DialNumber: %@", error);
 return;
 }

 SDLDialNumberResponse* dialNumber = (SDLDialNumberResponse *
)response;
 SDLResult *resultCode = dialNumber.resultCode;
 if (![resultCode isEqualToEnum:SDLResultSuccess]) {
 if ([resultCode isEqualToEnum:SDLResultRejected]) {
 NSLog(@"DialNumber was rejected. Either the call was sent
and cancelled or there is no device connected");
 } else if ([resultCode isEqualToEnum:SDLResultDisallowed]) {
 NSLog(@"Your app is not allowed to use DialNumber");
 } else {
 NSLog(@"Some unknown error has occured!");
 }
 return;
 }

 // Successfully sent!
}];

SWIFT

DialNumber Result

DialNumber has 3 possible results that you should expect:

1. SUCCESS - DialNumber was successfully sent, and a phone call was

initiated by the user.
2. REJECTED - DialNumber was sent, and a phone call was cancelled by the

user. Also, this could mean that there is no phone connected via

Bluetooth.
3. DISALLOWED - Your app does not have permission to use DialNumber.

let dialNumber = SDLDialNumber()
dialNumber.number = "1238675309"

sdlManager.send(request: dialNumber) { (request, response, error) in
 guard let response = response as? SDLDialNumberResponse else {
return }

 if let error = error {
 print("Encountered Error sending DialNumber: \(error)")
 return
 }

 if response.resultCode != .success {
 if response.resultCode == .rejected {
 print("DialNumber was rejected. Either the call was sent and
cancelled or there is no device connected")
 } else if response.resultCode == .disallowed {
 print("Your app is not allowed to use DialNumber")
 } else {
 print("Some unknown error has occured!")
 }
 return
 }

 // Successfully sent!
}

Setting the Navigation
Destination

Setting a Navigation Destination allows you to send a GPS location, prompting

the user to navigate to that location using their embedded navigation. When

using the SendLocation RPC, you will not receive a callback about how the

user interacted with this location, only if it was successfully sent to Core and

received. It will be handled by Core from that point on using the embedded

navigation system.

Detecting if SendLocation is
Available

To check if SendLocation is supported, you may look at SDLManager 's syste

mCapabilityManager property after the ready handler is called. Or, you may

use SDLManager 's permissionManager property to ask for the permission

status of SendLocation .

NOTE

This currently is only supported for Embedded Navigation; it does

not work with Mobile Navigation Apps at this time.

OBJECTIVE-C

NOTE

SendLocation is an RPC that is usually restricted by OEMs. As a

result, the OEM you are connecting to may limit app functionality if

you are not approved to use it.

BOOL isNavigationSupported = NO;

__weak typeof (self) weakSelf = self;
[self.sdlManager startWithReadyHandler:^(BOOL success, NSError *
_Nullable error) {
 if (!success) {
 NSLog(@"SDL errored starting up: %@", error);
 return;
 }

 SDLHMICapabilities *hmiCapabilities = self.sdlManager.
systemCapabilityManager.hmiCapabilities;
 if (hmiCapabilities != nil) {
 isNavigationSupported = hmiCapabilities.navigation.boolValue;
 }
}];

SWIFT

Using Send Location

To use SendLocation , you must at least include the Longitude and Latitude of

the location.

var isNavigationSupported = false

sdlManager.start { (success, error) in
 if !success {
 print("SDL errored starting up: \(error.debugDescription)")
 return
 }

 if let hmiCapabilities = self.sdlManager.systemCapabilityManager.
hmiCapabilities, let navigationSupported = hmiCapabilities.navigation?.
boolValue {
 isNavigationSupported = navigationSupported
 }
}

OBJECTIVE-C

SDLSendLocation *sendLocation = [[SDLSendLocation alloc]
initWithLongitude:-97.380967 latitude:42.877737 locationName:@"The
Center" locationDescription:@"Center of the United States" address:@[
@"900 Whiting Dr", @"Yankton, SD 57078"] phoneNumber:nil image:nil
];
[self.sdlManager sendRequest:sendLocation withResponseHandler:^(
__kindof SDLRPCRequest * _Nullable request, __kindof SDLRPCResponse
 * _Nullable response, NSError * _Nullable error) {
 if (error || ![response isKindOfClass:SDLSendLocationResponse.class])
 {
 NSLog(@"Encountered Error sending SendLocation: %@", error);
 return;
 }

 SDLSendLocationResponse *sendLocation = (
SDLSendLocationResponse *)response;
 SDLResult *resultCode = sendLocation.resultCode;
 if (![resultCode isEqualToEnum:SDLResultSuccess]) {
 if ([resultCode isEqualToEnum:SDLResultInvalidData]) {
 NSLog(@"SendLocation was rejected. The request contained
invalid data.");
 } else if ([resultCode isEqualToEnum:SDLResultDisallowed]) {
 NSLog(@"Your app is not allowed to use SendLocation");
 } else {
 NSLog(@"Some unknown error has occured!");
 }
 return;
 }

 // Successfully sent!
}];

SWIFT

Determining the Result of
SendLocation

SendLocation has 3 possible results that you should expect:

1. SUCCESS - SendLocation was successfully sent.
2. INVALID_DATA - The request you sent contains invalid data and was

rejected.
3. DISALLOWED - Your app does not have permission to use SendLocation.

let sendLocation = SDLSendLocation(longitude: -97.380967, latitude:
42.877737, locationName: "The Center", locationDescription: "Center
of the United States", address: ["900 Whiting Dr", "Yankton, SD 57078"
], phoneNumber: nil, image: nil)

sdlManager.send(request: sendLocation) { (request, response, error) in
 guard let response = response as? SDLSendLocationResponse else {
return }

 if let error = error {
 print("Encountered Error sending SendLocation: \(error)")
 return
 }

 if response.resultCode != .success {
 if response.resultCode == .invalidData {
 print("SendLocation was rejected. The request contained
invalid data.")
 } else if response.resultCode == .disallowed {
 print("Your app is not allowed to use SendLocation")
 } else {
 print("Some unknown error has occured!")
 }
 return
 }

 // Successfully sent!
}

In-Car Microphone Audio

Capturing in-car audio allows developers to interact with users by requesting

raw audio data provided to them from the car's microphones. In order to gather

the raw audio from the vehicle, we must leverage the SDLPerformAudioPassTh

ru RPC.

In order to know the currently supported audio capture capabilities of the

connected head unit, please refer to the SDLSystemCapabilityManager.audioPa

ssThruCapabilities documentation.

NOTE

PerformAudioPassThru does not support automatic speech

cancellation detection, so if this feature is desired, it is up to the

developer to implement. The user may press an OK or Cancel

button, the dialog may timeout, or you may close the dialog with S

DLEndAudioPassThru .

NOTE

SDL does not support an open microphone. However, SDL is

working on wake-word support in the future. You may implement a

voice command and start an audio pass thru session when that

voice command occurs.

https://smartdevicelink.com/en/docs/iOS/master/Classes/SDLPerformAudioPassThru/
https://smartdevicelink.com/en/docs/iOS/master/Classes/SDLPerformAudioPassThru/
https://smartdevicelink.com/en/docs/iOS/master/Classes/SDLPerformAudioPassThru/
https://smartdevicelink.com/en/docs/iOS/master/Classes/SDLPerformAudioPassThru/
https://smartdevicelink.com/en/docs/iOS/master/Classes/SDLRegisterAppInterfaceResponse/

Starting Audio Capture

To initiate audio capture, we must construct a SDLPerformAudioPassThru

request. The properties we will set in this object's constructor relate to how we

wish to gather the audio data from the vehicle we are connected to.

OBJECTIVE-C

NOTE

Currently, SDL only supports Sampling Rates of 16 khz and Bit

Rates of 16 bit.

SDLPerformAudioPassThru *audioPassThru = [[
SDLPerformAudioPassThru alloc] initWithInitialPrompt:@"<#A speech
prompt when the dialog appears#>" audioPassThruDisplayText1:
@"<#Ask me \"What's the weather?\"#>" audioPassThruDisplayText2:
@"<#or \"What is 1 + 2?\"#>" samplingRate:SDLSamplingRate16KHZ
bitsPerSample:SDLBitsPerSample16Bit audioType:SDLAudioTypePCM
maxDuration:<#Time in milliseconds to keep the dialog open#>
muteAudio:YES];

[self.sdlManager sendRequest:audioPassThru];

SWIFT

Ford HMI

Gathering Audio Data

SDL provides audio data as fast as it can gather it, and sends it to the

developer in chunks. In order to retrieve this audio data, the developer must

add a handler to the SDLPerformAudioPassThru .

let audioPassThru = SDLPerformAudioPassThru(initialPrompt: "<#A
speech prompt when the dialog appears#>",
audioPassThruDisplayText1: "<#Ask me \"What's the weather?\"#>",
audioPassThruDisplayText2: "<#or \"What is 1 + 2?\"#>",
samplingRate: .rate16KHZ, bitsPerSample: .sample16Bit, audioType: .
PCM, maxDuration: <#Time in milliseconds to keep the dialog open#>,
 muteAudio: true)

sdlManager.send(audioPassThru)

OBJECTIVE-C

NOTE

This audio data is only the current chunk of audio data, so the

developer must be in charge of managing previously retrieved

audio data.

SDLPerformAudioPassThru *audioPassThru = [[
SDLPerformAudioPassThru alloc] initWithInitialPrompt:@"<#A speech
prompt when the dialog appears#>" audioPassThruDisplayText1:
@"<#Ask me \"What's the weather?\"#>" audioPassThruDisplayText2:
@"<#or \"What is 1 + 2?\"#>" samplingRate:SDLSamplingRate16KHZ
bitsPerSample:SDLBitsPerSample16Bit audioType:SDLAudioTypePCM
maxDuration:<#Time in milliseconds to keep the dialog open#>
muteAudio:YES];

audioPassThru.audioDataHandler = ^(NSData * _Nullable audioData) {
 // Do something with current audio data.
 if (audioData.length == 0) { return; }
 <#code#>
}

[self.sdlManager sendRequest:audioPassThru];

SWIFT

The format of audio data is described as follows:

- It does not include a header (such as a RIFF header) at the beginning.

- The audio sample is in linear PCM format.

- The audio data includes only one channel (i.e. monaural).

- For bit rates of 8 bits, the audio samples are unsigned. For bit rates of 16 bits,

the audio samples are signed and are in little endian.

Ending Audio Capture

Perform Audio Pass Thru is a request that works in a different way than other

RPCs. For most RPCs, a request is followed by an immediate response, with

let audioPassThru = SDLPerformAudioPassThru(initialPrompt: "<#A
speech prompt when the dialog appears#>",
audioPassThruDisplayText1: "<#Ask me \"What's the weather?\"#>",
audioPassThruDisplayText2: "<#or \"What is 1 + 2?\"#>",
samplingRate: .rate16KHZ, bitsPerSample: .sample16Bit, audioType: .
PCM, maxDuration: <#Time in milliseconds to keep the dialog open#>,
 muteAudio: true)

audioPassThru.audioDataHandler = { (data) in
 // Do something with current audio data.
 guard let audioData = data else { return }
 <#code#>
}

sdlManager.send(audioPassThru)

FORMAT OF AUDIO DATA

whether that RPC was successful or not. This RPC, however, will only send out

the response when the PerformAudioPassThru is ended.

Audio Capture can be ended in 4 ways:

1. Audio Pass Thru has timed out.

If the Audio Pass Thru has proceeded longer than the requested timeout

duration, Core will end this request with a resultCode of SUCCESS . You

should expect to handle this Audio Pass Thru as though it was successful.
2. Audio Pass Thru was closed due to user pressing "Cancel".

If the Audio Pass Thru was displayed, and the user pressed the "Cancel"

button, you will receive a resultCode of ABORTED . You should expect to

ignore this Audio Pass Thru.
3. Audio Pass Thru was closed due to user pressing "Done".

If the Audio Pass Thru was displayed, and the user pressed the "Done"

button, you will receive a resultCode of SUCCESS . You should expect to

handle this Audio Pass Thru as though it was successful.
4. Audio Pass Thru was ended due to the developer ending the request.

If the Audio Pass Thru was displayed, but you have established on your

own that you no longer need to capture audio data, you can send an SDL

EndAudioPassThru RPC.

OBJECTIVE-C

SWIFT

SDLEndAudioPassThru *endAudioPassThru = [[SDLEndAudioPassThru
alloc] init];
[self.sdlManager sendRequest:endAudioPassThru];

let endAudioPassThru = SDLEndAudioPassThru()
sdlManager.send(endAudioPassThru)

You will receive a resultCode of SUCCESS , and should expect to handle this

audio pass thru as though it was successful.

Handling the Response

To process the response that we received from an ended audio capture, we use

the withResponseHandler property in SDLManager 's send(_ :) function.

OBJECTIVE-C

[self.sdlManager sendRequest:performAudioPassThru
withResponseHandler:^(__kindof SDLRPCRequest * _Nullable request,
__kindof SDLRPCResponse * _Nullable response, NSError * _Nullable
error) {
 if (error || ![response isKindOfClass:
SDLPerformAudioPassThruResponse.class]) {
 NSLog(@"Encountered Error sending Perform Audio Pass Thru: %
@", error);
 return;
 }

 SDLPerformAudioPassThruResponse *audioPassThruResponse = (
SDLPerformAudioPassThruResponse *)response;
 SDLResult *resultCode = audioPassThruResponse.resultCode;
 if (![resultCode isEqualToEnum:SDLResultSuccess]) {
 // Cancel any usage of the audio data
 }

 // Process audio data
}];

SWIFT

Uploading Files

In almost all cases, graphics are uploaded using the ScreenManager . You can

find out about setting images in templates, soft buttons, and menus in the Text

Images and Buttons guide. Other situations, such as PerformInteraction s, VR

help lists, and turn by turn directions, are not currently covered by the Screen

Manager . To upload an image, see the Uploading Images guide.

Uploading an mp3 Using
SDLFileManager

The SDLFileManager uploads files and keeps track of all the uploaded files

names during a session. To send data with the SDLFileManager , you need to

create either a SDLFile or SDLArtwork object. SDLFile objects are created

with a local NSURL or NSData ; SDLArtwork uses a UIImage .

sdlManager.send(request: performAudioPassThru) { (request, response,
 error) in
 guard let response = response else { return }

 guard response.resultCode == .success else {
 // Cancel any usage of the audio data.
 return
 }

 // Process audio data
}

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/displaying-a-user-interface/text-images-and-buttons/
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/displaying-a-user-interface/text-images-and-buttons/
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/other-sdl-features/uploading-images/

OBJECTIVE-C

SWIFT

Batch File Uploads

If you want to upload a group of files, you can use the SDLFileManager 's batch

upload methods. Once all of the uploads have completed you will be notified if

any of the uploads failed. If desired, you can also track the progress of each file

in the group.

NSData *mp3Data = <#Get the File Data#>;
SDLFile *file = [SDLFile fileWithData:mp3Data name:<#File name to be
referenced later#> fileExtension:<#File Extension#>];

[self.sdlManager.fileManager uploadFile:file completionHandler:^(BOOL
 success, NSUInteger bytesAvailable, NSError * _Nullable error) {
 if (error != nil) { return; }
 <#File Upload Successful#>
}];]

let mp3Data = <#Get MP3 Data#>
let file = SDLFile(data: mp3Data, name: <#File name#> fileExtension:
<#File Extension#>)

sdlManager.fileManager.upload(file: file) { (success, bytesAvailable,
error) in
 guard error == nil else { return }
 <#File Upload Successful#>
}

OBJECTIVE-C

SDLFile *file1 = [SDLFile fileWithData:<#Data#> name:<#File name to
 be referenced later#> fileExtension:<#File Extension#>];
SDLFile *file2 = [SDLFile fileWithData:<#Data#> name:<#File name to
 be referenced later#> fileExtension:<#File Extension#>];

[self.sdlManager.fileManager uploadFiles:@[file1, file2] progressHandler
:^BOOL(NSString * _Nonnull fileName, float uploadPercentage, NSError
* _Nullable error) {
 // A single file has finished uploading. Use this to check for individual
errors, to use an file as soon as its uploaded, or to check the progress
of the upload
 // The upload percentage is calculated as the total file size of all
attempted file uploads (regardless of the successfulness of the upload)
divided by the sum of the data in all the files
 // Return YES to continue sending files. Return NO to cancel any files
that have not yet been sent.
} completionHandler:^(NSArray<NSString *> * _Nonnull fileNames,
NSError * _Nullable error) {
 // All files have completed uploading.
 // If all files were uploaded successfully, the error will be nil
 // The error's userInfo parameter is of type [fileName: error message]
}];

SWIFT

File Persistance

SDLFile and its subclass SDLArtwork support uploading persistant files, i.e.

files that are not deleted when the car turns off. Persistance should be used for

files that will be used every time the user opens the app. If the file is only

displayed for short time the file should not be persistant because it will take up

unnecessary space on the head unit. You can check the persistence via:

OBJECTIVE-C

let file1 = SDLFile(data: <#File Data#>, name: <#File name#>
fileExtension: <#File Extension#>)
let file2 = SDLFile(data: <#File Data#>, name: <#File name#>
fileExtension: <#File Extension#>)

sdlManager.fileManager.upload(files: [file1, file2], progressHandler: { (
fileName, uploadPercentage, error) -> Bool in
 // A single file has finished uploading. Use this to check for individual
errors, to use an file as soon as its uploaded, or to check the progress
of the upload
 // The upload percentage is calculated as the total file size of all
attempted file uploads (regardless of the successfulness of the upload)
divided by the sum of the data in all the files
 // Return true to continue sending files. Return false to cancel any
files that have not yet been sent.
}) { (fileNames, error) in
 // All files have completed uploading.
 // If all files were uploaded successfully, the error will be nil
 // The error's userInfo parameter is of type [fileName: error message]
}

if (file.isPersistent) {
 <#File was initialized as persistent#>
}

SWIFT

Overwriting Stored Files

If a file being uploaded has the same name as an already uploaded file, the

new file will be ignored. To override this setting, set the SDLFile ’s overwrite

property to true.

OBJECTIVE-C

SWIFT

if file.isPersistent {
 <#File was initialized as persistent#>
}

NOTE

Be aware that persistance will not work if space on the head unit is

limited. SDLFileManager will always handle uploading images if

they are non-existent.

file.overwrite = YES;

file.overwrite = true

Checking the Amount of File
Storage

To find the amount of file storage left for your app on the head unit, use the SD

LFileManager ’s bytesAvailable property.

OBJECTIVE-C

SWIFT

Checking if a File Has Already
Been Uploaded

You can check out if an image has already been uploaded to the head unit via

the SDLFileManager 's remoteFileNames property.

NSUInteger bytesAvailable = self.sdlManager.fileManager.
bytesAvailable;

let bytesAvailable = sdlManager.fileManager.bytesAvailable

OBJECTIVE-C

SWIFT

Deleting Stored Files

Use the file manager’s delete request to delete a file associated with a file

name.

OBJECTIVE-C

BOOL isFileOnHeadUnit = [self.sdlManager.fileManager.
remoteFileNames containsObject:@"<#Name#>"];

if let fileIsOnHeadUnit = sdlManager.fileManager.remoteFileNames.
contains("<#Name Uploaded As#>") {
 if fileIsOnHeadUnit {
 <#File exists#>
 } else {
 <#File does not exist#>
 }
}

[self.sdlManager.fileManager deleteRemoteFileWithName:@"<#Save
As Name#>" completionHandler:^(BOOL success, NSUInteger
bytesAvailable, NSError *error) {
 if (success) {
 <#Image was deleted successfully#>
 }
}];

SWIFT

Batch Deleting Files

OBJECTIVE-C

SWIFT

sdlManager.fileManager.delete(fileName: "<#Save As Name#>") { (
success, bytesAvailable, error) in
 if success {
 <#Image was deleted successfully#>
 }

}

[self.sdlManager.fileManager deleteRemoteFileWithNames:@[
@"<#Save As Name#>", @"<#Save As Name 2#>"]
completionHandler:^(NSError *error) {
 if (error == nil) {
 <#Images were deleted successfully#>
 }
}];

sdlManager.fileManager.delete(fileNames: ["<#Save As Name#>",
"<#Save as Name 2#>"]) { (error) in
 if (error == nil) {
 <#Images were deleted successfully#>
 }
}

Uploading Images

You should be aware of these four things when using images in your SDL app:

1. You may be connected to a head unit that does not have the ability to

display images.
2. You must upload images from your mobile device to the head unit before

using them in a template.
3. Persistant images are stored on a head unit between sessions. Ephemeral

images are destroyed when a session ends (i.e. when the user turns off

their vehicle).
4. Images can not be uploaded when the app's hmiLevel is NONE. For more

information about permissions, please review Understanding Permissions.

To learn how to use images once they are uploaded, please see Text, Images,

and Buttons.

NOTE

If you are looking to upload images for use in template graphics,

soft buttons, or the menu, you can use the ScreenManager. Other

situations, such as VR help lists and turn by turn directions, are not

currently covered by the ScreenManager .

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/displaying-a-user-interface/text-images-and-buttons/
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/getting-started/understanding-permissions/
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/displaying-a-user-interface/text-images-and-buttons/
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/displaying-a-user-interface/text-images-and-buttons/

Checking if Graphics are
Supported

Before uploading images to a head unit you should first check if the head unit

supports graphics. If not, you should avoid uploading unneccessary image data.

To check if graphics are supported look at the SDLManager 's registerRespons

e property once the SDLManager has started successfully.

OBJECTIVE-C

__weak typeof (self) weakSelf = self;
[self.sdlManager startWithReadyHandler:^(BOOL success, NSError *
_Nullable error) {
 if (!success) {
 NSLog(@"SDL errored starting up: %@", error);
 return;
 }

 SDLDisplayCapabilities *displayCapabilities = weakSelf.sdlManager.
registerResponse.displayCapabilities;
 BOOL areGraphicsSupported = NO;
 if (displayCapabilities != nil) {
 areGraphicsSupported = displayCapabilities.graphicSupported.
boolValue;
 }
}];

SWIFT

Uploading an Image Using
SDLFileManager

The SDLFileManager uploads files and keeps track of all the uploaded files

names during a session. To send data with the SDLFileManager , you need to

create either a SDLFile or SDLArtwork object. SDLFile objects are created

with a local NSURL or NSData ; SDLArtwork a UIImage .

sdlManager.start { [weak self] (success, error) in
 if !success {
 print("SDL errored starting up: \(error.debugDescription)")
 return
 }

 var areGraphicsSupported = false
 if let displayCapabilities = self?.sdlManager.registerResponse?.
displayCapabilities {
 areGraphicsSupported = displayCapabilities.graphicSupported.
boolValue
 }
}

OBJECTIVE-C

SWIFT

UIImage* image = [UIImage imageNamed:@"<#Image Name#>"];
if (!image) {
 <#Error Reading from Assets#>
 return;
}

SDLArtwork* artwork = [SDLArtwork artworkWithImage:image
asImageFormat:<#SDLArtworkImageFormat#>];

[self.sdlManager.fileManager uploadArtwork:artwork completionHandler
:^(BOOL success, NSString * _Nonnull artworkName, NSUInteger
bytesAvailable, NSError * _Nullable error) {
 if (error != nil) { return; }
 <#Image Upload Successful#>
 // To send the image as part of a show request, create a SDLImage
object using the artworkName
 SDLImage *image = [[SDLImage alloc] initWithName:artworkName];
}];

guard let image = UIImage(named: "<#Image Name#>") else {
 <#Error Reading from Assets#>
 return
}
let artwork = SDLArtwork(image: image, persistent: <#Bool#>, as: <#
SDLArtworkImageFormat#>)

sdlManager.fileManager.upload(artwork: artwork) { (success,
artworkName, bytesAvailable, error) in
 guard error == nil else { return }
 <#Image Upload Successful#>
 // To send the image as part of a show request, create a SDLImage
object using the artworkName
 let graphic = SDLImage(name: artworkName)
}

Batch File Uploads, Persistence, etc.

Similar to other files, artworks can be persistent, batched, overwrite, etc. See

Uploading Files

Playing Audio Indications

As of SDL v6.1, you can pass an uploaded Audio File's name to TTSChunk ,

allowing any API that takes a TTSChunk to pass and play your audio file. This

can be used, for example, to play a distinctive audio chime or indication unique

to your application, letting the user know that something has occurred. A sports

app, for example, could use this to notify the user of a score update alongside

an Alert request.

Uploading the Audio File

The first step is to make sure the audio file is available on the remote system.

To do this, you use the SDLFileManager .

NOTE

Only SDL systems v.5.0+ support this feature.

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/other-sdl-features/uploading-files/

OBJECTIVE-C

SWIFT

For more information about uploading files, see the relevant guide.

Using the Audio File in an Alert

Now that the file is uploaded to the remote system, it can be used in various

APIs, such as Speak , Alert , AlertManeuver , PerformInteraction . To use the

audio file in an alert, you simply need to construct a TTSChunk referring to the

file's name.

SDLFile *audioFile = [[SDLFile alloc] initWithFileURL:<#(File location on
disk)#> name:<#(Audio file's reference for usage)#> persistent:<#(
True if the file is generic beyond just this session)#>];
[self.sdlManager.fileManager uploadFile:audioFile completionHandler:^(
BOOL success, NSUInteger bytesAvailable, NSError * _Nullable error) {
 <#(audio file is ready if success is true)#>
}];

let audioFile = SDLFile(fileURL: <#File Location on disk#>, name: <#
Audio file's reference for usage#>, persistent: <#True if the file is
generic beyond just this session#>)
sdlManager.fileManager.upload(file: audioFile) { (success,
bytesAvailable, error) in
 <#audio file is ready if success is true#>
}

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/other-sdl-features/uploading-files/

OBJECTIVE-C

SWIFT

Introduction

Mobile Navigation allows map partners to bring their applications into the car

and display their maps and turn by turn easily for the user. This feature has a

different behavior on the head unit than normal applications. The main

differences are:

• Navigation Apps don't use base screen templates. Their main view is the

video stream sent from the device.
• Navigation Apps can send audio via a binary stream. This will attenuate

the current audio source and should be used for navigation commands.
• Navigation Apps can receive touch events from the video stream.

SDLAlert *alert = [[SDLAlert alloc] initWithAlertText1:<#(nullable
NSString *)#> alertText2:<#(nullable NSString *)#> duration:<#(
UInt16)#>];
alert.ttsChunks = [SDLTTSChunk fileChunksWithName:<#(File's name)
#>];
[self.sdlManager sendRequest:alert];

let alert = SDLAlert(alertText1: <#T##String?#>, alertText2: <#T##
String?#>, duration: <#T##UInt16#>)
alert.ttsChunks = SDLTTSChunk.fileChunks(withName: <#File's name#
>)
sdlManager.send(alert)

Connecting an app

The basic connection is similar for all apps. Please follow the Integration Basics

guide for more information.

The first difference for a navigation app is the appHMIType of SDLAppHMITyp

eNavigation that has to be set in the SDLLifecycleConfiguration . Navigation

apps are also non-media apps.

The second difference is that a SDLStreamingMediaConfiguration must be

created and passed to the SDLConfiguration . A property called securityMana

gers must be set if connecting to a version of Core that requires secure video

& audio streaming. This property requires an array of classes of Security

Managers, which will conform to the SDLSecurityType protocol. These security

libraries are provided by the OEMs themselves, and will only work for that OEM.

There is not a general catch-all security library.

OBJECTIVE-C

SDLLifecycleConfiguration* lifecycleConfig = [
SDLLifecycleConfiguration defaultConfigurationWithAppName:
@"<#App Name#>" fullAppId:@"<#App Id#>"];
lifecycleConfig.appType = SDLAppHMITypeNavigation;

SDLStreamingMediaConfiguration *streamingConfig = [
SDLStreamingMediaConfiguration
secureConfigurationWithSecurityManagers:@[OEMSecurityManager.
class]];
SDLConfiguration *config = [SDLConfiguration
configurationWithLifecycle:lifecycleConfig lockScreen:[
SDLLockScreenConfiguration enabledConfiguration] logging:[
SDLLogConfiguration defaultConfiguration] streamingMedia:
streamingConfig fileManager:[SDLFileManagerConfiguration
defaultConfiguration]];

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/getting-started/integration-basics/

SWIFT

Keyboard Input

To present a keyboard (such as for searching for navigation destinations), you

should use the SDLScreenManager 's keyboard presentation feature. For more

information, see the Popup Menus and Keyboards guide.

Video Streaming

To stream video from a SDL app use the SDLStreamingMediaManager class. A

reference to this class is available from the SDLManager . You can choose to

let lifecycleConfig = SDLLifecycleConfiguration(appName: "<#App
Name#>", fullAppId: "<#App Id#>")
lifecycleConfig.appType = .navigation

let streamingConfig = SDLStreamingMediaConfiguration(
securityManagers: [OEMSecurityManager.self])
let config = SDLConfiguration(lifecycle: lifecycleConfig, lockScreen: .
enabled(), logging: .default(), streamingMedia: streamingConfig,
fileManager: .default())

NOTE

When compiling, you must make sure to include all possible OEM

security managers that you wish to support.

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/displaying-a-user-interface/popup-menus-and-keyboards/

create your own video streaming manager, or you can use the CarWindow API

to easily stream video to the head unit.

Transports for Video Streaming

Transports are automatically handled for you. As of SDL v6.1, the iOS library will

automatically manage primary transports and secondary transports for video

streaming. If Wi-Fi is available, the app will automatically connect using it after

connecting over USB / Bluetooth. This is the only way that Wi-Fi will be used in

a production setting.

CarWindow

CarWindow is a system to automatically video stream a view controller screen

to the head unit. When you set the view controller, CarWindow will resize the

view controller's frame to match the head unit's screen dimensions. Then, when

the video service setup has completed, it will capture the screen and and send

it to the head unit.

To start, you will have to set a rootViewController , which can easily be set

using one of the convenience initializers: autostreamingInsecureConfiguration

WithInitialViewController: or autostreamingSecureConfigurationWithSecurityM

anagers:initialViewController:

NOTE

Due to an iOS limitation, video can not be streamed when the app

on the device is backgrounded or when the device is sleeping/

locked.

There are several customizations you can make to CarWindow to optimize it

for your video streaming needs:

1. Choose how CarWindow captures and renders the screen using the

carWindowRenderingType enum.
2. By default, when using CarWindow, the SDLTouchManager will sync it's

touch updates to the framerate. To disable this feature, set

SDLTouchManager.enableSyncedPanning to NO.
3. CarWindow hard-dictates the framerate of the app. To change the

framerate and other parameters, update SDLStreamingMediaConfiguratio

n.customVideoEncoderSettings .

Below are the video encoder defaults:

NOTE

The View Controller you set to the rootViewController must be a

subclass of SDLCarWindowViewController or have only one suppo

rtedInterfaceOrientation . The SDLCarWindowViewController

prevents the rootViewController from rotating. This is necessary

because rotation between landscape and portrait modes can cause

the app to crash while the CarWindow API is capturing an image.

@{
 (__bridge NSString *)kVTCompressionPropertyKey_ProfileLevel: (
__bridge NSString *)kVTProfileLevel_H264_Baseline_AutoLevel,
 (__bridge NSString *)kVTCompressionPropertyKey_RealTime:
@YES,
 (__bridge NSString *)
kVTCompressionPropertyKey_ExpectedFrameRate: @15,
 (__bridge NSString *)
kVTCompressionPropertyKey_AverageBitRate: @600000
};

Showing a New View Controller

Simply update self.sdlManager.streamManager.rootViewController to the new

view controller. This will also update the haptic parser.

Mirroring the Device Screen vs. Off-Screen
UI

It is recommended that you set the rootViewController to an off-screen view

controller, i.e. you should instantiate a new UIViewController class and use it

to set the rootViewController . This view controller will appear on-screen in the

car, while remaining off-screen on the device. It is also possible, but not

recommended, to display your on-device-screen UI to the car screen by setting

the rootViewController to UIApplication.sharedApplication.keyWindow.rootVie

wController . However, if you mirror your device's screen, your app's UI will

resize to match the head unit's screen size, thus making most of the app's UI

off-screen.

NOTE

If mirroring your device's screen, the rootViewController should

only be set after viewDidAppear:animated is called. Setting the r

ootViewController in viewDidLoad or viewWillAppear:animated

can cause weird behavior when setting the new frame.

If setting the rootViewController when the app returns to the

foreground, the app should register for the UIApplicationDidBecom

eActive notification and not the UIApplicationWillEnterForeground

notification. Setting the frame after a notification from the latter

can also cause weird behavior when setting the new frame.

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/video-streaming-for-navigation-apps/supporting-haptic-input/

Sending Raw Video Data

If you decide to send raw video data instead of relying on the CarWindow API

to generate that video data from a view controller, you must maintain the

lifecycle of the video stream as there are limitations to when video is allowed to

stream. The app's HMI state on the head unit and the app's application state on

the device determines whether video can stream. Due to an iOS limitation,

video cannot be streamed when the app on the device is no longer in the

foreground and/or the device is locked/sleeping.

The lifecycle of the video stream is maintained by the SDL library. The SDLMan

ager.streamingMediaManager can be accessed once the start method of SDL

Manager is called. The SDLStreamingMediaManager automatically takes care

of determining screen size and encoding to the correct video format.

Sending Video Data

To check whether or not you can start sending data to the video stream, watch

for the SDLVideoStreamDidStartNotification , SDLVideoStreamDidStopNotificat

ion , and SDLVideoStreamSuspendedNotification notifications. When you

receive the start notification, start sending video data; stop when you receive

the suspended or stop notifications. You will receive a video stream suspended

NOTE

It is not recommended to alter the default video format and

resolution behavior as it can result in distorted video or the video

not showing up at all on the head unit. However, that option is

available to you by implementing SDLStreamingMediaConfiguratio

n.dataSource .

notification when the app on the device is backgrounded. There are parallel

start and stop notifications for audio streaming.

Video data must be provided to the SDLStreamingMediaManager as a CVIma

geBufferRef (Apple documentation here). Once the video stream has started,

you will not see video appear until Core has received a few frames. Refer to the

code sample below for an example of how to send a video frame:

OBJECTIVE-C

SWIFT

Best Practices

• A constant stream of map frames is not necessary to maintain an image

on the screen. Because of this, we advise that a batch of frames are only

CVPixelBufferRef imageBuffer = <#Acquire Image Buffer#>;

if ([self.sdlManager.streamManager sendVideoData:imageBuffer] ==
NO) {
 NSLog(@"Could not send Video Data");
}

let imageBuffer = <#Acquire Image Buffer#>

guard let streamManager = self.sdlManager.streamManager, !
streamManager.isVideoStreamingPaused else {
 return
}

if !streamManager.sendVideoData(imageBuffer) {
 print("Could not send Video Data")
}

https://developer.apple.com/library/mac/documentation/QuartzCore/Reference/CVImageBufferRef/

sent on map movement or location movement. This will keep the

application's memory consumption lower.
• For the best user experience, we recommend sending at least 15 frames

per second.

Audio Streaming

Navigation apps are allowed to stream raw audio to be played by the head unit.

The audio received this way is played immediately, and the current audio

source will be attenuated. The raw audio has to be played with the following

parameters:

• Format: PCM
• Sample Rate: 16k
• Number of Channels: 1
• Bits Per Second (BPS): 16 bits per sample / 2 bytes per sample

In order to stream audio from a SDL app, we focus on the SDLStreamingMedia

Manager class. A reference to this class is available from an SDLProxy

property streamingMediaManager .

Audio Stream Lifecycle

Like the lifecycle of the video stream, the lifecycle of the audio stream is

maintained by the SDL library. When you recieve the SDLAudioStreamDidStart

Notification , you can begin streaming audio.

SDLAudioStreamManager

If you do not already have raw PCM data ready at hand, the SDLAudioStreamM

anager can help. The SDLAudioStreamManager will help you to do on-the-fly

transcoding and streaming of your files in mp3 or other formats.

OBJECTIVE-C

SWIFT

OBJECTIVE-C

[self.sdlManager.streamManager.audioManager pushWithFileURL:
audioFileURL];
[self.sdlManager.streamManager.audioManager playNextWhenReady];

self.sdlManager.streamManager?.audioManager.push(withFileURL: url)
self.sdlManager.streamManager?.audioManager.playNextWhenReady()

IMPLEMENTING THE DELEGATE

- (void)audioStreamManager:(SDLAudioStreamManager *)
audioManager errorDidOccurForFile:(NSURL *)fileURL error:(NSError *)
error {
}

- (void)audioStreamManager:(SDLAudioStreamManager *)
audioManager fileDidFinishPlaying:(NSURL *)fileURL successfully:(BOOL)
successfully {
 if (audioManager.queue.count != 0) {
 [audioManager playNextWhenReady];
 }
}

SWIFT

Manually Sending Data

Once the audio stream is connected, data may be easily passed to the Head

Unit. The function sendAudioData: provides us with whether or not the PCM

Audio Data was successfully transferred to the Head Unit. If your app is in a

state that it is unable to send audio data, this method will return a failure.

OBJECTIVE-C

public func audioStreamManager(_ audioManager:
SDLAudioStreamManager, errorDidOccurForFile fileURL: URL, error:
Error) {

}

public func audioStreamManager(_ audioManager:
SDLAudioStreamManager, fileDidFinishPlaying fileURL: URL,
successfully: Bool) {
 if audioManager.queue.count != 0 {
 audioManager.playNextWhenReady()
 }
}

NSData* audioData = <#Acquire Audio Data#>;

if ([self.sdlManager.streamManager sendAudioData:audioData] == NO)
{
 NSLog(@"Could not send Audio Data");
}

SWIFT

Touch Input

Navigation applications have support for touch events, including both single

and multitouch events. This includes interactions such as panning and pinch. A

developer may use the included SDLTouchManager class, or yourself by

listening to the SDLDidReceiveTouchEventNotification notification.

Using SDLTouchManager

SDLTouchManager has multiple callbacks that will ease the implementation of

touch events.

let audioData = <#Acquire Audio Data#>;

guard let streamManager = self.sdlManager.streamManager,
streamManager.isAudioConnected else { return }

if streamManager.sendAudioData(audioData) == false {
 print("Could not send Audio Data")
}

NOTE

You must have a valid and approved appId in order to recieve

touch events.

The following callbacks are provided:

OBJECTIVE-C

NOTE

The view passed from the following callbacks are dependent on

using the built-in focusable item manager to send haptic rects. See

supporting haptic input "Automatic Focusable Rects" for more

information.

- (void)touchManager:(SDLTouchManager *)manager
didReceiveSingleTapForView:(nullable UIView *)view atPoint:(CGPoint)
point;
- (void)touchManager:(SDLTouchManager *)manager
didReceiveDoubleTapForView:(nullable UIView *)view atPoint:(CGPoint)
point;
- (void)touchManager:(SDLTouchManager *)manager
panningDidStartInView:(nullable UIView *)view atPoint:(CGPoint)point;
- (void)touchManager:(SDLTouchManager *)manager
didReceivePanningFromPoint:(CGPoint)fromPoint toPoint:(CGPoint)
toPoint;
- (void)touchManager:(SDLTouchManager *)manager
panningDidEndInView:(nullable UIView *)view atPoint:(CGPoint)point;
- (void)touchManager:(SDLTouchManager *)manager
panningCanceledAtPoint:(CGPoint)point;
- (void)touchManager:(SDLTouchManager *)manager
pinchDidStartInView:(nullable UIView *)view atCenterPoint:(CGPoint)
point;
- (void)touchManager:(SDLTouchManager *)manager
didReceivePinchAtCenterPoint:(CGPoint)point withScale:(CGFloat)scale;
- (void)touchManager:(SDLTouchManager *)manager
didReceivePinchInView:(nullable UIView *)view atCenterPoint:(CGPoint)
point withScale:(CGFloat)scale;
- (void)touchManager:(SDLTouchManager *)manager
pinchDidEndInView:(nullable UIView *)view atCenterPoint:(CGPoint)
point;
- (void)touchManager:(SDLTouchManager *)manager
pinchCanceledAtCenterPoint:(CGPoint)point;

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/video-streaming-for-navigation-apps/supporting-haptic-input/

SWIFT

 optional public func touchManager(_ manager: SDLTouchManager,
didReceiveSingleTapFor view: UIView?, at point: CGPoint)
 optional public func touchManager(_ manager: SDLTouchManager,
didReceiveDoubleTapFor view: UIView?, at point: CGPoint)
 optional public func touchManager(_ manager: SDLTouchManager,
panningDidStartIn view: UIView?, at point: CGPoint)
 optional public func touchManager(_ manager: SDLTouchManager,
didReceivePanningFrom fromPoint: CGPoint, to toPoint: CGPoint)
 optional public func touchManager(_ manager: SDLTouchManager,
panningDidEndIn view: UIView?, at point: CGPoint)
 optional public func touchManager(_ manager: SDLTouchManager,
panningCanceledAt point: CGPoint)
 optional public func touchManager(_ manager: SDLTouchManager,
pinchDidStartIn view: UIView?, atCenter point: CGPoint)
 optional public func touchManager(_ manager: SDLTouchManager,
didReceivePinchAtCenter point: CGPoint, withScale scale: CGFloat)
 optional public func touchManager(_ manager: SDLTouchManager,
didReceivePinchIn view: UIView?, atCenter point: CGPoint, withScale
scale: CGFloat)
 optional public func touchManager(_ manager: SDLTouchManager,
pinchDidEndIn view: UIView?, atCenter point: CGPoint)
 optional public func touchManager(_ manager: SDLTouchManager,
pinchCanceledAtCenter point: CGPoint)

NOTE

Points that are provided via these callbacks are in the head unit's

coordinate space. This is likely to correspond to your own

streaming coordinate space. You can retrieve the head unit

dimensions from SDLStreamingMediaManager.screenSize .

Implementing onTouchEvent Yourself

If apps want to have access to the raw touch data, the SDLDidReceiveTouchEv

entNotification notification can be evaluated. This callback will be fired for

every touch of the user and contains the following data:

TYPE

T O U C H T Y P E W H AT D O E S T H I S M E A N ?

EVENT

T O U C H E V E N T W H AT D O E S T H I S M E A N ?

BEGIN Sent for the first touch event of a touch.

MOVE Sent if the touch moved.

END Sent when the touch is lifted.

CANCEL

Sent when the touch is canceled (for

example, if a dialog appeared over the

touchable screen while the touch was in

progress).

touchEventId
Unique ID of the touch. Increases for

multiple touches (0, 1, 2, ...).

timeStamp

Timestamp of the head unit time. Can be

used to compare time passed between

touches.

coord
X and Y coordinates in the head unit

coordinate system. (0, 0) is the top left.

EXAMPLE

OBJECTIVE-C

SWIFT

[[NSNotificationCenter defaultCenter] addObserver:self selector:
@selector(touchEventAvailable:) name:
SDLDidReceiveTouchEventNotification object:nil];

- (void)touchEventAvailable:(SDLRPCNotificationNotification *)
notification {
 if (![notification.notification isKindOfClass:SDLOnTouchEvent.class]) {
 return;
 }
 SDLOnTouchEvent *touchEvent = (SDLOnTouchEvent *)notification.
notification;

 // Grab something like type
 SDLTouchType* type = touchEvent.type;
}

// To Register
NotificationCenter.default.addObserver(self, selector: #selector(
touchEventAvailable(_:)), name: .SDLDidReceiveTouchEvent, object: nil)

// On Receive
@objc private func touchEventAvailable(_ notification:
SDLRPCNotificationNotification) {
 guard let touchEvent = notification.notification as? SDLOnTouchEvent
 else {
 print("Error retrieving onTouchEvent object")
 return
 }

 // Grab something like type
 let type = touchEvent.type
}

Supporting Haptic Input

SDL now supports "haptic" input: input from something other than a touch

screen. This could include trackpads, click-wheels, etc. These kinds of inputs

work by knowing which areas on the screen are touchable and focusing /

highlighting on those areas when the user moves the trackpad or click wheel.

When the user selects within a rectangle, the center of that area will be

"touched".

You will also need to implement touch input support (Mobile Navigation/Touch

Input) in order to receive touches of the rects. You must support the automatic

focusable item manager in order to receive a touched view back in the SDLTou

chManagerDelegate in addition to the CGPoint .

Automatic Focusable Rects

SDL has support for automatically detecting focusable rects within your UI and

sending that data to the head unit. You will still need to tell SDL when your UI

changes so that it can re-scan and detect the rects to be sent.

NOTE

Currently, there are no RPCs for knowing which rect is highlighted,

so your UI will have to remain static, without scrolling.

In order to use the automatic focusable item locator, you must set the UIWindo

w of your streaming content on SDLStreamingMediaConfiguration.window . So

long as the device is on iOS 9+ and the window is set, the focusable item

locator will start running. Whenever your app updates, you will need to send a

notification:

OBJECTIVE-C

SWIFT

NOTE

This is only supported on iOS 9 devices and above. If you want to

support this on iOS 8, see "Manual Focusable Rects" below.

[[NSNotificationCenter defaultCenter] postNotificationName:
SDLDidUpdateProjectionView object:nil];

NotificationCenter.default.post(name: SDLDidUpdateProjectionView,
object: nil)

Manual Focusable Rects

If you need to supplement the automatic focusable item locator, or do all of the

location yourself (e.g. devices lower than iOS 9, or views that are not focusable

such as custom UIViews or OpenGL views), then you will have to manually send

and update the focusable rects using SDLSendHapticData . This request, when

sent replaces all current rects with new rects; so, if you want to clear all of the

rects, you would send the RPC with an empty array. Or, if you want to add a

single rect, you must re-send all previous rects in the same request.

Usage is simple, you create the rects using SDLHapticRect , add a unique id,

and send all the rects using SDLSendHapticData .

OBJECTIVE-C

NOTE

SDL can only automatically detect UIButton s and anything else

that responds true to canBecomeFocused . This means that

custom UIView objects will not be found. You must send these

objects manually, see "Manual Focusable Rects".

SDLRectange *viewRect = [[SDLRectangle alloc] initWithCGRect:view.
bounds];
SDLHapticRect *hapticRect = [[SDLHapticRect alloc] initWithId:1 rect:
viewRect];
SDLSendHapticData *hapticData = [[SDLSendHapticData alloc]
initWithHapticRectData:@[hapticRect]];

[self.sdlManager.sendRequest:hapticData];

SWIFT

Displaying Turn Directions

While your app is navigating the user, you will also want to send turn by turn

directions. This is useful for if your app is in the background or if the user is in

the middle of a phone call, and gives the system additional information about

the next maneuver the user must make.

To display a Turn by Turn direction, a combination of the SDLShowConstantTBT

and SDLAlertManeuver RPCs must be used. The SDLShowConstantTBT RPC

involves the data that will be shown on the head unit. The main properties of

this object to set are navigationText1 , navigationText2 , and turnIcon . A

best practice for navigation applications is to use the navigationText1 as the

direction to give (Turn Right) and navigationText2 to provide the distance to

that direction (3 mi). When an SDLAlertManeuver is sent, you may also

include accompanying text that you would like the head unit to speak when an

direction is displayed on screen (e.g. In 3 miles turn right.).

guard let viewRect = SDLRectange(cgRect: view.bounds) else { return }
let hapticRect = SDLHapticRect(id: 1, rect: viewRect)
let hapticData = SDLSendHapticData(hapticRectData: [hapticRect])

self.sdlManager.send(hapticData)

NOTE

If the connected device has received a phone call in the vehicle,

the Alert Maneuver is the only way for your app to inform the user

of the next turn.

Sending a Maneuver

OBJECTIVE-C

// Create SDLImage object for turnIcon.
SDLImage* turnIcon = <#Create SDLImage#>;

SDLShowConstantTBT* turnByTurn = [[SDLShowConstantTBT alloc] init
];
turnByTurn.navigationText1 = @"Turn Right";
turnByTurn.navigationText2 = @"3 mi";
turnByTurn.turnIcon = turnIcon;

__weak typeof(self) weakSelf = self;
[self.sdlManager sendRequest:turnByTurn withResponseHandler:^(
SDLRPCRequest *request, SDLRPCResponse *response, NSError *error)
{
 if (![response.resultCode isEqualToEnum:SDLResultSuccess]) {
 NSLog(@"Error sending TBT");
 return;
 }

 typeof(weakSelf) strongSelf = weakSelf;
 SDLAlertManeuver* alertManeuver = [[SDLAlertManeuver alloc]
initWithTTS:@"In 3 miles turn right" softButtons:nil];
 [strongSelf.sdlManager sendRequest:alertManeuver
withResponseHandler:^(SDLRPCRequest *request, SDLRPCResponse *
response, NSError *error) {
 if (![response.resultCode isEqualToEnum:SDLResultSuccess]) {
 NSLog(@"Error sending AlertManeuver.");
 return;
 }
 }];
}];

SWIFT

Remember when sending a SDLImage, that the image must first be uploaded to

the head unit with the FileManager.

Clearing the Maneuver

To clear a navigation direction from the screen, we send an SDLShowConstantT

BT with the maneuverComplete property as YES . This specific RPC does not

require an accompanying SDLAlertManeuver .

// Create SDLImage object for turnIcon.
let turnIcon = <#Create SDLImage#>

let turnByTurn = SDLShowConstantTBT()
turnByTurn.navigationText1 = "Turn Right"
turnByTurn.navigationText2 = "3 mi"
turnByTurn.turnIcon = turnIcon

sdlManager.send(request: turnByTurn) { [weak self] (request, response,
 error) in
 if response?.resultCode.isEqual(to: .success) == false {
 print("Error sending TBT.")
 return
 }

 let alertManeuver = SDLAlertManeuver(tts: "In 3 miles turn right",
softButtons: nil)
 self.sdlManager.send(alertManeuver) { (request, response, error) in
 if response?.resultCode.isEqual(to: .success) == false {
 print("Error sending AlertManeuver.")
 return
 }
 }
}

OBJECTIVE-C

SWIFT

Configuring SDL Logging

SDL iOS v5.0 includes a powerful new built-in logging framework designed to

make debugging easier. It provides many of the features common to other 3rd

SDLShowConstantTBT* turnByTurn = [[SDLShowConstantTBT alloc] init
];
turnByTurn.maneuverComplete = @(YES);

[self.sdlManager sendRequest:turnByTurn withResponseHandler:^(
SDLRPCRequest *request, SDLRPCResponse *response, NSError *error)
{
 if (![response.resultCode isEqualToEnum:SDLResultSuccess]) {
 NSLog(@"Error sending TBT.");
 return;
 }

 // Successfully cleared
}];

let turnByTurn = SDLShowConstantTBT()
turnByTurn.maneuverComplete = true

sdlManager.send(request: turnByTurn) { (request, response, error) in
 if response?.resultCode.isEqual(to: .success) == false {
 print("Error sending TBT.")
 return
 }
}

party logging frameworks for iOS and can be used by your own app as well. We

recommend that your app's integration with SDL provide logging using this

framework rather than any other 3rd party framework your app may be using

or NSLog . This will consolidate all SDL related logs in a common format and to

common destinations.

SDL will configure its logging into a production-friendly configuration by default.

If you wish to use a debug or a custom configuration, then you will have to

specify this yourself. SDLConfiguration allows you to pass a SDLLogConfigura

tion with custom values. A few of these values will be covered in this section,

the others are in their own sections below.

When setting up your SDLConfiguration you can pass a different log

configuration:

OBJECTIVE-C

SWIFT

Format Type

Currently, SDL provides three output formats for logs (for example into the

console or file log), these are "Simple", "Default", and "Detailed".

SDLConfiguration* configuration = [SDLConfiguration
configurationWithLifecycle:lifecycleConfiguration lockScreen:[
SDLLockScreenConfiguration enabledConfiguration] logging:[
SDLLogConfiguration debugConfiguration] fileManager:[
SDLFileManagerConfiguration defaultConfiguration]];

let configuration = SDLConfiguration(lifecycle: lifecycleConfiguration,
lockScreen: .enabled(), logging: .debug(), fileManager: .default())

Simple:

Default:

Detailed:

Log Synchronicity

The configuration provides two properties, asynchronous and errorsAsynchro

nous . By default asynchronous is true and errorsAsynchronous is false. This

means that any logs that are not logged at the error log level will be logged

asynchronously on a separate serial queue, while those on the error log level

09:52:07:324 01F
539 (SDL)Protocol – I'm a log!

09:52:07:324 01F
539 (SDL)Protocol:SDLV2ProtocolHeader:25 – I'm also a log

!

09:52:07:324 01F
539 DEBUG com.apple.main-thread:(SDL)Protocol:[

SDLV2ProtocolHeader parse:]:74 – Me three!

will be logged synchronously on the separate queue (but the thread that logged

it will be blocked until that log completes).

Log level

The globalLogLevel defines which logs will be logged to the target outputs.

For example, if you set the log level to debug , all error, warning, and debug

level logs will be logged, but verbose level logs will not be logged.

S D L LO G L E V E L V I S I B L E LO G S

Targets

Targets are the output locations where the log will appear. By default, in both

default and debug configurations, only the Apple System Logger target (iOS 9

and below) or OSLog (iOS 10+) will be enabled.

Off none

Error error

Warning error and warning

Debug error, warning and debug

Verbose error, warning, debug and verbose

NOTE

Although the default log level is defined in the SDLLogLevel

enum, it should not be used as a global log level. See the API

documentation for more detail.

https://smartdevicelink.com/en/docs/iOS/master/Enums/SDLLogLevel/
https://smartdevicelink.com/en/docs/iOS/master/Enums/SDLLogLevel/

The Apple System Logger target, SDLLogTargetAppleSystemLogger , is the

default log target for both default and debug configurations on devices running

iOS 9 or older. This will log to the Xcode console and the device console.

The OSLog target, SDLLogTargetOSLog , is the default log target in both

default and debug configurations for devices running iOS 10 or newer. For more

information on this logging system see Apple's documentation. SDL's OSLog

target will take advantage of subsystems and levels to allow you powerful

runtime filtering capabilities through MacOS Sierra's Console app with a

connected device.

The File target, SDLLogTargetFile , allows you to log messages to a rolling set

of files which will be stored on the device, specifically in the Documents/

smartdevicelink/log/ folder. The file names will be timestamped with the start

time.

The protocol all log targets conform to, SDLLogTarget , is public. If you wish to

make a custom log target in order to, for example, log to a server, it should be

fairly easy to do so. If it can be used by other developers and is not specific to

your app, then submit it back to the SmartDeviceLink iOS library project! If you

APPLE SYSTEM LOG TARGET

OS LOG TARGET

FILE TARGET

CUSTOM LOG TARGETS

https://developer.apple.com/reference/os/logging

want to add targets in addition to the default target that will output to the

console:

OBJECTIVE-C

SWIFT

Modules

A module is a set of files packaged together. Create modules using the SDLLog

FileModule class and add it to the configuration. Modules are used when

outputting a log message. The log message may specify a module instead of a

specific file name for clarity's sake. The SDL library will automatically add the

modules corresponding to its own files after you submit your configuration. For

your specific use case, you may wish to provide a module corresponding to

your whole app's integration and simply name it with your app's name, or, you

could split it up further if desired. To add modules to the configuration:

OBJECTIVE-C

logConfig.targets = [logConfig.targets setByAddingObjectsFromArray:@
[[SDLLogTargetFile logger]]];

let _ = logConfig.targets.insert(SDLLogTargetFile())

logConfig.modules = [logConfig.modules setByAddingObjectsFromArray
:@[[SDLLogFileModule moduleWithName:@"Test" files:[NSSet
setWithArray:@[@"File1", @"File2"]]]]];

SWIFT

Filters

Filters are a compile-time concept of filtering in or out specific log messages

based on a variety of possible factors. Call SDLLogFilter to easily set up one of

the default filters or to create your own using a custom SDLLogFilterBlock . You

can filter to only allow certain files or modules to log, only allow logs with a

certain string contained in the message, or use regular expressions.

OBJECTIVE-C

SWIFT

logConfig.modules.insert(SDLLogFileModule(name: "Test", files: ["File1,
File2"]))

SDLLogFilter *filter = [SDLLogFilter filterByDisallowingString:@"Test"
caseSensitive:NO];

let filter = SDLLogFilter(disallowingString: "Test", caseSensitive: false)

Logging with the SDL Logger

In addition to viewing the library logs, you also have the ability to log with the

SDL logger. All messages logged through the SDL logger, including your own,

will use your SDLLogConfiguration settings.

Objective-C Projects

First, import the the SDLLogMacros header.

Then, simply use the convenient log macros to create a custom SDL log in your

project.

Swift Projects

To add custom SDL logs to your Swift project you must first install a submodule

called SmartDeviceLink/Swift.

#import "SDLLogMacros.h"

SDLLogV(@"This is a verbose log");
SDLLogD(@"This is a debug log");
SDLLogW(@"This is a warning log");
SDLLogE(@"This is an error log");

If the SDL iOS library was installed using CocoaPods, simply add the submodule

to the Podfile and then install by running pod install in the root directory of

the project.

After the submodule has been installed, you can use the SDLLog functions in

your project.

COCOAPODS

target '<#Your Project Name#>' do
 pod 'SmartDeviceLink', '~> <#SDL Version#>'
 pod 'SmartDeviceLink/Swift', '~> <#SDL Version#>'
end

LOGGING IN SWIFT

SDLLog.v("This is a verbose log")
SDLLog.d("This is a debug log")
SDLLog.w("This is a warning log")
SDLLog.e("This is an error log")

https://cocoapods.org

SDL Relay

The SmartDeviceLink (SDL) iOS Relay app is a debugging tool for developers

building iOS applications that communicate with a vehicle head unit requiring a

USB cable. Testing is done over a TCP/IP connection. During testing developers

can easily see logs of in-going/out-going remote procedure calls (RPCs) in

Xcode's debug console, thus making debugging easier and faster.

NOTE

A better method than using the iOS Relay app is to use Xcode 9 /

iOS 11 wireless debugging. This allows you to use the IAP

connection instead of the TCP connection and can be more reliable.

The Relay app is still useful if your phone is not on iOS 11.

Necessary Tools

In order to use the Relay app, you must have the following tools:

1. A SDL Core enabled vehicle head unit or a Test Development Kit.
2. An iOS device with the SDL iOS Relay app installed.
3. A USB cable to connect the iOS device to the head unit or TDK.
4. Xcode with the app being tested running in Xcode's iOS Simulator app.

Examples

Example: Connecting the RPC Builder iOS
App

This example shows you how to use the RPC Builder app in conjunction with the

Relay app. For a tutorial on how to connect a custom app, please see the

example below.

1. Download the RPC Builder app. The RPC Builder app is a free tool

designed to help developers understand how RPCs work.
2. Download the Relay app and install it on an iOS device.

NOTE

If you are using a head unit or TDK, and are using the Relay app for

debugging, the IP address and port number should be set to the

same IP address and port number as the app. This information

appears in the Relay app once the server is turned on in the app.

Also be sure that the device is on the same network as your app.

https://developer.ford.com/pages/hardware#toc0
https://github.com/smartdevicelink/relay_app_ios
https://github.com/smartdevicelink/rpc_builder_app_ios
https://github.com/smartdevicelink/relay_app_ios

3. Launch the Relay app on an iOS device. If the Relay app is not connected

to any hardware running SDL Core via USB, the app's screen will not show

any active connections.

Initial app startup. This state is visible when the app is not connected to

hardware running SDL Core via USB.

4. Connect the iOS device to the SDL Core using a USB cable.

5. When the iOS device is connected to the SDL Core, the status under

USB Connection should change from Disconnected to Connected. Wait

for the the status of the EASession to change to Connected. The

EASession is a communication channel between the Relay app and SDL

Core. If EASession is not Connected within a few seconds pull and

reconnect the USB cord to the SDL Core.

The Relay App is initially connected via USB, but the connection is still in

progress.

The Relay App is fully connected via USB, and ready for server start.

6. Once the USB Connection and EASession are both set to Connected, the

app is fully connected and ready for server start. Toggle the switch under

Server to on. When the status of the server changes to Available, the IP

address and port number of the wifi network the Relay app is connected

to will appear under Server.

Server is now started and awaiting connection.

7. Open the RPC Builder app in Xcode and click on the run button to

launch the app in Xcode's iOS Simulator. Enter the IP address and port

number from the Relay app into the RPC Builder app and click on Next. On

the next page of the RPC Builder app, click on Send.

8. Once the RPC Builder app is running on the Simulator, the status of

SDL in the Relay app should change to Connected.

Application is correctly connected to Relay, and messages can now be

sent and received.

9. The RPC Builder app is now connected to Relay, and messages can be

sent and received. Debug logs will appear in Xcode's debug area.

Example: Connecting Your Custom App

This example shows you how to connect a custom app with the Relay app.

1. First, follow steps 2 through 7 in the example above called Connecting the

RPC Builder iOS App.
2. It is very important to make sure that the Relay app and the app you are

testing are connected to the same wifi network. Make sure to set the

proxy's TCP/IP initializer with the same IP address and port number used

by the Relay app. To do this, set the proxy builder's TCP/IP initializer in the

app being tested.

3. Start the app being tested on Xcode's simulator.
4. Once the app is running on the simulator, the status of SDL in the Relay

app should change to Connected.

SDLProxy* proxy = [SDLProxyFactory buildSDLProxyWithListener:
sdlProxyListenerDelegate
 tcpIPAddress:@"1.2.3.4"
 port:@"2776"];

Application is correctly connected to Relay, and messages can now be

sent and received.

5. The app is now connected to Relay, and messages can be sent and

received. Debug logs will appear in Xcode's debug area.

Need Help?

If you need general assistance, or have other questions, you can sign up for the

SDL Slack and chat with other developers and the maintainers of the project.

Found a Bug?

If you see a bug, feel free to post an issue.

Want to Help?

If you want to help add more features, please file a pull request.

RPC Builder

Introduction

The SmartDeviceLink (SDL) RPC Builder app is a free iOS app designed to help

developers understand the SDL interface and how remote procedure calls

(RPCs) work. Use the app to test sending and receiving RPCs without writing

any code.

NOTE

The Relay app should always be connected to the SDL Core before

starting your app, otherwise setup will not work.

http://sdlslack.herokuapp.com
https://smartdevicelink.slack.com/
https://github.com/smartdevicelink/relay_app_ios/issues/new
https://github.com/smartdevicelink/relay_app_ios/compare

Getting Started

In order to begin using RPC Builder, the SDL iOS library must be added to the

project. There is already support for CocoaPods in this project, so to install the

library, simply navigate to the RPC Builder folder in a terminal and then install:

Once the SDL iOS library has been installed, the RPC Builder app can be

deployed on an iOS device.

NOTE

In order for the RPC Builder app to work correctly, all commands

must be executed in proper sequence. For example, when building

a custom menu, a performInteraction request will only be

successful if sent after a createInteractionChoiceSet request. To

find more information about how to properly set up a sequence of

commands, please reference the SDL App Developer

Documentation.

cd RPC\ Builder/
pod install

https://smartdevicelink.com/docs/iOS/master/
https://smartdevicelink.com/docs/iOS/master/
http://www.github.com/smartdevicelink/sdl_ios
https://cocoapods.org

RPC Builder Interface

Settings Page

On the settings page, select a RPC spec file. The default Mobile_API.xml file will

generate all possible RPCs available for the app. To use a custom RPC spec file,

add a new file via iTunes file sharing to the SpecXMLs directory. The file can

also be added via a remote URL.

Also on the settings page, set the transport layer to TCP/IP or iAP. For more

information on which type of connection to use, please view the SDL iOS Guide.

Once the spec file and transport layer have been set, click on Next. On the next

page, send the RegisterAppInterface (RAI) RPC, a request that registers the

app with SDL Core. Simply click on Send to use the default RAI settings. If the

properties on the RAI screen are modified, they will be cached for subsequent

launches.

https://smartdevicelink.com/en/guides/iOS/getting-started/connecting-to-an-infotainment-system/

NOTE

Once Send is pressed, the app will only proceed once it has

successfully connected with SDL Core and received a RAI response.

Main RPCs Table

The main RPC table is created at runtime by the app from a spec XML file. If

there is additional information provided about the RPC call, an information

button will appear next to the RPC name in the table. Click on the information

button to learn more about the RPC call.

Send a RPC

To send an RPC to the SDL Core select the RPC from the table, fill out the RPC

parameters and click Send.

After selecting an RPC from the table, a view will appear with all possible

parameters for this RPC. To find out more information about an argument, tap

and hold the argument name to reveal the information.

PARAMETER INFORMATION

Required data will have a red asterisk next to the argument name.

If a parameter is a struct or array, an arrow will appear to the right of the

parameter name. More parameter information for the array or struct can be

entered by clicking on the parameter table cell. A new view will appear where

more information about the parameter can be entered.

There are three different ways to send an RPC argument.

1. Send with data.

◦ To send an argument with data just add the information next to the

arguments name.

2. Send without data

◦ To send an argument with an empty string, leave the field next to the

argument name empty

3. Don't send the argument

◦ To disable the argument from being included in the RPC, tap once on

the argument's name. The argument will be grayed out and not

included in the request. In the picture below mainField1 will not be

included in the RPC Request, but mainField2 will be included with an

REQUIRED PARAMETERS

STRUCT OR ARRAY PARAMETERS

PARAMETER DATA

empty string.

Modules

The purpose of modules is to allow developers to create more advanced testing

scenarios. A module can contain multiple RPCs. It can also define capabilities

not provided in the RPC spec file.

There are a few requirements for building Modules:

1. All Modules must be subclasses of RBModuleViewController, and all class

functions labeled as Required must be overridden.

◦ These properties will allow other developers to easily understand

what the Module will be testing and will also include the iOS version

required in order to use Module.
◦ Any Module with an iOS version other than 6 as the requirement will

be listed.
◦ Although other class functions such as moduleImageName/

moduleImage are optional, it is encouraged to add these functions.

2. All Modules must use the provided SDLProxy, SDLManager, and

RBSettingsManager that are provided to subclasses of

RBModuleViewController.
3. All Modules must be added to the Modules.storyboard storyboard in order

to correctly load.

◦ When designing your view controller, use 8px for the vertical and

horizontal displacement between views to create a consistent user

experience.

4. All Modules must not interact with any other Module.
5. All Modules must be added to RBModuleViewController's class function

moduleClassNames. The new Module should be added to this list in

alphabetical order. For an example of how to add this see below:

BUILDING NEW MODULES

1. Streaming

◦ Allows for testing of video and audio streaming of camera / video

files as well as audio files respectively.

2. Audio Capture

◦ Allows for saving of audio data via AudioPassThru RPCs. Properties of

this RPC can be modified to test the robustness of the RPC. This

audio data may be retrieved via iTunes File Sharing.

Console Log

The console log shows a simplified output of sent and received requests.

+ (NSArray*)moduleClassNames {
 if (!moduleClassNames) {
 moduleClassNames = @[
 [RBStreamingModuleViewController classString], //
Streaming
 [RBNewModuleViewController classString] // Module
Name
];
 }
 return moduleClassNames;
}

DEFAULT MODULES

The console logs are color coded for quick identification.

1. White - Used for logs with no additional data.
2. Blue - Used for requests sent to the SDL Core.
3. Green - Used for responses from the SDL Core. There are three possible

response types:

◦ Successful: these response types are colored green.
◦ Aborted, Timed-Out, or Warnings: these response types are colored

yellow.
◦ Miscellaneous: these response types are colored red.

4. Yellow - Used for notifications sent from the SDL Core.

Tapping once on a RPC call in the console will reveal the JSON associated with

that RPC call, if applicable.

CONSOLE COLOR CODES

RPC JSON

A Special Note About Putfile

A putFile is the RPC responsible for sending binary data from our mobile

libraries to the SDL Core. The RPC Builder app provides support for adding any

type of file: either from the camera roll (for images) or iTunes shared storage

for any other kind of files. Similar to adding custom RPC spec files, any file

located within the BulkData directory will be present in local storage and be

usable for upload.

Need Help?

If you need general assistance, or have other questions, you can sign up for the

SDL Slack and chat with other developers and the maintainers of the project.

Found a Bug?

If you see a bug, feel free to post an issue.

Want to Help?

If you want to help add more features, please file a pull request.

Updating from 4.2 and below
to 4.3+

This guide is used to show the update process for a developer using a version

before 4.3, using the SDLProxy to using the new SDLManager class available

in 4.3 and newer. Although this is not a breaking change, v4.3+ makes

significant deprecations and additions that will simplify your code. For our

examples through this guide, we are going to be using the version 1.0.0 of the

Hello SDL project.

http://sdlslack.herokuapp.com/
https://smartdevicelink.slack.com/
https://github.com/smartdevicelink/rpc_builder_app_ios/issues/new
https://github.com/smartdevicelink/rpc_builder_app_ios/compare

You can download this version here.

Updating the Podfile

For this guide, we will be using the most recent version of SDL at this time:

4.5.5. To change the currently used version, you can open up the Podfile

located in the root of the hello_sdl_ios-1.0.0 directory.

Change the following line

to

You may then be able to run pod install to install this version of SDL into the

app. For more information on how to use Cocoapods, check out the Getting

Started > Installation section.

After SDL has been updated, open up the HelloSDL.xcworkspace .

You will notice that the project will still compile, but with deprecation warnings.

pod 'SmartDeviceLink-iOS', '~> 4.2.3'

pod 'SmartDeviceLink-iOS', '~> 4.5.5'

https://d83tozu1c8tt6.cloudfront.net/media/resources/hello_sdl_ios-1.0.0.zip
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/getting-started/installation/
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/getting-started/installation/

Response and Event Handlers

A big change with migration to versions of SDL 4.3 and later is the change from

a delegate-based to a notification-based and/or completion-handler based

infrastructure. All delegate callbacks relating to Responses and Notifications

within SDLProxyListener.h will now be available as iOS notifications, with their

names listed in SDLNotificationConstants.h .

We have also added the ability to have completion handlers for when a

request's response comes back. This allows you to simply set a response

handler when sending a request and be notified in the block when the response

returns or fails. Additional handlers are available on certain RPCs that are

associated with SDL notifications, such as SubscribeButton , when that button

is pressed, you will receive a call on the handler.

Because of this, any delegate function will become non-functional when

migrating to SDLManager from SDLProxy , but changing these to use the new

NOTE

Currently, SDLProxy is still supported in versions but is

deprecated, however in the future this accessibility will be

removed.

handlers is simple and will be described in the section SDLProxy to

SDLManager.

Deprecating
SDLRPCRequestFactory

If you are using the SDLRPCRequestFactory class, you will need to update the

initializers of all RPCs to use this. This will be the following migrations:

to

- (void)hsdl_performWelcomeMessage {
 NSLog(@"Send welcome message");
 SDLShow *show = [[SDLShow alloc] init];
 show.mainField1 = WelcomeShow;
 show.alignment = [SDLTextAlignment CENTERED];
 show.correlationID = [self hsdl_getNextCorrelationId];
 [self.proxy sendRPC:show];

 SDLSpeak *speak = [SDLRPCRequestFactory buildSpeakWithTTS:
WelcomeSpeak correlationID:[self hsdl_getNextCorrelationId]];
 [self.proxy sendRPC:speak];
}

- (void)hsdl_performWelcomeMessage {
 NSLog(@"Send welcome message");
 SDLShow *show = [[SDLShow alloc] initWithMainField1:
WelcomeShow mainField2:nil alignment:SDLTextAlignment.CENTERED];
 [self.proxy sendRPC:show];

 SDLSpeak *speak = [[SDLSpeak alloc] initWithTTS:WelcomeSpeak];
 [self.proxy sendRPC:speak];
}

SDLProxy to SDLManager

In versions following 4.3, the SDLProxy is no longer your main point of

interaction with SDL. Instead, SDLManager was introduced to allow for apps to

more easily integrate with SDL, and to not worry about things such as

registering their app, uploading images, and showing a lock screen.

Our first step of removing the usage of SDLProxy is to add in an SDLManager

instance variable. SDLManager is started with a SDLConfiguration , which

contains settings relating to the application.

NOTE

We are not updating all of the functions that utilize SDLRPCReques

tFactory , because we are going to be deleting those functions later

on in the guide.

SDLProxyListener to SDLManagerDelegate

SDLManagerDelegate is a small protocol that gives back only 2 callbacks, as

compared to SDLProxyListener 's 67 callbacks. As mentioned before, all of

these callbacks from SDLProxyListener are now sent out as NSNotification s,

and the names for these are located in SDLNotificationConstants.h . From

these delegate changes, we can modify the following functions to use the new

SDLManagerDelegate callbacks

onProxyClosed to managerDidDisconnect :

@interface HSDLProxyManager () <SDLManagerDelegate> // Replace
SDLProxyListener with SDLManagerDelegate

@property (nonatomic, strong) SDLManager *manager; // New instance
variable
@property (nonatomic, strong) SDLLifecycleConfiguration *
lifecycleConfiguration; // New instance variable
@property (nonatomic, strong) SDLProxy *proxy;
@property (nonatomic, assign) NSUInteger correlationID;

@property (nonatomic, strong) NSNumber *appIconId;

@property (nonatomic, strong) NSMutableSet *remoteImages;

@property (nonatomic, assign, getter=isGraphicsSupported) BOOL
graphicsSupported;
@property (nonatomic, assign, getter=isFirstHmiFull) BOOL firstHmiFull;
@property (nonatomic, assign, getter=isFirstHmiNotNone) BOOL
firstHmiNotNone;
@property (nonatomic, assign, getter=isVehicleDataSubscribed) BOOL
vehicleDataSubscribed;

@end

to

onOnHMIStatus: to hmiLevel:didChangeToLevel:

- (void)onProxyClosed {
 NSLog(@"SDL Disconnect");

 // Reset state variables
 self.firstHmiFull = YES;
 self.firstHmiNotNone = YES;
 self.graphicsSupported = NO;
 [self.remoteImages removeAllObjects];
 self.vehicleDataSubscribed = NO;
 self.appIconId = nil;

 // Notify the app delegate to clear the lockscreen
 [self hsdl_postNotification:HSDLDisconnectNotification info:nil];

 // Cycle the proxy
 [self disposeProxy];
 [self startProxy];
}

- (void)managerDidDisconnect {
 NSLog(@"SDL Disconnect");

 // Reset state variables
 self.firstHmiFull = YES;
 self.firstHmiNotNone = YES;
 self.graphicsSupported = NO;
 self.vehicleDataSubscribed = NO;

 // Notify the app delegate to clear the lockscreen
 [self hsdl_postNotification:HSDLDisconnectNotification info:nil];
}

to

- (void)onOnHMIStatus:(SDLOnHMIStatus *)notification {
 NSLog(@"HMIStatus notification from SDL");

 // Send welcome message on first HMI FULL
 if ([[SDLHMILevel FULL] isEqualToEnum:notification.hmiLevel]) {
 if (self.isFirstHmiFull) {
 self.firstHmiFull = NO;
 [self hsdl_performWelcomeMessage];
 }

 // Other HMI (Show, PerformInteraction, etc.) would go here
 }

 // Send AddCommands in first non-HMI NONE state (i.e., FULL,
LIMITED, BACKGROUND)
 if (![[SDLHMILevel NONE] isEqualToEnum:notification.hmiLevel]) {
 if (self.isFirstHmiNotNone) {
 self.firstHmiNotNone = NO;
 [self hsdl_addCommands];

 // Other app setup (SubMenu, CreateChoiceSet, etc.) would go
here
 }
 }
}

We can also remove the functions relating to lifecycle management and app

icons, as the Creating the Manager section of the migration guide will handle

this:

- hsdl_uploadImages

- onListFilesResponse:

- onPutFileResponse:

- hsdl_setAppIcon

And can also remove the remoteImages property from the list of instance

variables.

- (void)hmiLevel:(SDLHMILevel *)oldLevel didChangeToLevel:(
SDLHMILevel *)newLevel {
 NSLog(@"HMIStatus notification from SDL");

 // Send welcome message on first HMI FULL
 if ([[SDLHMILevel FULL] isEqualToEnum:newLevel]) {
 if (self.isFirstHmiFull) {
 self.firstHmiFull = NO;
 [self hsdl_performWelcomeMessage];
 }

 // Other HMI (Show, PerformInteraction, etc.) would go here
 }

 // Send AddCommands in first non-HMI NONE state (i.e., FULL,
LIMITED, BACKGROUND)
 if (![[SDLHMILevel NONE] isEqualToEnum:newLevel]) {
 if (self.isFirstHmiNotNone) {
 self.firstHmiNotNone = NO;
 [self hsdl_addCommands];

 // Other app setup (SubMenu, CreateChoiceSet, etc.) would go
here
 }
 }
}

Correlation Ids

We no longer require developers to keep track of correlation ids, as SDLManag

er does this for you. Because of this, you can remove correlationID and appI

conId from the list of instance variables.

Because of this, we can remove the hsdl_getNextCorrelationId method as

well.

Creating the Manager

In HSDLProxyManager 's init function, we will build these components, and

begin removing components that are no longer needed, as SDLManager

handles it.

NOTE

If you set the correlation id, it will be overwritten by SDLManager .

- (instancetype)init {
 if (self = [super init]) {
 _correlationID = 1; // No longer needed, remove instance variable.
 _graphicsSupported = NO;
 _firstHmiFull = YES;
 _firstHmiNotNone = YES;
 _remoteImages = [[NSMutableSet alloc] init]; // No longer needed,
remove instance variable.
 _vehicleDataSubscribed = NO;

 // SDLManager initialization

 // If connecting via USB (to a vehicle).
// _lifecycleConfiguration = [SDLLifecycleConfiguration
defaultConfigurationWithAppName:AppName appId:AppId];

 // If connecting via TCP/IP (to an emulator).
 _lifecycleConfiguration = [SDLLifecycleConfiguration
debugConfigurationWithAppName:AppName appId:AppId ipAddress:
RemoteIpAddress port:RemotePort];

 _lifecycleConfiguration.appType = AppIsMediaApp ? [
SDLAppHMIType MEDIA] : [SDLAppHMIType DEFAULT];
 _lifecycleConfiguration.shortAppName = ShortAppName;
 _lifecycleConfiguration.voiceRecognitionCommandNames = @[
AppVrSynonym];
 _lifecycleConfiguration.ttsName = [SDLTTSChunk
textChunksFromString:AppName];

 UIImage* appIcon = [UIImage imageNamed:IconFile];
 if (appIcon) {
 _lifecycleConfiguration.appIcon = [SDLArtwork
artworkWithImage:appIcon name:IconFile asImageFormat:
SDLArtworkImageFormatPNG];
 }

 // SDLConfiguration contains the lifecycle and lockscreen
configurations
 SDLConfiguration *configuration = [SDLConfiguration
configurationWithLifecycle:_lifecycleConfiguration lockScreen:[
SDLLockScreenConfiguration enabledConfiguration]];

 _manager = [[SDLManager alloc] initWithConfiguration:
configuration delegate:self];
 }
 return self;
}

We must also update the RemotePort constant from a type of NSString * to

UInt16 .

Because we the way we configure the app's properties via SDLLifecycleConfigu

ration now, we do not need to actually send an SDLRegisterAppInterface

request. Because of this, we can remove the onProxyOpened method and it's

contents.

Built-In Lock Screen

Versions of SDL moving forward contain a lock screen manager to allow for

easily customizing and using a lock screen. For more information, please check

out the Adding the Lock Screen section.

With the lockscreen handles for us now, we can remove the following from HS

DLProxyManager :

Constants (from .h and .m)

- HSDLDisconnectNotification

- HSDLLockScreenStatusNotification

- HSDLNotificationUserInfoObject

Functions

- hsdl_postNotification:info:

- last line of managerDidDisconnect

- onOnLockScreenNotification:

We also can eliminate the LockScreenViewController files, and remove the

following line numbers/ranges from AppDelegate.m :

- lines 61-121

- lines 25-31

- lines 15-16

We also can open Main.storyboard, and remove the LockScreenViewController

.

https://d83tozu1c8tt6.cloudfront.net/media/Adding%20the%20Lock%20Screen

Starting the Manager and Register App
Interface

In previous implementations, a developer would need to react to the onRegiste

rAppInterfaceResponse: to get information regarding their application and the

currently connected Core. Now, however, we can simply access these

properties after the SDLManager has been started.

First, we must start the manager. Change the startProxy function from:

to:

- (void)startProxy {
 NSLog(@"startProxy");

 // If connecting via USB (to a vehicle).
// self.proxy = [SDLProxyFactory buildSDLProxyWithListener:self];

 // If connecting via TCP/IP (to an emulator).
 self.proxy = [SDLProxyFactory buildSDLProxyWithListener:self
tcpIPAddress:RemoteIpAddress tcpPort:RemotePort];
}

We can now remove onRegisterAppInterfaceResponse: .

Stopping the Manager

Stopping the manager is simply changing from

to

- (void)startProxy {
 NSLog(@"startProxy");

 __weak typeof(self) weakself = self;
 [self.manager startWithReadyHandler:^(BOOL success, NSError *
_Nullable error) {
 if (!success) {
 NSLog(@"Error trying to start SDLManager: %@", error);
 return;
 }

 NSNumber<SDLBool> graphicSupported = weakself.
systemCapabilityManager.displayCapabilities.graphicSupported
 if (graphicSupported != nil) {
 weakself.graphicsSupported = graphicSupported;
 }
 }];
}

- (void)disposeProxy {
 NSLog(@"disposeProxy");
 [self.proxy dispose];
 self.proxy = nil;
}

Adding Notification Handlers

Registering for a notification is similar to registering for NSNotification s. The

list of these subscribable notifications is in SDLNotificationConstants.h . For

this project, we are observing the onDriverDistraction: notification and logging

a string. We will modify this to instead listen for a notification and the log the

same string.

Remove this function

And add in the notification observer

- (void)disposeProxy {
 NSLog(@"disposeProxy");
 [self.manager stop];
}

- (void)onOnDriverDistraction:(SDLOnDriverDistraction *)notification {
 NSLog(@"OnDriverDistraction notification from SDL");
 // Some RPCs (depending on region) cannot be sent when driver
distraction is active.
}

We will also remove all of the remaining delegate functions from SDLProxyListe

ner , except for onAddCommandResponse: .

Handling command notifications

SDLAddCommand utilizes the new handler mechanism for responding to when

a user interacts with the command you have added. When using the initializer,

you can see we set the new handler property to use the same code we

originally wrote in onOnCommand: .

- (instancetype)init {
 if (self = [super init]) {
 // Previous code setting up SDLManager

 // Add in the notification observer
 [[NSNotificationCenter defaultCenter] addObserverForName:
SDLDidChangeDriverDistractionStateNotification object:nil queue:nil
usingBlock:^(NSNotification * _Nonnull note) {
 SDLRPCNotificationNotification* notification = (
SDLRPCNotificationNotification*)note;

 if (![notification.notification isKindOfClass:
SDLOnDriverDistraction.class]) {
 return;
 }

 NSLog(@"OnDriverDistraction notification from SDL");
 // Some RPCs (depending on region) cannot be sent when
driver distraction is active.
 }];
 }
 return self;
}

to

- (void)hsdl_addCommands {
 NSLog(@"hsdl_addCommands");
 SDLMenuParams *menuParams = [[SDLMenuParams alloc] init];
 menuParams.menuName = TestCommandName;
 SDLAddCommand *command = [[SDLAddCommand alloc] init];
 command.vrCommands = [NSMutableArray arrayWithObject:
TestCommandName];
 command.menuParams = menuParams;
 command.cmdID = @(TestCommandID);

 [self.proxy sendRPC:command];
}

- (void)onOnCommand:(SDLOnCommand *)notification {
 NSLog(@"OnCommand notification from SDL");

 // Handle sample command when triggered
 if ([notification.cmdID isEqual:@(TestCommandID)]) {
 SDLShow *show = [[SDLShow alloc] init];
 show.mainField1 = @"Test Command";
 show.alignment = [SDLTextAlignment CENTERED];
 show.correlationID = [self hsdl_getNextCorrelationId];
 [self.proxy sendRPC:show];

 SDLSpeak *speak = [SDLRPCRequestFactory buildSpeakWithTTS:
@"Test Command" correlationID:[self hsdl_getNextCorrelationId]];
 [self.proxy sendRPC:speak];
 }
}

Sending Requests via SDLManager

As mentioned in Response and Event Handlers, SDLManager provides the

ability to easily react to responses for RPCs we send out. SDLManager has two

functions for sending RPCs:

- sendRequest:withResponseHandler:

- sendRequest:

We will update our SDLAddCommand request to both send the request via S

DLManager instead of SDLProxy , as well as react to the response that we get

back.

From

- (void)hsdl_addCommands {
 NSLog(@"hsdl_addCommands");
 SDLAddCommand *command = [[SDLAddCommand alloc] initWithId:
TestCommandID vrCommands:@[TestCommandName] menuName:
TestCommandName handler:^(__kindof SDLRPCNotification * _Nonnull
notification) {
 if (![notification isKindOfClass:SDLOnCommand.class]) {
 return;
 }

 NSLog(@"OnCommand notification from SDL");
 SDLOnCommand* onCommand = (SDLOnCommand*)notification;

 // Handle sample command when triggered
 if ([onCommand.cmdID isEqual:@(TestCommandID)]) {
 SDLShow *show = [[SDLShow alloc] initWithMainField1:@"Test
Command" mainField2:nil alignment:SDLTextAlignment.CENTERED];
 [self.proxy sendRPC:show];

 SDLSpeak *speak = [[SDLSpeak alloc] initWithTTS:@"Test
Command"];
 [self.proxy sendRPC:speak];
 }
 }];

 [self.proxy sendRPC:command];
}

to

- (void)hsdl_addCommands {
 NSLog(@"hsdl_addCommands");
 SDLAddCommand *command = [[SDLAddCommand alloc] initWithId:
TestCommandID vrCommands:@[TestCommandName] menuName:
TestCommandName handler:^(__kindof SDLRPCNotification * _Nonnull
notification) {
 if (![notification isKindOfClass:SDLOnCommand.class]) {
 return;
 }

 NSLog(@"OnCommand notification from SDL");
 SDLOnCommand* onCommand = (SDLOnCommand*)notification;

 // Handle sample command when triggered
 if ([onCommand.cmdID isEqual:@(TestCommandID)]) {
 SDLShow *show = [[SDLShow alloc] initWithMainField1:@"Test
Command" mainField2:nil alignment:SDLTextAlignment.CENTERED];
 [self.proxy sendRPC:show];

 SDLSpeak *speak = [[SDLSpeak alloc] initWithTTS:@"Test
Command"];
 [self.proxy sendRPC:speak];
 }
 }];

 [self.proxy sendRPC:command];
}

And now, we can remove onAddCommandResponse:

We can also update hsdl_performWelcomeMessage

- (void)hsdl_addCommands {
 NSLog(@"hsdl_addCommands");
 SDLAddCommand *command = [[SDLAddCommand alloc] initWithId:
TestCommandID vrCommands:@[TestCommandName] menuName:
TestCommandName handler:^(__kindof SDLRPCNotification * _Nonnull
notification) {
 if (![notification isKindOfClass:SDLOnCommand.class]) {
 return;
 }

 NSLog(@"OnCommand notification from SDL");
 SDLOnCommand* onCommand = (SDLOnCommand*)notification;

 // Handle sample command when triggered
 if ([onCommand.cmdID isEqual:@(TestCommandID)]) {
 SDLShow *show = [[SDLShow alloc] initWithMainField1:@"Test
Command" mainField2:nil alignment:SDLTextAlignment.CENTERED];
 [self.manager sendRequest:show];

 SDLSpeak *speak = [[SDLSpeak alloc] initWithTTS:@"Test
Command"];
 [self.manager sendRequest:speak];
 }
 }];

 [self.manager sendRequest:command withResponseHandler:^(
__kindof SDLRPCRequest * _Nullable request, __kindof SDLRPCResponse
 * _Nullable response, NSError * _Nullable error) {
 NSLog(@"AddCommand response from SDL: %@ with info: %@",
response.resultCode, response.info);
 }];
}

to

Uploading Files via SDLManager's
SDLFileManager

SDLPutFile is the original means of uploading a file. In 4.3+, we have

abstracted this out, and instead provide the functionality via two new classes:

SDLFile and SDLArtwork . For more information on these, check out the

Uploading Files and Graphics section.

We can change hsdl_uploadImage:withCorrelationID: from

- (void)hsdl_performWelcomeMessage {
 NSLog(@"Send welcome message");
 SDLShow *show = [[SDLShow alloc] initWithMainField1:
WelcomeShow mainField2:nil alignment:SDLTextAlignment.CENTERED];
 [self.proxy sendRPC:show];

 SDLSpeak *speak = [[SDLSpeak alloc] initWithTTS:WelcomeSpeak];
 [self.proxy sendRPC:speak];
}

- (void)hsdl_performWelcomeMessage {
 NSLog(@"Send welcome message");
 SDLShow *show = [[SDLShow alloc] initWithMainField1:
WelcomeShow mainField2:nil alignment:SDLTextAlignment.CENTERED];
 [self.manager sendRequest:show];

 SDLSpeak *speak = [[SDLSpeak alloc] initWithTTS:WelcomeSpeak];
 [self.manager sendRequest:speak];
}

https://d83tozu1c8tt6.cloudfront.net/media/Uploading%20Files%20and%20Graphics

to

- (void)hsdl_uploadImage:(NSString *)imageName withCorrelationID:(
NSNumber *)corrId {
 NSLog(@"hsdl_uploadImage: %@", imageName);
 if (imageName) {
 UIImage *pngImage = [UIImage imageNamed:IconFile];
 if (pngImage) {
 NSData *pngData = UIImagePNGRepresentation(pngImage);
 if (pngData) {
 SDLPutFile *putFile = [[SDLPutFile alloc] init];
 putFile.syncFileName = imageName;
 putFile.fileType = [SDLFileType GRAPHIC_PNG];
 putFile.persistentFile = @YES;
 putFile.systemFile = @NO;
 putFile.offset = @0;
 putFile.length = [NSNumber numberWithUnsignedLong:
pngData.length];
 putFile.bulkData = pngData;
 putFile.correlationID = corrId;
 [self.proxy sendRPC:putFile];
 }
 }
 }
}

We can now finally remove SDLProxy from the project's instance variables.

Updating from v4.3+ to v5.0
+

A number of breaking changes have been made to the SDL library in v5.0+.

This means that it is unlikely your project will compile without changes.

- (void)hsdl_uploadImage:(NSString *)imageName {
 NSLog(@"hsdl_uploadImage: %@", imageName);
 if (!imageName) {
 return;
 }

 UIImage *pngImage = [UIImage imageNamed:imageName];
 if (!pngImage) {
 return;
 }

 SDLFile *file = [SDLArtwork persistentArtworkWithImage:pngImage
name:imageName asImageFormat:SDLArtworkImageFormatPNG];
 [self.manager.fileManager uploadFile:file completionHandler:^(BOOL
success, NSUInteger bytesAvailable, NSError * _Nullable error) {
 if (!success) {
 NSLog(@"Error uploading file: %@", error);
 }

 NSLog(@"File uploaded");
 }];
}

Changes to SDL Enums

SDLEnums have changed from being objects in SDL v4.X to strings in Obj-C and

Enums in Swift. This means that every usage of SDL enums in your app

integration will need changes.

OBJ-C

Old:

New:

- (void)hmiLevel:(SDLHMILevel *)oldLevel didChangeToLevel:(
SDLHMILevel *)newLevel {
 if (![newLevel isEqualToEnum:[SDLHMILevel NONE]] && (self.
firstTimeState == SDLHMIFirstStateNone)) {
 // This is our first time in a non-NONE state
 }

 if ([newLevel isEqualToEnum:[SDLHMILevel FULL]] && (self.
firstTimeState != SDLHMIFirstStateFull)) {
 // This is our first time in a FULL state
 }

 if ([newLevel isEqualToEnum:[SDLHMILevel FULL]]) {
 // We entered full
 }
}

Note the differences between, e.g. [SDLHMILevel FULL] and SDLHMILevelFull

.

SWIFT

Old: (Swift 3)

- (void)hmiLevel:(SDLHMILevel)oldLevel didChangeToLevel:(
SDLHMILevel)newLevel {
 if (![newLevel isEqualToEnum:SDLHMILevelNone] && (self.
firstTimeState == SDLHMIFirstStateNone)) {
 // This is our first time in a non-NONE state
 }

 if ([newLevel isEqualToEnum:SDLHMILevelFull] && (self.firstTimeState
 != SDLHMIFirstStateFull)) {
 // This is our first time in a FULL state
 }

 if ([newLevel isEqualToEnum:SDLHMILevelFull]) {
 // We entered full
 }
}

func hmiLevel(_ oldLevel: SDLHMILevel, didChangeTo newLevel:
SDLHMILevel) {
 // On our first HMI level that isn't none, do some setup
 if newLevel != .none() && firstTimeState == .none {
 // This is our first time in a non-NONE state
 }

 // HMI state is changing from NONE or BACKGROUND to FULL or
LIMITED
 if (newLevel == .full() && firstTimeState != .full) {
 // This is our first time in a FULL state
 }

 if (newLevel == .full()) {
 // We entered full
 }
}

New: (Swift 4)

Note the differences between, e.g. .full() and .full .

Changes to RPC Handlers

Old:

func hmiLevel(_ oldLevel: SDLHMILevel, didChangeToLevel:
SDLHMILevel) {
 // On our first HMI level that isn't none, do some setup
 if didChangeToLevel != .none && firstTimeState == .none {
 // This is our first time in a non-NONE state
 }

 // HMI state is changing from NONE or BACKGROUND to FULL or
LIMITED
 if (didChangeToLevel == .full && firstTimeState != .full) {
 // This is our first time in a FULL state
 }

 if (didChangeToLevel == .full {
 // We entered full
 }
}

SDLSubscribeButton *button = [[SDLSubscribeButton alloc]
initWithHandler:^(__kindof SDLRPCNotification * _Nonnull notification) {
 if (![notification isKindOfClass:[SDLOnButtonPress class]]) {
 return;
 }
 SDLOnButtonPress *buttonPress = (SDLOnButtonPress *)notification;
 if (buttonPress.buttonPressMode != SDLButtonPressMode.SHORT) {
 return;
 }
}];
[manager sendRequest:button];

New:

SWIFT

Old:

New:

SDLSubscribeButton *button = [[SDLSubscribeButton alloc]
initWithHandler:^(SDLOnButtonPress * _Nullable buttonPress,
SDLOnButtonEvent * _Nullable buttonEvent) {
 if (buttonPress != nil && buttonPress.buttonPressMode !=
SDLButtonPressModeShort) {
 return;
 }
}];

[manager sendRequest:button];

let button = SDLSubscribeButton { [unowned store] (notification) in
 guard let buttonPress = notification as? SDLOnButtonPress else {
return }
 guard buttonPress.buttonPressMode == .short() else { return }

 // Button was pressed
}!
button.buttonName = .seekleft()
manager.send(request: button)

let button = SDLSubscribeButton { [unowned store] (press, event) in
 guard press.buttonPressMode == .short() else { return }

 // Button was pressed
}
button.buttonName = .seekLeft
manager.send(request: button)

RPC handlers for SDLAddCommand , SDLSoftButton , and SDLSubscribeButto

n have been altered to provide more accurate notifications within the handler.

SDLConfiguration Changes

SDLConfiguration , used to initialize SDLManager has changed slightly. When

creating a configuration, a logging configuration is now required. Furthermore,

if you are creating a video streaming NAVIGATION or PROJECTION app, you

must now create an SDLStreamingMediaConfiguration and add it to your SDL

Configuration before initializing the SDLManager . Additionally, if your app is

in Swift, your initialization may have changed.

OBJ-C

SWIFT

SDLConfiguration *config = [SDLConfiguration
configurationWithLifecycle:lifecycleConfig lockScreen:[
SDLLockScreenConfiguration enabledConfiguration] logging:[
SDLLogConfiguration debugConfiguration]];

let configuration: SDLConfiguration = SDLConfiguration(lifecycle:
lifecycleConfiguration, lockScreen: SDLLockScreenConfiguration.
enabledConfiguration(), logging: SDLLogConfiguration())

Multiple File Uploads

You can now upload multiple files (such as images) with one method call and be

notified when all finish uploading.

OBJ-C

// Upload a batch of files with a completion handler when done
[self.sdlManager.fileManager uploadFiles:files completionHandler:^(
NSError * _Nullable error) {
 <#code#>
}];

// Upload a batch of files, being notified in the progress handler when
each completes (returning whether or not to continue uploading), and
a completion handler when done
[self.sdlManager.fileManager uploadFiles:files progressHandler:^BOOL(
SDLFileName * _Nonnull fileName, float uploadPercentage, NSError *
_Nullable error) {
 <#code#>
} completionHandler:^(NSError * _Nullable error) {
 <#code#>
}];

SWIFT

Logging Changes

For a comprehensive look at logging with SDL iOS 5.0, see the section

dedicated to the subject.

Immutable RPC Collections &
Generics

In any RPC that has an array, that array will now be immutable. Any array and

dictionary will also now expose what it contains via generics.

For example, within SDLAlert.h :

// Upload a batch of files with a completion handler when done
sdlManager.fileManager.upload(files: softButtonImages) { (error) in
 <#code#>
}

// Upload a batch of files, being notified in the progress handler when
each completes (returning whether or not to continue uploading), and
a completion handler when done
sdlManager.fileManager.upload(files: softButtonImages,
progressHandler: { (fileName, uploadPercentage, error) -> Bool in
 <#code#>
}) { (error) in
 <#code#>
}

@property (nullable, strong, nonatomic) NSArray<SDLSoftButton *> *
softButtons;

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/developer-tools/configuring-sdl-logging/
https://d83tozu1c8tt6.cloudfront.net/guides/iOS/developer-tools/configuring-sdl-logging/

Nullability

SDL now exposes nullability tags for all APIs. This primarily means that you no

longer need to use the force-unwrap operator ! in Swift when creating RPCs.

Video Streaming Enhancements

Video streaming has been overhauled in SDL 5.0; SDL now takes care of just

about everything for you automatically including HMI changes and app state

changes.

When setting your SDLConfiguration , you will have to set up an SDLStreamin

gMediaConfiguration .

When you have a NAVIGATION or PROJECTION app and set this streaming

configuration, SDL will automatically start the video streaming session on

behalf of your app. When you receive the SDLVideoStreamDidStartNotification

, you're good to go!

For more information about Video Streaming, see the dedicated section.

Touch Manager Delegate Changes

The touch manager delegate calls have all changed and previous delegate

methods won't work. If you are streaming video and set the window, the new

SDLStreamingMediaConfiguration *streamingConfig = [
SDLStreamingMediaConfiguration insecureConfiguration];
SDLConfiguration *config = [[SDLConfiguration alloc] initWithLifecycle:
lifecycleConfig lockScreen:[SDLLockScreenConfiguration
enabledConfiguration] logging:[SDLLogConfiguration
debugConfiguration] streamingMedia:streamingConfig];

https://d83tozu1c8tt6.cloudfront.net/guides/iOS/video-streaming-for-navigation-apps/video-streaming/

callbacks may return the view that was touched, otherwise it will return nil. For

example:

- (void)touchManager:(SDLTouchManager *)manager
didReceiveSingleTapForView:(UIView *_Nullable)view atPoint:(CGPoint)
point;

	Installation
	Install SDL SDK
	CocoaPods Installation
	Carthage Installation
	Manual Installation
	NOTE

	SDK Configuration
	1. Connect to a Remote System
	2. Enable Background Capabilities
	3. Add SDL Protocol Strings
	NOTE

	4. Get an App Id

	Integration Basics
	How SDL Works
	Set Up a Proxy Manager Class
	OBJECTIVE-C
	ProxyManager.h
	ProxyManager.m
	ProxyManager.m

	SWIFT
	OBJECTIVE-C
	SWIFT

	Importing the SDL Library
	OBJECTIVE-C
	SWIFT

	Creating the SDL Manager
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT
	SWIFT
	1. Create a Lifecycle Configuration
	NETWORK CONNECTION TYPE
	IAP
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT
	TCP
	OBJECTIVE-C
	SWIFT
	NOTE

	2. Short App Name (optional)
	OBJECTIVE-C
	SWIFT

	3. App Icon
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT
	NOTE

	4. App Type (optional)
	NOTE
	OBJECTIVE-C
	SWIFT

	5. Template Coloring
	NOTE
	OBJECTIVE-C
	SWIFT
	SWIFT
	NOTE

	6. Lock Screen
	OBJECTIVE-C
	SWIFT

	7. Logging
	OBJECTIVE-C
	SWIFT

	8. Set the Configuration
	OBJECTIVE-C
	SWIFT

	9. Create a SDLManager
	OBJECTIVE-C
	SWIFT
	SWIFT

	10. Start the SDLManager
	OBJECTIVE-C
	SWIFT
	SWIFT
	NOTE

	Example Implementation of a Proxy Class
	OBJECTIVE-C
	ProxyManager.h
	ProxyManager.h
	ProxyManager.m
	ProxyManager.m

	SWIFT
	SWIFT

	Implement the SDL Manager Delegate
	Where to Go From Here

	Connecting to an Infotainment System
	NOTE
	Connecting with a Vehicle Head Unit or a Development Kit (TDK)
	Production
	Debugging
	NOTE

	Adding the Lock Screen
	Using the Provided Lock Screen
	OBJECTIVE-C
	SWIFT
	SWIFT

	Customizing the Provided Lock Screen
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT

	Using Your Own Lock Screen
	OBJECTIVE-C
	SWIFT
	SWIFT
	Using the Vehicle's Icon

	Adapting to the Head Unit Language
	Setting the Default Language
	What if My App Does Not Support the Head Unit Language?
	Checking the Current Head Unit Language
	OBJECTIVE-C
	SWIFT

	Updating the SDL App Name
	OBJECTIVE-C
	SWIFT
	SWIFT

	Understanding Permissions
	HMI Levels
	Monitoring the HMI Level
	OBJECTIVE-C
	SWIFT
	SWIFT

	Permission Manager
	Checking Current Permissions of a Single RPC
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT

	Checking Current Permissions of a Group of RPCs
	OBJECTIVE-C
	SWIFT

	Observing Permissions
	OBJECTIVE-C
	SWIFT

	Stopping Observation of Permissions
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT

	Additional HMI State Information
	Audio Streaming State
	OBJECTIVE-C
	SWIFT

	System Context
	OBJECTIVE-C
	SWIFT

	Example Apps
	NOTE
	Connecting to Hardware

	Adaptive Interface Capabilities
	Designing for Different Head Units
	System Capability Manager Properties
	The Register App Interface RPC

	Image Specifics
	Image File Type
	Image Sizes

	Main Screen Templates
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT
	Available Templates
	MEDIA - WITH AND WITHOUT PROGRESS BAR
	Generic HMI
	Generic HMI
	Ford HMI

	NON-MEDIA - WITH AND WITHOUT SOFT BUTTONS
	Generic HMI
	Ford HMI
	Ford HMI

	GRAPHIC_WITH_TEXT
	Ford HMI
	Ford HMI

	TEXT_WITH_GRAPHIC
	Ford HMI

	TILES_ONLY
	Ford HMI
	Ford HMI

	GRAPHIC_WITH_TILES
	Ford HMI

	TILES_WITH_GRAPHIC
	Ford HMI
	Ford HMI

	GRAPHIC_WITH_TEXT_AND_SOFTBUTTONS
	Ford HMI

	TEXT_AND_SOFTBUTTONS_WITH_GRAPHIC
	Ford HMI
	Ford HMI

	GRAPHIC_WITH_TEXTBUTTONS
	Ford HMI

	DOUBLE_GRAPHIC_SOFTBUTTONS
	Ford HMI
	Ford HMI

	TEXTBUTTONS_WITH_GRAPHIC
	Ford HMI

	TEXTBUTTONS_ONLY
	Ford HMI
	Ford HMI

	LARGE_GRAPHIC_WITH_SOFTBUTTONS
	Generic HMI
	Ford HMI
	Ford HMI

	LARGE_GRAPHIC_ONLY
	Generic HMI
	Ford HMI
	Ford HMI

	Text, Images, and Buttons
	Template Fields
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT
	SWIFT

	Soft Button Objects
	Updating the Soft Button State
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT
	SWIFT

	Deleting Soft Buttons

	Template Images
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT

	Static Icons
	OBJECTIVE-C
	SWIFT
	SWIFT

	Using RPCs

	Subscribing to System Buttons
	NOTE
	Audio-Related Buttons
	NOTE
	OBJECTIVE-C
	SWIFT
	SWIFT

	Main Menu
	Generic HMI
	Generic HMI
	Ford HMI
	Adding Menu Items
	OBJECTIVE-C
	SWIFT
	SWIFT

	Adding Submenus
	OBJECTIVE-C
	SWIFT
	SWIFT
	Artworks
	Deleting Menu Items

	Using RPCs

	Voice Commands
	NOTE
	OBJECTIVE-C
	SWIFT
	Using RPCs

	Popup Menus and Keyboards
	Presenting a Popup Menu
	Creating Cells
	NOTE
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT

	Preloading Cells
	OBJECTIVE-C
	SWIFT
	SWIFT

	Presenting a Menu
	MENU - ICON
	Ford HMI

	MENU - LIST
	Ford HMI
	Ford HMI

	NOTE
	CREATING A CHOICE SET
	NOTE
	OBJECTIVE-C
	SWIFT
	SWIFT

	IMPLEMENTING THE CHOICE SET DELEGATE
	OBJECTIVE-C
	SWIFT
	SWIFT

	PRESENTING THE MENU WITH A MODE
	MENU - MANUAL ONLY
	Ford HMI

	MENU - VOICE ONLY
	Ford HMI
	Ford HMI

	OBJECTIVE-C
	SWIFT

	Presenting a Searchable Menu
	Ford HMI
	OBJECTIVE-C
	SWIFT

	Deleting Cells
	OBJECTIVE-C
	SWIFT

	Presenting a Keyboard
	NOTE
	OBJECTIVE-C
	SWIFT
	Implementing the Keyboard Delegate
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT
	SWIFT

	Using RPCs

	Alerts
	NOTE
	Alert UI
	Ford HMI
	Ford HMI

	Alert TTS
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT
	SWIFT

	Media Clock
	NOTE
	Generic HMI
	Generic HMI
	Ford HMI

	Counting Up
	NOTE
	OBJECTIVE-C
	SWIFT
	SWIFT
	OBJECTIVE-C
	SWIFT

	Counting Down
	NOTE
	OBJECTIVE-C
	SWIFT

	Pausing & Resuming
	OBJECTIVE-C
	SWIFT

	Clearing the Timer
	OBJECTIVE-C
	SWIFT
	Updating the Audio Indicator
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT

	Batch Sending RPCs
	Sending Concurrent Requests
	OBJECTIVE-C
	SWIFT
	SWIFT

	Sending Sequential Requests
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT

	Retrieving Vehicle Data
	NOTE
	One-Time Vehicle Data Retrieval
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT
	SWIFT

	Subscribing to Vehicle Data
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT
	SWIFT
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT

	Unsubscribing from Vehicle Data
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT
	SWIFT

	Calling a Phone Number
	NOTE
	Detecting if DialNumber is Available
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT

	Sending a DialNumber Request
	NOTE
	OBJECTIVE-C
	SWIFT
	SWIFT
	DialNumber Result

	Setting the Navigation Destination
	NOTE
	Detecting if SendLocation is Available
	NOTE
	OBJECTIVE-C
	SWIFT
	SWIFT

	Using Send Location
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT
	SWIFT

	Determining the Result of SendLocation

	In-Car Microphone Audio
	NOTE
	NOTE
	Starting Audio Capture
	NOTE
	OBJECTIVE-C
	SWIFT
	SWIFT
	Ford HMI

	Gathering Audio Data
	NOTE
	OBJECTIVE-C
	SWIFT
	SWIFT
	FORMAT OF AUDIO DATA

	Ending Audio Capture
	OBJECTIVE-C
	SWIFT

	Handling the Response
	OBJECTIVE-C
	SWIFT
	SWIFT

	Uploading Files
	Uploading an mp3 Using SDLFileManager
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT

	Batch File Uploads
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT
	SWIFT

	File Persistance
	OBJECTIVE-C
	SWIFT
	SWIFT
	NOTE

	Overwriting Stored Files
	OBJECTIVE-C
	SWIFT

	Checking the Amount of File Storage
	OBJECTIVE-C
	SWIFT

	Checking if a File Has Already Been Uploaded
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT

	Deleting Stored Files
	OBJECTIVE-C
	SWIFT
	SWIFT

	Batch Deleting Files
	OBJECTIVE-C
	SWIFT

	Uploading Images
	NOTE
	Checking if Graphics are Supported
	OBJECTIVE-C
	SWIFT
	SWIFT

	Uploading an Image Using SDLFileManager
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT
	Batch File Uploads, Persistence, etc.

	Playing Audio Indications
	NOTE
	Uploading the Audio File
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT

	Using the Audio File in an Alert
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT

	Introduction
	Connecting an app
	OBJECTIVE-C
	SWIFT
	SWIFT
	NOTE

	Keyboard Input

	Video Streaming
	NOTE
	Transports for Video Streaming
	CarWindow
	NOTE
	Showing a New View Controller
	Mirroring the Device Screen vs. Off-Screen UI
	NOTE

	Sending Raw Video Data
	NOTE
	Sending Video Data
	OBJECTIVE-C
	SWIFT

	Best Practices

	Audio Streaming
	Audio Stream Lifecycle
	SDLAudioStreamManager
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT
	IMPLEMENTING THE DELEGATE
	OBJECTIVE-C
	SWIFT
	SWIFT

	Manually Sending Data
	OBJECTIVE-C
	SWIFT
	SWIFT

	Touch Input
	NOTE
	Using SDLTouchManager
	NOTE
	OBJECTIVE-C
	SWIFT
	SWIFT
	NOTE

	Implementing onTouchEvent Yourself
	TYPE
	EVENT
	EXAMPLE
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT

	Supporting Haptic Input
	NOTE
	Automatic Focusable Rects
	NOTE
	OBJECTIVE-C
	SWIFT
	NOTE

	Manual Focusable Rects
	OBJECTIVE-C
	SWIFT
	SWIFT

	Displaying Turn Directions
	NOTE
	Sending a Maneuver
	OBJECTIVE-C
	SWIFT
	SWIFT

	Clearing the Maneuver
	OBJECTIVE-C
	OBJECTIVE-C
	SWIFT

	Configuring SDL Logging
	OBJECTIVE-C
	SWIFT
	Format Type
	Log Synchronicity
	Log level
	NOTE

	Targets
	APPLE SYSTEM LOG TARGET
	OS LOG TARGET
	FILE TARGET
	CUSTOM LOG TARGETS
	OBJECTIVE-C
	SWIFT

	Modules
	OBJECTIVE-C
	SWIFT
	SWIFT

	Filters
	OBJECTIVE-C
	SWIFT

	Logging with the SDL Logger
	Objective-C Projects
	Swift Projects
	COCOAPODS
	LOGGING IN SWIFT

	SDL Relay
	NOTE
	NOTE
	Necessary Tools
	Examples
	Example: Connecting the RPC Builder iOS App
	Example: Connecting Your Custom App
	NOTE

	Need Help?
	Found a Bug?
	Want to Help?

	RPC Builder
	Introduction
	NOTE

	Getting Started
	RPC Builder Interface
	Settings Page
	NOTE

	Main RPCs Table
	Send a RPC
	PARAMETER INFORMATION
	REQUIRED PARAMETERS
	STRUCT OR ARRAY PARAMETERS
	PARAMETER DATA

	Modules
	BUILDING NEW MODULES
	DEFAULT MODULES

	Console Log
	CONSOLE COLOR CODES
	RPC JSON

	A Special Note About Putfile
	Need Help?
	Found a Bug?
	Want to Help?

	Updating from 4.2 and below to 4.3+
	Updating the Podfile
	NOTE

	Response and Event Handlers
	Deprecating SDLRPCRequestFactory
	NOTE

	SDLProxy to SDLManager
	SDLProxyListener to SDLManagerDelegate
	Correlation Ids
	NOTE

	Creating the Manager
	Built-In Lock Screen
	Starting the Manager and Register App Interface
	Stopping the Manager
	Adding Notification Handlers
	Handling command notifications
	Sending Requests via SDLManager

	Uploading Files via SDLManager's SDLFileManager

	Updating from v4.3+ to v5.0+
	Changes to SDL Enums
	OBJ-C
	SWIFT

	Changes to RPC Handlers
	SWIFT

	SDLConfiguration Changes
	OBJ-C
	SWIFT

	Multiple File Uploads
	OBJ-C
	SWIFT
	SWIFT

	Logging Changes
	Immutable RPC Collections & Generics
	Nullability

	Video Streaming Enhancements
	Touch Manager Delegate Changes

