
Best Practice Guides
Document current as of 03/12/2019 04:04 PM.

Display Information

Display vs Voice

Designing your application on a mobile device is entirely a visual process.

However, designing application for in-vehicle experience requires closer

consideration of driver distraction rules to ensure the safety of your application

user. Below listed are some of the best practices you will need to consider while

designing your application for in-vehicle use so as to eliminate the need to

understand the driver distraction laws and guidelines that are continually

changing around the world.

General Guidelines

It is highly recommended to focus on voice interactions first and foremost. In a

vehicle, especially while driving, your application usage should be almost

entirely accomplished using voice commands.

USE VOICE COMMANDS

https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/

There are only a few ways of presenting information to the user. The first way is

to write to the available templates, for example to your application's main

screen. While more advanced displays allow for more updated fields and

templates, you are always given a base template to write to.

The second is to send a text string for the voice engine to process and speak

back to the user. The combination of the two, display template updates and

sending text to be processed into speech, is the best way of presenting

information to the user. An example of this is requesting a pop-up with text-to-

speech (TTS), or Alert .

TBD: Attach link for Available Templates.

There are anywhere between two and four lines of text available to your

application via the Show command. As a general rule, use this display to

convey the current state of your application.

line 1 and line 2: Use line 1 and line 2 for relatively continuous updates such as,

what station is playing, artist/track being streamed, distance to location, etc.

line 3 and line 4: Other information which might be useful, but not pertinent to

functionality are best included on Lines 3 and 4, if available.

When using Show in combination with SetDisplayLayout , depending on the

OEM, the number of custom softbuttons on each display layout will differ. The

standard format of softbuttons for each system is as follows:

PRESENTING CLEAR INFORMATION

USING DISPLAY

NUMBER OF CUSTOM SOFTBUTTONS

L AYO U T S TA N D A R D # O F S O F T B U T T O N S

DOUBLE_GRAPHIC_WITH_SOFTBUTTONS 8

GRAPHIC_WITH_TEXT 0

GRAPHIC_WITH_TEXT_AND_SOFTBUTTON

S
2

GRAPHIC_WITH_TEXTBUTTONS 3

GRAPHIC_WITH_TILES 3

LARGE_GRAPHIC_ONLY 0

LARGE_GRAPHIC_WITH_SOFTBUTTONS 8

MEDIA 8

NON_MEDIA 8

TEXT_AND_SOFTBUTTONS_WITH_GRAPHI

C
2

TEXT_WITH_GRAPHIC 0

TEXTBUTTONS_ONLY 8

TEXTBUTTONS_WITH_GRAPHIC 3

TILES_ONLY 7

TILES_WITH_GRAPHIC 3

• Brand new user

A welcome message with basic instructions could be given the first few

times a user uses the application in vehicle using the Speak function.

Once they’ve used the application a set number of times, you can remove

these helpful prompts.

Send a Show command to update the display with a welcome message

or initialization message such as “Buffering…”.
• Logged In User Account

If your application does require a logged in user account, you should

always have logic to catch applications that are running in-vehicle without

an active account and display a message notifying the user to log in when

not driving.

Refer to the Standard Interaction Phrases section for sample voice and/or

text messages.
• Waiting for Online Data Download

If your application is waiting for online data to get downloaded, display "

Loading..." text on Line 1 of the template to inform the user of the

download.
• Background Application

If your application is a background application, with no real action for the

user to take while using it in-vehicle, you might not have any voice

commands or soft-buttons available in your application. It is

recommended to provide an "About" or "Info" Menu/voice command or/

and soft-button (with voice command) which when used by the user

provides a brief message about the application. You may also choose to

point them to the help section in your mobile app which might be more

descriptive.
• Dealing with Permissions

If your application is using certain functions, such as vehicle data, it is

PROVIDE FEEDBACK

essential to ensure that the application provides feedback to the user in

cases when:

◦ All or part of the vehicle data is not available in the vehicle (as some

car lines or model only provide a subset of the vehicle data available

in other car lines).
◦ User did not provide consent to use vehicle data.
◦ User has disabled access to all or part of the vehicle data your

application is using.

For the above scenarios, as a feedback you may let the user know that the

application might not work as expected due to the lack of availability of

vehicle data. Refer to the Standard Interaction Phrases section for sample

voice/text messages.

Note that some RPCs are protected by policies for every OEM. To gain

access to such RPCs, contact the OEM.
• Using ScrollableMessage

ScrollableMessage is a useful way to show and display text to a user. In

some markets like Europe and Asia, ScrollableMessage can be used at

any time, to show a message or other relevant information that wouldn’t

fit on an Alert . It is important to note that in North America, ScrollableM

essage is limited in use and cannot be used while the vehicle is in

motion. Please be advised that you may find these messages are blocked

from being shown in that region. To detect this condition, use the OnDrive

rDistraction notification on vehicles before showing the message, or if

you detect ScrollableMessage is rejected due to driver distraction

restrictions, simply use a Speak or another

method to convey the information.
• Handling API rejections Part of guides

Depending on the state of the system, or your application permissions,

some of the messages you send to the vehicle may get rejected. It is

important to understand why these are happening when they occur, so

that you may present the proper information to the user. If a command

you send is REJECTED , it is recommended to send it again, depending on

the message. For example, if an AddCommand is rejected, you will need

to send it again, to ensure your menu option or voice command is

available on the system. If a request for Alert is REJECTED , it may

mean the system is in a state in which your message cannot be played.

You may want to try again after 15-30 seconds if the information is

pertinent to the user.
• General feedback recommendation

◦ Applications must provide an audio or visual response to user

interactions (button presses, VR, AddCommands, etc.).
◦ Applications must not provide an incorrect or unexpected response

to user interaction.

• Standard Interaction Phrases

◦ Login Required
◦ Text: To use < app name > you have to be logged in.
◦ Voice: To continue using < app name > please login on your mobile

phone while not driving.
◦ Vehicle Data Availability
◦ Text: Grant access to vehicle data in Mobile Apps settings.
◦ Voice: < App name > might not work as expected as we are unable

to access < Vehicle Information, Push Notifications, Location

Information and Driving Characteristics >. Please enable this feature

in Mobile App's settings menu while not driving.

Graphics

When implementing graphics into your apps you should make sure that the app

looks good in both day and night mode. For graphics this implies that you

should at either have a background or work with outlines. For icons, outlines

are needed to increase contrast in all situations. Light icons should have a dark

contrast and dark icons should have a light contrast.

Please ensure to use the correct dimensions for your images.

Graphics used in choiceSets must be uploaded before the choiceSet is used.

This will decrease performance if many different graphics are to be used in one

choiceSet . To mitigate that the usage of generic icons is encouraged (like a

CD icon instead of the actual Album art).

Add Links to uploading graphics
(android/ iOS) sections

Driver Distraction Rules for
Graphics

Due to driver distraction rules the graphics used can’t incorporate text or any

form of data or graph. No moving images or video can be used, or any graphic

that a user could interact with. If your app incorporates social media you are

not allowed to display any graphics from social media posts or any form of

attachment.

Languages

General Guidelines

As a developer, you will want to localize your application, via voice and on the

display to match the experience with the rest of the user interface inside of the

vehicle.

In order to properly handle language changes inside of the vehicle, we propose

the following rules.

1. Register your application with the language it currently supports on

the phone's user interface.

LOCALIZATION AND HANDLING LANGUAGE CHANGES

2. Check the display and voice language that the vehicle is currently

set to in the RegisterAppInterface response.

3. If your application does not support the language in the vehicle,

you may send commands as usual. By default if the user starts your application

in the vehicle, the vehicle will notify the customer the languages

between the vehicle and phone does not match and no other

steps are required.

4. If your application supports the language(s) in the response value,

send a ChangeRegistration message with the vehicle language and

proceed to adding your commands and bootstrapping your application.

The best practice for your SDL integration is a dynamic switching of the Apps

SDL language. The RegisterAppInterface RPC will report the head unit's

language. If this language differs from the current language your App is set to,

you should dynamically reload the strings in the language to that set in the

head unit. The driver is used to the language in his car, therefore your app

should be aligned with the language in the vehicle.

Note: If dynamic switching of languages is not a possibility for your application

(because you load strings dynamically from your backend based on the user

profile language settings), you may still choose to keep your language. The

user will be informed from the head unit that the App's language differs from

SYNC and that Voice commands will not work as expected. Check out Regional

Language Switching section for best practices to minimize false notifications to

the user.

It is always important to keep in mind the voice engine in the head unit will

always pronounce the given data according to the language it is set to.

DYNAMIC SWITCHING OF LANGUAGES:

APP'S TTSNAME

To prevent your app name from being pronounced in from happening and for

the user to be able to correctly activate your app via voice as well as for the

head unit to correctly pronounce the App Name, you will have to use the two

parameters TTSName and VRSynonyms in the RegisterAppInterface . Both

fields have to be filled with a String that represents the pronunciation of your

App name in the current language.

Note: The recommended best practice mentioned above must be followed only

if the app name sounds wrong in the language the app switches to.

If your app only supports one variant of English:

You should update the registration information using the changeRegistration

RPC (you don't have to re-register, because you don't have to change the TTSN

Example:
App Name "Livio Music" sounds like "Leeveeo Moozik" (which is not how
 the app name
is supposed to be pronounced) if the head unit is set to German.

Example:
Fill `TTSName`and one value of `VRSynonyms` with `Leeveeo Moozik`
when the
Livio Music connects to a German head unit to get the correct
pronunciation
of the app name in German. This is the only way to enable the user to
start
the app with the english pronunciation of Livio Music and also allow the
head
unit to pronounce name of the app correctly.

REGIONAL LANGUAGE SWITCHING

ame). As soon as you get the information that the user's vehicle is set to a

different regional version of the language, you should call the ChangeRegistrat

ion RPC with the actual regional variant that the user's vehicle is set to. There

is no other change required.

If your App's languages differs from your SDL languages, the App should store

this different language and use it the next time it registers with the head unit.

The above recommendation also covers the use case where the user has his

vehicle always set to a different language than the language on his mobile

phone. If the app did not persist the language it would have to switch every

time, which degrades the apps performance.

Menu Items and Interactions

All the major features or functions of your application (nouns/verbs) could be

loaded as top-level voice commands and or menu items using AddCommands .

Example:
App is set to "EN_US".
RegisterAppInterface reports the head unit is set to "EN_GB".
Use "ChangeRegistration(EN_GB, EN_GB)" to update the language.
Note: You don't have to update either "TTSName" or "VRSynonyms".

PERSISTED LANGUAGES

It is recommended that this list be less than 150 commands, to improve

application initialization performance and for high voice recognition quality.

General Guidelines

As an application, you will want to respond to user input. To limit changes in

modality, we highly recommend looking at the trigger source for input provided

to your application, either via voice or menu. In instances where OnCommand

indicates you've made a selection, and you want to use PerformInteraction ,

ensure the mode is the same. For example, if trigger source is MENU , you'll

want to start your interaction with an interaction mode of MANUAL_ONLY . If

trigger source is VR , you'll want to trigger your interaction as BOTH or VOIC

E_ONLY . Also, as a best practice always set your PerformInteraction timeout

to max giving sufficient time for the user to respond.

Applications can load ChoiceSet with 100 items. If your PerformInteraction

requires additional commands, you may reference additional ChoiceSets . That

is, one PerformInteraction can contain more than one ChoiceSet . If your list

of choices is known ahead of time, it is helpful to create these during your

initialization phases, and simply reuse the ChoiceSet throughout your

application's lifecycle. When a user initiates an interaction, the user may

choose from whatever choices are defined at that moment. It is up to the

application to ensure that all appropriate choices are defined before the app

interaction. Also, consider grouping your choices in a way that maximises

reusability of the defined Choices or ChoiceSets .

Note:

It is not recommended to consistently delete and create choice sets. If you

must delete a ChoiceSet , it is suggested that you wait some time since it was

last used. Immediately deleting a ChoiceSet after its PerformInteraction has

RESPONDING TO USER INPUT

HANDLING CHOICES, CHOICESETS AND COMMANDS

returned could lead to undesired application behavior.

While DeleteCommand and DeleteInteractionChoiceSet are supported RPCs,

only use them when appropriate. Avoid deleting commands and ChoiceSets

that will knowingly be used again.

* Every choiceID across different ChoiceSets should have unique IDs within

the app's lifecycle.

Always order items in your lists for better user experience. Ordering the items

which are more oftenly used in your application or ordering the items based on

the specific user preferences, or based on current location of the user etc. will

help keep the most important items to the user accessible. In general, order the

items from most important to least important.

To add VR for softbuttons, use AddCommand with no menuParameters .

You may use both name and image for items wherever applicable.

Applications must not register voice grammars using synonyms that include

other application names, or conflict with on-board voice commands.

ORDERED ITEMS

VR FOR SOFTBUTTONS

NAME AND IMAGE

CHOOSING VOICE GRAMMAR

It is always a good practice to add relavent and useful information to the list

items, for example if your app is a media app and you have a list of audio

contents, adding information such as when the content was aired.

PerformInteraction lists should always be as small as possible by UX design.

However, in cases where having long lists cannot be avoided, please follow the

below best practices for better user experience.

Note: Avoid opening PerformInteraction from within another PerformInteracti

on .

1. List with multiple action item per choice

◦ For each item which has several more actions available:

Example: Searching for events in the vicinity. There might be a big

number of events. On each event you can select “Call venue”,

“Navigate to it”, “Details”, “Play” (playing the artist of a potential

concert in the vicinity).

▪ Present each result on it's own screen via Show and announce

it with a pure voice alert viaSpeak.

◦ Define softbuttons for each possible action and add the respective

command to voice and menu.
◦ To cycle through the result list, you may use one of the below

options:
◦ Skipbutton (which is currently only available for Media Apps)
◦ Softbuttons & Voice commands
◦ Show the current item and the length of the list in the Media-track.

For example 1/10 for the first item out of 10 items from the result.

MAKING LISTS MORE INFORMATIVE

HANDLING LISTS

◦ Announce the availablility of Skiphard button on the steering wheel

for easy navigation.

Note: Only make the announcement the first time the search has been

completed to reduce any kind of annoyance to the user.

◦ For each item only one action available:

Example: scenario is already "Navigate To _"

In contrast to the above, you may choose to use PerformInteraction.

2. Simple lists

If the results are known by the user or the result list is very small you can

use PerformInteraction instead depending on the current use case.

Example:

User Action 1:

VR/MENU: "Create result list"
Result 1:

 SCREEN LINE 1: "Result 1 a"
 SCREEN LINE 2: "Result 1 b"
 MEDIA TRACK: "1/25"
 SOFTBUTTONS: Action 1, Action 2, Action 3,...,Previous, Next, More...
 TTS: "Result 1 <possibly more information about the result>"
 //First Time: Announce possible ways to navigate (skip
buttons,
 voice command, etc..)

User Action 2:

VR/MENU/SOFTBUTTON: "Action 1"
Result 2:

This is only applicable if the "Action 1" of "Result 1" results in another
screen. If just a call is initiated by "action 1" there is no need to
display an ensuing screen.

 SCREEN LINE 1: "Action 1 Result 1 a"
 SCREEN LINE 2: "Action 1 Result 1 b"

 SOFTBUTTONS: Softbuttons highly depend on the use case you are
developing.
 If the user again has an array of choices, use the same
 concept as explained above. Otherwise, adapt the screen to
 your use case.
 TTS: "Result of Action 1 on Result 1"

User Action 3:

VR/MENU/SOFTBUTTONS: "Next"
Result 3:

 SCREEN LINE 1: "Result 2 a"
 SCREEN LINE 2: "Result 2 b"
 MEDIA TRACK: "2/25"
 SOFTBUTTONSS: Action 1, Action 2, Action 3,...,Previous, Next,
More...
 TTS: “Result 2 <possibly more information about the result>.”

PerformAudioPassThru

The PerformAudioPassThru RPC feeds you audio data from the vehicle’s

microphone. The audio data can be used in cloud-based and on-line voice

recognition to achieve dynamic user interaction, such as POI (point of interest)

search, information query, or even record when the driver is singing. The audio

data will be in uncompressed PCM format. The sampling rate, bit width, and

timeout can be set, however, the supported parameters will be sent in the regi

sterAppInterface response. Generally, 16 bit width, 16kHz sample rate will be

supported.

The parameter muteAudio is used to define whether or not to mute current

audio source during AudioPassThru session.

When the PerformAudioPassThru is used for voice recognition, muteAudio

should be set to true to minimize audio interference.

If you want to mix the input audio from PerformAudioPassThru session with

current audio source, eg. a karaoke app recording both the user's voice and the

background music, you can set muteAudio to false.

onAudioPassThru keeps you updated with the audio data transfer every

250ms.

EndAudioPassThru enables you to end the audio capture prematurely. This is

useful if your app analyzes the audio level and detects that the user has

stopped speaking.

Additional notes about the audio data format:

• There is no header (such as a RIFF header).
• The audio sample is in linear PCM format.
• The audio data includes only one channel (i.e. monaural).
• For an 8 bit width, the audio data is unsigned. For a 16 bit width, it will be

signed and little endian.

Audiobooks

An audiobook app for SDL should include as much of the native apps

functionality as possible, since that is what a user will be expecting out of the

app.

Your Audiobook app should contain such basic functionality as Play , Pause ,

and Resume . You can use build in controls for these features by calling the su

bscribeButton RPC. This will allow you to not only create buttons on the

infotainment system but also be informed when the user presses hard buttons,

which might be placed on the steering wheel. It is important to also add voice

control capabilities for these functions. To add a voice command use the addCo

mmand RPC but omit the menuParams argument. This will create a voice

command without creating an item in the menu.

Add link to AddCommand
Section

Your app should display information like title, author, and potentially additional

items like chapter number. It is encouraged to use the following layout of

information on the screen:

USE VOICE COMMANDS

DISPLAY INFORMATION

T E X T F I E L D I N F O R M AT I O N

It is encouraged to show static images of the book cover, however moving or

interactive images are not allowed. Neither is the display of the actual text of

the book.

Add link to DisplayInformation
Section

Use the performInteraction RPC to allow users to choose from lists of Books.

When you receive the NOT_AUDIBLE state you should pause the audio and

resume when you receive AUDIBLE . The pausing and resuming should be

independent on the current HMILevel state.

mainField1 Title

mainField2 Author

mainField3 Chapter (x/x)

MANAGING LISTS

MANAGING AUDIO

Music Apps

When creating a music app for SDL the app should include as much of the

native apps functionality as possible. If your app requires a user name and

password to be used then the user should be informed for this instead of the

user just being unable to access the apps functionality. Please refer to the Disp

laying Information section.

Your Music app should contain such basic functionality as Play , Pause , and

Resume . You can use build in controls for these features by calling the subscr

ibeButton RPC. This will allow you to not only create buttons on the

infotainment system but also be informed when the user presses hard buttons,

which might be placed on the steering wheel. It is important to also add voice

control capabilities for these functions. To add a voice command use the addCo

mmand RPC but omit the menuParams argument. This will create a voice

command without creating an item in the menu.

Add link to AddCommand section

Your app should display things like song name, artist name, and optionally the

album name. It is encouraged to use the following layout of information on the

screen:

BASIC COMMANDS

DISPLAY INFORMATION

T E X T F I E L D I N F O R M AT I O N

It is encouraged to show static images of the album art, however moving or

interactive images are not allowed neither is the display of lyrics.

Add Link to DisplayInformation

Below is an example of the Pandora home screen using the MainFields and

displaying a graphic.

mainField1 Song

mainField2 Artist

mainField3 Album

If your app features different stations or streams you should consider allowing

the user to save these stations to preset buttons. To receive notifications about

preset button presses please use the subscribeButton RPC with the respective

presets as arguments. On some SDL implementations you will be able to

change the text on a preset button. To change this text use the customPresets

array in the show RPC.

When you receive the NOT_AUDIBLE state you should pause the audio and

resume when you receive AUDIBLE . The pausing and resuming should be

independent on the current HMILevel state.

SmartDeviceLink FAQ

Here are a few of the most common questions new developers have around the

SmartDeviceLink project.

• Is WiFi a supported transport?
• Can I implement custom HMI templates?
• Can I implement custom vehicle data messages?
• What is the process for obtaining an App ID?
• Why does SDL require that I use templates for non-navigation

applications?
• I didn't find the answers I was looking for, where else can I look?

USING PRESETS

MANAGING AUDIO

Is WiFi a supported transport?

The WiFi transports currently supported are for testing and debugging only;

they are not production ready. If this feature is desired, a proposal can be

introduced in the SDL Evolution Process.

Can I implement custom HMI
templates?

This is possible, but not recommended as any app that builds itself for the head

unit's custom template would not work with any other systems. If new

templates are desired, they should go through the SDL Evolution Process and

be adopted by the project.

Can I implement custom vehicle
data messages?

This is possible, but not recommended as any app that builds itself for the head

unit's custom vehicle data types would not work with any other systems. If new

vehicle data types are desired, they should go through the SDL Evolution

Process and be adopted by the project.

What is the process for obtaining
an App ID?

To obtain an App ID, you must first register for an account on the SDL

Developer Portal, and then register the company to which the app should

belong. Once your company is registered, you can select the App IDs tab from

your company profile and click the "Create New App ID" button to provide your

app information and obtain your App ID.

Why does SDL require that I use
templates for non-navigation
applications?

Templates are the best way for you to design your application with the driver's

safety in mind. For more information on the benefits of templates, please see

this document.

I didn't find the answers I was
looking for, where else can I
look?

Each project has documentation, guides, and may have their own FAQ that can

help. If you still need help, please join the SmartDeviceLink Slack team and ask

your question.

https://smartdevicelink.com/register/
https://smartdevicelink.com/register/
https://d83tozu1c8tt6.cloudfront.net/media/resources/templates_vs_video_streaming.pdf
http://slack.smartdevicelink.com/

	Display Information
	Display vs Voice
	General Guidelines
	USE VOICE COMMANDS
	PRESENTING CLEAR INFORMATION
	USING DISPLAY
	NUMBER OF CUSTOM SOFTBUTTONS
	PROVIDE FEEDBACK

	Graphics
	Add Links to uploading graphics (android/ iOS) sections
	Driver Distraction Rules for Graphics
	Languages
	General Guidelines
	LOCALIZATION AND HANDLING LANGUAGE CHANGES
	DYNAMIC SWITCHING OF LANGUAGES:
	APP'S TTSNAME
	REGIONAL LANGUAGE SWITCHING
	PERSISTED LANGUAGES

	Menu Items and Interactions
	General Guidelines
	RESPONDING TO USER INPUT
	HANDLING CHOICES, CHOICESETS AND COMMANDS
	ORDERED ITEMS
	VR FOR SOFTBUTTONS
	NAME AND IMAGE
	CHOOSING VOICE GRAMMAR
	MAKING LISTS MORE INFORMATIVE
	HANDLING LISTS

	PerformAudioPassThru
	Audiobooks
	USE VOICE COMMANDS

	Add link to AddCommand Section
	DISPLAY INFORMATION

	Add link to DisplayInformation Section
	MANAGING LISTS
	MANAGING AUDIO

	Music Apps
	BASIC COMMANDS
	Add link to AddCommand section
	DISPLAY INFORMATION

	Add Link to DisplayInformation
	USING PRESETS
	MANAGING AUDIO

	SmartDeviceLink FAQ
	Is WiFi a supported transport?
	Can I implement custom HMI templates?
	Can I implement custom vehicle data messages?
	What is the process for obtaining an App ID?
	Why does SDL require that I use templates for non-navigation applications?
	I didn't find the answers I was looking for, where else can I look?

