SH!

Android Guides

Document current as of 11/18/2025 03:05 PM.

Installation

In order to build your app on a SmartDeviceLink (SDL) Core, the SDL software
development kit (SDK) must be installed in your app. The following steps will guide you
through adding the SDL SDK to your workspace and configuring the environment.

O NOTE

v

The SDL SDK is currently supported on Android 5.0 (LOLLIPOP) and above.

Install SDL SDK

Each SDL Android library release is published to MavenCentral. By adding a few lines in
their app's gradle script, developers can compile with the latest SDL Android release.

To gain access to the MavenCentral repository, make sure your app's build.gradle file

includes the following:

https://github.com/smartdevicelink/sdl_java_suite
https://sdl-devportal-media-production.s3.amazonaws.com/

repositories {

mavenCentral()

}

Gradle Build

To compile with a release of SDL Android, include the following line in your app's build.gr
adle file,

dependencies {

implementation 'com.smartdevicelink:sdl_android:{version}'

}

and replace {version} with the desired release version in format of x.x.x . The list of

releases can be found here.

Examples

To compile release 5.8.0, use the following line:

dependencies {

implementation 'com.smartdevicelink:sdl_android:5.8.0'

}

To compile the latest minor release of major version 5, use:

dependencies {

implementation ‘com.smartdevicelink:sdl_android:5.+'

}

https://github.com/smartdevicelink/sdl_java_suite/releases

To Find more information on installation, read our README.

SDK Configuration

1. Get an App Id

An app id is required for production level apps. The app id gives your app special
permissions to access vehicle data. If your app does not need to access vehicle data, a
dummy app id (i.e. creating a fake id like "1234") is sufficient during the development
stage. However, you must get an app id before releasing the app to the public.

To obtain an app id, sign up at smartdevicelink.com.

2. Add Required System Permissions

Some permissions are required to be granted to the SDL app in order for it to work
properly. In the AndroidManifest file, we need to ensure we have the following system

permissions:

¢ Internet - Used by the mobile library to communicate with a SDL Server

e Bluetooth - Primary transport for SDL communication between the device and the
vehicle's head-unit

e Access Network State - Required to check if WiFi is enabled on the device

e Foreground Service - Required for SDL to run services in the foreground for
applications targeting Android P (API Level 28) or higher

e Bluetooth Connect - Required to allow SDL to be notified of Bluetooth Connections

¢ Post Notifications - Needed to allow SDL notifications

e Foreground Service Connected Device - Required to allow service to enter

foreground

https://github.com/smartdevicelink/sdl_java_suite
https://www.smartdevicelink.com/
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_NETWORK_STATE
https://developer.android.com/reference/android/Manifest.permission.html#FOREGROUND_SERVICE
https://developer.android.com/reference/android/Manifest.permission#BLUETOOTH_CONNECT
https://developer.android.com/reference/android/Manifest.permission#POST_NOTIFICATIONS
https://developer.android.com/reference/android/Manifest.permission#FOREGROUND_SERVICE_CONNECTED_DEVICE

<manifest xmlns:android=
package=

<uses-permission android:name=

<uses-permission android:name=

<uses-permission android:name=
/>

<uses-permission android:name=

<uses-permission android:name=
tools:targetApi="31"/>
<uses-permission android:name=
tools:targetApi="33"/>
<uses-permission
android:name=
tools:targetApi="34"/>

</manifest>

NOTE

The following required permissions are runtime permissions, and the

developer must request them from the user.

<uses-permission
android:name=
tools:targetApi="31"/>

<uses-permission
android:name=
tools:targetApi="33"/>

3. Add Required SDL Queries

It is required to add the SDL specific entries into the app's queries taginthe AndroidMa
nifest.xml . If the tag already exists, just the intents need to be added. If the tag does not
yet exist in the manifest, the tag can be added after the permissions are declared but

before the application tagis opened.

<queries>
<intent>
<action android:name=
</intent>

<intent>
<action android:name=

</intent>

</queries>

The SDL Android library uses these queries to determine which app should host the router
service, what apps to notify when there's an SDL connection, etc. As will be seen in the
next sections, these intents are used in the intent filters for the SdlIRouterService and the

SdIBroadcastReceiver .

Integration Basics

In this guide, we exclusively use Android Studio. We are going to set-up a bare-bones
application so you get started using SDL.

NOTE

The SDL Mobile library supports Android 5.0 (API Level 21) or higher.

SmartDevicelLink Service

https://developer.android.com/about/versions/lollipop/android-5.0

A SmartDeviceLink Service should be created to manage the lifecycle of the SDL session.
The SdIService should build and start an instance of the SdIManager which will
automatically connect with a head unit when available. This SdIManager will handle

sending and receiving messages to and from SDL after it is connected.

NOTE

Please be aware that using an Activity to host the SDL implementation will
not work. Android 10 has restrictions on starting activities from the
background and that is how the SDL library will start the supplied
component. SDL apps should only use a foreground service to host the SDL

implementation.

Create a new service and name it appropriately, for this guide we are going to call it SdIS

ervice .

Service {

If you created the service using the Android Studio template then the service should have
been added to your AndroidManifest.xml . If not, then service needs to be defined in the

manifest:

https://developer.android.com/guide/components/activities/background-starts

<manifest xmlns:android=
package=

<application>

<service
android:name=

android:exported=
android:enabled=
android:foregroundServiceType=

</application>

</manifest>

NOTE

Android API 31 now requires any Service that will be started from an external
source to explicitly set the exported flag to true (exported=true).
You can set this flag if you wish to allow the active Router Service to start

your SdIService while your app is in the background.

If you do not wish to set this flag for your SdIService you can still start your
SdIService while your app is in the foreground.

Entering the Foreground

Because of Android Oreo's requirements, it is mandatory that services enter the
foreground for long running tasks. The first bit of integration is ensuring that happens in
the onCreate method of the SdlService or similar. Within the service that implements
the SDL lifecycle you will need to add a call to start the service in the foreground. This will
include creating a notification to sit in the status bar tray. This information and icons
should be relevant for what the service is doing/going to do. If you already start your

service in the foreground, you can ignore this section.

@Override
void 04
.onCreate();
/...
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
try {
NotificationChannel channel = new NotificationChannel(
, NotificationManager.IMPORTANCE_DEFAULT);
NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
if (notificationManager != null) {
notificationManager.createNotificationChannel(channel);
Notification serviceNotification = new Notification.Builder(this,
channel.getld())
.setContentTitle(...)
.setSmalllcon(...)
.setContentText(...)
.setChannelld(channel.getld())
.build();
startForeground(FOREGROUND_SERVICE_ID, serviceNotification);
}
} catch (Exception e) {
// This should only occur when using TCP connections on Android 14+ due to
needing
// specific connected devices for permissions regarding
ForegroundServiceType
// ConnectedDevice where a TCP connection doesn't apply
DebugTool.logError(TAG, , €);

NOTE

The sample code checks if the OS is of Android Oreo or newer to start a
foreground service. It is up to the app developer if they wish to start the

notification in previous versions.

Exiting the Foreground

It's important that you don't leave your notification in the notification tray as it is very
confusing to users. So in the onDestroy method in your service, simply call the stopFor
eground method.

@Override
void {

/s
if(Build.VERSION.SDK_INT>=Build.VERSION_CODES.O)
NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);

if(notificationManager!=null){ /If this is the only notification on your channel
notificationManager.deleteNotificationChannel(* Notification Channel*);
}

stopForeground(true);

}
}

Implementing SDL Manager

In order to correctly connect to an SDL enabled head unit developers need to implement

methods for the proper creation and disposing of an SdIManager in our SdlService .

NOTE
An instance of SdIManager cannot be reused after it is closed and properly

disposed of. Instead, a new instance must be created. Only one instance of
SdIManager should be in use at any given time.

9, MUST

SdIManagerListener method: onSysteminfoReceived auto generates in

Android Studio to returns false. This will cause your app to not connect. You

must change it to true or implement logic to check system info to see if you
wish for your app to connect to that system.

SdiService Service {

//The manager handles communication between the application and SDL
SdIManager sdIManager = null;

/...

@Override
int (Intent intent, int flags, int startld) {

if (sdIManager == null) {
MultiplexTransportConfig transport = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);

// The app type to be used
Vector<AppHMIType> appType = new Vector<>();
appType.add(AppHMIType.MEDIA);

// The manager listener helps you know when certain events that pertain to
the SDL Manager happen
SdIManagerListener listener = new SdiManagerListener() {

@Override
void 0{
// After this callback is triggered the SdIManager can be used to interact

with the connected SDL session (updating the display, sending RPCs, etc)
}

@Override
void 04
SdlService.this.stopSelf();
}

@Override
void (String info, Exception e) {
}

@Override
LifecycleConfigurationUpdate
(Language language, Language hmilLanguage) {
return null;

}

@Override
boolean (Systeminfo systeminfo) {
// Check the Systeminfo object to ensure that the connection to the
device should continue
return true;

%

// Create App Icon, this is set in the SdIManager builder

SdlArtwork applcon = new SdlArtwork(ICON_FILENAME,
FileType.GRAPHIC_PNG, R.mipmap.ic_launcher, true);

// The manager builder sets options for your session

SdIManager.Builder builder = new SdiManager.Builder(this, APP_ID,
APP_NAME, listener);

builder.setAppTypes(appType);

builder.setTransportType(transport);

builder.setApplcon(applcon);

sdIManager = builder.build();

sdIManager.start();

}

return START_STICKY;

}
}

The onDestroy() method from the SdiManagerListener is called whenever the manager
detects some disconnect in the connection, whether initiated by the app, by SDL, or by the
device's connection.

9, MUST

The sdiManager must be shutdown properly in the SdlService.onDestroy()
callback using the method sdlManager.dispose() .

OPTIONAL SDLMANAGER BUILDER PARAMETERS
APP ICON

This is a custom icon for your application. Please refer to Adaptive Interface Capabilities
for icon sizes.

builder.setApplcon(applcon);

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/adaptive-interface-capabilities/

APP TYPE

The app type is used by car manufacturers to decide how to categorize your app. Each car
manufacturer has a different categorization system. For example, if you set your app type
as media, your app will also show up in the audio tab as well as the apps tab of Ford’s
SYNC® 3 head unit. The app type options are: default, communication, media (i.e.
music/podcasts/radio), messaging, navigation, projection, information, and social.

Vector<AppHMIType> appHMITypes = new Vector<>();
appHMITypes.add(AppHMIType.MEDIA);

builder.setAppTypes(appHMITypes);

NOTE

Navigation and projection applications both use video and audio byte
streaming. However, navigation apps require special permissions from

OEMs, and projection apps are only for internal use by OEMs.

SHORT APP NAME

This is a shortened version of your app name that is substituted when the full app name
will not be visible due to character count constraints. You will want to make this as short

as possible.

builder.setShortAppName(shortAppName);

TEMPLATE COLORING

You can customize the color scheme of your initial template on head units that support
this feature using the builder . For more information, see the Customizing the Template
guide section.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/customizing-look-and-functionality/customizing-the-template/

LOCK SCREEN CONFIGURATION

A lock screen is used to prevent the user from interacting with the app on the smartphone
while they are driving. When the vehicle starts moving, the lock screen is activated.
Similarly, when the vehicle stops moving, the lock screen is removed. You must
implement a lock screen in your app for safety reasons. Any application without a lock
screen will not get approval for release to the public.

The SDL SDK can take care of the lock screen implementation for you, automatically
using your app logo and the connected vehicle logo. If you do not want to use the default

lock screen, you can implement your own custom lock screen.

LockScreenConfig lockScreenConfig = new LockScreenConfig();

builder.setLockScreenConfig(lockScreenConfig);

You should also declare the SDLLockScreenActivity in your manifest. For more

information, please refer to the Adding the Lock Screen section.

SDLSECURITY

Some OEMs may want to encrypt messages passed between your SDL app and the head
unit. If this is the case, when you submit your app to the OEM for review, they will ask you

to add a security library to your SDL app. See the Encryption section.

FILE MANAGER CONFIGURATION

The file manager configuration allows you to configure retry behavior for uploading files
and images. The default configuration attempts one re-upload, but will fail after that.

FileManagerConfig fleManagerConfig = new FileManagerConfig();
fileManagerConfig.setArtworkRetryCount(2);

fileManagerConfig.setFileRetryCount(2);

builder.setFileManagerConfig(fileManagerConfig);

LANGUAGE

The desired language to be used on display/HMI of connected module can be set.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/adding-the-lock-screen/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/encryption/

builder.setLanguage(Language.EN_US);

LISTENING FOR RPC NOTIFICATIONS AND EVENTS

You can listen for specific events using SdIManager 's builder setRPCNotificationListen
ers . The following example shows how to listen for HMI Status notifications. Additional
listeners can be added for specific RPCs by using their corresponding FunctionID in
place of the ON_HMI_STATUS in the following example and casting the RPCNotificatio
n object to the correct type.

Map<FunctionID, OnRPCNotificationListener> onRPCNotificationListenerMap = new
HashMap<>();
onRPCNotificationListenerMap.put(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnHMIStatus onHMIStatus = (OnHMIStatus) notification;

if (onHMIStatus.getHmilLevel() == HMILevel. HMI_FULL &&
onHMIStatus.getFirstRun()){

// first time in HMI Full
}
}

i
builder.setRPCNotificationListeners(onRPCNotificationListenerMap);

You can also use addOnRPCNotificationListener when creating an SdIManagerListener
object. The following example shows how to set up the listener in the onStart() method

of an SdlIManagerListener object.

@Override
void 0 {
// HMI Status Listener
sdIManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnHMIStatus onHMIStatus = (OnHMIStatus) notification;
if (onHMIStatus.getWindowID() != null && onHMIStatus.getWindowID() !=
PredefinedWindows.DEFAULT_WINDOW.getValue()) {
return;
}
if (onHMIStatus.getHmilLevel() == HMILevel. HMI_FULL &&
onHMIStatus.getFirstRun()) {
// first time in HMI Full
}
}
i
}

HASH RESUMPTIONS

Set a hashID for your application that can be used over connection cycles (i.e. loss of
connection, ignition cycles, etc.).

builder.setResumeHash(hashiD);

DETERMINING SDL SUPPORT

You have the ability to determine a minimum SDL protocol and a minimum SDL RPC
version that your app supports. You can also check the connected vehicle type and
disconnect if the vehicle module is not supported. We recommend not setting these
values until your app is ready for production. The OEMs you support will help you

configure correct values during the application review process.

BLOCKING BY VERSION

If a head unit is blocked by protocol version, your app icon will never appear on the head
unit's screen. If you configure your app to block by RPC version, it will appear and then
quickly disappear. So while blocking with minimumProtocolVersion is preferable, mini

mumRPCVersion allows you more granular control over which RPCs will be present.

builder.setMinimumProtocolVersion(new Version(

builder.setMinimumRPCVersion(new Version(

BLOCKING BY VEHICLE TYPE

If you are blocking by vehicle type and you are connected over RPC v7.1+, your app icon
will never appear on the head unit's screen. If you are connected over RPC v7.0 or below, it
will appear and then quickly disappear. To implement this type of blocking, you need to set
up the SDLManagerListener . You will then implement logic in onSystemiInfoReceived
method and return true if you want to continue the connection and false if you wish to

disconnect.

SmartDeviceLink Router Service

The SdIRouterService will listen for a connection with an SDL enabled module. When a
connection happens, it will alert all SDL enabled apps that a connection has been

established and they should start their SDL services.

We must implement a local copy of the SdIRouterService into our project. The class
doesn't need any modification, it's just important that we include it. We will extend the co

m.smartdevicelink.transport.SdIRouterService in our class named SdlRouterService :

NOTE

Do not include an import for com.smartdevicelink.transport.SdIRouterServi
ce . Otherwise, we will get an error for 'SdIRouterService' is already defined i
n this compilation unit .

SdIRouterService
com.smartdevicelink.transport.SdIRouterService {

//Nothing to do here
}

9, MUST

The local extension of the com.smartdevicelink.transport.SdIRouterService
must be named SdIRouterService .

9, MUST

Make sure this local class SdIRouterService.java is in the same package of
SdIReceiver.java (described below)

If you created the service using the Android Studio template then the service should have
been added to your AndroidManifest.xml otherwise the service needs to be added in the
manifest. Because we want our service to be seen by other SDL enabled apps, we need to
set android:exported="true" . The system may issue a lint warning because of this, so we
can suppress that using tools:ignore="ExportedService" .

NOTE

Android API 29 adds a new attribute foregroundServiceType to specify the
type of foreground service.

Starting with Android API 29 please include android:foregroundServiceType
='connectedDevice' to the service tag for SdIRouterService in your

AndroidManifest.xml

© MUST

The SdIRouterService must be placed in a separate process with the name
com.smartdevicelink.router . If it is not in that process during its start up it

will stop itself.

Intent Filter

<intent-filter>

<action android:name=
</intent-filter>

The new versions of the SDL Android library rely on the com.smartdevicelink.router.servi
ce action to query SDL enabled apps that host router services. This allows the library to

determine which router service to start.

09, MUST

This intent-filter MUST be included.

https://developer.android.com/reference/android/R.attr#foregroundServiceType

Metadata

ROUTER SERVICE VERSION

<meta-data android:name=

android:value=

Adding the sdl_router_version metadata allows the library to know the version of the
router service that the app is using. This makes it simpler for the library to choose the

newest router service when multiple router services are available.

CUSTOM ROUTER SERVICE

<meta-data android:name= android:value=

NOTE

This is only for specific OEM applications, therefore normal developers do

not need to worry about this.

Some OEMs choose to implement custom router services. Setting the sdl_custom_rout
er metadata value to true means that the app is using something custom over the

default router service that is included in the SDL Android library. Do not include this meta-
data entry unless you know what you are doing.

The final router service entry in the AndroidManifest.xml file should look like the
following:

<service
android:name=
android:enabled=
android:exported=
android:foregroundServiceType=
android:process=

<intent-filter>
<action android:name=
</intent-filter>

<meta-data
android:name=
android:value=
</service>

SmartDevicelLink Broadcast Receiver

The Android implementation of the SdIManager relies heavily on the 0S's bluetooth and
USB intents. When the phone is connected to SDL and the router service has sent a
connection intent, the app needs to create an SdIManager , which will bind to the already
connected router service. As mentioned previously, the SdIManager cannot be re-used.
When a disconnect between the app and SDL occurs, the current SdiIManager must be
disposed of and a new one created.

The SDL Android library has a custom broadcast receiver named SdIBroadcastReceiver
that should be used as the base for your BroadcastReceiver . It is a child class of
Android's BroadcastReceiver so all normal flow and attributes will be available. Two
abstract methods will be automatically populate the class, we will fill them out soon.

Create a new SdIBroadcastReceiver and name it appropriately, for this guide we are

going to call it SdlReceiver :

SdIReceiver SdIBroadcastReceiver {

@Override
void (Context context, Intent intent) {

/...

}

@Override
Class<? SdIRouterService>

9, MUST

SdIBroadcastReceiver must call super if onReceive is overridden

@Override
void (Context context, Intent intent) {

.onReceive(context, intent);
//your code here

}

If you created the BroadcastReceiver using the Android Studio template then the service
should have been added to your AndroidManifest.xml otherwise the receiver needs to be
defined in the manifest. Regardless, the manifest needs to be edited so that the SdIBroad

castReceiver needs to respond to the following intents:

e android.bluetooth.device.action.ACL_CONNECTED
e sdl.router.startservice

https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html#ACTION_ACL_CONNECTED

<manifest xmlns:android=
package=

<application>
<receiver
android:name=
android:exported=
android:enabled=

<intent-filter>
<action android:name=

<action android:name=
</intent-filter>

</receiver>
</application>

</manifest>

NOTE
The intent sdl.router.startservice is a custom intent that will come from

the SdIRouterService to tell us that we have just connected to an SDL

enabled piece of hardware.

9, MUST

SdIBroadcastReceiver has to be exported, or it will not work correctly

Next, we want to make sure we supply our instance of the SdIBroadcastService with our

local copy of the SdIRouterService . We do this by simply returning the class object in the

method defineLocalSdIRouterClass :

SdIReceiver SdIBroadcastReceiver {
@Override
void (Context context, Intent intent) {

}

@Override
I SdIRouterService> 04
//Return a local copy of the SdIRouterService located in your project
return com.company.mySdlApplication.SdIRouterService.class;

}
}

STARTING SDLSERVICE

We want to start your SdlService when an SDL connection is made via the SdIRouterSe
rvice . We do this by taking action in the onSdlEnabled method. Depending on which API
levels your application supports, there are up to four ways that you may need to add logic

for starting your service:

Android UPSIDE_DOWN_CAKE and greater

PendingIntent pendingintent = (Pendinglntent)
intent.getParcelableExtra(TransportConstants.PENDING_INTENT_EXTRA);
if (pendinglntent != null) {
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.UPSIDE_DOWN_CAKE) {
if ({AndroidTools.hasForegroundServiceTypePermission(context)) {
DebugTool.loginfo(TAG,
+ context);
return;

}

}

try {
pendinglntent.send(context, 0, intent);

} catch (Pendingintent.CanceledException e) {
e.printStackTrace();

}
}

Android S and greater

if (intent.getParcelableExtra(TransportConstants.PENDING_INTENT_EXTRA) != null) {
PendinglIntent pendingintent = (Pendinglntent)
intent.getParcelableExtra(TransportConstants.PENDING_INTENT_EXTRA);

try {

pendinglntent.send(context, O, intent);

} catch (PendingIntent.CanceledException e) {
e.printStackTrace();

}

}

Android O and greater, but less than S

context.startForegroundService(intent);

All versions less than Android O

context.startService(intent);

The example below shows logic for starting your service that supports all Android

versions:

SdIReceiver SdIBroadcastReceiver {

@Override
void (Context context, Intent intent) {
DebugTool.loginfo(TAG,);
intent.setClass(context, SdiService.class);

// Starting with Android S SdlService needs to be started from a foreground
context.
// We will check the intent for a pendinglntent parcelable extra
// This pendingintent allows us to start the SdIService from the context of the
active router service which is in the foreground
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.S) {
Pendinglntent pendinglntent = (PendingIntent)
intent.getParcelableExtra(TransportConstants.PENDING_INTENT_EXTRA);
if (pendinglntent != null) {
if (Build.VERSION.SDK_INT >=
Build.VERSION_CODES.UPSIDE_DOWN_CAKE) {
if (lAndroidTools.hasForegroundServiceTypePermission(context)) {
DebugTool.loginfo(TAG,
+ context);
return;
}
}
try {
pendinglntent.send(context, 0, intent);
} catch (Pendinglintent.CanceledException e) {
e.printStackTrace();
}
}

} else {
// SdIService needs to be foregrounded in Android O and above
// This will prevent apps in the background from crashing when they try to
start SdlService
// Because Android O doesn't allow background apps to start background
services
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
context.startForegroundService(intent);
} else {
context.startService(intent);

@Override
Class<? SdIRouterService> 0{
//Return a local copy of the SdIRouterService located in your project
return com.company.mySdlApplication.SdIRouterService.class;

}
}

9, MUST

Apps must start their service in the foreground as of Android API 26, and as
of Android API 31, the service must be started from a foreground context.

Either you will need to ensure the app is in the foreground when you start the
SdIService or you will need to start the SdIService from a foreground context.

The intent received in onSdlEnabled will have a Pendingintent extra that
will allow you start the SdIService from the context of the active
SdIRouterService.

=1

NOTE

The onSdlEnabled method will be the main start point for our SDL
connection session. We define exactly what we want to happen when we find
out we are connected to SDL enabled hardware.

There is now an overridable method, getSdlServiceName inthe SdIBroadcastReceiver
class. This method is used by the SdIBroadcastReceiver to catch possible foreground
exceptions.

When the app tries to start the SdlService , if the service does not enter the foreground
within a set amount of time (this time is designated by the Android operating system) an

exception will be thrown and the app may encounter an ANR.

The SdIBroadcasterReceiver can catch this exception and prevent the ANR but will need
to know the name of the class that throws the exception.

By default the getSdIServiceName method will return "SdIService". If your app uses a
name other than "SdlService" you will need to override getSdiServiceName inthe SdIRe
ceiver class to return the correct name.

/%
@Override
String 04

return SDL_SERVICE_CLASS_NAME;

Main Activity

Now that the basic connection infrastructure is in place, we should add methods to start
the SdlService when our application starts. In onCreate() in your main activity, you need
to call a method that will check to see if there is currently an SDL connection made. If
there is one, the onSdlEnabled method will be called and we will follow the flow we
already set up:

MainActivity Activity {

@Override
void (Bundle savedinstanceState) {
.onCreate(savedinstanceState);

setContentView(R.layout.activity_main);

//If we are connected to a module we want to start our SdIService
SdIReceiver.queryForConnectedService(this);
}
}

Where to Go From Here

You should now be able to connect to a head unit or emulator. For more guidance on
connecting, see Connecting to an Infotainment System. To start building your app, learn

about designing your interface. Please also review the best practices for building an SDL
app.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/connecting-to-an-infotainment-system/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/main-screen-templates/
https://smartdevicelink.com/en/guides/sdl-overview-guides/best-practices/display-information/

Connecting to an Infotainment
System

In order to view your SDL app, you must connect your device to a head unit that supports
SDL Core. If you do not have access to a head unit, we recommend using the Manticore
web-based emulator for testing how your SDL app reacts to real-world vehicle events, on-

screen interactions and voice recognition.

You will have to configure different connection types based on whether you are connecting
to a head unit or an emulator. When connecting to a head unit, you must configure a Mult
iplex connection. Likewise, when connecting to an emulator,a TCP connection must be

configured.

Connecting to an Emulator

To connect to an emulator such as Manticore or a local Ubuntu SDL Core-based emulator
you must implement a TCP connection when configuring your SDL app.

Getting the IP Address and Port

GENERIC SDL CORE

To connect to a virtual machine running the Ubuntu SDL Core-based emulator, you will use
the IP address of the Ubuntu OS and 12345 for the port. You may have to enable port
forwarding on your virtual machine if you want to connect using a real device instead of a

simulated device.

MANTICORE

https://smartdevicelink.com/resources/manticore/
https://smartdevicelink.com/resources/manticore/
https://github.com/smartdevicelink/sdl_core
https://github.com/smartdevicelink/sdl_core

Once you launch an instance of Manticore, you will be given an IP address and port
number that you can use to configure your TCP connection.

Setting the IP Address and Port

// Set the SdIManager.Builder transport

builder.setTransportType(new TCPTransportConfig(<PORT>, <IP ADDRESS>, false));

Connecting to a Head Unit

To connect your device directly to a production vehicle head unit or Test Development Kit
(TDK), make sure to implement a Multiplex connection. Then connect the device using a

USB cord or, if the head unit supports it, Bluetooth.

// Set the SdIManager.Builder transport

builder.setTransportType(new MultiplexTransportConfig(context, <APP ID>));

Running the SDL App

Build and run the project in Android Studio, targeting the device or simulator that you want
to test your app with. Your app should compile and launch on your device of choosing. If
your connection configuration is setup correctly, you should see your SDL app icon appear
on the HMI screen:

SDL Example App

To open your app, click on your app's icon in the HMIL.

APPS SDL Example App

SmartDeviceLink (SDL) Example App

This is the main screen of your SDL app. If you get to this point, your SDL app is working.

Troubleshooting

If you are having issues with connecting to an emulator or head unit, please see our
troubleshooting tips in the Example Apps section of the guide.

Adding the Lock Screen

The lock screen is a vital part of your SDL app because it prevents the user from using the
phone while the vehicle is in motion. SDL takes care of the lock screen for you. If you
prefer your own look, but still want the recommended logic that SDL provides for free, you

can also set your own custom lock screen.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/example-apps/

Configure the Lock Screen Activity

You must declare the SDLLockScreenActivity in your manifest. To do so, simply add the

following to your app's AndroidManifest.xml if you have not already done so:

<activity

android:name=
android:launchMode=

9, MUST

This manifest entry must be added for the lock screen feature to work.

Using the Provided Lock Screen

If you have implemented the SdIManager and defined the SDLLockScreenActivity in
your manifest, you have a working default lockscreen configuration.

Locked for your safety

Customizing the Default Lock Screen

It is possible to customize the background color and app icon in the default provided
lockscreen. If you choose not to set your own app icon the library will use the SDL logo.

When customizing your lock screen please define a LockScreenConfig and set it using

the builder for your SdlManager .

LockScreenConfig lockScreenConfig = new LockScreenConfig();

builder.setLockScreenConfig(lockScreenConfig);

Locked for your safety

Custom Background Color

(); // For example,

getResources().getColor(R.color.black) or Color.parseColor("#000000");

Custom App Icon

lockScreenConfig.setApplcon(applconint); / For example, R.drawable.lockscreen

icon

Showing the OEM Logo

The default lock screen handles retrieving and setting the OEM logo from head units that

support this feature.

. b3

Locked for your safety

This feature can be disabled on the default lock screen by setting showDeviceLogo to
false.

lockScreenConfig.showDeviceLogo(false);

Creating a Custom Lock Screen

If you would like to use your own lock screen instead of the one provided by the library, but

still use the logic we provide, you can use a new initializer within LockScreenConfig .

lockScreenConfig.setCustomView(customViewInt);

Customizing the Lock Screen State

In SDL Android v4.10, a new parameter displayMode has been added to the LockScreen
Config to control the state of the lock screen and the older boolean parameters have
been deprecated.

The lock screen should never be shown. This
never should almost always mean that you will build

your own lock screen

The lock screen should only be shown when it

requiredOnl
J is required by the head unit

The lock screen should be shown when required

by the head unit or when the head unit says
optionalOrRequired that its optional, but not in other cases, such as

before the user has interacted with your app on

the head unit

The lock screen should always be shown after

always]
connection

Disabling the Lock Screen

Please note that a lock screen will be required by most OEMs. You can disable the lock
screen manager, but you will then be required to implement your own logic for showing
and hiding the lock screen. This is not recommended as the LockScreenConfig adheres
to most OEM lock screen requirements. However, if you must create a lock screen
manager from scratch, the library's lock screen manager can be disabled via the LockScre

enConfig as follows:

LockScreenConfig lockScreenConfig = new LockScreenConfig();

lockScreenConfig.setDisplayMode(LockScreenConfig.DISPLAY_MODE_NEVER);

Making the Lock Screen Always On

The lock screen manager is configured to dismiss the lock screen when it is safe to do
so. To always have the lock screen visible when the device is connected to the head unit,
simply update the lock screen configuration.

LockScreenConfig lockScreenConfig = new LockScreenConfig();

lockScreenConfig.setDisplayMode(LockScreenConfig.DISPLAY_MODE_ALWAYS);

Enabling User Lockscreen Dismissal (Passenger Mode)

Starting in RPC v6.0+ users may now have the ability to dismiss the lock screen by
swiping the lock screen down. Not all OEMs support this new feature. A dismissible lock
screen is enabled by default if the head unit enables the feature, but you can disable it
manually as well.

241 0 E ok

SEL

Swipe down to dismiss, acknowledging that you are
not the driver

To disable this feature, set LockScreenConfig s enableDismissGesture to false.

LockScreenConfig lockScreenConfig = new LockScreenConfig();

lockScreenConfig.enableDismissGesture(false);

Using Android Open Accessory
Protocol

Incorporating AOA into an SDL enabled app allows it to create and register an SDL session
over USB. This guide will assume the app has already integrated the SDL library as laid out
in the previous guides. AOA connections are sent through the SDLRouterService to

bypass an Android limitation of only one app being able to be used through the AOA intent.

Prerequisites:

¢ Installation guide
e SDK Configuration guide

e Integration Basics guide
We will add or make changes to:

e Android Manifest (of your app)
o SdiIService (optional)

Prerequisites

The Installation, SDK Configuration, and Integration Basics guides must be completed
before enabling the use of the AOA USB transport. The remainder of the guide will assume

all steps will be followed.

Android Manifest

To use the AOA protocol, you must specify so in your app's Manifest with:

<uses-feature android:name=

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/installation/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/sdk-configuration/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/integration-basics-java/

9, MUST

This feature will not work without including this line!

The SDL Android library houses a USBAccessoryAttachmentActivity that you need to
add between your Manifest's <application>...</application> tags:

<activity
android:name=
android:launchMode=
android:exported=true>
<intent-filter>
<action

android:name=
</intent-filter>

<meta-data
android:name=
android:resource=
</activity>

9, MUST

Android API 31 now requires any activity with an intent filter to explicitly set

the exported flag to true (exported=true).

NOTE

The accessory_filter.xml file is included with the SDL Android Library

Media Apps

Media applications do not register over AOA since by default there are no audio streaming
methods available.
To get media applications to register, when creating the connection you need to set flag

requiresAudioSupport to false:

MultiplexTransportConfig multiplexTransportConfig = new
MultiplexTransportConfig(getBaseContext(), APP_ID,

MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);
multiplexTransportConfig.setRequiresAudioSupport(false);

SmartDevicelLink Service

As long as the app doesn't require high bandwidth, it shouldn't matter which transport is

being connected. A multiplex transport should be used like the one that follows:

@Override
int (Intent intent, int flags, int startld) {

if (sdIManager == null) {
MultiplexTransportConfig transport = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);

SdIManagerListener listener = new SdiManagerListener() {
/s
%

/...

builder.setTransportType(transport);
sdIManager = builder.build();
sdIManager.start();

Using only USB / AOA

The new MultiplexingConfig allows for apps to be able to connect via Bluetooth and USB
as primary transports. If you want your app to only use USB / AOA, then you should

specifically only set that as the only allowed primary transport.

When defining your transport, also pass in a custom list that only contains the USB:

List<TransportType> multiplexPrimaryTransports = Arrays.asList(TransportType.USB);

MultiplexTransportConfig transport = new MultiplexTransportConfig(this, appld,
MultiplexTransportConfig.FLAG_MULTI_SECURITY_MED);

transport.setPrimaryTransports(multiplexPrimaryTransports);

Multiple Transports

Since the SdlRouterService now handles both bluetooth and AOA/USB connections, an
app will be connected to the transport that connects first if the app includes it in their
transport config. If a module supports secondary transports, the second transport to be
connected of bluetooth or USB will be available as well as potentially TCP. This means
even though the app might register over bluetooth, if USB or TCP are available those
transports will be available for high bandwidth services. For more information please see
the Multiple Transport Guide.

Multiple Transports (Protocol
v5.1+)

The multiple transports feature allows apps to carry their SDL session over multiple
transports. The first transport that the app connects with is referred to as the primary
transport and a transport connected at a later point is the secondary transport. For

example, apps can register over Bluetooth or USB as a primary transport, then connect

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/multiple-transports/

over WiFi when necessary (ex. to allow video/audio streaming) as a secondary transport.
This feature is supported on connections with protocol version 5.1+, which is supported
on SDL Android 4.7+ and SDL Core 5.0+.

Primary Transports

On head units that support multiple transports, the primary transport will be used for RPC
communication while the secondary transport will be used for high bandwidth services
such as streaming video data for navigation applications. If no high-bandwidth secondary
transport is present, the primary transport will be used for all needed services that the

transport supports.

Supporting specific primary transports

Whether your app supports both Bluetooth and/or USB connections is determined by what
you set as acceptable primary transports. By default, both USB and Bluetooth are
supported and should be kept unless there is a specific reason otherwise. If you list
multiple primary transports and one disconnects, if another included transport is available
the app will automatically attempt to connect and register to it.

List<TransportType> multiplexPrimaryTransports = Arrays.asList(TransportType.USB,
TransportType.BLUETOOTH);

MultiplexTransportConfig mtc = new MultiplexTransportConfig(this, APP_ID,
MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);
mtc.setPrimaryTransports(multiplexPrimaryTransports);

If you only want to use Bluetooth or USB, simply pass in a list with the one you want.

NOTE

For the best compatibility we suggest supporting both primary transports.

Requiring High Bandwidth

Certain app types will require a high bandwidth transport to be available, which could be
either primary or secondary transports. If this is the case, an app will only be registered if

a high bandwidth transport is either connected or available to connect.

If this is the case for your app you can set the setRequiresHighBandwidth flagto true :

MultiplexTransportConfig mtc = new MultiplexTransportConfig(this, APP_ID,
MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);

mtc.setRequiresHighBandwidth(true);

High bandwidth app with low bandwidth support

While some app's main integration requires high bandwidth, it is possible to support a low
bandwidth integration for better visibility. As an example, a navigation app might require
high bandwidth transport to stream their map view but could provide a low bandwidth
integration that displays turn-by-turn directions. Another simple low bandwidth integration
could simply be displaying a message that instructs the user to connect USB or WiFi to
enable the app. In this case the app should set the requires high bandwidth flag to false, as
it is by default.

MultiplexTransportConfig mtc = new MultiplexTransportConfig(this, APP_ID,
MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);

mtc.setRequiresHighBandwidth(false);

Secondary Transports

Secondary transports must be enabled by the module to which the app is connecting. In
addition to Bluetooth and USB (which are primary transports), TCP over WiFi is a

supported secondary transport.

Setting secondary transports that your app supports is similar to setting the primary

transports:

List<TransportType> multiplexPrimaryTransports = Arrays.asList(TransportType.USB,
TransportType.BLUETOOTH);

List<TransportType> multiplexSecondaryTransports =
Arrays.asList(TransportType.TCP, TransportType.USB, TransportType.BLUETOOTH);

MultiplexTransportConfig mtc = new MultiplexTransportConfig(this, APP_ID,
MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);
mtc.setPrimaryTransports(multiplexPrimaryTransports);
mtc.setSecondaryTransports(multiplexSecondaryTransports);

By default, all three transports are set as supported secondary transports.

Adapting to the Head Unit
Language

Since a head unit can support multiple languages, you may want to add support for more
than one language to your SDL app. The SDL library allows you to check which language is
currently used by the head unit. If desired, the app's hame and the app's text-to-speech
(TTS) name can be customized to reflect the head unit's current language. If your app
name is not part of the current lexicon, you should tell the VR system how a native
speaker will pronounce your app name by setting the TTS name using phonemes from
either the Microsoft SAPI phoneme set or from the LHPLUS phoneme set.

Setting the Default Language

The initial configuration of the SdlManager requires a default language when setting the
Builder . If not set, the SDL library uses American English (EN_US) as the default

https://en.wikipedia.org/wiki/Phoneme

language. The connection will fail if the head unit does not support the language setin
the Builder . The RegisterAppinterface response RPC will return INVALID_DATA as the

reason for rejecting the request.

What if My App Does Not Support the Head Unit
Language?

If your app does not support the current head unit language, you should decide on a default
language to use in your app. All text should be created using this default language.
Unfortunately, your VR commands will probably not work as the VR system will not

recognize your users' pronunciation.

Checking the Current Head Unit Language

After starting the SDLManager you can check the sdlManager.getRegisterApplinterfaceR
esponse() property for the head unit's language and hmiDisplayLanguage . The langu
age property gives you the current VR system language; hmiDisplayLanguage the

current display text language.

Language headUnitLanguage =
sdIManager.getRegisterApplinterfaceResponse().getLanguage();

Language headUnitHMILanguage =
sdIManager.getRegisterApplinterfaceResponse().getHmiDisplayLanguage();

Updating the SDL App Name

To customize the app name for the head unit's current language, implement the following
steps:

1. Set the default language inthe Builder .
2. Implement the sdlManagerListener 's managerShouldUpdateLifecycle(Language la
nguage, Language hmilLanguage) method. If the module's current HMI language or

voice recognition (VR) language is different from the app's default language, the

listener will be called with the module's current HMI and/or VR language. Returna L
ifecycleConfigurationUpdate with the new appName and/or ttsName .

@Override
LifecycleConfigurationUpdate (Language
language, Language hmiLanguage) {
boolean isNeedUpdate = false;
String appName = APP_NAME;
String ttsName = APP_NAME;
switch (language) {
case ES_MX:
isNeedUpdate = true;
ttsName = APP_NAME_ES;
break;
case FR_CA:
isNeedUpdate = true;
ttsName = APP_NAME_FR;
break;
default:
break;

}
switch (hmiLanguage) {

case ES_MX:
isNeedUpdate = true;
appName = APP_NAME_ES;
break;

case FR_CA:
isNeedUpdate = true;
appName = APP_NAME_FR;
break;

default:
break;

}

if (isNeedUpdate) {
Vector<TTSChunk> chunks = new Vector<>(Collections.singletonList(new
TTSChunk(ttsName, SpeechCapabilities. TEXT)));
return new LifecycleConfigurationUpdate(appName, null, chunks, null);
} else {
return null;
}
}

Understanding Permissions

While creating your SDL app, remember that just because your app is connected to a head
unit it does not mean that the app has permission to send the RPCs you want. If your app
does not have the required permissions, requests will be rejected. There are three

important things to remember in regards to permissions:

1. You may not be able to send a RPC when the SDL app is closed, in the background,
or obscured by an alert. Each RPC has a set of hmiLevels during which it can be
sent.

2. For some RPCs, like those that access vehicle data or make a phone call, you may
need special permissions from the OEM to use. This permission is granted when
you submit your app to the OEM for approval. Each OEM decides which RPCs it will
restrict access to, so it is up you to check if you are allowed to use the RPC with the
head unit.

3. Some head units may not support all RPCs.

HMI Levels

When your app is connected to the head unit you will receive notifications when the SDL
app's HMI status changes. Your app can be in one of four different hmiLevel s:

The user has not yet opened your app, or the
NONE yetop y pp
app has been killed.

The user has opened your app, but is currently
BACKGROUND
in another part of the head unit.

This level only applies to media and navigation
apps (i.e. apps with an appType of MEDIA
or NAVIGATION). The user has opened your

app, but is currently in another part of the head

LIMITED

unit. The app can receive button presses from

the play, seek, tune, and preset buttons.

FULL Your app is currently in focus on the screen.

Be careful with sending user interface related RPCs in the NONE and BACKGROUND
levels; some head units may reject RPCs sent in those states. We recommended that you
wait until your app's hmilLevel enters FULL to set up your app's Ul.

To get more detailed information about the state of your SDL app check the current
system context. The system context will let you know if a menu is open, a VR session is
in progress, an alert is showing, or if the main screen is unobstructed. You can find more
information about the system context below.

Monitoring the HMI Level

Monitoring HMI Status is possible through an OnHMIStatus notification that you can
subscribe to via the SdIManager.Builder 's setRPCNotificationListeners .

Map<FunctionID, OnRPCNotificationListener> onRPCNotificationListenerMap = new
HashMap<>();
onRPCNotificationListenerMap.put(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnHMIStatus onHMIStatus = (OnHMIStatus) notification;

if (onHMIStatus.getHmilLevel() == HMILevel. HMI_FULL &&
onHMIStatus.getFirstRun()){
// first time in HMI Full
}

}
i
builder.setRPCNotificationListeners(onRPCNotificationListenerMap);

Permission Manager

The PermissionManager allows developers to easily query whether specific RPCs are
allowed or not in the current state of the app. It also allows a listener to be added for
RPCs or their parameters so that if there are changes in their permissions, the app will be
notified.

Checking Current Permissions of a Single RPC

boolean allowed =
sdIManager.getPermissionManager().isRPCAllowed(FunctionIlD.SHOW);

// You can also check if a permission parameter is allowed

boolean parameterAllowed =
sdIManager.getPermissionManager().isPermissionParameterAllowed(FunctionID.GET
GetVehicleData.KEY_RPM);

Checking Current Permissions of a Group of RPCs

You can also retrieve the status of a group of RPCs. First, you can retrieve the permission

status of the group of RPCs as a whole: whether or not those RPCs are all allowed, all

disallowed, or some are allowed and some are disallowed. This will allow you to know, for
example, if a feature you need is allowed based on the status of all the RPCs needed for
the feature.

List<PermissionElement> permissionElements = new ArrayList<>();
permissionElements.add(new PermissionElement(FunctionID.SHOW, null));
permissionElements.add(new PermissionElement(FunctionID.GET_VEHICLE_DATA,
Arrays.asList(GetVehicleData.KEY_RPM, GetVehicleData.KEY_SPEED)));

int groupStatus =
sdIManager.getPermissionManager().getGroupStatusOfPermissions(permissionElem

switch (groupStatus) {

case PermissionManager.PERMISSION_GROUP_STATUS_ALLOWED:
// Every permission in the group is currently allowed
break;

case PermissionManager.PERMISSION_GROUP_STATUS_DISALLOWED:
// Every permission in the group is currently disallowed
break;

case PermissionManager.PERMISSION_GROUP_STATUS_MIXED:
// Some permissions in the group are allowed and some disallowed
break;

case PermissionManager.PERMISSION_GROUP_STATUS_UNKNOWN:
// The current status of the group is unknown
break;

The previous snippet will give a quick generic status for all permissions together.
However, if you want to get a more detailed result about the status of every permission or
parameter in the group, you can use the getStatusOfPermissions method.

List<PermissionElement> permissionElements = new ArrayList<>();
permissionElements.add(new PermissionElement(FunctionID.SHOW, null));
permissionElements.add(new PermissionElement(FunctionID.GET_VEHICLE_DATA,
Arrays.asList(GetVehicleData.KEY_RPM, GetVehicleData.KEY_AIRBAG_STATUS)));

Map<FunctionID, PermissionStatus> status =
sdIManager.getPermissionManager().getStatusOfPermissions(permissionElements);

if (status.get(FunctionID.GET_VEHICLE_DATA).getIsRPCAllowed()){

// GetVehicleData RPC is allowed
}

if
(status.get(FunctionID.GET_VEHICLE_DATA).getAllowedParameters().get(GetVehicle
{

// rpm parameter in GetVehicleData RPC is allowed

}

Observing Permissions

If desired, you can set a listener for a group of permissions. The listener will be called
when the permissions for the group changes. If you want to be notified when the
permission status of any of RPCs in the group change, set the groupType to PERMISSIO
N_GROUP_TYPE_ANY . If you only want to be notified when all of the RPCs in the group
are allowed, or go from allowed to some/all not allowed, set the groupType to PERMISS
ION_GROUP_TYPE_ALL_ALLOWED .

List<PermissionElement> permissionElements = new ArrayList<>();
permissionElements.add(new PermissionElement(FunctionID.SHOW, null));
permissionElements.add(new PermissionElement(FunctionID.GET_VEHICLE_DATA,
Arrays.asList(GetVehicleData.KEY_RPM, GetVehicleData.KEY_AIRBAG_STATUS)));

UUID listenerld =
sdIManager.getPermissionManager().addListener(permissionElements,
PermissionManager.PERMISSION_GROUP_TYPE_ANY, new
OnPermissionChangelListener() {
@Override

void (@NonNull Map<FunctionID, PermissionStatus>

updatedPermissionStatuses, @NonNull int updatedGroupStatus) {
if

(updatedPermissionStatuses.get(FunctionID.GET_VEHICLE_DATA).getlsRPCAllowed(

{
// GetVehicleData RPC is allowed

}

if
(updatedPermissionStatuses.get(FunctionID.GET_VEHICLE_DATA).getAllowedParam
{
// rpm parameter in GetVehicleData RPC is allowed
}
}
});

Stopping Observation of Permissions

When you set up the listener, you will get a unique id back. Use this id to unsubscribe to

the permissions at a later date.

sdIManager.getPermissionManager().removeListener(listenerld);

Additional HMI State Information

If you want more detail about the current state of your SDL app you can monitor the audio

playback state as well as get notifications when something blocks the main screen of

your app.

Audio Streaming State

The Audio Streaming State informs your app whether or not the driver will be able to hear
your app's audio. It will be either AUDIBLE , NOT_AUDIBLE , or ATTENUATED .

You will get these notifications when an alert pops up, when you start recording the in-car
audio, when voice recognition is active, when another app takes audio control, when a
navigation app is giving directions, etc.

Any audio you are playing will be audible to the

AUDIBLE
user
Some kind of audio mixing is occurring
between what you are playing, if anything, and
ATTENUATED Y playing U J
some system level audio or navigation
application audio.
Your streaming audio is not audible. This could
NOT_AUDIBLE

occur during a VRSESSION System Context.

sdIManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {

OnHMIStatus status = (OnHMIStatus) notification;
AudioStreamingState streamingState = status.getAudioStreamingState();

}
N

System Context

The System Context informs your app if there is potentially a blocking HMI component
while your app is still visible. An example of this would be if your application is open and
you display an alert. Your app will receive a system context of ALERT whileitis

presented on the screen, followed by MAIN when it is dismissed.

No user interaction is in progress that could be

MAIN
blocking your app's visibility.
VRSESSION Voice recognition is currently in progress.
MENU A menu interaction is currently in-progress.
The app's display HMI is being blocked by
HMI_OBSCURED either a system or other app's overlay (another
app's alert, for instance).
ALERT An alert that you have sent is currently visible.

sdIManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {

OnHMIStatus status = (OnHMIStatus) notification;
SystemContext systemContext = status.getSystemContext();
}
i

Checking Supported Features

New features are always being added to SDL, however, you or your users may be
connecting to modules that do not support the newest features. If your SDL app attempts

to use an unsupported feature your request will be ignored by the module.

When you are implementing a feature you should always assume that some modules your
users connect to will not support the feature or that the user may have disabled
permissions for this feature on their head unit. The best way to deal with unsupported
features is to check if the feature is available before attempting to use it and to handle

error responses.

Checking the System Capability Manager

The easiest way to check if a feature is supported is to query the library's System
Capability Manager. For more details on how get this information, please see the Adaptive

Interface Capabilities guide.

Handling RPC Error Responses

When you are trying to use a feature, you can watch for an error response to the RPC
request you sent to the module. If the response contains an error, you may be able to
check the result enum to determine if the feature is disabled. If the response that comes
back is of the type GenericResponse , the module doesn't understand your request.

request.setONRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (Iresponse.getSuccess()) {
// The request was not successful, check the response.getResultCode() and
response.getinfo() for more information.

} else {
// The request was successful
}
}

i
sdIManager.sendRPC(request);

Checking if a Feature is Supported by Version

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/adaptive-interface-capabilities/

When you connect successfully to a head unit, SDL will automatically negotiate the
maximum SDL RPC version supported by both the module and your SDL SDK. If the feature
you want to support was added in a version less than or equal to the version returned by
the head unit, then your head unit may support the feature. Remember that the module may
still disable the feature, or the user may still have disabled permissions for the feature in
some cases. It's best to check if the feature is supported through the System Capability
Manager first, but you may also check the negotiated version to know if the head unit was
built before the feature was designed.

Throughout these guides you may see headers that contain text like "RPC 6.0+". That
means that if the negotiated version is 6.0 or greater, then SDL supports the feature but

the above caveats may still apply.

SdIMsgVersion rpcSpecVersion =

sdIManager.getRegisterApplnterfaceResponse().getSdIMsgVersion();

Setting Security Level for
Multiplexing

When connecting to Core via Multiplex transport, your SDL app will use a Router Service
housed within your app or another SDL enabled app.

To help ensure the validity of the Router Service, you can select the security level explicitly
when you create your Multiplex transport in your app's SdlService:

int securityLevel = FLAG_MULTI_SECURITY_MED;

BaseTransportConfig transport = new MultiplexTransportConfig(context, appld,
securityLevel);

If you create the transport without specifying the security level, it will be set to FLAG_MUL
TI_SECURITY_MED by default.

Security Levels

FLAG_MULTI_SECURITY_OFF Multiplexing security turned off. All router

services are trusted.

Multiplexing security will be minimal. Only

trusted router services will be used. Trusted

router list will be obtained from server. List will
FLAG_MULTI_SECURITY_LOW

be refreshed every 20 days or during next

connection session if an SDL enabled app has

been installed or uninstalled.

Multiplexing security will be on at a normal

level. Only trusted router services will be used.

Trusted router list will be obtained from server.
FLAG_MULTI_SECURITY_MED

List will be refreshed every 7 days or during next

connection session if an SDL enabled app has

been installed or uninstalled.

Multiplexing security will be very strict. Only
trusted router services installed from trusted
app stores will be used. Trusted router list will

FLAG_MULTI_SECURITY_HIGH be obtained from server. List will be refreshed
every 7 days or during next connection session
if an SDL enabled app has been installed or

uninstalled.

Applying to the Trusted Router
Service Database

For an Android application to be added to the Trusted Router Service database, the
application will need to be registered on the SDL Developer Portal and certified by the

SDLC. For more information on registration, please see this guide.

Any Android application that is certified by the SDLC will be added to the Trusted Router
Service database; there are no additional steps required as it is part of the certification
process.

Please consult the Trusted Router Service FAQs if you have any additional questions.

Proguard Guidelines

SmartDeviceLink and its dependent libraries are open source and not intended to be
obfuscated. When using Proguard in an app that integrates SmartDeviceLink, it is
necessary to follow these guidelines.

Required Proguard Rules

Apps that are code shrinking a release build with Proguard typically have a section
resembling this snippet in their build.gradle :

android {
buildTypes {
release {
minifyEnabled true
proguardFiles (‘proguard-android.txt'),

'‘proguard-rules.pro'

https://d83tozu1c8tt6.cloudfront.net/media/resources/SDL_Developer_Portal_Registration_Guide.pdf
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/frequently-asked-questions/trusted-router-service/

Developers using Proguard in this manner should be sure to include the following lines in
their proguard-rules.pro file:

-keep .smartdevicelink.** { ¥, }
_keep ||V|O**{*.}

Video streaming apps must add the following line
-keep i com.smartdevicelink.streaming.video.SdIRemoteDisplay { *; }

NOTE

v

Failure to include these Proguard rules may result in a failed build or cause

issues during runtime.

Example Apps

This guide takes you through the steps needed to get the sample project, Hello Sdl,
connected a module.

To get the example app, download or clone the sdl_java_suite. The Hello Sdl Android app is
a package within the SDL Android library. Open the sdl_java_suite/android project using
"Open an existing Android Studio project" in Android Studio. We will use Android Studio
throughout this guide as it is the official IDE for Android development.

Build Flavors

Hello Sdl Android has been built with different build flavors that allow you to quickly
connect the app to an emulator or hardware. You can choose your flavor in the Build

https://github.com/smartdevicelink/sdl_java_suite
https://developer.android.com/studio/index.html

Variant menu. To open the menu, select Build > Select Build Variant. A small window will
appear on the bottom left of your IDE that allows you to choose a flavor.

There are many flavors to choose from but for now we will only be concerned with the
debug build variants:

o multi - Multiplexing - Bluetooth, USB, TCP (as secondary transport)
e multi_high_bandwidth - Multiplexing for apps that require a high bandwidth transport
e tcp - Transmission Control Protocol - Only used for debugging purposes

You will mainly be dealing with multi build variants if connecting to TDK, or tcp if

connecting to Manticore or another emulator.

Connecting to an Infotainment
System

Emulator

You can use a simulated or a real device to connect the example app to an emulator. To
connect the example app to Manticore or another emulator, make sure you are using tcp
Debug build flavor. You must update the IP address and port number in the Hello Sdl
Android project so it knows where your emulator is running. Please check the Connecting
to an Infotainment System guide for more detailed instructions on how to get the

emulator's IP address and port number.

1. In the main Java folder of Hello Sdl Android, open up SdIService.java .

2. At the top of this file, locate the variable declaration for DEV_MACHINE_IP_ADDRESS
and change it to your emulator's IP address. Set the TCP_PORT to your emulator's port
number.

String DEV_MACHINE_IP_ADDRESS = ; // Update

int TCP_PORT = 12345; // Update

https://smartdevicelink.com/resources/manticore/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/connecting-to-an-infotainment-system/

3. Make sure the emulator is running, then build and run the app on a real device or a
simulated device. The SDL app should show up on the HMI.

Head Unit

You need a real device to connect the example app to production or debug hardware. To
connect the example app via Bluetooth or USB, all you need to do to is select the multi_s
ec_offDebug build flavor and then run the app on an Android device. You can find more

information about the USB transport in the Using AOA Protocol guide.

If using the Bluetooth transport, make sure to first pair your Android phone to the hardware
before attempting to connect your SDL app.

Troubleshooting

If your app compiles and but does not show up on the HMI, there are a few things you
should check:

TCP Debug Transport

1. Make sure that you have changed the IP in SdIService.java to match the machine
running SDL Core. Being on the same network is also important.

2. If you are sure that the IP is correct and it is still not showing up, make sure the
Build Flavor that is running is tcpDebug.

3. If the two above don't work, make sure there is no firewall blocking the incoming
port 12345 on the machine or VM running SDL Core. Also, make sure your firewall
allows that outgoing port.

4. There are different network configurations needed for different virtualization
software (VirtualBox, VMware, etc). Make sure yours is set up correctly. Or use
Manticore.

Bluetooth

1. Make sure the build flavor multi_sec_offDebug is selected.
2. Ensure your phone is properly paired with the TDK

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/using-aoa-protocol/
https://smartdevicelink.com/resources/manticore/

3. Make sure Bluetooth is turned on - on both the TDK and your phone
4. Make sure apps are enabled on the TDK (in settings)

Additional Examples

For more examples go to the SmartDeviceLink Examples GitHub organization. Download
or clone any of these projects.

The examples available include the example weather app, example navigation app, and the

SDL Capabilities app.

The example weather app uses the OpenWeather API to implement a basic connected
weather app with SDL Ul. This example showcases multiple screens for different weather
forecast types, displaying hourly and daily weather in popup menus, and showing weather
alerts with SDL Alerts.

The example navigation app uses the MapBox API to create a basic video streaming map
app. The example navigation app can be used as a reference for developers who want to

create their own navigation app.

The SDL Capabilities app showcases various capabilities of SDL.

O NOTE

Some examples require obtaining API tokens from third parties for data and
services. For all of these examples follow the setup instructions as outlined
in their README.md.

Adaptive Interface Capabilities

https://github.com/SmartDeviceLink-Examples
https://github.com/SmartDeviceLink-Examples/example_weather_app_android
https://github.com/SmartDeviceLink-Examples/example_navigation_app_android
https://github.com/SmartDeviceLink-Examples/SDL-Capabilities-Android
https://github.com/SmartDeviceLink-Examples/example_weather_app_android
https://github.com/SmartDeviceLink-Examples/example_navigation_app_android
https://github.com/SmartDeviceLink-Examples/SDL-Capabilities-Android

Since each car manufacturer has different user interface style guidelines, the number of
lines of text, soft and hard buttons, and images supported will vary between different types
of head units. The system will send information to your app about its capabilities for
various user interface elements. You should use this information to create the user
interface of your SDL app.

You can access these properties on the sdlManager.getSystemCapabilityManager()
instance.

System Capability Manager
Properties

SystemCapabilityType.DISP
LAYS

SystemCapabilityType.HMI_
ZONE

SystemCapabilityType.SPEE
CH

SystemCapability Type.VOIC
E_RECOGNITION

SystemCapabilityType.AUDI
O_PASSTHROUGH

Specifies display related
information. The primary
display will be the first element
within the array. Windows
within that display are different
places that the app could be
displayed (such as the main
app window and various

widget windows).

Specifies HMI Zones in the
vehicle. There may be a HMI
available for back seat
passengers as well as front

seat passengers.

Contains information about
TTS capabilities on the SDL
platform. Platforms may
support text, SAPI phonemes,
LH PLUS phonemes, pre-

recorded speech, and silence.

Currently only available in the
SDL_iOS and SDL JavaScript

libraries

The voice-recognition
capabilities of the connected
SDL platform. The platform
may be able to recognize
spoken text in the current

language.

Describes the sampling rate,
bits per sample, and audio

types available.

RPC v6.0+

RPC v1.0+

RPC v1.0+

RPC v3.0+

RPC v1.0+

RPC v2.0+

SystemCapabilityType.PCM_
STREAMING

SystemCapabilityType.HMI

SystemCapabilityType. APP_
SERVICES

SystemCapability Type.NAVI
GATION

SystemCapabilityType.PHO
NE_CALL

SystemCapabilityType.VIDE
O_STREAMING

SystemCapabilityType.REM
OTE_CONTROL

SystemCapabilityType.SEAT
_LOCATION

Describes different audio type
configurations for the audio
PCM stream service, e.g.
{8kHz38-bit,PCM}.

Returns whether or not the app
can support built-in navigation

and phone calls.

Describes the capabilities of
app services including what
service types are supported and

the current state of services.

Describes the built-in vehicle

navigation system's APls.

Describes the built-in phone
calling capabilities of the IVI

system.

Describes the abilities of the
head unit to video stream

projection applications.

Describes the abilities of an
app to control built-in aspects

of the IVI system.

Describes the positioning of

each seat in a vehicle

Deprecated Properties

RPC v4.1+

RPC v3.0+

RPC v5.1+

RPC v4.5+

RPC v4.5+

RPC v4.5+

RPC v4.5+

RPC v6.0+

The following properties are deprecated on SDL Android 4.10 because as of RPC v6.0 they

are deprecated. However, these properties will still be filled with information. When

connected on RPC <6.0, the information will be exactly the same as what is returned in the

RegisterAppinterfaceResponse and SetDisplayLayoutResponse . However, if connected

on RPC >6.0, the information will be converted from the newer-style display information,

which means that some information will not be available.

SystemCapabilityType.DISPLAY

SystemCapabilityType.BUTTON

SystemCapabilityType.SOFTBUTTON

SystemCapabilityType.PRESET_BANK

Image Specifics

Information about the HMI display. This
includes information about available
templates, whether or not graphics are
supported, and a list of all text fields and the
max number of characters allowed in each text
field.

A list of available buttons and whether the
buttons support long, short and up-down

presses.

A list of available soft buttons and whether the
button support images. Also, information
about whether the button supports long, short

and up-down presses.

If returned, the platform supports custom on-

screen presets.

Images may be formatted as PNG, JPEG, or BMP. You can find which image types and

resolutions are supported using the system capability manager.

Since the head unit connection is often relatively slow (especially over Bluetooth), you

should pay attention to the size of your images to ensure that they are not larger than they

need to be. If an image is uploaded that is larger than the supported size, the image will be
scaled down by Core.

ImageField field =
sdIManager.getSystemCapabilityManager().getDefaultMainWindowCapability().getImz

ImageResolution resolution = field.getimageResolution();

EXAMPLE IMAGE SIZES

Below is a table with example image sizes. Check the SystemCapabilityManager for the
exact image sizes desired by the system you are connecting to. The connected system
should be able to scale down larger sizes, but if the image you are sending is much larger
than desired, then performance will be impacted.

softButtonim

age

choicelmage

choiceSecon

darylmage

vrHelpltem

menulcon

cmdlcon

Show

Createlnteractio

nChoiceSet

Createlnteractio

nChoiceSet

SetGlobalProper

ties

SetGlobalProper

ties

AddCommand

Image shown on
softbuttons on 70x70px

the base screen

Image shown in

the manual part

of an

performinteracti

70x70px

on either big

(ICON_ONLY) or

small

(LIST_ONLY)

Image shown on
the right side of
an entry in
(LIST_ONLY)

performinteracti

35x35px

on

Image shown
during voice 35x35px

interaction

Image shown on
the “More..” 35x35px

button

Image shown for
commands in

35x35px
the "More..."

menu

png, jpg, bmp

png, jpg, bmp

png, jpg, bmp

png, jpg, bmp

png, jpg, bmp

png, jpg, bmp

Image shown as

Icon in the
applcon SetApplcon 70x70px png, jpg, bmp
"Mobile Apps"

menu

Image shown on
graphic Show the base screen 185x185px png, jpg, bmp

as cover art

Querying and Subscribing System
Capabilities

Capabilities that can be updated can be queried and subscribed to using the SystemCapa
bilityManager .

Determining Support for System Capabilities

You should check if the head unit supports your desired capability before subscribing to or
updating the capability.

boolean navigationSupported =

sdIManager.getSystemCapabilityManager().isCapabilitySupported(SystemCapability T

Manual Querying for System Capabilities

Most head units provide features that your app can use: making and receiving phone calls,
an embedded navigation system, video and audio streaming, as well as supporting app
services. To pull information about this capability, use the SystemCapabilityManager to

guery the head unit for the desired capability. If a capability is unavailable, the query will
return null .

sdIManager.getSystemCapabilityManager().getCapability(SystemCapability Type. APP_
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
AppServicesCapabilities servicesCapabilities = (AppServicesCapabilities)
capability;
}

@Override
void (String info) {
// Handle Error

}
}, false);

Subscribing to System Capabilities (RPC v5.1+)

In addition to getting the current system capabilities, it is also possible to subscribe for
updates when the head unit capabilities change. Since this information must be queried

from Core you must implement the OnSystemCapabilityListener .

NOTE

If supportsSubscriptions == false , you can still subscribe to capabilities,
however, you must manually poll for new capability updates using getCapab
ility(type, listener, forceUpdate) with forceUpdate setto true . All
subscriptions will be automatically updated when that method returns a new

value.

The DISPLAYS type can be subscribed on all SDL versions.

CHECKING IF THE HEAD UNIT SUPPORTS SUBSCRIPTIONS

boolean supportsSubscriptions =

sdIManager.getSystemCapabilityManager().supportsSubscriptions();

SUBSCRIBE TO A CAPABILITY

sdIManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SystemC
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
AppServicesCapabilities servicesCapabilities = (AppServicesCapabilities)
capability;
}

@Override
void (String info) {
// Handle Error
}
b

Main Screen Templates

Each head unit manufacturer supports a set of user interface templates. These templates
determine the position and size of the text, images, and buttons on the screen. Once the
app has connected successfully with an SDL enabled head unit, a list of supported
templates is available on sdIManager.getSystemCapabilityManager().getDefaultMainWind
owCapability().getTemplatesAvailable() .

Change the Template

To change a template at any time, use ScreenManager.changeLayout() . This guide
requires SDL Java Suite version 5.0. If using an older version, use the SetDisplaylLayout
RPC.

NOTE

When changing the layout, you may get an error or failure if the update is
"superseded.” This isn't technically a failure, because changing the layout has
not yet been attempted. The layout or batched operation was cancelled
before it could be completed because another operation was requested. The
layout change will then be inserted into the future operation and completed
then.

TemplateConfiguration templateConfiguration = new
TemplateConfiguration().setTemplate(PredefinedLayout. GRAPHIC_WITH_TEXT.toStrir

sdIManager.getScreenManager().changelLayout(templateConfiguration, new
CompletionListener() {
@Override
void (boolean success) {

if (success) {
DebugTool.loginfo(TAG,

} else {
DebugTool.loginfo(TAG,

}
}
D

Template changes can also be batched with text and graphics updates:

sdIManager.getScreenManager().beginTransaction();
sdIManager.getScreenManager().setTextField1();
sdIManager.getScreenManager().changelLayout(templateConfiguration, new
CompletionListener() {
@Override
void (boolean success) {
// This listener will be ignored, and will use the CompletionListener sent in
commit.

}

});
sdIManager.getScreenManager().setPrimaryGraphic(sdlArtwork);
sdIManager.getScreenManager().commit(new CompletionListener() {
@Override
void (boolean success) {
if (success) {

DebugTool.loginfo(TAG,
}
}
)

When changing screen layouts and template data (for example, to show a weather hourly
data screen vs. a daily weather screen), it is recommended to encapsulate these updates
into a class or method. Doing so is a good way to keep SDL Ul changes organized. A fully-
formed example of this can be seen in the example weather app. Below is a generic

example.

Screen Change Example Code

This example code creates an interface that can be implemented by various "screens” of
your SDL app. This is a recommended design pattern so that you can separate your code
to only involve the data models you need. This is just a simple example and your own

needs may be different.

Screen Change Example Interface

All screens will need to have access to the ScreenManager object and a function to

display the screen. Therefore, it is recommended to create a generic interface for all

https://github.com/SmartDeviceLink-Examples/example_weather_app_android

screens to follow. For the example below, the CustomSDLScreen protocol requires an
initializer with the parameters SDLManager and a showScreen method.

CustomSdIScreen {
SdIManager sdIManager;

(SdIManager sdiManager) {
this.sdIManager = sdIManager;

void 04
// stub

Screen Change Example Implementations

The following example code shows a few implementations of the example screen
changing protocol. A good practice for screen classes is to keep screen data in a view
model. Doing so will add a layer of abstraction for exposing public properties and
commands to the screen.

For the example below, the HomeScreen class will inherit the CustomSDLScreen
interface and will have a property of type HomeDataViewModel . The screen manager will
change its text fields based on the view model's data. In addition, the home screen will

also create a navigation button to open the ButtonSDLScreen when pressed.

HomeSdIScreen CustomSdIScreen {
ButtonSdIScreen buttonScreen;
// An example of your data model that will feed data to the SDL screen's Ul
HomeDataViewModel homeDataViewModel;

(SdIManager sdIManager) {
(sdIManager);

buttonScreen = new ButtonSdlScreen(sdiManager);
homeDataViewModel = new HomeDataViewModel();

void 0{
// Batch Updates
sdIManager.getScreenManager().beginTransaction();
// Change template to Graphics With Text and Soft Buttons
TemplateConfiguration templateConfiguration = new
TemplateConfiguration().setTemplate(PredefinedLayout. GRAPHIC_WITH_TEXT.toStrir

sdIManager.getScreenManager().changeLayout(templateConfiguration, new
CompletionListener() {
@Override
void (boolean success) {}

});

// Assign text fields to view model data
sdIManager.getScreenManager().setTextField1(homeDataViewModel.getText1());
sdIManager.getScreenManager().setTextField2(homeDataViewModel.getText2());
sdIManager.getScreenManager().setTextField3(homeDataViewModel.getText3());

sdIManager.getScreenManager().setTextField4(homeDataViewModel.getText4());
// Create and assign a button to navigate to the ButtonSdIScreen
SoftButtonState textState = new SoftButtonState(
, null);

SoftButtonObject navigationButton = new SoftButtonObject(
Collections.singletonList(textState), textState.getName(), new
SoftButtonObject.OnEventListener() {

@Override
void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
buttonScreen.showScreen();

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {

}
D

sdIManager.getScreenManager().setSoftButtonObjects(Collections.singletonList(navi

sdIManager.getScreenManager().commit(new CompletionListener() {
@Override

void (boolean success) {}

The ButtonSDLScreen follows the same patterns as the HomeSDLScreen but has
minor implementation differences. The screen's view model ButtonDataViewModel
contains properties unique to the ButtonSDLScreen such as text fields and an array of
soft button objects. It also changes the template configuration to tiles only.

ButtonSdIScreen CustomSdIScreen {
ButtonDataViewModel buttonDataViewModel;

(SdIManager sdIManager) {
(sdIManager);

buttonDataViewModel = new ButtonDataViewModel();
}

void 0«
sdIManager.getScreenManager().beginTransaction();
TemplateConfiguration templateConfiguration = new

TemplateConfiguration().setTemplate(PredefinedLayout. TILES_ONLY.toString());
sdIManager.getScreenManager().changelLayout(templateConfiguration, new
CompletionListener() {
@Override

void (boolean success) {}
i

sdIManager.getScreenManager().setSoftButtonObjects(buttonDataViewModel.getButt

sdIManager.getScreenManager().commit(new CompletionListener() {
@Override

void (boolean success) {}

Available Templates

There are fifteen standard templates to choose from, however some head units may only
support a subset of these templates. The following examples show how templates will
appear on the Generic HMI and Ford's SYNC® 3 HMI.

MEDIA

Odometer Data: 30 km

SmartDevicelLink (SDL)

MEDIA (WITH A PROGRESS BAR)

https://github.com/smartdevicelink/generic_hmi
https://developer.ford.com/

Livio Music

John Prine

Linda Goes to Mars

NON-MEDIA

APPS SDL Example App

SmartDeviceLink (SDL) Example App

GRAPHIC WITH TEXT

SDL Example App

SmartDevicelLink (SDL)
Example App

Odometer Data: 30 km

App — SDL — Car

TEXT WITH GRAPHIC

SDL Example App

SmartDevicelink (SDL)

Example App

Odometer Data: 30 km

App — SDL — Car

TILES ONLY

SDL Example App

GRAPHIC WITH TILES

2:968 10°

TILES WITH GRAPHIC

GRAPHIC WITH TEXT AND SOFT BUTTONS

TEXT AND SOFT BUTTONS WITH GRAPHIC

3:04 10°

700N

A

Audio Climate Phone Nav

GRAPHIC WITH TEXT BUTTONS

SDL Example App

DOUBLE GRAPHIC WITH SOFT BUTTONS

SDL Example App

TEXT BUTTONS WITH GRAPHIC

SDL Example App

TEXT BUTTONS ONLY

SDL Example App

LARGE GRAPHIC WITH SOFT BUTTONS

SDL Example App

LARGE GRAPHIC ONLY

SDL Example App

Template Text

You can easily display text, images, and buttons using the ScreenManager . To update the
Ul, simply give the manager your new data and (optionally) sandwich the update between
the manager's beginTransaction() and commit() methods.

Text Fields

The text displayed in a single-line display, or in

textField1

the upper display line of a multi-line display

The text displayed on the second display line of
textField2

a multi-line display

The text displayed on the third display line of a
textField3

multi-line display

The text displayed on the bottom display line of
textField4

a multi-line display

The text displayed in the in the track field; this
mediaTrackTextField
field is only valid for media applications

The text justification for the text fields; the text
textAlignment
alignment can be left, center, or right

textField1Type The type of data provided in textField1
textField2Type The type of data provided in textField2
textField3Type The type of data provided in textField3
textField4Type The type of data provided in textField4
title The title of the displayed template

Showing Text
T

sdIManager.getScreenManager().beginTransaction();

sdIManager.getScreenManager().setTextField1();

sdIManager.getScreenManager().setTextField2();

sdIManager.getScreenManager().commit(new CompletionListener() {
@Override

void (boolean success) {
DebugTool.loginfo(TAG, + success);
}
)

Removing Text

To remove text from the screen simply set the screen manager property to null .

sdIManager.getScreenManager().setTextField1(null);

sdIManager.getScreenManager().setTextField2(null);

Template Images

You can easily display text, images, and buttons using the ScreenManager . To update the
Ul, simply give the manager your new data and (optionally) sandwich the update between
the manager's beginTransaction() and commit() methods.

Image Fields

) - The primary image in a template that supports
primaryGraphic
images

The second image in a template that supports

secondaryGraphic
multiple images

Showing Images

Creating an SDLArtwork

Create an SdlArtwork object which can be manually uploaded or set into the ScreenMa
nager and automatically uploaded. An SdlArtwork includes information about whether

the image should be persisted between vehicle startups, whether the image is a template
image and should be re-colored, and more.

SdlArtwork sdlArtwork = new SdlArtwork(, FileType.GRAPHIC_PNG,

R.resourcelD, true);

Setting Primary Graphic

sdIManager.getScreenManager().beginTransaction();

sdIManager.getScreenManager().setPrimaryGraphic(sdlArtwork);

sdIManager.getScreenManager().commit(new CompletionListener() {
@Override

void (boolean success) {
DebugTool.loginfo(TAG, + success);

}
D

Removing Images

To remove an image from the screen you just need to set the screen manager property to

null .

sdIManager.getScreenManager().setPrimaryGraphic(null);

Overwriting Images

When a file is to be uploaded to the module, the library checks if a file with the same name
has already been uploaded to module and skips the upload if it can. For cases where an
image by the same name needs to be re-uploaded, the SdlArtwork / SdlIFile 's overwrit
e property should be used. Setting overwrite to true before passingthe imagetoa Sc
reenManager method such as setPrimaryGraphic() and setSecondaryGraphic() will
force the image to be re-uploaded. This includes methods such as preloadChoices()

where the arguments passed in contain images.

4 NOTE
Please note that many production modules on the road do not refresh the
HMI with the new image if the file name has not changed. If you want the
image to refresh on the screen immediately, we suggest using two image
names and toggling back and forth between the names each time you update

the image.

This issue may also extend to menus, alerts, and other Ul features even if
they're not on-screen at the time. Because of these issues, we do not
recommend that you try to overwrite an image. Instead, you can delete an
image file using the SdIFileManager and re-upload it once the deletion

completes, or you may use a different file name.

Templating Images (RPC v5.0+)

Templated images are tinted by Core so the image is visible regardless of whether your
user has set the head unit to day or night mode. For example, if a head unit is in night
mode with a dark theme (see Customizing the Template section for more details on how
to customize theme colors), then your templated images will be displayed as white. In the
day theme, the image will automatically change to black.

Soft buttons, menu icons, and primary / secondary graphics can all be templated. Images
that you wish to template must be PNGs with a transparent background and only one color
for the icon. Therefore, templating is only useful for things like icons and not for images
that must be rendered in a specific color.

Templated Images Example

In the screenshots below, the shuffle and repeat icons have been templated. In night mode,
the icons are tinted white and in day mode the icons are tinted black.

NIGHT MODE

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/customizing-look-and-functionality/customizing-the-template/

Livio Music

John Prine

Linda Goes to Mars

DAY MODE

APPS Livio Music

k3

JHN PRINE

John Prine

Linda Goes to Mars

00:01:59 / 00:03:06

SdlArtwork image = new SdIArtwork(, FileType.GRAPHIC_PNG,

image, true);
image.setTemplatelmage(true);

Static Icons

Static icons are pre-existing images on the remote system that you may reference and use
in your own application. Each OEM will design their own custom static icons but you can
get an overview of the available icons from the icons designed for the open source
Generic HMI. Static icons are fully supported by the screen manager via an SdlArtwork
initializer. Static icons can be used in primary and secondary graphic fields, soft button

image fields, and menu icon fields.

https://smartdevicelink.com/en/guides/sdl-overview-guides/user-interface/static-icons/

SdlArtwork staticlconArt = new SdlArtwork(StaticlconName.ALBUM);

Template Custom Buttons

You can easily create and update custom buttons (called Soft Buttons in SDL) using the S
creenManager . To update the Ul, simply give the manager your new data and (optionally)
sandwich the update between the manager's beginTransaction() and commit()

methods.

Soft Button Fields

An array of buttons. Each template supports a
softButtonObjects
different number of soft buttons

Creating Soft Buttons

To create a soft button using the ScreenManager , you only need to create a custom
name for the button and provide the text for the button's label and/or an image for the
button's icon. If your button cycles between different states (e.g. a button used to set the
repeat state of a song playlist can have three states: repeat-off, repeat-one, and repeat-all),

you can create all the states on initialization.

There are three different ways to create a soft button: with only text, with only an image, or
with both text and an image. If creating a button with an image, we recommend that you

template the image so its color works well with both the day and night modes of the head
unit. For more information on templating images please see the Template Images guide.

Text Only Soft Buttons

APPS SDL Example App

SmartDevicelLink (SDL) Swift Example App

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/template-images/

SoftButtonState textState1 = new SoftButtonState(

, null);
SoftButtonState textState2 = new SoftButtonState(,

, null);
List<SoftButtonState> stateList1 = Arrays.asList(textState1, textState2);
SoftButtonObject softButtonObject1 = new SoftButtonObject(
stateList1, textState1.getName(), new SoftButtonObject.OnEventListener() {

@Override
void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
softButtonObject.transitionToNextState();

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
}
3

SoftButtonState textState3 = new SoftButtonState(
, null);
SoftButtonObject softButtonObject2 = new SoftButtonObject(
Collections.singletonList(textState3), textState1.getName(), new
SoftButtonObject.OnEventListener() {
@Override
void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
}
3

sdIManager.getScreenManager().beginTransaction();
sdIManager.getScreenManager().setSoftButtonObjects(Arrays.asList(softButtonObjec
softButtonObject?2));
sdIManager.getScreenManager().commit(new CompletionListener() {

@Override

void (boolean success) {
DebugTool.loginfo(TAG, + success);

}

});

Image Only Soft Buttons

You can use the SystemCapabilityManager to check if the HMI supports soft buttons
with images. If you send image-only buttons to a HMI that does not support images, then
the library will not send the buttons as they will be rejected by the head unit. If all your soft
buttons have text in addition to images, the library will send the text-only buttons if the

head unit does not support images.

APPS SDL Example App

SmartDevicelLink (SDL) Swift Example App

List<SoftButtonCapabilities> softButtonCapabilitiesList =
sdIManager.getSystemCapabilityManager().getDefaultMainWindowCapability().getSo1

boolean imageSupported = (IsoftButtonCapabilitiesList.isEmpty()) ?
softButtonCapabilitiesList.get(0).getimageSupported() : false;

Once you know that the HMI supports images in soft buttons you can create and send the
image-only soft buttons.

SoftButtonState imageState1 = new SoftButtonState(
sdlArtwork1);
SoftButtonState imageState2 = new SoftButtonState(
sdlArtwork?2);
SoftButtonObject softButtonObject1 = new SoftButtonObject(
Arrays.asList(imageState1, imageState2), imageState1.getName(), new
SoftButtonObject.OnEventListener() {

@Override

void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
softButtonObject.transitionToNextState();

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
}
3

SoftButtonState imageState3 = new SoftButtonState(
sdlArtwork3);
SoftButtonObject softButtonObject2 = new SoftButtonObject(
Collections.singletonList(imageState3), imageState3.getName(), new
SoftButtonObject.OnEventListener() {

@Override

void (SoftButtonObject softButtonObject, OnButtonPress

onButtonPress) {

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
}
3

sdIManager.getScreenManager().beginTransaction();
sdIManager.getScreenManager().setSoftButtonObjects(Arrays.asList(softButtonObjec
softButtonObject?2));
sdIManager.getScreenManager().commit(new CompletionListener() {

@Override

void (boolean success) {
DebugTool.loginfo(TAG, + success);

}

});

Image and Text Soft Buttons

APPS SDL Example App

SmartDevicelink (SDL) Swift Example App

SoftButtonState textAndimageState1 = new SoftButtonState(
, sdlArtwork1);
SoftButtonState textAndimageState2 = new SoftButtonState(
, sdlArtwork?2);
SoftButtonObject softButtonObject1 = new SoftButtonObject(
Arrays.asList(textAndimageState1, textAndimageState?2),
textAndimageState1.getName(), new SoftButtonObject.OnEventListener() {
@Override
void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
softButtonObject.transitionToNextState();

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
}
3

SoftButtonState textAndimageState3 = new SoftButtonState(
, sdlArtwork3);
SoftButtonObject softButtonObJeth = new SoftButtonObject(
Collections.singletonList(textAndimageState3), textAndimageState3.getName(), new
SoftButtonObject.OnEventListener() {
@Override
void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
}
3

sdIManager.getScreenManager().beginTransaction();
sdIManager.getScreenManager().setSoftButtonObjects(Arrays.asList(softButtonObjec
softButtonObject?2));
sdIManager.getScreenManager().commit(new CompletionListener() {

@Override

void (boolean success) {
DebugTool.loginfo(TAG, + success);

}

});

Highlighting a Soft Button

When a button is highlighted its background color will change to indicate that it has been
selected.

HIGHLIGHT ON

12:01 10°

HIGHLIGHT OFF

12:03 10°

Off
J N A thy
Audio Climate Phone Nav Settings

SoftButtonState softButtonState1 = new SoftButtonState(

, sdlArtwork);
softButtonState1.setHighlighted(true);
SoftButtonState softButtonState2 = new SoftButtonState(

, SdIArtwork);
softButtonState2.setHighlighted(false);
SoftButtonObject softButtonObject = new SoftButtonObject(
Arrays.asList(softButtonState1, softButtonState2), softButtonState1. getName() new
SoftButtonObject.OnEventListener() {

@Override

void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
softButtonObject.transitionToNextState();

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {

}
D

Updating Soft Button States

When the soft button state needs to be updated, simply tell the SoftButtonObject to
transition to the next state. If your button states do not cycle in a predictable order, you
can also tell the soft button which state to transition to by passing the stateName of the

new soft button state.

SoftButtonState state1 = new SoftButtonState(
, sdlArtwork);

SoftButtonState state2 = new SoftButtonState(
, sdlArtwork);

SoftButtonObject softButtonObject = new SoftButtonObject(
Arrays.asList(state1, state2), state1.getName(), new
SoftButtonObject.OnEventListener() {
@Override
void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {

}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
}
});

sdIManager.getScreenManager().beginTransaction();
sdIManager.getScreenManager().setSoftButtonObjects(Collections.singletonList(sofi

sdIManager.getScreenManager().commit(new CompletionListener() {
@Override
void (boolean success) {
DebugTool.loginfo(TAG, + success);
}
i

// Transition to a new state

SoftButtonObject retrievedSoftButtonObject =
sdIManager.getScreenManager().getSoftButtonObjectByName(
retrievedSoftButtonObject.transitionToNextState();

Deleting Soft Buttons

To delete soft buttons, simply pass the screen manager a new array of soft buttons. To
delete all soft buttons, simply pass the screen manager an empty array.

sdIManager.getScreenManager().setSoftButtonObjects(Collections.EMPTY_LIST);

Using RPCs

You can also send soft buttons manually using the Show RPC. Note that if you do so,
you must not mix the ScreenManager soft buttons and manually sending the Show
RPC. Additionally, the ScreenManager takes soft button ids 0-10000. Ensure that if you

use custom RPCs, that the soft button ids you use are outside of this range.

Template Subscription Buttons

This guide shows you how to subscribe and react to "subscription” buttons. Subscription
buttons are used to detect when the user has interacted with buttons located in the car's
center console or steering wheel. A subscription button may also show up as part of your
template, however, the text and/or image used in the button is determined by the template
and is (usually) not customizable.

In the screenshot below, the pause, seek left and seek right icons are subscription
buttons. Once subscribed to, for example, the seek left button, you will be notified when
the user selects the seek left button on the HMI or when they select the seek left button

on the car's center console and/or steering wheel.

]

APPS Livio Music .

John Prine

Linda Goes to Mars

German Afternoons

00:01:59 / 00:03:086

Types of Subscription Buttons

There are three general types of subscriptions buttons: audio related buttons only used for
media apps, navigation related buttons only used for navigation apps, and general buttons,
like preset buttons and the OK button, that can be used with all apps. Please note that if
your app type is not MEDIA or NAVIGATION , your attempt to subscribe to media-only
or navigation-only buttons will be rejected.

Ok

Preset 0-9

Search

Play / Pause

Seek left

Seek right

Tune up

Tune down

Center Location

Zoom In

Zoom Out

Pan Up

Pan Up-Right

Pan Right

Pan Down-Right

Pan Down

All

All

All

Media only

Media only

Media only

Media only

Media only

Navigation only

Navigation only

Navigation only

Navigation only

Navigation only

Navigation only

Navigation only

Navigation only

v1.0+

v1.0+

v1.0+

v5.0+

v1.0+

v1.0+

v1.0+

v1.0+

v6.0+

v6.0+

v6.0+

v6.0+

v6.0+

v6.0+

v6.0+

v6.0+

Pan Down-Left Navigation only v6.0+

Pan Left Navigation only v6.0+
Pan Up-Left Navigation only v6.0+
Toggle Tilt Navigation only v6.0+
Rotate Clockwise Navigation only v6.0+
Rotate Counter-Clockwise Navigation only v6.0+
Toggle Heading Navigation only v6.0+

Subscribing to Subscription Buttons

You can easily subscribe to subscription buttons using the ScreenManager . Simply tell
the manager which button to subscribe and you will be notified when the user selects the
button.

Subscribe with a Listener

Once you have subscribed to the button, the listener will be called when the button has
been selected. If there is an error subscribing to the button the error message will be
returned in the error parameter.

OnButtonListener playPauseButtonListener = new OnButtonListener() {
@Override
void (ButtonName buttonName, OnButtonPress buttonPress) {

}

@Override
void (ButtonName buttonName, OnButtonEvent buttonEvent) {

}

@Override
void (String info) {
%

sdIManager.getScreenManager().addButtonListener(ButtonName.PLAY_PAUSE,
playPauseButtonListener);

Unsubscribing from Subscription
Buttons

To unsubscribe to a subscription button, simply tell the ScreenManager which button
name and listener object to unsubscribe.

sdIManager.getScreenManager().removeButtonListener(ButtonName.PLAY_PAUSE,

playPauseButtonListener);

Media Buttons

The play/pause, seek left, seek right, tune up, and tune down subscribe buttons can only be
used if the app type is MEDIA . Depending on the OEM, the subscribed button could show

up as an on-screen button in the MEDIA template, work as a physical button on the car

console or steering wheel, or both. For example, Ford's SYNC® 3 HMI will add the
play/pause, seek right, and seek left soft buttons to the media template when you
subscribe to those buttons. However, those buttons will also trigger when the user uses

the seek left / seek right buttons on the steering wheel.

If desired, you can change the style of the play/pause button image between a play, stop,
or pause icon by updating the audio streaming indicator, and you can also set the style of
the next/previous buttons between a track or time seek style. See the Media Clock guide

for more information.

O NOTE

Before library v.4.7 and RPC v5.0, Ok and PlayPause were combined into
Ok . Subscribingto Ok will, in v4.7+, also subscribe you to PlayPause .
This means that for the time being, you should not simultaneously subscribe
to Ok and PlayPause . In a future major version, this will change. For now,
only subscribe to either Ok or PlayPause and the library will execute the

right action based on the connected head unit.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/media-clock/

sdIManager.getScreenManager().addButtonListener(ButtonName.PLAY_PAUSE, new
OnButtonListener() {
@Override
void (ButtonName buttonName, OnButtonPress buttonPress) {
switch (buttonPress.getButtonPressMode()) {
case SHORT:
// The user short pressed the button
case LONG:
// The user long pressed the button

}
}

@Override
void (ButtonName buttonName, OnButtonEvent buttonEvent) { }

@Override
void (String info) {
// There was an error subscribing to the button
}
});

Preset Buttons

All app types can subscribe to preset buttons. Depending on the OEM, the preset buttons
may be added to the template when subscription occurs. Preset buttons can also be
physical buttons on the console that will notify the subscriber when selected. An OEM
may support only template buttons or only hard buttons or they may support both
template and hard buttons. The screenshot below shows how the Ford SYNC® 3 HMI
displays the preset buttons on the HMI.

4:35 10°

Preset 2

Checking if Preset Buttons are Supported

You can check if a HMI supports subscribing to preset buttons, and if so, how many preset
buttons are supported, by checking the system capability manager.

Integer numOfCustomPresetsAvailable =

sdIManager.getSystemCapabilityManager().getDefaultMainWindowCapability().getNui

Subscribing to Preset Buttons

OnButtonListener onButtonListener = new OnButtonListener() {
@Override
void (ButtonName buttonName, OnButtonPress buttonPress) {
switch (buttonName) {
case PRESET_1:
// The user short or long pressed the preset 1 button
break;
case PRESET_2:
// The user short or long pressed the preset 2 button
break;
}
}

@Override
void (ButtonName buttonName, OnButtonEvent buttonEvent) { }

@Override
void (String info) {
// There was an error subscribing to the button

%

sdIManager.getScreenManager().addButtonListener(ButtonName.PRESET_1,
onButtonListener);
sdIManager.getScreenManager().addButtonListener(ButtonName.PRESET_2,
onButtonListener);

Navigation Buttons

Head units supporting RPC v6.0+ may support subscription buttons that allow your user to
drag and scale the map using hard buttons located on car's center console or steering
wheel. Subscriptions to navigation buttons will only succeed if your app's type is NAVIG
ATION . If subscribing to these buttons succeeds, you can remove any buttons of your
own from your map screen. If subscribing to these buttons fails, you can display buttons

of your own on your map screen.

Subscribing to Navigation Buttons

sdIManager.getScreenManager().addButtonListener(ButtonName.NAV_PAN_UP, new
OnButtonListener() {
@Override
void (ButtonName buttonName, OnButtonPress buttonPress) {
switch (buttonPress.getButtonPressMode()) {
case SHORT:
// The user short pressed the button
case LONG:
// The user long pressed the button

}
}

@Override
void (ButtonName buttonName, OnButtonEvent buttonEvent) { }

@Override
void (String info) {
// There was an error subscribing to the button
}
i

Main Menu

You have two different options when creating menus. One is to simply add items to the
default menu available in every template. The other is to create a custom menu that pops
up when needed. You can find more information about these popups in the Popup Menus
section. This guide will cover using the default menu / menu button.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/popup-menus/

O NOTE

Every template has a main menu button. The position of this button varies
between templates and cannot be removed from the template. Some OEMs
may format certain templates to not display the main menu button if you

have no menu items (such as the navigation map view).

Setting the Menu Layout (RPC v6.0+)

On some newer head units, you may have the option to display menu items as a grid of
tiles instead of the default list layout. To determine if the head unit supports the tiles
layout, check the SystemCapabilityManager 's getDefaultMainWindowCapability().getMe
nuLayoutsAvailable() property after successfully connecting to the head unit. To set the
menu layout using the screen manager, you will need to set the ScreenManager.menuCon

figuration property.

LIST MENU LAYOUT

SDL Example App &

Acceleration Pedal Position

Airbag Status

Belt Status

Body Information

Cluster Mode Status

GRID MENU LAYOUT

SDL Example App ©

% “%

Acceleration Pedal

Position Airbag Status

% %

Cluster Mode Status

%

Belt Status

%

Device Status

Body Information

MenuLayout mainMenulLayout = MenulLayout.TILES;

MenuLayout submenulLayout = MenulLayout.LIST;

MenuConfiguration menuConfiguration = new MenuConfiguration(mainMenuLayout,
submenuLayout);
sdIManager.getScreenManager().setMenuConfiguration(menuConfiguration);

Adding Menu Items

The best way to create and update your menu is to the use the Screen Manager API. The
screen manager contains two menu related properties: menu , and voiceCommands .
Setting an array of MenuCell s into the menu property will automatically set and update
your menu and submenus, while setting an array of VoiceCommand s into the voiceCom

mands property allows you to use "hidden" menu items that only contain voice

recognition data. The user can then use the IVI system's voice engine to activate this
command even though it will not be displayed within the main menu.

To find out more information on how to create voiceCommands see the related

documentation.

SDL Example App =

Speak App Name

@ Cet All Vehicle Data

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/speech-and-audio/setting-up-voice-commands/

NOTE

Head units supporting RPC v7.1+ may support displaying secondaryText , t
ertiaryText , and secondaryArtwork . This gives the user a richer experience
by displaying more data. Attempting to set this data on head units that do
not support RPC 7.1+ will result in that data not being displayed to the user.

To determine if the head unit supports displaying these fields, you can check
the SystemCapabilityManager 's getDefaultMainWindowCapability().getTex
tFields() / getDefaultMainWindowCapability().getimageFields() properties
after successfully connecting to the head unit. Then check those arrays for

objects with the related text / image field names.

// Create the menu cell
MenucCell cell = new MenuCell(, , , null, null,
Collections.singletonList(), new MenuSelectionListener() {
@Override
void (TriggerSource trigger) {

// Menu item was selected, check the “triggerSource™ to know if the user used
touch or voice to activate it

// Handle the Cell's Selection

}
D

sdIManager.getScreenManager().setMenu(Collections.singletonList(cell));

Adding Submenus

Adding a submenu is as simple as adding subcells to a MenuCell . The submenu is
automatically displayed when selected by the user. Currently menus only support one layer
of subcells. In RPC v6.0+ it is possible to set individual submenus to use different layouts
such as tiles or lists.

// Create the inner menu cell
MenuCell innerCell = new MenuCell(, , ,
null, null,Collections.singletonList(), new MenuSelectionListener() {
@Override
void (TriggerSource trigger) {
// Menu item was selected, check the “triggerSource™ to know if the user used
touch or voice to activate it
// Handle the cell's selection
}

D

// Create and set the submenu cell
MenuCell cell = new MenuCell(,
MenuLayout.LIST, null, null, Collections. smgletonLlst(lnnerCeII))

sdIManager.getScreenManager().setMenu(Collections.singletonList(cell));

Menu Item Artwork

Artworks will be automatically handled when using the screen manager API. First, a "non-
artwork" menu will be displayed, then, when the artworks have finished uploading, the
"artwork-ified" menu will be displayed. If you are doing this manually with RPCs, you will
have to upload artworks using the file manager yourself and send the correct menu when
they are ready.

Deleting and Changing Menu Items

The screen manager will intelligently handle deletions for you. If you want to show new
menu items, simply set a new array of menu cells. If you want to have a blank menu, set
an empty array. On supported systems, the library will calculate the optimal adds / deletes
to create the new menu. If the system doesn't support this sort of dynamic updating, the
entire list will be removed and re-added.

If you are doing this manually, you must use the DeleteCommand and DeleteSubMenu
RPCs, passing the cmdID s you wish to delete.

Duplicate Menu Titles

Starting with SDL v5.1+ menu cells and sub-menu cells no longer require unique titles in
order to be presented. For example, if you are trying to display points of interest as a list
you can now have multiple locations with the same name but are not the same location.
You cannot present multiple cells that are exactly the same. They must have some

property that makes them different, such as secondaryText or an artwork.

RPC V7.1+ CONNECTIONS

The titles on the menu will be displayed as provided even if there are duplicate titles.

BACK Hello Sdl »

Gas Station

Gas Station

Gas Station

Grocery Store

Grocery Store

RPC V7.0 AND BELOW CONNECTIONS

The titles on the menu will have a number appended to them when there are duplicate
titles.

BACK Hello Sdl »

Gas Station

Gas Station (2)

Gas Station (3)

Grocery Store

Grocery Store (2)

Using RPCs

The AddCommand RPC can be used to add items to the root menu or to a submenu.
Each AddCommand RPC must be sent with a unique id, a voice-recognition command,
and a set of menu parameters. The menu parameters include the menu name, the position
of the item in the menu, and the id of the menu item’s parent. If the menu item is being
added to the root menu, then the parent id is 0. If it is being added to a submenu, then the

parent id is the submenu’s id.

To create a submenu using RPCs, you must use a AddSubMenu RPC with a unique id.
When a response is received from the SDL Core, check if the submenu was added

successfully. If it was, send an AddCommand RPC for each item in the submenu.

O NOTE

You should not mix usage of the ScreenManager menu features and menu
RPCs described above. You must use either one system or the other, but not
both.

Popup Menus

SDL supports modal menus. The user can respond to the list of menu options via touch,
voice (if voice recognition is supported by the head unit), or by keyboard input to search or
filter the menu.

There are several UX considerations to take into account when designing your menus. The
main menu should not be updated often and should act as navigation for your app. Popup

menus should be used to present a selection of options to your user.

Presenting a Popup Menu

Presenting a popup menu is similar to presenting a modal view to request input from your
user. It is possible to chain together menus to drill down, however, it is recommended to
do so judiciously. Requesting too much input from a driver while they are driving is

distracting and may result in your app being rejected by OEMs.

Present as Icon A grid of buttons with images

A grid of buttons with images along with a

search field in the HMI

Present Searchable as Icon

Present as List A vertical list of text

A vertical list of text with a search field in the

HMI

Present Searchable as List

Creating Cells

A ChoiceCell is similarto a RecyclerView without the ability to configure your own UI.
We provide several properties on the ChoiceCell to set your data, but the layout itself is

determined by the manufacturer of the head unit.

NOTE

On many systems, including VR commands will be exponentially slower than
not including them. However, including them is necessary for a user to be
able to respond to your prompt with their voice.

ChoiceCell cell = new ChoiceCell(, Collections.singletonList(), null);

ChoiceCell fullCell = new ChoiceCell(, ,
, Collections.singletonList(), image1Artwork, image2Artwork);

Preloading Cells

If you know the content you will show in the popup menu long before the menu is shown
to the user, you can "preload" those cells in order to speed up the popup menu
presentation at a later time. Once you preload a cell, you can reuse it in multiple popup

menus without having to send the cell content to Core again.

sdIManager.getScreenManager().preloadChoices(Arrays.asList(cell, fullCell), new
CompletionListener() {
@Override
void (boolean b) {

// code

}
D

Presenting a Menu

To show a popup menu to the user, you must present the menu. If some or all of the cells
in the menu have not yet been preloaded, calling the present API will preload the cells
and then present the menu once all the cells have been uploaded. Calling present
without preloading the cells can take longer than if the cells were preloaded earlier in the
app's lifecycle especially if your cell has voice commands. Subsequent menu
presentations using the same cells will be faster because the library will reuse those cells
(unless you have deleted them).

MENU - LIST

Tertiary Text Q

Tertiary Text GD

Tertiary Text GD

MENU - ICON

O NOTE

When you preload a cell, you do not need to maintain a reference to it. If you
reuse a cell with the same properties that has already been preloaded (or
previously presented), the cell will automatically be reused.

CREATING A CHOICE SET

In order to present a menu, you must bundle together a bunch of ChoiceCell s into an Ch
oiceSet .

O NOTE

If the ChoiceSet contains an invalid set of ChoiceCell s, presentingthe C
hoiceSet will fail. This can happen, for example, if you have duplicate title
text or if some, but not all choices have voice commands.

Some notes on various parameters (full documentation is available as APl documentation
on this website):

o Title: This is the title of the menu when presented

e Listeners: You must implement this listener interface to receive callbacks based on
the user's interaction with the menu

e Layout: You may present your menu as a set of tiles (like a GridView) or a list (like

a RecyclerView). If you are using tiles, it's recommended to use artworks on each
item.

ChoiceSet choiceSet = new ChoiceSet(, Arrays.asList(cell, fullCell),
new ChoiceSetSelectionListener() {
@Override
void (ChoiceCell choiceCell, TriggerSource triggerSource,
int rowIndex) {
// You will be passed the “cell’ that was selected, the manner in which it was
selected (voice or text), and the index of the cell that was passed.

// handle selection

}

@Override
void (String error) {
// handle error
}
3

PRESENTING THE MENU WITH A MODE

Finally, you will present the menu. When you do so, you must choose a mode to present
it in. If you have no vrCommands on the choice cell you should choose manualOnly . If

vrCommands are available, you may choose voiceRecognitionOnly or both .

You may want to choose this based on the trigger source leading to the menu being
presented. For example, if the menu was presented via the user touching the screen, you
may want to use a mode of manualOnly or both , but if the menu was presented via
the user speaking a voice command, you may want to use a mode of voiceRecognition
Only or both .

It may seem that the answer is to always use both . However, remember that you must
provide vrCommand s on all cells to use both , which is exponentially slower than not
providing vrCommand s (this is especially relevant for large menus, but less important
for smaller ones). Also, some head units may not provide a good user experience for bot
h.

INTERACTION MODE DESCRIPTION

Manual only Interactions occur only through the display

Interactions occur only through text-to-speech

VR only
and voice recognition

Interactions can occur both manually or

through VR

Both

MENU - MANUAL ONLY MODE

@

First Choice Tertiary Text Q
Secondary Text

Second Choice

Tertiary Text
Secondary Text @

Third Choice
@ Secondary Text

Tertiary Text @

A

Nav

i W

Audio Climate Phone

MENU - VOICE ONLY MODE

19 Select an item from the menu

First Choice
Second Choice

Third Choice

sdIManager.getScreenManager().presentChoiceSet(choiceSet,
InteractionMode.MANUAL_ONLY);

Presenting a Searchable Menu

In addition to presenting a standard menu, you can also present a "searchable” menu, that
is, @ menu with a keyboard input box at the top. For more information on implementing the
keyboard callbacks, see the Popup Keyboards guide.

MENU WITH SEARCH

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/popup-keyboards/

Select an item from the menu_ X

First Choice Tertiary Text
—7 Secondary Text "!"

Second Choice Tertiary Text @
Secondary Text

Third Choice Tertiary Text
—7 Secondary Text ®

g 0 SN A

Audio Climate Phone Nav

sdIManager.getScreenManager().presentSearchableChoiceSet(choiceSet,

InteractionMode.MANUAL_ONLY, keyboardListener);

Deleting Cells

You can discover cells that have been preloaded on sdIManager.getScreenManager().getP
reloadedChoices() . You may then pass an array of cells to delete from the remote
system. Many times this is not necessary, but if you have deleted artwork used by cells,

for example, you should delete the cells as well.

sdIManager.getScreenManager().deleteChoices(<List of choices to delete>);

Dismissing the Popup Menu (RPC v6.0+)

You can dismiss a displayed choice set before the timeout has elapsed by sendinga Can
cellnteraction request. If you presented the choice set using the screen manager, you can

dismiss the choice set by calling cancel onthe ChoiceCell object that you presented.

NOTE

If connected to older head units that do not support this feature, the cancel
request will be ignored, and the choice set will persist on the screen until the
timeout has elapsed or the user dismisses it by making a selection.

choiceSet.cancel();

Duplicate Cell Titles

Starting with SDL v5.1+ choice cells no longer require unique titles in order to be
presented. For example, if you are trying to display points of interest as a list you can now
have multiple locations with the same name but are not the same location. You cannot
present multiple cells that are exactly the same. They must have some property that
makes them different, such as secondaryText or an artwork.

RPC V7.1+ CONNECTIONS

The titles on the choice set will be displayed as provided even if there are duplicate titles.

BACK Hello Sdl

Gas Station

Gas Station

Gas Station

Grocery Store

Grocery Store

RPC V7.0 AND BELOW CONNECTIONS

The titles on the choice set will have a number appended to them when there are duplicate
titles.

BACK Hello Sdl

Gas Station

Gas Station (2)

Gas Station (3)

Grocery Store

Grocery Store (2)

Using RPCs

If you don't want to use the ScreenManager , you can do this manually using the Choice ,
CreatelnteractionChoiceSet , and Performinteraction . You will need to create
Choice s, bundle them into CreatelnteractionChoiceSet s. As this is no longer a

recommended course of action, we will leave it to you to figure out how to manually do it.

Note that if you do manually create a Performinteraction and want to set a cancel id, the
ScreenManager takes cancel ids 0- 10000. Any cancel id you set must be outside of that

range.

Popup Keyboards

Presenting a keyboard or a popup menu with a search field requires you to implement the
KeyboardListener . Note that the initialText inthe keyboard case often acts as

"placeholder text" and not as true initial text.

Presenting a Keyboard

You should present a keyboard to users when your app contains a "search’ field. For
example, in a music player app, you may want to give the user a way to search for a song
or album. A keyboard could also be useful in an app that displays nearby points of interest,

or in other situations.

O NOTE

Keyboards are unavailable for use in many countries when the driver is
distracted. This is often when the vehicle is moving above a certain speed,
such as 5 miles per hour. This will be automatically managed by the system.
Your keyboard may be disabled or an error returned if the driver is distracted.

SDL Example App

W Mask Input

backspace

< enter

int cancelld = sdIManager.getScreenManager().presentKeyboard('Initial text", null,
keyboardListener);

Implementing the Keyboard Listener

Using the KeyboardListener involves implementing several methods:

KeyboardListener keyboardListener = new KeyboardListener() {
@Override
void (String inputText, KeyboardEvent event) {
switch (event) {
case ENTRY_VOICE:
// The user decided to start voice input, you should start an AudioPassThru
session if supported
break;
case ENTRY_SUBMITTED:
// The user submitted some text with the keyboard
break;
default:
break;

}
}

@Override
void (KeyboardEvent event) {
switch (event) {
case ENTRY_CANCELLED:
// The user cancelled the keyboard interaction
break;
case ENTRY_ABORTED:
// The system aborted the keyboard interaction
break;
default:
break;
}
}

@Override
void (String currentinputText,
KeyboardAutocompleteCompletionListener
keyboardAutocompleteCompletionListener) {
// Check the input text and return a list of autocomplete results

keyboardAutocompleteCompletionListener.onUpdatedAutoCompleteList(updatedAut

}

@Override
void (String currentinputText,
KeyboardCharacterSetCompletionListener
keyboardCharacterSetCompletionListener) {
// Check the input text and return a set of characters to allow the user to enter

}

@Override
void (KeyboardEvent event, String
currentinputText) {
// This is sent upon every event, such as keypresses, cancellations, and aborting

}

@Override
void (KeyboardEvent event) {
switch (event) {
case INPUT_KEY_MASK_ENABLED:
// The user enabled input key masking
break;
case INPUT_KEY_MASK_DISABLED:

// The user disabled input key masking
break;

default:
break;

Configuring Keyboard Properties

You can change default keyboard properties by updating sdiManager.getScreenManager().
setKeyboardConfiguration() . If you want to change the keyboard configuration for only
one keyboard session and keep the default keyboard configuration unchanged, you can
pass a single-use KeyboardProperties to presentKeyboard() .

KEYBOARD LANGUAGE

You can modify the keyboard language by changing the keyboard configuration's languag
e . For example, you can set an EN_US keyboard. It will defaultto EN_US if not
otherwise set.

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
.setLanguage(Language.EN_US);

sdIManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

LIMITED CHARACTER LIST

You can modify the keyboard to enable only some characters by responding to the update
CharacterSetWithinput listener method or by changing the keyboard configuration before

displaying the keyboard. For example, you can enable only "a", "b", and "c" on the
keyboard. All other characters will be greyed out (disabled).

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
.setLimitedCharacterList(Arrays.asList("a", "b", "c"));

sdIManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

AUTOCOMPLETE LIST

You can modify the keyboard to allow an app to pre-populate the text field with a list of
suggested entries as the user types by responding to the updateAutocompleteWithinput
listener method or by changing the keyboard configuration before displaying the keyboard.
For example, you can display recommended searches "test1", "test2", and "test3" if the
user types "tes".

NOTE

A list of autocomplete results is only available on RPC 6.0+ connections. On
connections < RPC 6.0, only the first item will be available to the user.

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
.setAutoCompleteList(Arrays.asList())));

sdIManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

KEYBOARD LAYOUT

You can modify the keyboard layout by changing the keyboard configuration's keyboardL
ayout . For example, you can set a NUMERIC keyboard. It will defaultto QWERTY if not
otherwise set.

NOTE

The numeric keyboard layout is only available on RPC 7.1+. See the section

Checking Keyboard Capabilities to determine if this layout is available.

SDL Example App

backspace

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
.setKeyboardLayout(KeyboardLayout. NUMERIC);

sdIManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

INPUT MASKING (RPC 7.1+)

You can modify the keyboard to mask the entered characters by changing the keyboard
configuration's masklnputCharacters .

SDL Example App

< enter

backspace

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
.setKeyboardLayout(KeyboardLayout. NUMERIC)
.setMasklInputCharacters(KeyboardinputMask.ENABLE_INPUT_KEY_MASK);

sdIManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

CUSTOM KEYS (RPC 7.1+)

Each keyboard layout has a number of keys that can be customized to your app's needs.

For example, you could set two of the customizable keys in QWERTY layout to be "!" and
"?" as seen in the image below. The available number and location of these custom keys is
determined by the connected head unit. See the section Checking Keyboard Capabilities to

determine how many custom keys are available for any given layout.

SDL Example App

W Mask Input

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
.setKeyboardLayout(KeyboardLayout.QWERTY)
.setCustomKeys(Arrays.asList("!", "?"));

sdIManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

Checking Keyboard Capabilities (RPC v7.1+)

Each head unit may support different keyboard layouts and each layout can support a
different number of custom keys. Head units may not support masking input. If you want
to know which keyboard features are supported on the connected head unit, you can

check the KeyboardCapabilities :

WindowCapability windowCapability =
sdIManager.getSystemCapabilityManager().getDefaultMainWindowCapability();
KeyboardCapabilities keyboardCapabilities =
windowCapability.getKeyboardCapabilities();

// List of layouts and number of custom keys supported by each layout
List<KeyboardLayoutCapability> keyboardLayouts =
keyboardCapabilities.getSupportedKeyboards();

// Boolean represents whether masking is supported or not
boolean masklnputSupported =
keyboardCapabilities.getMaskInputCharactersSupported();

Dismissing the Keyboard (RPC v6.0+)

You can dismiss a displayed keyboard before the timeout has elapsed by sendinga Canc
elinteraction request. If you presented the keyboard using the screen manager, you can
dismiss the choice set by calling dismissKeyboard with the cancellD that was returned

(if one was returned) when presenting.

NOTE

If connected to older head units that do not support this feature, the cancel
request will be ignored, and the keyboard will persist on the screen until the

timeout has elapsed or the user dismisses it by making a selection.

sdIManager.getScreenManager().dismissKeyboard(cancelld);

Using RPCs

If you don't want to use the ScreenManager , you can do this manually using the Perform
Interaction RPC request. As this is no longer a recommended course of action, we will
leave it to you to figure out how to manually do it.

Note that if you do manually create a Performinteraction and want to set a cancel id, the
ScreenManager takes cancel ids 0 - 10000. Any cancel id you set must be outside of that

range.

Alerts and Subtle Alerts

SDL supports two types of alerts: a large popup alert that typically takes over the whole

screen and a smaller subtle alert that only covers a small part of screen.

Checking if the Module Supports
Alerts

Your SDL app may be restricted to only being allowed to send an alert when your app is
open (i.e. the hmiLevel is non- NONE) or when it is the currently active app (i.e. the h
miLevel is FULL). Subtle alert is a new feature (RPC v7.0+) and may not be supported on

all modules.

boolean isAlertAllowed =

sdIManager.getPermissionManager().isRPCAllowed(FunctionID.ALERT);
boolean isSubtleAlertAllowed =
sdIManager.getPermissionManager().isRPCAllowed(FunctionIlD.SUBTLE_ALERT);

Alerts

An alert is a large pop-up window showing a short message with optional buttons. When
an alert is activated, it will abort any SDL operation that is in-progress, except the already-
in-progress alert. If an alert is issued while another alert is still in progress the newest
alert will wait until the current alert has finished.

Depending on the platform, an alert can have up to three lines of text, a progress indicator

(e.g. a spinning wheel or hourglass), and up to four soft buttons.

ALERT WITH NO SOFT BUTTONS

SDL Example App

NOTE

If no soft buttons are added to an alert some modules may add a default
"cancel" or "close" button.

ALERT WITH SOFT BUTTONS

SDL Example App

Button text Button 2 Text

Creating the AlertView

Use the AlertView to set all the properties of the alert you want to present.

NOTE

An AlertView must contain at least either text , secondaryText or audi
o forthe alert to be presented.

TEXT

AlertView.Builder builder = new AlertView.Builder();
builder.setText();

builder.setSecondaryText();
builder.setAudio(AlertAudioData);
AlertView alertView = builder.build();

BUTTONS

alertView.setSoftButtons(List<SoftButtonObject>);

ICON

An alert can include a custom or static (built-in) image that will be displayed within the
alert.

SDL Example App

You pushed the soft button!

alertView.setlcon(SdlArtwork);

TIMEOUTS

An optional timeout can be added that will dismiss the alert when the duration is over.

Typical timeouts are between 3 and 10 seconds. If omitted, a default of 5 seconds is used.

// 5 seconds

alertView.setTimeout(5);

PROGRESS INDICATOR

Not all modules support a progress indicator. If supported, the alert will show an
animation that indicates that the user must wait (e.g. a spinning wheel or hourglass, etc).
If omitted, no progress indicator will be shown.

alertView.setShowWaitIndicator(true);

TEXT-TO-SPEECH

An alert can also speak a prompt or play a sound file when the alert appears on the
screen. This is done by creating an AlertAudioData object and setting it in the AlertView

NOTE

On Manticore, using alerts with audio (Text-To-Speech or Tones) work best
in Google Chrome, Mozilla Firefox, or Microsoft Edge. Alerts with audio

does not work in Apple Safari at this time.

AlertAudioData alertAudioData = new AlertAudioData(

alertView.setAudio(alertAudioData);

AlertAudioData can also play an audio file.

https://smartdevicelink.com/resources/manticore/

AlertAudioData alertAudioData = new AlertAudioData(sdIFile);

alertView.setAudio(alertAudioData);

You can also play a combination of audio files and text-to-speech strings. The audio will
be played in the order you add them to the AlertAudioData object.

AlertAudioData alertAudioData = new AlertAudioData(sdIFile);
List<String> textToSpeech = new ArrayList<>();
textToSpeech.add();
alertAudioData.addSpeechSynthesizerStrings(textToSpeech);

PLAY TONE

To play a notification sound when the alert appears, set playTone to true .

AlertAudioData alertAudioData = new AlertAudioData(
alertAudioData.setPlayTone(true);

Showing the Alert

AlertView alertView = builder.build();
sdIManager.getScreenManager().presentAlert(alertView, new
AlertCompletionListener() {
@Override
void (boolean success, Integer tryAgainTime) {

if(success){

// Alert was presented successfully
}
}
)

Canceling/Dismissing the Alert

You can cancel an alert that has not yet been sent to the head unit.

On systems with RPC v6.0+ you can dismiss a displayed alert before the timeout has
elapsed. This feature is useful if you want to show users a loading screen while
performing a task, such as searching for a list for nearby coffee shops. As soon as you
have the search results, you can cancel the alert and show the results.

NOTE

If connected to older head units that do not support this feature, the cancel
request will be ignored, and the alert will persist on the screen until the
timeout has elapsed or the user dismisses the alert by selecting a button.

NOTE

Canceling the alert will only dismiss the displayed alert. If the alert has
audio, the speech will play in its entirety even when the displayed alert has
been dismissed. If you know you will cancel an alert, consider setting a
short audio message like "searching" instead of "searching for coffee shops,

please wait."

alertView.cancel();

Using RPCs

You can also use RPCs to present alerts. You need to use the Alert RPC to do so. Note
that if you do so, you must avoid using soft button ids 0 - 10000 and cancel ids 0 - 10000
because these ranges are used by the ScreenManager .

Subtle Alerts (RPC v7.0+)

A subtle alert is a notification style alert window showing a short message with optional
buttons. When a subtle alert is activated, it will not abort other SDL operations that are in-
progress like the larger pop-up alert does. If a subtle alert is issued while another subtle
alert is still in progress the newest subtle alert will simply be ignored.

Touching anywhere on the screen when a subtle alert is showing will dismiss the alert. If
the SDL app presenting the alert is not currently the active app, touching inside the subtle
alert will open the app.

Depending on the platform, a subtle alert can have up to two lines of text and up to two
soft buttons.

O NOTE

Because SubtleAlert is not currently supported in the ScreenManager ,
you need to be careful when setting soft buttons or cancel ids to ensure that
they do not conflict with those used by the ScreenManager . The ScreenM
anager takes soft button ids 0 - 10000 and cancel ids 0 - 10000. Ensure that
if you use custom RPCs that the soft button ids and cancel ids are outside
of this range.

SUBTLE ALERT WITH NO SOFT BUTTONS

SUBTLE ALERT WITH SOFT BUTTONS

Button Text

Button 2 Text

Creating the Subtle Alert

The following steps show you how to add text, images, buttons, and sound to your subtle
alert. Please note that at least one line of text or the "text-to-speech’ chunks must be set

in order for your subtle alert to work.

TEXT

SubtleAlert subtleAlert = new SubtleAlert()
.setAlertText1()

.setAlertText2()
.setCancellD(cancelld);

BUTTONS

// Soft buttons

int softButtonld = 10001; // Set it to any unique ID
SoftButton okButton = new SoftButton(SoftButtonType.SBT_TEXT, softButtonld);
okButton.setText("OK");

// Set the softbuttons(s) to the subtle alert
subtleAlert.setSoftButtons(Collections.singletonList(okButton));

// This listener is only needed once, and will work for all of soft buttons you send
with your subtle alert
sdIManager.addOnRPCNotificationListener(FunctionID.ON_BUTTON_PRESS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnButtonPress onButtonPress = (OnButtonPress) notification;
if (onButtonPress.getCustomButtonID() == softButtonld){
DebugTool.loginfo(TAG,);
}
}
3

ICON

A subtle alert can include a custom or static (built-in) image that will be displayed within
the subtle alert. Before you add the image to the subtle alert, make sure the image is
uploaded to the head unit using the FileManager . Once the image is uploaded, you can

show the alert with the icon.

You pushed the soft button!

subtleAlert.setAlerticon(new Image(, ImageType.DYNAMIC));

TIMEOUTS

An optional timeout can be added that will dismiss the subtle alert when the duration is
over. Typical timeouts are between 3 and 10 seconds. If omitted, a default of 5 seconds is
used.

subtleAlert.setDuration(5000);

TEXT-TO-SPEECH

A subtle alert can also speak a prompt or play a sound file when the subtle alert appears

on the screen. This is done by setting the ttsChunks parameter.

subtleAlert.setTtsChunks(Collections.singletonList(new TTSChunk(

SpeechCapabilities. TEXT)));

The ttsChunks parameter can also take a file to play/speak. For more information on
how to upload the file please refer to the Playing Audio Indications guide.

TTSChunk ttsChunk = new TTSChunk(sdIFile.getName(), SpeechCapabilities.FILE);

subtleAlert.setTtsChunks(Collections.singletonList(ttsChunk));

Showing the Subtle Alert

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/speech-and-audio/playing-audio-indications/

// Handle RPC response
subtleAlert.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()){

DebugTool.loginfo(TAG,);
}
}
i
sdIManager.sendRPC(subtleAlert);

Checking if the User Dismissed the Subtle Alert

If desired, you can be notified when the user tapped on the subtle alert by registering for
the OnSubtleAlertPressed notification.

sdIManager.addOnRPCNotificationListener(FunctionID.ON_SUBTLE_ALERT_PRESSED
new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {

// The subtle alert was pressed
}
i

Dismissing the Subtle Alert

You can dismiss a displayed subtle alert before the timeout has elapsed.

NOTE

Canceling the subtle alert will only dismiss the displayed alert. If you have
set the ttsChunk property, the speech will play in its entirety even when the
displayed subtle alert has been dismissed. If you know you will cancel a
subtle alert, consider setting a short ttsChunk .

There are two ways to dismiss a subtle alert. The first way is to dismiss a specific subtle
alert using a unique cancellD assigned to the subtle alert. The second way is to dismiss

whichever subtle alert is currently on-screen.

DISMISSING A SPECIFIC SUBTLE ALERT

// “cancellD" is the ID that you assigned when creating and sending the alert
Cancellnteraction cancellnteraction = new
Cancellnteraction(FunctionlD.SUBTLE_ALERT.getld(), cancellD);
cancellnteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {

if (response.getSuccess()X

DebugTool.loginfo(TAG,
}
}
});

sdIManager.sendRPC(cancellnteraction);

DISMISSING THE CURRENT SUBTLE ALERT

Cancellnteraction cancellnteraction = new
Cancellnteraction(FunctionID.SUBTLE_ALERT.getld());
cancellnteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {

if (response.getSuccess()){
DebugTool.loginfo(TAG,

}

}
D

sdIManager.sendRPC(cancellnteraction);

Media Clock

The media clock is used by media apps to present the current timing information of a
playing media item such as a song, podcast, or audiobook.

The media clock consists of three parts: the progress bar, a current position label and a
remaining time label. In addition, you may want to update the play/pause button icon to
reflect the current state of the audio or the media forward / back buttons to reflect if it will
skip tracks or time.

NOTE

Media clock operations require the HMI status to be FULL . More
information on how to monitor the HMI status can be found in the

Understanding Permissions guide.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/understanding-permissions/#hmi-levels

NOTE

Ensure your app has an appType of media and you are using the media
template before implementing this feature.

APPS Livio Music

SN PRENE:

John Prine

Linda Goes to Mars

Counting Up

In order to count up using the timer, you will need to set a start time that is less than the
end time. The "bottom end" of the media clock will always start at 0:00 and the "top end"
will be the end time you specified. The start time can be set to any position between 0 and
the end time. For example, if you are starting a song at 0:30 and it ends at 4:13 the
media clock timer progress bar will start at the 0:30 position and start incrementing up

automatically every second until it reaches 4:13 . The current position label will start
counting upwards from 0:30 and the remaining time label will start counting down from
3:43 . When the end is reached, the current time label will read 4:13 , the remaining time

label will read 0:00 and the progress bar will stop moving.

The play / pause indicator parameter is used to update the play / pause button to your
desired button type. This is explained below in the section "Updating the Audio Indicator”

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().countUpFromStartTimelnterval (30, 253,

AudioStreaminglindicator.PAUSE);
sdIManager.sendRPC(mediaClock);

Counting Down

Counting down is the opposite of counting up (I know, right?). In order to count down using
the timer, you will need to set a start time that is greater than the end time. The timer bar
moves from right to left and the timer will automatically count down. For example, if
you're counting down from 10:00 to 0:00 , the progress bar will be at the leftmost

position and start decrementing every second until it reaches 0:00 .

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().countDownFromStartTimelnterval (600, 0,

AudioStreamingindicator.PAUSE);
sdIManager.sendRPC(mediaClock);

Pausing & Resuming

When pausing the timer, it will stop the timer as soon as the request is received and
processed. When a resume request is sent, the timer begins again at the paused time as

soon as the request is processed. You can update the start and end times using a pause

command to change the timer while remaining paused.

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().pauseWithPlayPauselndicator(AudioStreaminglindicator.PLAY)

sdIManager.sendRPC(mediaClock);

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().resumeWithPlayPauselndicator(AudioStreamingindicator.PAU:

sdIManager.sendRPC(mediaClock);

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().updatePauseWithNewStartTimelnterval (60, 240,
AudioStreamingIndicator.PLAY);

sdIManager.sendRPC(mediaClock);

Clearing the Timer

Clearing the timer removes it from the screen.

SetMediaClockTimer mediaClock = new

SetMediaClockTimer().clearWithPlayPauselndicator(AudioStreamingindicator.PLAY);
sdIManager.sendRPC(mediaClock);

Setting the Play / Pause Button Style
(RPC v5.0+)

The audio indicator is, essentially, the play / pause button. You can tell the system which
icon to display on the play / pause button to correspond with how your app works. For
example, if audio is currently playing you can update the play/pause button to show the
pause icon. On older head units, the audio indicator shows an icon with both the play and
pause indicators and the icon can not be updated.

For example, a radio app will probably want two button states: play and stop. A music app,
in contrast, will probably want a play and pause button. If you don't send any audio
indicator information, a play / pause button will be displayed.

Setting The Media Forward / Back
Button Style (RPC v7.1+)

As of RPC v7.1, you can set the style of the media forward / back buttons to show icons
for skipping time (in seconds) forward and backward instead of skipping tracks. The
skipping time style is common in podcast & audiobook media apps.

When you set the skip indicator style, you can set type TRACK , which is the default style
that shows "skip forward" and "skip back" indicators. This is the only style available on
RPC < 7.1 connections. You can also set the new type TIME , which will allow you to set
the number of seconds and display indicators for skipping forward and backward in time.

Track Style

APPS Livio Music

JHLN PRENE:

John Prine

Linda Goes to Mars

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().countUpFromStartTimelnterval(0, 300,
AudioStreaminglndicator.PAUSE);

SeekStreaminglndicator trackStyle = new
SeekStreaminglindicator(SeekIndicatorType. TRACK);
mediaClock.setForwardSeekIndicator(trackStyle);
mediaClock.setBackSeekIndicator(trackStyle);
sdIManager.sendRPC(mediaClock);

Time Style

Livio Music

John Prine

Linda Goes To Mars

00:02:12 /00:03:08

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().countUpFromStartTimelnterval(0, 300,
AudioStreaminglndicator.PAUSE);
SeekStreaminglindicator seek45Style = new
SeekStreaminglndicator(SeekIndicatorType.TIME);
seek45Style.setSeekTime(45);
SeekStreaminglndicator seek10Style = new
SeekStreamingindicator(SeekIndicatorType.TIME);
seek10Style.setSeekTime(10);
mediaClock.setForwardSeekIndicator(seek45Style);
mediaClock.setBackSeekIndicator(seek10Style);
sdIManager.sendRPC(mediaClock);

Adding Custom Playback Rate (RPC
v7.1+)

Many audio apps that support podcasts and audiobooks allow the user to adjust the audio
playback rate.
As of RPC v7.1, you can set the rate that the audio is playing at to ensure the media clock

accurately reflects the audio.

For example, a user can play a podcast at 125% speed or at 75% speed.

//Play Audio at 50% or half speed

SetMediaClockTimer mediaClockSlow = new
SetMediaClockTimer().countUpFromStartTimelnterval (30, 253,
AudioStreamingIndicator.PAUSE);
mediaClockSlow.setCountRate(0.5f);
sdIManager.sendRPC(mediaClockSlow);

//Play Audio at 200% or double speed

SetMediaClockTimer mediaClockFast = new
SetMediaClockTimer().countUpFromStartTimelnterval (30, 253,
AudioStreaminglindicator.PAUSE);
mediaClockFast.setCountRate(2.0f);
sdIManager.sendRPC(mediaClockFast);

NOTE

CountRate has a default value of 1.0, and the CountRate will be reset to
1.0if any SetMediaClockTimer request does not have the parameter set.
To ensure that you maintain the correct CountRate in your application
make sure to set the parameter in all SetMediaClockTimer requests
(including when sending a RESUME request).

Slider

A Slider creates a full screen or pop-up overlay (depending on platform) that a user can
control. There are two main Slider layouts, one with a static footer and one with a
dynamic footer.

O NOTE

v

The slider will persist on the screen until the timeout has elapsed or the user
dismisses the slider by selecting a position or canceling.

A slider popup with a static footer displays a single, optional, footer message below the
slider Ul. A dynamic footer can show a different message for each slider position.

Slider Ul

DYNAMIC SLIDER IN POSITION 1

10°

ir ¢ A

Audio Climate Phone Nav

DYNAMIC SLIDER IN POSITION 2

10°

Creating the Slider

Slider slider = new Slider();

Ticks

The number of selectable items on a horizontal axis.

// Must be a number between 2 and 26
slider.setNumTicks(5);

Position

The initial position of slider control (cannot exceed numTicks).

// Must be a number between 1 and 26
slider.setPosition(1);

Header

The header to display.

// Max length 500 chars

slider.setSliderHeader(

Static Footer

The footer will have the same message across all positions of the slider.

// Max length 500 chars

slider.setSliderFooter(Collections.singletonList(

Dynamic Footer

This type of footer will have a different message displayed for each position of the slider.
The footer is an optional parameter. The footer message displayed will be based off of the
slider's current position. The footer array should be the same length as numTicks
because each footer must correspond to a tick value. Or, you can pass null to have no
footer at all.

// Array length 1 - 26, Max length 500 chars

slider.setSliderFooter(Arrays.asList(

Cancel ID

An ID for this specific slider to allow cancellation through the Cancellnteraction RPC.
The ScreenManager takes cancel ids 0- 10000, so ensure any cancel id that you set is
outside of that range.

slider.setCancellD(10045);

Show the Slider

slider.setONnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {
SliderResponse sliderResponse = (SliderResponse) response;
DebugTool.loginfo(TAG, +

sliderResponse.getSliderPosition());
}
}
)}
sdIManager.sendRPC(slider);

Dismissing a Slider (RPC v6.0+)

You can dismiss a displayed slider before the timeout has elapsed by dismissing either a
specific slider or the current slider.

NOTE

If connected to older head units that do not support this feature, the cancel
request will be ignored, and the slider will persist on the screen until the
timeout has elapsed or the user dismisses by selecting a position or
canceling.

Dismissing a Specific Slider

// “cancellD" is the ID that you assigned when creating the slider
Cancellnteraction cancellnteraction = new
Cancellnteraction(FunctionID.SLIDER.getld(), cancellD);
cancellnteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {

if (response.getSuccess()){
DebugTool.loginfo(TAG,);
}

}
D

sdIManager.sendRPC(cancellnteraction);

Dismissing the Current Slider

Cancellnteraction cancellnteraction = new
Cancellnteraction(FunctionID.SLIDER.getld());
cancellnteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {

if (response.getSuccess()){

DebugTool.loginfo(TAG,);
}
}
)}

sdIManager.sendRPC(cancellnteraction);

Scrollable Message

A ScrollableMessage creates an overlay containing a large block of formatted text that
can be scrolled. It contains a body of text, a message timeout, and up to eight soft
buttons. To display a scrollable message in your SDL app, you simply send a ScrollableM
essage RPC request.

O NOTE

The message will persist on the screen until the timeout has elapsed or the
user dismisses the message by selecting a soft button or cancelling (if the
head unit provides cancel Ul).

Scrollable Message Ul

Button 1 Butto?
A 8 A

Audio Climate Phone Nav

Creating the Scrollable Message

Currently, you can only create a scrollable message view to display on the screen using
RPCs.

NOTE

The ScreenManager uses soft button ids 0 — 10000. Ensure that if you use
custom RPCs—such as this one—that the soft button ids you use are
outside of this range (i.e. > 10000).

// Create Message To Display
String scrollableMessageText =

// Create SoftButtons
SoftButton softButton1 = new SoftButton(SoftButtonType.SBT_TEXT, 10001);
softButton1.setText();

SoftButton softButton2 = new SoftButton(SoftButtonType.SBT_TEXT, 10002);
softButton2.setText();

// Create SoftButton Array
List<SoftButton> softButtonList = Arrays.asList(softButton1, softButton2);

// Create ScrollableMessage Object

ScrollableMessage scrollableMessage = new ScrollableMessage()
.setScrollableMessageBody(scrollableMessageText)
.setTimeout(50000)
.setSoftButtons(softButtonList);

// Set cancelld
scrollableMessage.setCancellD(cancelld);

// Send the scrollable message
sdIManager.sendRPC(scrollableMessage);

To listen for OnButtonPress events for SoftButton s, we need to add a listener that
listens for their Id's:

sdIManager.addOnRPCNotificationListener(FunctionID.ON_BUTTON_PRESS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnButtonPress onButtonPress = (OnButtonPress) notification;
switch (onButtonPress.getCustomButtonID()){
case 10001:
DebugTool.loginfo(TAG,
break;
case 10002:
DebugTool.loginfo(TAG,
break;

Dismissing a Scrollable Message
(RPC v6.0+)

You can dismiss a displayed scrollable message before the timeout has elapsed. You can
dismiss a specific scrollable message, or you can dismiss the scrollable message that is
currently displayed.

NOTE
If connected to older head units that do not support this feature, the cancel
request will be ignored, and the scrollable message will persist on the

screen until the timeout has elapsed or the user dismisses the message by
selecting a button.

Dismissing a Specific Scrollable Message

// “cancellD" is the ID that you assigned when creating and sending the alert
Cancellnteraction cancellnteraction = new
Cancellnteraction(FunctionID.SCROLLABLE_MESSAGE.getld(), cancellD);
cancellnteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()){

DebugTool.loginfo(TAG,

}
}
D

sdIManager.sendRPC(cancellnteraction);

Dismissing the Current Scrollable Message

Cancellnteraction cancellnteraction = new
Cancellnteraction(FunctionID.SCROLLABLE_MESSAGE.getld());
cancellnteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {

if (response.getSuccess()){

DebugTool.loginfo(TAG,
}
}
});

sdIManager.sendRPC(cancellnteraction);

Customizing the Template

You have the ability to customize the look and feel of the template. How much
customization is available depends on the RPC version of the head unit you are connected
with as well as the design of the HMI.

Customizing Template Colors (RPC
v5.0+)

You can customize the color scheme of your app using template coloring APIs.

Customizing the Default Layout

You can change the template colors of the initial template layout in the lifecycleConfigur

ation .

APPS SDL Example App

SmartDevicelLink (SDL) Obj-C Example App

// Set color schemes

RGBColor green = new RGBColor(126, 188, 121);
RGBColor white = new RGBColor(249, 251, 254);
RGBColor grey = new RGBColor(186, 198, 210);
RGBColor darkGrey = new RGBColor(57, 78, 96);

TemplateColorScheme dayColorScheme = new TemplateColorScheme()
.setBackgroundColor(white)
.setPrimaryColor(green)
.setSecondaryColor(grey);
builder.setDayColorScheme(dayColorScheme);

TemplateColorScheme nightColorScheme = new TemplateColorScheme()
.setBackgroundColor(white)
.setPrimaryColor(green)
.setSecondaryColor(darkGrey);
builder.setNightColorScheme(nightColorScheme);

NOTE

You may only change the template coloring once per template; that is, you
cannot call changelLayout , SetDisplayLayout or Show for the template
you are already on and expect the color scheme to update.

Customizing Future Layouts

You can change the template color scheme when you change layouts. This guide requires
SDL Java Suite version 5.0. If using an older version, use SetDisplayLayout (any RPC
version) or Show (RPC v6.0+) request.

// Set color schemes

RGBColor green = new RGBColor(126, 188, 121);
RGBColor white = new RGBColor(249, 251, 254);
RGBColor grey = new RGBColor(186, 198, 210);
RGBColor darkGrey = new RGBColor(57, 78, 96);

TemplateColorScheme dayColorScheme = new TemplateColorScheme()
.setBackgroundColor(white)
.setPrimaryColor(green)
.setSecondaryColor(grey);

TemplateColorScheme nightColorScheme = new TemplateColorScheme()
.setBackgroundColor(white)
.setPrimaryColor(green)
.setSecondaryColor(darkGrey);

TemplateConfiguration templateConfiguration = new TemplateConfiguration()
.setTemplate(PredefinedLayout. GRAPHIC_WITH_TEXT.toString())
.setDayColorScheme(dayColorScheme)
.setNightColorScheme(nightColorScheme);

sdIManager.getScreenManager().changelLayout(templateConfiguration, new
CompletionListener() {
@Override
void (boolean success) {
if (success) {
// Color set with template change
} else {
// Color and template not changed
}

}
N

Customizing the Menu Title and Icon

You can also customize the title and icon of the main menu button that appears on your
template layouts. The menu icon must first be uploaded with a specific name through the
file manager; see the Uploading Images section for more information on how to upload

your image.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/uploading-images/

// The image must be uploaded before referencing the image name here
SetGlobalProperties setGlobalProperties = new SetGlobalProperties()
.setMenuTitle()
.setMenulcon(image);

setGlobalProperties.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()){
// Success
}
}
D
sdIManager.sendRPC(setGlobalProperties);

Customizing the Keyboard (RPC
v3.0+)

If you present keyboards in your app — such as in searchable interactions or another
custom keyboard — you may wish to customize the keyboard for your users. The best way
to do this is through the ScreenManager . For more information presenting keyboards,
see the Popup Keyboards section.

Setting Keyboard Properties

You can modify the language of the keyboard to change the characters that are displayed.

KeyboardProperties keyboardProperties = new KeyboardProperties()
.setLanguage(Language.HE_IL) // Set to Israeli Hebrew
.setKeyboardLayout(KeyboardLayout.AZERTY); // Set to AZERTY

sdIManager.getScreenManager().setKeyboardConfiguration(keyboardProperties);

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/popup-keyboards/

Other Properties

While there are other keyboard properties available on KeyboardProperties , these will be
overridden by the screen manager. The keypressMode must be a specific configuration
for the screen manager's callbacks to work properly. The limitedCharacterList , autoCo
mpleteText , and autoCompleteList will be set on a per-keyboard basis when calling sdl
Manager.getScreenManager.presentKeyboard(...) , should custom keyboard properties be
set.

Customizing Help Prompts

On some head units it is possible to display a customized help menu or speak a custom
command if the user asks for help while using your app. The help menu is commonly used
to let users know what voice commands are available, however, it can also be customized

to help your user navigate the app or let them know what features are available.

Configuring the Help Menu

You can customize the help menu with your own title and/or menu options. If you don't

customize these options, then the head unit's default menu will be used.

If you wish to use an image, you should check the sdIManager.getSystemCapabilityMana
ger().getDefaultMainWindowCapability().getimageFields(); for an imageField.name of vr
Helpltem to see if that image is supported. If vrHelpltem is inthe imageFields array,
then it can be used. You will then need to upload the image using the file manager before

using it in the request. See the Uploading Images section for more information.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/uploading-images/

SetGlobalProperties setGlobalProperties = new SetGlobalProperties();
setGlobalProperties.setVrHelpTitle();

VrHelpltem item1 = new VrHelpltem(,1);
item1.setlmage(image); / a previously uploaded image or null

VrHelpltem item2 = new VrHelpltem(, 2);
item2.setlmage(image); / a previously uploaded image or null

setGlobalProperties.setVrHelp(Arrays.asList(item1, item?2));
setGlobalProperties.setOnRPCResponseListener(new OnRPCResponseListener() {

@Override

void (int correlationld, RPCResponse response) {
// The help menu is updated

}
3
sdIManager.sendRPC(setGlobalProperties);

Configuring the Help Prompt

On head units that support voice recognition, a user can request assistance by saying
"Help." In addition to displaying the help menu discussed above a custom spoken text-to-
speech response can be spoken to the user.

SetGlobalProperties setGlobalProperties = new SetGlobalProperties();
setGlobalProperties.setHelpPrompt(Collections.singletonList(new TTSChunk(
, SpeechCapabilities. TEXT)));
setGlobalProperties.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {

// The help prompt is updated
} else {

// Handle Error
}

}
i
sdIManager.sendRPC(setGlobalProperties);

Configuring the Timeout Prompt

If you display any sort of popup menu or modal interaction that has a timeout — such as
an alert, interaction, or slider — you can create a custom text-to-speech response that will

be spoken to the user in the event that a timeout occurs.

SetGlobalProperties setGlobalProperties = new SetGlobalProperties();
setGlobalProperties.setTimeoutPrompt(Collections.singletonList(new
TTSChunk(, SpeechCapabilities. TEXT)));
setGlobalProperties.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {

// The timeout prompt is updated
} else {

// Handle Error
}

}

i
sdIManager.sendRPC(setGlobalProperties);

Clearing Help Menu and Prompt
Customizations

You can also reset your customizations to the help menu or spoken prompts. To do so,
you will send a ResetGlobalProperties RPC with the fields that you wish to clear.

// Reset the help menu

ResetGlobalProperties resetGlobalProperties = new
ResetGlobalProperties(Arrays.asList(GlobalProperty.VRHELPITEMS,
GlobalProperty.VRHELPTITLE));

// Reset the menu icon and title

ResetGlobalProperties resetGlobalProperties = new
ResetGlobalProperties(Arrays.asList(GlobalProperty. MENUICON,
GlobalProperty. MENUNAME));

// Reset spoken prompts

ResetGlobalProperties resetGlobalProperties = new
ResetGlobalProperties(Arrays.asList(GlobalProperty. HELPPROMPT,
GlobalProperty. TIMEOUTPROMPT));

// To send any one of these, use the typical format:
resetGlobalProperties.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {
// The global properties are reset
} else {
// Handle Error
}

}
});
sdIManager.sendRPC(resetGlobalProperties);

Playing Spoken Feedback

Since your user will be driving while interacting with your SDL app, speech phrases can
provide important feedback to your user. At any time during your app's lifecycle you can
send a speech phrase using the Speak request and the head unit's text-to-speech (TTS)
engine will produce synthesized speech from your provided text.

When using the Speak RPC, you will receive a response from the head unit once the
operation has completed. From the response you will be able to tell if the speech was
completed, interrupted, rejected or aborted. It is important to keep in mind that a speech
request can interrupt another ongoing speech request. If you want to chain speech

requests you must wait for the current speech request to finish before sending the next
speech request.

O NOTE
On Manticore, spoken feedback works best in Google Chrome, Mozilla
Firefox, or Microsoft Edge. Spoken feedback does not work in Apple Safari
at this time.

Creating the Speak Request

The speech request you send can simply be a text phrase, which will be played back in
accordance with the user's current language settings, or it can consist of phoneme
specifications to direct SDL's TTS engine to speak a language-independent, speech-
sculpted phrase. It is also possible to play a pre-recorded sound file (such as an MP3)
using the speech request. For more information on how to play a sound file please refer to
Playing Audio Indications.

Getting the Supported Speech Capabilities

Once you have successfully connected to the module, you can access supported speech
capabilities properties on the sdIManager.getSystemCapabilityManager() instance.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/speech-and-audio/playing-audio-indications/
https://smartdevicelink.com/resources/manticore/

sdIManager.getSystemCapabilityManager().getCapability(SystemCapability Type.SPEE
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
List<SpeechCapabilities> speechCapabilities = (List<SpeechCapabilities>)
capability;
}

@Override
void (String info) {
// Handle error

}
}, false);

Below is a list of commonly supported speech capabilities.

Text Text phrases
SAPI Phonemes Microsoft speech synthesis API
File A pre-recorded sound file

Creating Different Types of Speak Requests

Once you know what speech capabilities are supported by the module, you can create the
speak requests.

TEXT PHRASE

TTSChunk ttsChunk = new TTSChunk(, SpeechCapabilities. TEXT);

List<TTSChunk> ttsChunkList = Collections.singletonList(ttsChunk);
Speak speak = new Speak(ttsChunkList);

SAPI PHONEMES PHRASE

TTSChunk ttsChunk = new TTSChunk(
SpeechCapabilities.SAPI_PHONEMES);

)

List<TTSChunk> ttsChunkList = Collections.singletonList(ttsChunk);
Speak speak = new Speak(ttsChunkList);

Sending the Speak Request

speak.setOnRPCResponseListener(new OnRPCResponselListener() {
@Override
void (int correlationld, RPCResponse response) {
SpeakResponse speakResponse = (SpeakResponse) response;
if (IspeakResponse.getSuccess()){
switch (speakResponse.getResultCode()){

case DISALLOWED:

DebugTool.loginfo(TAG,
);

break;

case REJECTED:
DebugTool.loginfo(TAG,
break;

case ABORTED:
DebugTool.loginfo(TAG,

);

break;

default:
DebugTool.loginfo(TAG,

}

return;

}
DebugTool.loginfo(TAG,

}
};
sdIManager.sendRPC(speak);

Playing Audio Indications (RPC
v5.0+)

You can pass an uploaded audio file's name to TTSChunk , allowing any API that takes a
text-to-speech parameter to pass and play your audio file. A sports app, for example, could
play a distinctive audio chime to notify the user of a score update alongside an Alert
request.

NOTE

On Manticore, audio indications work best in Google Chrome, Mozilla
Firefox, or Microsoft Edge. Audio indications do not work in Apple Safari at
this time.

Uploading the Audio File

The first step is to make sure the audio file is available on the remote system. To upload
the file use the FileManager .

SdIFile audioFile = new SdIFile(, FileType.AUDIO_MP3, fileUri, true);
sdIManager.getFileManager().uploadFile(audioFile, new CompletionListener() {
@Override

void (boolean success) {

For more information about uploading files, see the Uploading Files guide.

Using the Audio File

Now that the file is uploaded to the remote system, it can be used in various RPCs, such
as Speak , Alert,and AlertManeuver . To use the audio file in an alert, you simply need

to construct a TTSChunk referring to the file's name.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/uploading-files/
https://smartdevicelink.com/resources/manticore/

Alert alert = new Alert()
.setAlertText1()
.setAlertText2()
.setDuration(5000)

.setTtsChunks(Arrays.asList(new TTSChunk(
SpeechCapabilities.FILE)));
sdIManager.sendRPC(alert);

Setting Up Voice Commands

Voice commands are global commands available anywhere on the head unit to users of
your app. Once the user has opened your SDL app (i.e. your SDL app has left the HMI state
of NONE) they have access to the voice commands you have setup. Your app will be
notified when a voice command has been triggered even if the SDL app has been
backgrounded.

NOTE

v

The head unit manufacturer will determine how these voice commands are

triggered, and some head units will not support voice commands.

NOTE

On Manticore, voice commands are viewed and activated by a tab in the right
hand section, not through a microphone.

https://smartdevicelink.com/resources/manticore/

You have the ability to create voice command shortcuts to your Main Menu cells which we
highly recommended that you implement. Global voice commands should be created for
functions that you wish to make available as voice commands that are not available as
menu cells. We recommend creating global voice commands for common actions such

as the actions performed by your Soft Buttons.

Creating Voice Commands

To create voice commands, you simply create and set VoiceCommand objects to the v

oiceCommands List on the screen manager.

VoiceCommand voiceCommand = new
VoiceCommand(Collections.singletonList(
VoiceCommandSelectionListener() {
@Override
void 0 {
// Handle the VoiceCommand's Selection
}
b

sdIManager.getScreenManager().setVoiceCommands(Collections.singletonList(voice

Unsupported Voice Commands

The library automatically filters out empty strings and whitespace-only strings from a
voice command's list of strings. For example, if a voice command has the following list

values: ["","CommandA", ", "Command A"] the library will filter it to: ["CommandA", "Co

mmand A"] .

If you provide a list of voice commands which only contains empty string and whitespace-
only strings across all of the voice commands, the upload request will be aborted and the
previous voice commands will remain available.

Duplicate Strings in Voice Commands

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/main-menu/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/template-custom-buttons/

DUPLICATES BETWEEN DIFFERENT COMMANDS

Voice commands that are sent with duplicate strings in different voice commands, such
as:

Command1: ["Command A",

Command B'"],

Command2: ["Command B", "Command C"],

Command3: ["Command D", "Command E"]

Then the manager will abort the upload request. The previous voice commands will
remain available.

DUPLICATES IN THE SAME COMMAND

If any individual voice command contains duplicate strings, they will be reduced to one.

For example, if the voice commands to be sent are:

Command1: ['Command A",

Command A", "Command B'"],

Command D"]

Command2: ["Command C",

Then the manager will strip the duplicates to:

Command1: ["Command A",

Command B'"],
Command D"]

Command2: ["Command C",

Deleting Voice Commands

To delete previously set voice commands, you just have to set an empty List to the voice

Commands List on the screen manager.

sdIManager.getScreenManager().setVoiceCommands(Collections.

<VoiceCommand>emptyList());

NOTE
Setting voice command strings composed only of whitespace characters

will be considered invalid (e.g. "") and your request will be aborted by the

module.

Using RPCs

If you wish to do this without the aid of the screen manager, you can create AddComman
d objects without the menuParams parameter to create global voice commands.

Getting Microphone Audio

Capturing in-car audio allows developers to interact with users by requesting raw audio
data provided to them from the car's microphones. In order to gather the raw audio from

the vehicle, you must leverage the PerformAudioPassThru RPC.

SDL does not support automatic speech cancellation detection, so if this feature is
desired, it is up to the developer to implement. The user may press an "OK" or "Cancel"
button, the dialog may timeout, or you may close the dialog with EndAudioPassThru .

O NOTE
SDL does not support an open microphone. However, SDL is working on
wake-word support in the future. You may implement a voice command and
start an audio pass thru session when that voice command occurs.

=1

NOTE

Manticore does not currently support the PerformAudioPassThru RPC
used for getting microphone audio.

Starting Audio Capture

Before you start an audio capture session you need to find out what audio pass thru
capabilities the module supports. You can then use that information to start an audio pass
thru session.

Getting the Supported Capabilities

You must use a sampling rate, bit rate, and audio type supported by the module. Once you
have successfully connected to the module, you can access these properties on the sdlM
anager.getSystemCapabilityManager instance.

https://smartdevicelink.com/resources/manticore/
https://smartdevicelink.com/resources/manticore/#support-notes

sdIManager.getSystemCapabilityManager().getCapability(SystemCapability Type.AUDI
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
List<AudioPassThruCapabilities> audioPassThruCapabilities =
(List<AudioPassThruCapabilities>) capability;
}

@Override
void (String info) {
// Handle Error

}
}, false);

The module may return one or multiple supported audio pass thru capabilities. Each
capability will have the following properties:

Sampling Rate samplingRate The sampling rate
Bits Per Sample bitsPerSample The sample depth in bits
Audio Type audioType The audio type

Sending the Audio Capture Request

To initiate audio capture, first construct a PerformAudioPassThru request.

TTSChunk initialPrompt = new TTSChunk(
, SpeechCapabilities. TEXT);

PerformAudioPassThru audioPassThru = new PerformAudioPassThru()
.setAudioPassThruDisplayText1()
.setAudioPassThruDisplayText2()
.setlnitialPrompt(Arrays.asList(initial Prompt))
.setSamplingRate(SamplingRate._22KHZ)

.setMaxDuration(7000)
.setBitsPerSample(BitsPerSample._16_BIT)
.setAudio Type(Audio Type.PCM)
.setMuteAudio(false);

audioPassThru.setOnRPCResponseListener(new OnRPCResponseListener() {

@Override
void (int correlationld, RPCResponse response) {
switch (response.getResultCode()) {

case SUCCESS:
// The audio pass thru ended successfully. Process the audio data

case ABORTED:
// The audio pass thru was aborted by the user. You should cancel any

usage of the audio data.

default:

// Some other error occurred. Handle the error.

sdIManager.sendRPC(audioPassThru);

RPC Builder

Ask me "What's the weather?"
or "What's 1 + 27"

Cancel

Gathering Audio Data

SDL provides audio data as fast as it can gather it and sends it to the developer in chunks.
In order to retrieve this audio data, the developer must observe the OnAudioPassThru
notification.

NOTE

This audio data is only the current chunk of audio data, so the appis in

charge of saving previously retrieved audio data.

sdIManager.addOnRPCNotificationListener(FunctionID.ON_AUDIO_PASS_THRU, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {

OnAudioPassThru onAudioPassThru = (OnAudioPassThru) notification;
byte[] dataRcvd = onAudioPassThru.getAPTData();
// Do something with current audio data
}
b

FORMAT OF AUDIO DATA

The format of audio data is described as follows:

e It does not include a header (such as a RIFF header) at the beginning.

e The audio sample is in linear PCM format.

e The audio data includes only one channel (i.e. monaural).

e For bit rates of 8 bits, the audio samples are unsigned. For bit rates of 16 bits, the
audio samples are signed and are in little-endian.

Ending Audio Capture

PerformAudioPassThru is a request that works in a different way than other RPCs. For
most RPCs, a request is followed by an immediate response, with whether that RPC was
successful or not. This RPC, however, will only send out the response when the audio pass
thru has ended.

Audio capture can be ended four ways:
1. The audio pass thru has timed out.

o If the audio pass thru surpasses the timeout duration, this request will be
ended with a resultCode of SUCCESS. You should handle the audio pass thru
as though it was successful.

2. The audio pass thru was closed due to user pressing "Cancel" (or other head-unit
provided cancellation button).

o If the audio pass thru was displayed, and the user pressed the "Cancel" button,
you will receive a resultCode of ABORTED. You should ignore the audio pass
thru.

3. The audio pass thru was closed due to user pressing "Done" (or other head-unit

provided completion button).

o If the audio pass thru was displayed and the user pressed the "Done" button,
you will receive a resultCode of SUCCESS. You should handle the audio pass
thru as though it was successful.

4. The audio pass thru was ended due to a request from the app for it to end.

o If the audio pass thru was displayed, but you have established on your own
that you no longer need to capture audio data, you can send an EndAudioPass
Thru RPC. You will receive a resultCode of SUCCESS. Depending on the
reason that you sent the EndAudioPassThru RPC, you can choose whether or
not to handle the audio pass thru as though it were successful. See Manually

Stopping Audio Capture below for more details.

Manually Stopping Audio Capture

To force stop audio capture, simply send an EndAudioPassThru request. Your PerformA
udioPassThru request will receive response with a resultCode of SUCCESS when the

audio pass thru has ended.

EndAudioPassThru endAudioPassThru = new EndAudioPassThru();
endAudioPassThru.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess())) {
// There was an error sending the end audio pass thru
return;

}

// The end audio pass thru was sent successfully

}
N

sdIManager.sendRPC(endAudioPassThru);

Handling the Response

To process the response received from an ended audio capture, make sure that you are
listening to the PerformAudioPassThru response. If the response has a successful
result, all of the audio data for the audio pass thru has been received and is ready for

processing.

Batch Sending RPCs

There are two ways to send multiple requests to the head unit: concurrently and
sequentially. Which method you should use depends on the type of RPCs being sent.
Concurrently sent requests might finish in a random order and should only be used when
none of the requests in the group depend on the response of another, such as when
subscribing to several hard buttons. Sequentially sent requests only send the next request
in the group when a response has been received for the previously sent RPC. Requests
should be sent sequentially when you need to know the result of a previous request before
sending the next, like when sending the several different requests needed to create a
menu.

Both methods have optional listener that is specific to them, the OnMultipleRequestListe
ner . This listener will provide more information than the normal OnRPCResponseListen
er .

Sending Concurrent Requests

When you send multiple RPCs concurrently, it will not wait for the response of the previous
RPC before sending the next one. Therefore, there is no guarantee that responses will be
returned in order, and you will not be able to use information sent in a previous RPC for a
later RPC.

SubscribeButton subscribeButtonLeft = new
SubscribeButton(ButtonName.SEEKLEFT);
SubscribeButton subscribeButtonRight = new
SubscribeButton(ButtonName.SEEKRIGHT);
sdIManager.sendRPCs(Arrays.asList(subscribeButtonLeft, subscribeButtonRight),
new OnMultipleRequestListener() {

@Override

void (int remainingRequests) {

}

@Override
void

}

@Override
void (int correlationld, RPCResponse response) {

Sending Sequential Requests

Requests sent sequentially are sent in a set order. The next request is only sent when a

response has been received for the previously sent request.

The code example below shows how to create a perform interaction choice set. When
creating a perform interaction choice set, the Performinteraction RPC can only be sent
after the CreatelnteractionChoiceSet RPC has been registered by Core, which is why the

requests must be sent sequentially.

int choiceld = 111, choiceSetld = 222;
Choice choice = new Choice(choiceld,);
CreatelnteractionChoiceSet createlnteractionChoiceSet = new
CreatelnteractionChoiceSet(choiceSetld, Collections.singletonList(choice));
Performinteraction performinteraction = new Performinteraction(
InteractionMode.MANUAL_ONLY, Collections.singletonList(choiceSetld));
sdIManager.sendSequentialRPCs(Arrays.asList(createlnteractionChoiceSet,
performinteraction), new OnMultipleRequestListener() {

@Override

void (inti){

}

@Override
void

}

@Override
void (int i, RPCResponse rpcResponse) {

Retrieving Vehicle Data

You can use the GetVehicleData and SubscribeVehicleData RPC requests to get
vehicle data. Each vehicle manufacturer decides which data it will expose and to whom
they will expose it. Please check the response from Core to find out which data you will
have permission to access. Additionally, be aware that the user may have the ability to
disable vehicle data access through the settings menu of their head unit. It may be

possible to access vehicle data when the hmilLevel is NONE (i.e. the user has not

opened your SDL app) but you will have to request this permission from the vehicle

manufacturer.

O NOTE
You will only have access to vehicle data that is allowed to your appName
and appld combination. Permissions will be granted by each OEM
separately. See Understanding Permissions for more details.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/understanding-permissions/

Acceleration
Pedal

Position

Airbag Status

Belt Status

Body

Information

Climate Data

accPedalPositio

n

airbagStatus

beltStatus

bodyInformatio

n

climateData

Accelerator
pedal position
(percentage

depressed)

Status of each

of the airbagsin
the vehicle: yes,
no, no event, not

supported, fault

The status of
each of the seat
belts: no, yes,
not supported,

fault, or no event

Door ajar status
for each door.
Roof status.
Trunk & hood
Status. The
Ignition status.
The ignition
stable status.
The park brake

active status

Information
about cabin
temperature,
atmospheric
pressure, and
external

temperature

RPC v7.1+

Cloud App
Vehicle Id

Cluster Mode
Status

cloudAppVehicl
elD

clusterModeStat

us

Theid for the
vehicle when

connecting to
cloud

applications

Whether or not
the power mode
is active. The
power mode
qualification
status: power
mode undefined,
power mode
evaluation in
progress, not
defined, power
mode ok. The
car mode status:
normal, factory,
transport, or
crash. The
power mode
status: key out,
key recently out,
key approved,
post accessory,
accessory, post
ignition, ignition
on, running,

crank

RPC v5.1+

Device Status

Driver

Braking

deviceStatus

driverBraking

Contains
information
about the
smartphone
device. Is voice
recognition on
or off, has a
bluetooth
connection been
established, is a
call active, is the
phonein
roaming mode,
is a text
message
available, the
battery level, the
status of the
mono and
stereo output
channels, the
signal level, the
primary audio
source, whether
ornot an
emergency call
is currently

taking place

The status of the
brake pedal: yes,
no, no event,
fault, not

supported

E-Call

Information

Electronic
Parking
Brake Status

Emergency

event

eCallinfo

electronicParkin

gBrakeStatus

emergencyEvent

Information
about the status
of an emergency

call

The status of the
electronic
parking brake.
Available states:
closed,
transition, open,

drive active, fault

The type of
emergency:
frontal, side, rear,
rollover, no
event, not
supported, fault.
Fuel cutoff
status: normal
operation, fuel is
cut off, fault. The
roll over status:
yes, no, no event,
not supported,
fault. The
maximum
changein
velocity. Whether
or not multiple
emergency
events have

occurred

RPC v5.0+

Engine Oil
Life

Engine

Torque

External

Temperature

Fuel Level

Fuel Level
State

Fuel Range

engineOQilLife

engineTorque

externalTempera

ture

fuelLevel

fuelLevel_State

fuelRange

The estimated
percentage (0% -
100%) of
remaining oil life

of the engine

Torque value for
engine (in Nm)
on non-diesel

variants

The external
temperature in

degrees celsius

The fuel level in
the tank

(percentage)

The fuel level
state: Unknown,
Normal, Low,
Fault, Alert, or

Not Supported

The estimate
range in KM the
vehicle can
travel based on
fuel level and
consumption.
As of RPC 7.0,
this also
contains Fuel
Level and Fuel
Level State

information.

RPC v5.0+

RPC v5.0+

RPC v7.1

RPC v7.0

RPC v7.0

Gear Status

GPS

Hands Off
Steering

gearStatus

gps

handsOffSteerin
g

Includes
information
about the
transmission,
the user's RPC v7.0+
selected gear,

and the actual

gear of the

vehicle.

Longitude and
latitude, current
time in UTC,
degree of
precision,
altitude,
heading, speed,
satellite data vs
dead reckoning,
and supported
dimensions of

the GPS

Status of hands
on steering

RPC v7.0+
wheels

capability

Head Lamp
Status

Instant Fuel

Consumption

My Key

Odometer

headLampStatu

S

instantFuelCons

umption

myKey

odometer

Status of the
head lamps:
whether or not
the low and high
beams are on or
off. The ambient
light sensor
status: night,
twilight 1,
twilight 2,
twilight 3,
twilight 4, day,

unknown, invalid

The
instantaneous
fuel
consumption in

microlitres

Information
about whether
or not the
emergency 911
override has

been activated

Odometer

reading in km

PRNDL

RPM

Seat

Occupancy

Speed

Stability
Control

Status

Steering
Wheel Angle

prndl

mnm

seatOccupancy

speed

stabilityControls
Status

steeringWheel A

ngle

The selected
gear thecaris
in: park, reverse,
neutral, drive,
sport, low gear,
first, second,
third, fourth,
fifth, sixth,
seventh or
eighth gear,
unknown, or

fault

The number of
revolutions per
minute of the

engine

The status of the
seats that show
whether each
seat is occupied
and belted or

not

Speed in KPH

Status of the
vehicle's stability
control and
trailer sway

control

Current angle of
the steering
wheel (in

degrees)

RPC v7.1+

RPC v7.0+

RPC v7.0

Tire Pressure

Turn Signal

VIN

Window
Status

tirePressure

turnSignal

vin

windowStatus

Tire status of
each wheel in
the vehicle:
normal, low,
fault, alert, or not
supported.
Warning light
status for the
tire pressure: off,
on, flash, or not

used

The status of the
turn signal.
Available states: RPC v5.0+
off, left, right,

both

The Vehicle
Identification

Number

An array of
window
locations and RPC v7.0+
approximate

position

The status of the
wipers: off,
automatic off,
off moving,
manual
interaction off,
manual
interaction on,
Wiper Status wiperStatus manual low,
manual high,
manual flick,
wash, automatic
low, automatic
high, courtesy
wipe, automatic
adjust, stalled,

no data exists

One-Time Vehicle Data Retrieval

To get vehicle data a single time, use the GetVehicleData RPC.

GetVehicleData vdRequest = new GetVehicleData()
.setGearStatus(true);
vdRequest.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {
GearStatus gearStatus = ((GetVehicleDataResponse)

response).getGearStatus();
DebugTool.loglnfo(+ gearStatus.toString());
} else {
DebugTool.loglnfo();
}
}

i
sdIManager.sendRPC(vdRequest);

Subscribing to Vehicle Data

Subscribing to vehicle data allows you to get notifications whenever new data is available.
You should not rely upon getting this data in a consistent manner. New vehicle data is

available roughly every second but notification timing can vary between modules.

First, you should add a notification listener for the OnVehicleData notification:

sdIManager.addOnRPCNotificationListener(FunctionID.ON_VEHICLE_DATA, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnVehicleData onVehicleDataNotification = (OnVehicleData) notification;

if (onVehicleDataNotification.getGearStatus() != null) {
DebugTool.loginfo() =
onVehicleDataNotification.getGearStatus());

}
}
D

Second, send the SubscribeVehicleData request:

SubscribeVehicleData subscribeRequest = new SubscribeVehicleData()
.setGearStatus(true);
subscribeRequest.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {
DebugTool.loginfo(
} else {
DebugTool.loginfo(

1

i
sdIManager.sendRPC(subscribeRequest);

Third, the onNotified method will be called when there is an update to the subscribed
vehicle data.

Unsubscribing from Vehicle Data

We suggest that you only subscribe to vehicle data as needed. To stop listening to
specific vehicle data use the UnsubscribeVehicleData RPC.

UnsubscribeVehicleData unsubscribeRequest = new UnsubscribeVehicleData()
.setGearStatus(true); / unsubscribe to GearStatus data
unsubscribeRequest.setONRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {
DebugTool.loginfo(

} else {
DebugTool.loginfo(

1

N

sdIManager.sendRPC(unsubscribeRequest);

OEM-Specific Vehicle Data

OEM applications can access additional vehicle data published by their systems that is
not available via the SDL vehicle data APIs. This data is accessed using the same SDL
vehicle data RPCs, but instead of requesting a certain type of SDL-specified data, you must
request data using a custom vehicle data name. The type of object returned is up to the

OEM and must be parsed manually.

NOTE

This feature is only for OEM-created applications and is not permitted for

3rd-party use.

Requesting One-Time OEM-Specific Vehicle Data

Below is an example of requesting a custom piece of vehicle data with the name OEM-X-
Vehicle-Data . To adapt this for subscriptions instead, you must look at the section
Subscribing to Vehicle Data above and adapt the example for subscribing to custom
vehicle data based on what you see in the examples below.

GetVehicleData vdRequest = new GetVehicleData()
.setOEMCustomVehicleData(, true);
vdRequest.setONRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {
Object CustomData = ((GetVehicleDataResponse)

response).getOEMCustomVehicleData(
} else {
DebugTool.loginfo(

}
}

});
sdIManager.sendRPC(vdRequest);

Remote Control Vehicle Features

The remote control framework allows apps to control modules such as climate, radio,

seat, lights, etc., within a vehicle. Newer head units can support multi-zone modules that

allow customizations based on seat location.

@ NOTE
If you are using this feature in your app, you will most likely need to request
permission from the vehicle manufacturer. Not all head units support the
remote control framework and only the newest head units will support multi-
zone modules.

Why Use Remote Control?

Consider the following scenarios:

e A radio application wants to use the in-vehicle radio tuner. It needs the functionality
to select the radio band (AM/FM/XM/HD/DAB), tune the radio frequency or change
the radio station, as well as obtain general radio information for decision making.

e A climate control application needs to turn on the AC, control the air circulation
mode, change the fan speed and set the desired cabin temperature.

o A user profile application wants to remember users' favorite settings and apply it
later automatically when the users get into the same/another vehicle.

Supported Modules

Currently, the remote control feature supports these modules:

REMOTE CONTROL MODULES RPC VERSION

Climate v4.5+
Radio v4.5+
Seat v5.0+
Audio v5.0+
Light v5.0+
HMI Settings v5.0+

The following table lists which items are in each control module.

CLIMATE

Climate

Enable

Current
Cabin
Temperat

ure

Desired
Cabin
Temperat

ure

AC
Setting

AC MAX
Setting

Air
Recirculat
ion

Setting

climateEnab

le

currentTemp

erature

desiredTemp

erature

acEnable

acMaxEnabl

@

circulateAirE

nable

on, off

N/A

N/A

on, off

on, off

on, off

Get/Set/Noti

fication

Get/Notificat

ion

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Enabled to
turn on the
climate
system,
Disabled to
turn off the
climate
system. All
other climate
items need
climate
enabled to

work.

Read only,
value range
depends on
OEM

Value range
depends on
OEM

Since v6.0

Since v4.5

Since v4.5

Since v4.5

Since v4.5

Since v4.5

Auto AC
Mode
Setting

Defrost
Zone

Setting

Dual
Mode
Setting

Fan
Speed
Setting

Ventilatio
n Mode
Setting

Heated
Steering
Wheel
Enabled

Heated
Windshiel
d Enabled

Heated
Rear
Window
Enabled

autoModeEn

able

defrostZone

dualModeEn

able

fanSpeed

ventilationM

ode

heatedSteeri
ngWheelEna
ble

heatedWind
shieldEnable

heatedRear
WindowEna
ble

on, off

front, rear,

all, none

on, off

0%-100%

upper, lower,

both, none

on, off

on, off

on, off

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Since v4.5

Since v4.5

Since v4.5

Since v4.5

Since v4.5

Since v5.0

Since v5.0

Since v5.0

CONTR
oL
ITEM

Heated
Mirrors
Enabled

RADIO

RPC
ITEM
NAME

heatedMirror

sEnable

VALUE
RANGE

on, off

TYPE

Get/Set/Noti

fication

RPC

COMMEN VERSIO
TS -
CHANG
ES
Since v5.0

Radio
Enabled

Radio
Band

Radio
Frequenc

y

Radio
RDS Data

Available
HD

Channels

Available
HD
Channels
(DEPREC
ATED)

radioEnable

band

frequencyint
eger /
frequencyFr

action

rdsData

availableHd

Channels

availableHD

true, false

AM, FM, XM

0-1710,0-9

RdsData

struct

Array size 0-

8, values 0-7

1-7

(Deprecated
in v6.0) (1-3
before v5.0)

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Notificat

ion

Get/Notificat

ion

Get/Notificat

ion

Read only, all
other radio
control items
need radio
enabled to

work

Valuerange
depends on
band

Read only

Read only

Read only

Since v4.5

Since v4.5

Since v4.5

Since v4.5

Since
v6.0,
replaces
available

HDs

Since
v4.5,
updated
inv5.0,
deprecate

dinve6.0

Current
HD

Channel

Radio
Signal
Strength

Signal
Change
Threshold

Radio
State

SIS Data

SEAT

hdChannel

signalStreng
th

signalStreng

thThreshold

state

sisData

0-7 (13
before v.5.0)
(1-7 between
v.5.0-6.0)

0-100%

0-100%

Acquiring,
acquired,
multicast,

not_found

SisData

struct

Get/Set/Noti

fication

Get/Notificat

ion

Get/Notificat

ion

Get/Notificat

ion

Get/Notificat

ion

Read only

Read only

Read only

Read only

Since
v4.5,
updated
in v5.0,
updated
inv6.0

Since v4.5

Since v4.5

Since v4.5

Since v5.0

Seat
Heating
Enabled

Seat
Cooling
Enabled

Seat
Heating

level

Seat
Cooling

level

Seat

Horizonta

| Position

heatingEnab
led

coolingEnab
led

heatingLevel

coolingLevel

horizontalPo

sition

Get/Set/Noti
true, false

fication

Get/Set/Noti
true, false

fication

Get/Set/Noti
0-100%

fication

Get/Set/Noti
0-100%

fication

Get/Set/Noti
0-100%)

fication

Indicates
whether
heating is
enabled for a

seat

Indicates
whether
cooling is
enabled for a

seat

Level of the

seat heating

Level of the

seat cooling

Adjust a seat
forward/bac
kward, 0
means the
nearest
position to
the steering
wheel, 100%
means the
furthest
position
from the
steering

wheel

Since v5.0

Since v5.0

Since v5.0

Since v5.0

Since v5.0

Seat
] verticalPositi
Vertical 0-100%
on
Position
Seat-
Front frontVertical
) - 0-100%
Vertical Position
Position

Get/Set/Noti

fication

Get/Set/Noti

fication

Adjust seat
height (up or
down) in
case there is
only one
actuator for
seat height, Since v5.0
0 means the

lowest

position,

100% means

the highest

position

Adjust seat

front height

(in case

there are two
actuators for

seat height),)
SN Since v5.0
lowest

position,

100% means

the highest

position

Seat-Back
Vertical

Position

Seat Back
Tilt Angle

backVertical

Position

backTiltAngl

€

0-100%

0-100%

Get/Set/Noti

fication

Get/Set/Noti

fication

Adjust seat
back height
(in case
there are two
actuators for
seat height),
0 means the
lowest
position,
100% means
the highest

position

Backrest
recline, 0
means the
angle that
back top is
nearest to
the steering
wheel, 100%
means the
angle that
back top is
furthest from
the steering

wheel

Since v5.0

Since v5.0

Head
Support
Horizonta

| Position

Head
Support
Vertical

Position

Seat
Massagin
g Enabled

Massage
Mode

headSupport
HorizontalP

osition

headSupport
VerticalPosit

ion

massageEn
abled

massageMo
de

0-100%

0-100%

true, false

MassageMo
deData

struct

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

Adjust head
support
forward/bac
kward, 0
means the
nearest
position to
the front,
100% means
the furthest
position
from the

front

Adjust head
support
height (up or
down), 0
means the
lowest
position,
100% means
the highest

position

Indicates
whether
massage is
enabled for a

seat

List of
massage
mode of

each zone

Since v5.0

Since v5.0

Since v5.0

Since v5.0

CONTR
oL
ITEM

Massage
Cushion

Firmness

Seat

memory

AUDIO

RPC
ITEM
NAME

massageCu
shionFirmne

SS

memory

VALUE
RANGE

MassageCus
hionFirmnes

s struct

SeatMemory

Action struct

TYPE

Get/Set/Noti

fication

Get/Set/Noti

fication

COMMEN
TS

List of
firmness of
each
massage

cushion

Seat

memory

RPC
VERSIO
N
CHANG
ES

Since v5.0

Since v5.0

Audio

Volume

Audio

Source

Keep

Context

Equalizer

Settings

volume 0%-100%
PrimaryAudi

source oSource
enum

keepContext true, false

equalizerSett EqualizerSet

ings tings struct

Get/Set/Noti

fication

Get/Set/Noti

fication

Set only

Get/Set/Noti

fication

The audio
source

volume level

Defines one
of the
available
audio

sources

Controls
whether the
HMI will keep
the current
application
context or
switch to the
default
media
Ul/APP
associated
with the

audio source

Defines the
list of
supported
channels
(band) and
their
current/desir
ed settings

on HMI

Since SDL
v5.0

Since SDL
v5.0

Since SDL
v5.0

Since SDL
v5.0

LIGHT

CONTR
oL
ITEM

Light
State

RPC
ITEM
NAME

lightState

HMI SETTINGS

CONTR
oL
ITEM

Display
Mode

Distance

Unit

Temperat

ure Unit

RPC
ITEM
NAME

displayMode

distanceUnit

temperature
Unit

VALUE
RANGE

Array of
LightState

struct

VALUE
RANGE

Day, Night,
Auto

Miles,

Kilometers

Fahrenheit,

Celsius

TYPE

Get/Set/Noti

fication

TYPE

Get/Set/Noti

fication

Get/Set/Noti

fication

Get/Set/Noti

fication

COMMEN
TS

COMMEN
TS

Current
display
mode of the
HMI display

Distance
Unit used in
the HMI (for
maps/tracki
ng
distances)

Temperature
Unit used in

the HMI (for

temperature
measuring

systems)

RPC
VERSIO
N
CHANG
ES

Since SDL
v5.0

RPC
VERSIO
N
CHANG
ES

Since SDL

v5.0

Since SDL
v5.0

Since SDL
v5.0

Remote Control Button Presses

The remote control framework also allows mobile applications to send simulated button
press events for the following common buttons in the vehicle.

Climate

Radio

AC

AC MAX

RECIRCULATE

FAN UP

FAN DOWN

TEMPERATURE UP

TEMPERATURE DOWN

DEFROST

DEFROST REAR

DEFROST MAX

UPPERVENT

LOWERVENT

VOLUME UP

VOLUME DOWN

EJECT

SOURCE

SHUFFLE

REPEAT

Integration

For remote control to work, the head unit must support SDL RPC v4.4+. In addition, your
app's appHMIType mustinclude REMOTE_CONTROL .

Multiple Modules (RPC v6.0+)

Each module type can have multiple modules in RPC v6.0+. In previous versions, only one
module was available for each module type. A specific module is controlled using the
unique id assigned to the module. When sending remote control RPCs to a RPC v6.0+
head unit, the modulelnfo.moduleld must be stored and provided to control the desired
module. If no moduleld is set, the HMI will use the default module of that module type.
When connected to <6.0 systems, the modulelnfo struct will be null , and only the
default module will be available for control.

Getting Remote Control Module Information

Prior to using any remote control RPCs, you must check that the head unit has the remote
control capability. As you will encounter head units that do not support remote control, or
head units that do not give your application permission to read and write remote control

data, this check is important.

NOTE

This check can be performed once your SDL app has left the HMI state of
NONE . More information on how to monitor the HMI status can be found
in the Understanding Permissions guide.

When connected to head units supporting RPC v6.0+, you should save this information for
future use. The moduleld contained within the modulelnfo struct on each capability is

necessary to control that module.

sdIManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SystemC
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
RemoteControlCapabilities remoteControlCapabilities =
(RemoteControlCapabilities) capability;
// Save the remote control capabilities

}

@Override
void (String info) {
// Handle Error
}
});

GETTING MODULE DATA LOCATION AND SERVICE AREAS
(RPC V6.0+)

With the saved remote control capabilities struct you can get the location of the each
module and the area that it services. This will map to the grid graphic below. This
information is useful for creating a custom Ul.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/understanding-permissions/#hmi-levels

NOTE

This data is only available when connected to SDL RPC v6.0+ systems. On
previous systems, only one module per module type was available, so the
module's location didn't matter. You will not be able to build a custom Ul for

those cases and should use a generic Ul instead.

// Get the first climate module's information
ClimateControlCapabilities firstClimateModule =
remoteControlCapabilities.getClimateControlCapabilities().get(0);

String climateModuleld = firstClimateModule.getModulelnfo().getModuleld();
Grid climateModuleLocation =
firstClimateModule.getModulelnfo().getModuleLocation();

You can also get an array of seats in the SeatLocationCapability.seats array. Each Seat
Location object within the seats array will have a grid parameter. The grid will tell

you the location of that particular seat in the vehicle (See the graphic below).

sdIManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SystemC
new OnSystemCapabilityListener() {
@Override
void (Object capability) {

SeatLocationCapability seatLocationCapability = (SeatLocationCapability)
capability;

if (seatLocationCapability.getSeats() != null &&
seatLocationCapability.getSeats().size() > 0){

List<SeatLocation> seats = seatLocationCapability.getSeats();

// Save seat location capabilities

}
}

@Override
void (String info) {
// Handle Error
}
3

The Grid

The grid system starts with the front left corner of the bottom level of the vehicle being

(col=0, row=0, level=0) . For example, assuming a vehicle manufactured for sale in the
United States with three seats in the backseat, (0, 0, 0) would be the drivers' seat. The
front passenger location would be at (2, 0, 0) and the rear middle seat would be at (1, 1,
0) . The colspan and rowspan properties tell you how many rows and columns that
module or seat takes up. The level property tells you how many decks the vehicle has
(i.e. a double-decker bus would have 2 levels).

Col+

[
i

- 1
(o,o,oju@,o,o)' |

Y -‘I

-‘r

\

I 01,0 (21,0) I

front passenger's
driver's seat: {col=0,

seat : {col=2,
row=0, level=0,

row=0, level=0,

row=0 colspan=1,
colspan=1,
rowspan=1,
rowspan=1,
levelspan=1}
levelspan=1}
rear-left seat : {col=0, rear-middle seat : rear-right seat :
row=1, level=0, {col=1, row=1, level=0, {col=2, row=1,
row=1 colspan=1, colspan=1, level=0, colspan=1,
rowspan=1, rowspan=1, rowspan=1,
levelspan=1} levelspan=1} levelspan=1}

Getting Module Data

Seat location does not affect the ability to get data from a module. Once you know you
have permission to use the remote control feature and you have moduleld s (when
connected to RPC v6.0+ systems), you can retrieve the data for any module. The following

code is an example of how to subscribe to the data of a climate module.

When connected to head units that only support RPC versions older than v6.0, there can
only be one module for each module type (e.g. there can only be one climate module, light
module, radio module, etc.), so you will not need to pass a moduleld .

SUBSCRIBING TO MODULE DATA

You can either subscribe to module data or receive it one time. If you choose to subscribe
to module data you will receive continuous updates on the vehicle data you have
subscribed to.

NOTE

Subscribing to the OninteriorVehicleData notification must be done before
sending the GetlInteriorVehicleData request.

sdIManager.addOnRPCNotificationListener(FunctionID.ON_INTERIOR_VEHICLE_DATA
new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnlnteriorVehicleData onlinteriorVehicleData = (OnInteriorVehicleData)
notification;
if (onInteriorVehicleData != null){

// NOTE: If you subscribe to multiple modules, all the data will be sent here.
You will have to

// split it out based on
“oninteriorVehicleData.getModuleData().getModuleType()® yourself.

// Code

}
}

b

After you subscribe to the InteriorVehicleDataNotification you must also subscribe to
the module you wish to receive updates for. Subscribing to a module will send a

notification when that particular module is changed.
RPC <v6.0

GetlnteriorVehicleData getinteriorVehicleData = new
GetlnteriorVehicleData(ModuleType.CLIMATE)
.setSubscribe(true);
getinteriorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
// This can now be used to retrieve data
<#Code#>

}
b
sdIManager.sendRPC(getinteriorVehicleData);

RPC v6.0+

GetlnteriorVehicleData getinteriorVehicleData = new
GetlnteriorVehicleData(ModuleType.CLIMATE)
.setModuleld(modulelD)
.setSubscribe(true);
getinteriorVehicleData.setONnRPCResponseListener(new OnRPCResponseListener() {
@Override

void (int correlationld, RPCResponse response) {
// This can now be used to retrieve data
// Code

}
});
sdIManager.sendRPC(getinteriorVehicleData);

After you subscribe to the InteriorVehicleDataNotification you must also subscribe to
the module you wish to receive updates for. Subscribing to a module will send a
notification when that particular module is changed.

GETTING ONE-TIME DATA

To get data from a module without subscribing send a GetlnteriorVehicleData request

with the subscribe flag setto false .
RPC < v6.0

GetlnteriorVehicleData interiorVehicleData = new
GetlnteriorVehicleData(ModuleType.CLIMATE);
interiorVehicleData.setOnRPCResponselListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
// This can now be used to retrieve data
// Code

}

i
sdIManager.sendRPC(interiorVehicleData);

RPC 6.0+

GetlInteriorVehicleData interiorVehicleData = new
GetInteriorVehicleData(ModuleType.CLIMATE)
.setModuleld();
interiorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override

void (int correlationld, RPCResponse response) {
// This can now be used to retrieve data
// Code

}

});
sdIManager.sendRPC(interiorVehicleData);

Setting Module Data

Not only do you have the ability to get data from these modules, but, if you have the right

permissions, you can also set module data.

SETTING THE USER'S SEAT (RPC V6.0+)

Before you attempt to take control of any module, you should have your user select their
seat location as this affects which modules they have permission to control. You may
wish to show the user a map or list of all available seats in your app in order to ask them
where they are located. See Getting Module Data Location and Service Areas for
information useful in creating a custom Ul showing module location and service area. The
following example is only meant to show you how to access the available data and not
how to build your Ul/UX.

When the user selects their seat, you must send an SetGlobalProperties RPC with the
appropriate userLocation property in order to update that user's location within the
vehicle (The default seat location is Driver).

SetGlobalProperties seatLocation = new SetGlobalProperties()
.setUserLocation(selectedSeat);

seatLocation.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override

void (int correlationld, RPCResponse response) {
// Seat location updated

}
N

sdIManager.sendRPC(seatLocation);

GETTING CONSENT TO CONTROL A MODULE (RPC V6.0+)

Some OEMs may wish to ask the driver for consent before a user can control a module.
The GetlnteriorVehicleDataConsent RPC will alert the driver in some OEM head units if
the module is not free (another user has control) and allowMultipleAccess (multiple
users can access/set the data at the same time) is true . The allowMultipleAccess
property is part of the modulelnfo in the module object.

Check the allowed property inthe GetlnteriorVehicleDataConsentResponse to see
what modules can be controlled. Note that the order of the allowed array is 1-1 with the
modulelds array you passed into the GetlInteriorVehicleDataConsent RPC.

NOTE

v

You should always try to get consent before setting any module data. If

consent is not granted you should not attempt to set any module's data.

GetinteriorVehicleDataConsent getinteriorVehicleDataConsent = new
GetlnteriorVehicleDataConsent(moduleType, modulelDs);
getinteriorVehicleDataConsent.setOnRPCResponseListener(new
OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {

GetlnteriorVehicleDataConsentResponse
getinteriorVehicleDataConsentResponse =
(GetInteriorVehicleDataConsentResponse) response;

List<Boolean> allowed =
getinteriorVehicleDataConsentResponse.getAllowances();

// Allowed is an array of true or false values

}
});
sdIManager.sendRPC(getiInteriorVehicleDataConsent);

CONTROLLING A MODULE

Below is an example of setting climate control data. It is likely that you will not need to
set all the data as in the code example below. When connected to RPC v6.0+ systems, you
must set the moduleld in SetinteriorVehicleData.setModuleData . When connected to <
v6.0 systems, there is only one module per module type, so you must only pass the type of
the module you wish to control.

When you received module information above in Getting Remote Control Module
Information on RPC v6.0+ systems, you received information on the location and servic
eArea of the module. The permission area of a module depends on that serviceArea .
The location of a module is like the seats array: it maps to the grid to tell you the
physical location of a particular module. The serviceArea maps to the grid to show how
far that module's scope reaches.

For example, a radio module usually serves all passengers in the vehicle, so its service
area will likely cover the entirety of the vehicle grid, while a climate module may only
cover a passenger area and not the driver or the back row. If a serviceArea is not
included, it is assumed that the serviceArea is the same as the module's location . If
neither is included, it is assumed that the serviceArea covers the whole area of the
vehicle. If a user is not sitting within the serviceArea 's grid , they will not receive

permission to control that module (attempting to set data will fail).
RPC < v6.0

Temperature temp = new Temperature(TemperatureUnit. FAHRENHEIT, 74.1f);

ClimateControlData climateControlData = new ClimateControlData()
.setAcEnable(true)
.setAcMaxEnable(true)
.setAutoModeEnable(false)
.setCirculateAirEnable(true)
.setCurrentTemperature(temp)
.setDefrostZone(DefrostZone.FRONT)
.setDualModeEnable(true)
.setFanSpeed(2)
.setVentilationMode(VentilationMode.BOTH)
.setDesiredTemperature(temp);

ModuleData moduleData = new ModuleData(ModuleType.CLIMATE)
.setClimateControlData(climateControlData);

SetInteriorVehicleData setInteriorVehicleData = new
SetInteriorVehicleData(moduleData);
setinteriorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
// Code

}

i
sdIManager.sendRPC(setInteriorVehicleData);

RPC 6.0+

Temperature temp = new Temperature(TemperatureUnit. FAHRENHEIT, 74.1f);

ClimateControlData climateControlData = new ClimateControlData()
.setAcEnable(true)
.setAcMaxEnable(true)
.setAutoModeEnable(false)
.setCirculateAirEnable(true)
.setCurrentTemperature(temp)
.setDefrostZone(DefrostZone.FRONT)
.setDualModeEnable(true)
.setFanSpeed(2)
.setVentilationMode(VentilationMode.BOTH)
.setDesiredTemperature(temp);

ModuleData moduleData = new ModuleData(ModuleType.CLIMATE)
.setModuleld(moduleld)
.setClimateControlData(climateControlData);

SetinteriorVehicleData setinteriorVehicleData = new
SetInteriorVehicleData(moduleData);
setInteriorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
// Code

}
});
sdIManager.sendRPC(setInteriorVehicleData);

BUTTON PRESSES

Another unique feature of remote control is the ability to send simulated button presses
to the associated modules, imitating a button press on the hardware itself. Simply specify

the module, the button, and the type of press you would like to simulate.
RPC < 6.0

ButtonPress buttonPress = new ButtonPress(ModuleType.CLIMATE,

ButtonName.EJECT, ButtonPressMode.SHORT);

buttonPress.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override

void (int correlationld, RPCResponse response) {
// Code
}

i
sdIManager.sendRPC(buttonPress);

RPC 6.0+

ButtonPress buttonPress = new ButtonPress(ModuleType.CLIMATE,
ButtonName.EJECT, ButtonPressMode.SHORT)
.setModuleld();
buttonPress.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override

void (int correlationld, RPCResponse response) {
// Code

}

i
sdIManager.sendRPC(buttonPress);

RELEASING THE MODULE (RPC V6.0+)

When the user no longer needs control over a module, you should release the module so
other users can control it. If you do not release the module, other users who would

otherwise be able to control the module may be rejected from doing so.

ReleaselnteriorVehicleDataModule releaselnteriorVehicleDataModule = new
ReleaselnteriorVehicleDataModule(<#ModuleType#>)

.setModuleld(modulelD);
releaselnteriorVehicleDataModule.setOnRPCResponseListener(new
OnRPCResponseListener() {

@Override
void (int correlationld, RPCResponse response) {
// Module Was Released
}
)

sdIManager.sendRPC(releaselnteriorVehicleDataModule);

Creating an App Service (RPC
v5.1+)

App services is a powerful feature enabling both a new kind of vehicle-to-app

communication and app-to-app communication via SDL.

App services are used to publish navigation, weather and media data (such as
temperature, navigation waypoints, or the current playlist name). This data can then be
used by both the vehicle head unit and, if the publisher of the app service desires, other
SDL apps.

Vehicle head units may use these services in various ways. One app service for each type
will be the "active" service to the module. For media, for example, this will be the media
app that the user is currently using or listening to. For navigation, it would be a navigation
app that the user is using to navigate. For weather, it may be the last used weather app, or
a user-selected default. The system may then use that service's data to perform various
actions (such as navigating to an address with the active service or to display the

temperature as provided from the active weather service).

An SDL app can also subscribe to a published app service. Once subscribed, the app will
be sent the new data when the app service publisher updates its data. To find out more
about how to subscribe to an app service check out the Using App Services guide.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/using-app-services/

Subscribed apps can also send certain RPCs and generic URI-based actions (see the
section Supporting Service RPCs and Actions below) to your service.

Currently, there is no high-level API support for publishing an app service, so you will have
to use raw RPCs for all app service related APIs.

Using an app service is covered in another guide.

App Service Types

Apps are able to declare that they provide an app service by publishing an app service
manifest. Three types of app services are currently available and more will be made
available over time. The currently available types are: Media, Navigation, and Weather. An

app may publish multiple services (one for each of the different service types) if desired.

Publishing an App Service

Publishing a service is a multi-step process. First, you need to create your app service
manifest. Second, you will publish your app service to the module. Third, you will publish
the service data using OnAppServiceData . Fourth, you must listen for data requests and
respond accordingly. Fifth, if your app service supports handling of RPCs related to your
service you must listen for these RPC requests and handle them accordingly. Sixth,
optionally, you can support URI-based app actions. Finally, if necessary, you can you
update or delete your app service manifest.

1. Creating an App Service Manifest

The first step to publishing an app service is to create an AppServiceManifest object.
There is a set of generic parameters you will need to fill out as well as service type
specific parameters based on the app service type you are creating.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/using-app-services/

AppServiceManifest manifest = new
AppServiceManifest(AppServiceType.MEDIA.toString())
.setServiceName() // Must be unique across app services.
.setServicelcon(new Image(, ImageType.DYNAMIC)) /
Previously uploaded service icon. This could be the same as your app icon.
.setAllowAppConsumers(true) / Whether or not other apps can view your data in
addition to the head unit. If set to “false’ only the head unit will have access to this

data.
.setRpcSpecVersion(new SdIMsgVersion(5,0)) / An *optional* parameter that
limits the RPC spec versions you can understand to the provided version *or below*.
.setHandledRpcs(List<FunctionID>) // If you add function ids to this *optional*
parameter, you can support newer RPCs on older head units (that don't support those
RPCs natively) when those RPCs are sent from other connected applications.
.setMediaServiceManifest(mediaManifest); // Covered Below

CREATING A MEDIA SERVICE MANIFEST

Currently, there's no information you have to provide in your media service manifest! You'll
just have to create an empty media service manifest and set it into your general app
service manifest.

MediaServiceManifest mediaManifest = new MediaServiceManifest();

manifest.setMediaServiceManifest(mediaManifest);

CREATING A NAVIGATION SERVICE MANIFEST

You will need to create a navigation manifest if you want to publish a navigation service.
You will declare whether or not your navigation app will accept waypoints. That is, if your
app will support receiving multiple points of navigation (e.g. go to this McDonalds, then
this Walmart, then home).

NavigationServiceManifest navigationManifest = new NavigationServiceManifest();

navigationManifest.setAcceptsWayPoints(true);
manifest.setNavigationServiceManifest(navigationManifest);

CREATING A WEATHER SERVICE MANIFEST

You will need to create a weather service manifest if you want to publish a weather
service. You will declare the types of data your service provides in its WeatherServiceDat
a.

WeatherServiceManifest weatherManifest = new WeatherServiceManifest()
.setCurrentForecastSupported(true)
.setMaxMultidayForecastAmount(10)

.setMaxHourlyForecastAmount(24)

.setMaxMinutelyForecastAmount(60)

.setWeatherForLocationSupported(true);
manifest.setWeatherServiceManifest(weatherManifest);

2. Publish Your Service

Once you have created your service manifest, publishing your app service is simple.

PublishAppService publishServiceRequest = new PublishAppService()
.setAppServiceManifest(manifest);
publishServiceRequest.setONRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {
// Use the response

} else {
// Error Handling

}

}

i
sdIManager.sendRPC(publishServiceRequest);

Once you have your publish app service response, you will need to store the information
provided in its appServiceRecord property. You will need the information later when you

want to update your service's data.

WATCHING FOR APP RECORD UPDATES

As noted in the introduction to this guide, one service for each type may become the
"active" service. If your service is the active service, your AppServiceRecord parameter

serviceActive will be updated to note that you are now the active service.

After the initial app record is passed to you in the PublishAppServiceResponse , you will
need to be notified of changes in order to observe whether or not you have become the
active service. To do so, you will have to observe the new SystemCapabilityType.APP_SE
RVICES using GetSystemCapability and OnSystemCapabilityUpdated .

For more information, see the Using App Services guide and go to the Getting and
Subscribing to Services section.

3. Update Your Service's Data

After your service is published, it's time to update your service data. First, you must send
an onAppServiceData RPC notification with your updated service data. RPC notifications

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/using-app-services/#getting-and-subscribing-to-services

are different than RPC requests in that they will not receive a response from the

connected head unit .

O NOTE

v

You should only update your service's data when you are the active service;
service consumers will only be able to see your data when you are the active

service.

First, you will have to create an MediaServiceData , NavigationServiceData or
WeatherServiceData object with your service's data. Then, add that service-specific data
object to an AppServiceData object. Finally, create an OnAppServiceData notification,
append your AppServiceData object, and send it.

MEDIA SERVICE DATA

MediaServiceData mediaData = new MediaServiceData()
.setMediaTitle()
.setMediaAtrtist()
.setMediaAlbum()
.setMedialmage(new Image(, ImageType.DYNAMIC))
.setPlaylistName(
.setlsExplicit(true)
.setTrackPlaybackProgress(45)
.setTrackPlaybackDuration(90)
.setQueuePlaybackProgress(45)
.setQueuePlaybackDuration(150)
.setQueueCurrentTrackNumber(2)
.setQueueTotalTrackCount(3);

AppServiceData appData = new AppServiceData()
.setServicelD(myServiceld)
.setServiceType(AppServiceType.MEDIA.toString())
.setMediaServiceData(mediaData);

OnAppServiceData onAppData = new OnAppServiceData();
onAppData.setServiceData(appData);

sdIManager.sendRPC(onAppData);

NAVIGATION SERVICE DATA

SdlArtwork navinstructionArt = new SdlArtwork(, FileType.GRAPHIC_PNG,
image, true);

sdIManager.getFileManager().uploadFile(navinstructionArt, new CompletionListener()

{
@Override
void (boolean success) {
if (success){
Coordinate coordinate = new Coordinate(42f,43f);

LocationDetails locationDetails = new LocationDetails();
locationDetails.setCoordinate(coordinate);

// Make sure the image is uploaded to the system before publishing your data

Navigationlnstruction navigationlnstruction = new
NavigationInstruction(locationDetails, NavigationAction. TURN);

navigationInstruction.setimage(navinstructionArt.getimageRPC());

DateTime dateTime = new DateTime()
.setHour(2)
.setMinute(3)
.setSecond(4);

NavigationServiceData navigationData = new
NavigationServiceData(dateTime);

navigationData.setInstructions(Collections.singletonList(navigationinstruction));

AppServiceData appData = new AppServiceData()
.setServicelD(myServiceld)
.setServiceType(AppServiceType.NAVIGATION.toString())
.setNavigationServiceData(navigationData);

OnAppServiceData onAppData = new OnAppServiceData();
onAppData.setServiceData(appData);

sdIManager.sendRPC(onAppData);
}
}
i

WEATHER SERVICE DATA

SdlArtwork weatherlmage = new SdlArtwork(, FileType.GRAPHIC_PNG,
image, true);

sdIManager.getFileManager().uploadFile(weatherimage, new CompletionListener() {
@Override
void (boolean success) {
if (success) {
// Make sure the image is uploaded to the system before publishing your data
WeatherData weatherData = new WeatherData();
weatherData.setWeatherlcon(weatherlmage.getimageRPC());

Coordinate coordinate = new Coordinate(42f, 43f);

LocationDetails locationDetails = new LocationDetails();
locationDetails.setCoordinate(coordinate);

WeatherServiceData weatherServiceData = new
WeatherServiceData(locationDetails);

AppServiceData appData = new AppServiceData()
.setServicelD(myServiceld)
.setServiceType(AppServiceType. WEATHER.toString())
.setWeatherServiceData(weatherServiceData);

OnAppServiceData onAppData = new OnAppServiceData();
onAppData.setServiceData(appData);

sdIManager.sendRPC(onAppData);
}

}
D

4. Handling App Service Subscribers

If you choose to make your app service available to other apps, you will have to handle
requests to get your app service data when a consumer requests it directly.

Handling app service subscribers is a two step process. First, you must setup listeners for
the subscriber. Then, when you get a request, you will either have to send a response to
the subscriber with the app service data or if you have no data to send, send a response

with a relevant failure result code.

LISTENING FOR REQUESTS

First, you will need to setup a listener for GetAppServiceDataRequest . Then, when you
get the request, you will need to respond with your app service data. Therefore, you will
need to store your current service data after the most recent update using OnAppService
Data (see the section Update Your Service's Data).

sdIManager.addOnRPCRequestListener(FunctionID.GET_APP_SERVICE_DATA, new
OnRPCRequestListener() {
@Override
void (RPCRequest request) {
GetAppServiceData getAppServiceData = (GetAppServiceData) request;

// Send a response

GetAppServiceDataResponse response = new GetAppServiceDataResponse();
response.setSuccess(true);
response.setCorrelationID(getAppServiceData.getCorrelationID());
response.setResultCode(Result. SUCCESS);

response.setinfo(

response.setServiceData(appServiceData);

sdIManager.sendRPC(response);

Supporting Service RPCs and Actions

5. Service RPCs

Certain RPCs are related to certain services. The chart below shows the current
relationships:

ButtonPress (OK) SendLocation

ButtonPress (SEEKLEFT) GetWayPoints
ButtonPress (SEEKRIGHT) SubscribeWayPoints
ButtonPress (TUNEUP) OnWayPointChange

ButtonPress (TUNEDOWN)

ButtonPress (SHUFFLE)

ButtonPress (REPEAT)

When you are the active service for your service's type (e.g. media), and you have declared
that you support these RPCs in your manifest (see the section Creating an App Service
Manifest), then these RPCs will be automatically routed to your app. You will have to set
up listeners to be aware that they have arrived, and you will then need to respond to those
requests.

AppServiceManifest manifest = new
AppServiceManifest(AppServiceType.MEDIA.toString());

manifest.setHandledRpcs(Collections.singletonList(FunctionID.BUTTON_PRESS.getl

sdIManager.addOnRPCRequestListener(FunctionID.BUTTON_PRESS, new
OnRPCRequestListener() {
@Override
void (RPCRequest request) {
ButtonPress buttonPress = (ButtonPress) request;

ButtonPressResponse response = new ButtonPressResponse();
response.setSuccess(true);
response.setResultCode(Result. SUCCESS);
response.setCorrelationID(buttonPress.getCorrelationID());
response.setinfo(

sdIManager.sendRPC(response);

6. Service Actions

App actions are the ability for app consumers to use the SDL services system to send
URIs to app providers in order to activate actions on the provider. Service actions are
schema-less, i.e. there is no way to define the appropriate URIs through SDL. If you already
provide actions through your app and want to expose them to SDL, or if you wish to start
providing them, you will have to document your available actions elsewhere (such as your
website).

In order to support actions through SDL services, you will need to observe and respond to
the PerformAppServicelnteraction RPC request.

// Perform App Services Interaction Request Listener
sdIManager.addOnRPCRequestListener(FunctionID.PERFORM_APP_SERVICES_INTER
new OnRPCRequestListener() {
@Override
void (RPCRequest request) {
PerformAppServicelnteraction performAppServicelnteraction =
(PerformAppServicelnteraction) request;

// 1f you have multiple services, this will let you know which of your services is
being addressed
servicelD = performAppServicelnteraction.getServicelD();

// The URI sent by the consumer. This must be something you understand
String serviceURI = performAppServicelnteraction.getServiceUri();

// A result you want to send to the consumer app.
PerformAppServicelnteractionResponse response = new
PerformAppServicelnteractionResponse()

.setServiceSpecificResult();
response.setCorrelationID(performAppServicelnteraction.getCorrelationID());
response.setinfo();
response.setSuccess(true);
response.setResultCode(Result. SUCCESS);
sdIManager.sendRPC(response);

Updating Your Published App Service

Once you have published your app service, you may decide to update its data. For example,
if you have a free and paid tier with different amounts of data, you may need to upgrade or
downgrade a user between these tiers and provide new data in your app service manifest.

If desired, you can also delete your app service by unpublishing the service.

7. Updating a Published App Service Manifest (RPC
v6.0+)

AppServiceManifest manifest = new
AppServiceManifest(AppServiceType. WEATHER.toString());
manifest.setWeatherServiceManifest(weatherServiceManifest);

PublishAppService publishServiceRequest = new PublishAppService(manifest);
sdIManager.sendRPC(publishServiceRequest);

8. Unpublishing a Published App Service Manifest (RPC
v6.0+)

UnpublishAppService unpublishAppService = new UnpublishAppService(

);
sdIManager.sendRPC(unpublishAppService);

Using App Services (RPC v5.1+)

App services is a powerful feature enabling both a new kind of vehicle-to-app

communication and app-to-app communication via SDL.

App services are used to publish navigation, weather and media data (such as
temperature, navigation waypoints, or the current playlist name). This data can then be
used by both the vehicle head unit and, if the publisher of the app service desires, other
SDL apps. Creating an app service is covered in another guide.

Vehicle head units may use these services in various ways. One app service for each type
will be the "active" service to the module. For media, for example, this will be the media
app that the user is currently using or listening to. For navigation, it would be a navigation
app that the user is using to navigate. For weather, it may be the last used weather app, or
a user-selected default. The system may then use that service's data to perform various
actions (such as navigating to an address with the active service or to display the

temperature as provided from the active weather service).

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/creating-an-app-service/

An SDL app can also subscribe to a published app service. Once subscribed, the app will
be sent the new data when the app service publisher updates its data. This guide will cover
subscribing to a service. Subscribed apps can also send certain RPCs and generic URI-
based actions (see the section Sending an Action to a Service Provider, below) to your

service.

Currently, there is no high-level API support for using an app service, so you will have to
use raw RPCs for all app service related APIs.

Getting and Subscribing to Services

Once your app has connected to the head unit, you will first want to be notified of all
available services and updates to the metadata of all services on the head unit. Second,
you will narrow down your app to subscribe to an individual app service and subscribe to
its data. Third, you may want to interact with that service through RPCs, or fourth, through

service actions.

1. Getting and Subscribing to Available Services

To get information on all services published on the system, as well as on changes to

published services, you will use the SystemCapabilityManager .

JAVA

// Grab the capability once
sdIManager.getSystemCapabilityManager().getCapability(SystemCapability Type. APP_
new OnSystemCapabilityListener() {

@Override

void (Object capability) {
AppServicesCapabilities servicesCapabilities = (AppServicesCapabilities)

capability;

}

@Override
void (String info) {
// Handle Error

}
}, false);

// Subscribe to app service capability updates
sdIManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SystemC
new OnSystemCapabilityListener() {

@Override

void (Object capability) {
AppServicesCapabilities servicesCapabilities = (AppServicesCapabilities)

capability;

}

@Override
void (String info) {
// Handle Error
}
3

CHECKING THE APP SERVICE CAPABILITY

Once you've retrieved the initial list of app service capabilities or an updated list of app
service capabilities, you may want to inspect the data to find what you are looking for.
Below is example code with comments explaining what each part of the app service
capability is used for.

JAVA

// This array contains all currently available app services on the system
List<AppServiceCapability> appServices = servicesCapabilities.getAppServices();

if (appServices!= null && appServices.size() > 0) {
for (AppServiceCapability anAppServiceCapability : appServices) {
// This will tell you why a service is in the list of updates
ServiceUpdateReason updateReason =
anAppServiceCapability.getUpdateReason();

// The app service record will give you access to a service's generated id, which
can be used to address the service directly (see below), it's manifest, used to see
what data it supports, whether or not the service is published (it always will be here),
and whether or not the service is the active service for its service type (only one
service can be active for each type)

AppServiceRecord serviceRecord =
anAppServiceCapability.getUpdatedAppServiceRecord();

}
}

2. Getting and Subscribing to a Service Type's Data

Once you have information about all of the services available, you may want to view or

subscribe to a service type's data. To do so, you will use the GetAppServiceData RPC.

Note that you will currently only be able to get data for the active service of the service
type. You can attempt to make another service the active service by using the PerformAp

pServicelnteraction RPC, discussed below in Sending an Action to a Service Provider.

JAVA

// Get service data once
GetAppServiceData getAppServiceData = new
GetAppServiceData(AppServiceType.MEDIA .toString())
.setSubscribe(true); // Subscribe to future updates if you want them
getAppServiceData.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response = null){
GetAppServiceDataResponse serviceResponse =
(GetAppServiceDataResponse) response;
MediaServiceData mediaServiceData =
serviceResponse.getServiceData().getMediaServiceData();

}
}
3
sdIManager.sendRPC(getAppServiceData);

// Unsubscribe from updates

GetAppServiceData unsubscribeServiceData = new

GetAppServiceData(AppServiceType.MEDIA.toString())
.setSubscribe(false);

sdIManager.sendRPC(unsubscribeServiceData);

Interacting with a Service Provider

Once you have a service's data, you may want to interact with a service provider by
sending RPCs or actions.

3. Sending RPCs to a Service Provider

Only certain RPCs are available to be passed to the service provider based on their service
type. See the Creating an App Service guide Supporting Service RPCs and Actions section
for a chart detailing which RPCs work with which service types. The RPC can only be sent

to the active service of a specific service type, not to any inactive service.

Sending an RPC works exactly the same as if you were sending the RPC to the head unit
system. The head unit will simply route your RPC to the appropriate app automatically.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/creating-an-app-service/#supporting-service-rpcs-and-actions

NOTE

Your app may need special permissions to use the RPCs that route to app
service providers.

ButtonPress buttonPress = new ButtonPress()
.setButtonPressMode(ButtonPressMode.SHORT)
.setButtonName(ButtonName.OK)
.setModuleType(ModuleType.AUDIO);

buttonPress.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override

void (int correlationld, RPCResponse response) {
// Use the response
}
3
sdIManager.sendRPC(buttonPress);

4. Sending an Action to a Service Provider

Actions are generic URI-based strings sent to any app service (active or not). You can also
use actions to request to the system that they make the service the active service for that
service type. Service actions are schema-less, i.e. there is no way to define the appropriate
URIs through SDL. The service provider must document their list of available actions
elsewhere (such as their website).

PerformAppServicelnteraction performAppServicelnteraction = new
PerformAppServicelnteraction(

, previousServiceld, appld);
performAppServicelnteraction.setOnRPCResponseListener(new
OnRPCResponseListener() {

@Override
void (int correlationld, RPCResponse response) {
// Use the response

}
D

sdIManager.sendRPC(performAppServicelnteraction);

5. Getting a File from a Service Provider

In some cases, a service may upload an image that can then be retrieved from the module.
First, you will need to get the image name from the AppServiceData (see point 2 above).

Then you will use the image name to retrieve the image data.

WeatherServiceData weatherServiceData = appServiceData.getWeatherServiceData();
if (weatherServiceData == null || weatherServiceData.getCurrentForecast() == null ||
weatherServiceData.getCurrentForecast().getWeatherlcon() == null) {

// The image doesn't exist, exit early

return;
}
String currentForecastimageName =
weatherServiceData.getCurrentForecast().getWeatherlcon().getValue();

GetFile getFile = new GetFile(currentForecastimageName)
.setAppServiceld(serviceld);
getFile.setONRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
GetFileResponse getFileResponse = (GetFileResponse) response;
byte[] fileData = getFileResponse.getBulkData();
SdlArtwork sdlArtwork = new SdlArtwork(fileName, FileType.GRAPHIC_PNG,
fileData, false);
// Use the sdlArtwork

}
)}
sdIManager.sendRPC(getFile);

Calling a Phone Number

The DialNumber RPC allows you make a phone call via the user's phone. In order to dial
a phone number you must be sure that the device is connected via Bluetooth (even if your
device is also connected using a USB cord) for this request to work. If the phone is not
connected via Bluetooth, you will receive a result of REJECTED from the module.

Checking Your App's Permissions

DialNumber is an RPC that is usually restricted by OEMs. As a result, a module may
reject your request if your app does not have the correct permissions. Your SDL app may
also be restricted to only being allowed to making a phone call when your app is open (i.e.
the hmilLevel is non- NONE) or when it is the currently active app (i.e. the hmiLevel is

FULL).

UUID listenerld =
sdIManager.getPermissionManager().addListener(Arrays.asList(new
PermissionElement(FunctionID.DIAL_NUMBER, null)),
PermissionManager.PERMISSION_GROUP_TYPE_ANY, new
OnPermissionChangeListener() {
@Override
void (@NonNull Map<FunctionID, PermissionStatus>
allowedPermissions, int permissionGroupStatus) {
if (permissionGroupStatus !=
PermissionManager.PERMISSION_GROUP_TYPE_ALL_ALLOWED) {
// Your app does not have permission to send the "DialNumber’ request for
its current HMI level
return;
}

// Your app has permission to send the "DialNumber’ request for its current HMI
level
}
};

Checking if the Module Supports
Calling a Phone Number

Since making a phone call is a newer feature, there is a possibility that some legacy
modules will reject your request because the module does not support the DialNumber
request. Once you have successfully connected to the module, you can check the
module's capabilities via the sdIManager.getSystemCapabilityManager as shown in the
example below. Please note that you only need to check once if the module supports

calling a phone number, however you must wait to perform this check until you know that
the SDL app has been opened (i.e. the hmilLevel is non- NONE).

O NOTE
If you discover that the module does not support calling a phone number or
that your app does not have the right permissions, you should disable any
buttons, voice commands, menu items, etc. in your app that would send the
DialNumber request.

void (OnCapabilitySupportedListener
capabilitySupportedListener) {
// Check if the module has phone capabilities
if
('sdIManager.getSystemCapabilityManager().isCapabilitySupported(SystemCapability

capabilitySupportedListener.onCapabilitySupported(false);
return;

}

// Legacy modules (pre-RPC Spec v4.5) do not support system capabilities, so for
versions less than 4.5 we will assume "DialNumber’ is supported if
“isCapabilitySupported()” returns true

SdIMsgVersion sdIMsgVersion =
sdIManager.getRegisterApplinterfaceResponse().getSdiIMsgVersion();

if (sdIMsgVersion == null) {

capabilitySupportedListener.onCapabilitySupported(true);
return;

}

Version rpcSpecVersion = new Version(sdiMsgVersion);

if (rpcSpecVersion.isNewerThan(new Version(4, 5, 0)) < 0) {

capabilitySupportedListener.onCapabilitySupported(true);
return;

}

// Retrieve the phone capability

sdIManager.getSystemCapabilityManager().getCapability(SystemCapability Type.PHO!
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
PhoneCapability phoneCapability = (PhoneCapability) capability;
capabilitySupportedListener.onCapabilitySupported(phoneCapability != null ?
phoneCapability.getDialNumberEnabled() : false);

}

@Override
void (String info) {
capabilitySupportedListener.onError(info);
}
}, false);

}

OnCapabilitySupportedListener {
(Boolean supported);

(String info);

Sending a DialNumber Request

Once you know that the module supports dialing a phone number and that your SDL app

has permission to send the DialNumber request, you can create and send the request.

NOTE

DialNumber strips all characters except for 0-9, *, #, ,, ;,and +.

DialNumber dialNumber = new DialNumber()
.setNumber();
dialNumber.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
Result result = response.getResultCode();
if(result.equals(Result.SUCCESS)){
// “DialNumber’ successfully sent
}else if(result.equals(Result. REJECTED)){
// "DialNumber® was rejected. Either the call was sent and cancelled or there
is no device connected
}else if(result.equals(Result.DISALLOWED)){
// Your app is not allowed to use "DialNumber’
}

}
N

sdIManager.sendRPC(dialNumber);

Dial Number Responses

The DialNumber request has three possible responses that you should expect:

1. SUCCESS - The request was successfully sent, and a phone call was initiated by the
user.
2. REJECTED - This can mean either:

o The user rejected the request to make the phone call.
o The phone is not connected to the module via Bluetooth.

3. DISALLOWED - Your app does not have permission to use the DialNumber

request.

Setting the Navigation
Destination

The SendLocation RPC gives you the ability to send a GPS location to the active

navigation app on the module.

When using the SendLocation RPC, you will not have access to any information about
how the user interacted with this location, only if the request was successfully sent. The
request will be handled by the module from that point on using the active navigation

system.

Checking Your App's Permissions

The SendLocation RPC is restricted by most OEMs. As a result, a module may reject
your request if your app does not have the correct permissions. Your SDL app may also be
restricted to only being allowed to send a location when your app is open (i.e. the hmilLe

vel is non- NONE) or when it is the currently active app (i.e. the hmilLevel is FULL).

UUID listenerld =
sdIManager.getPermissionManager().addListener(Arrays.asList(new
PermissionElement(FunctionID.SEND_LOCATION, null)),
PermissionManager.PERMISSION_GROUP_TYPE_ANY, new
OnPermissionChangelListener() {
@Override
void (@NonNull Map<FunctionID, PermissionStatus>
allowedPermissions, @NonNull int permissionGroupStatus) {
if (permissionGroupStatus !=
PermissionManager.PERMISSION_GROUP_TYPE_ALL_ALLOWED) {
// Your app does not have permission to send the "SendLocation’ request for
its current HMI level
return;
}

// Your app has permission to send the "SendLocation’ request for its current
HMI level
}
)

Checking if the Module Supports
Sending a Location

Since some modules will not support sending a location, you should check if the module
supports this feature before trying to use it. Once you have successfully connected to the
module, you can check the module's capabilities via the sdlManager.getSystemCapability
Manager() as shown in the example below. Please note that you only need to check once
if the module supports sending a location, however you must wait to perform this check
until you know that the SDL app has been opened (i.e. the hmilLevel is non- NONE).

9 NOTE

If you discover that the module does not support sending a location or that
your app does not have the right permissions, you should disable any
buttons, voice commands, menu items, etc. in your app that would send the

SendLocation request.

void (OnCapabilitySupportedListener
capabilitySupportedListener) {
// Check if the module has navigation capabilities
if
('sdIManager.getSystemCapabilityManager().isCapabilitySupported(SystemCapability

capabilitySupportedListener.onCapabilitySupported(false);
return;

}

// Legacy modules (pre-RPC Spec v4.5) do not support system capabilities, so for
versions less than 4.5 we will assume "SendLocation’ is supported if
“isCapabilitySupported()” returns true

SdIMsgVersion sdIMsgVersion =
sdIManager.getRegisterApplinterfaceResponse().getSdiIMsgVersion();

if (sdIMsgVersion == null) {

capabilitySupportedListener.onCapabilitySupported(true);
return;

}

Version rpcSpecVersion = new Version(sdiMsgVersion);

if (rpcSpecVersion.isNewerThan(new Version(4, 5, 0)) < 0) {

capabilitySupportedListener.onCapabilitySupported(true);
return;

}

// Retrieve the navigation capability

sdIManager.getSystemCapabilityManager().getCapability(SystemCapability Type.NAVI
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
NavigationCapability navigationCapability = (NavigationCapability) capability;
capabilitySupportedListener.onCapabilitySupported(navigationCapability !=
null ? navigationCapability.getSendLocationEnabled() : false);

}

@Override
void (String info) {
capabilitySupportedListener.onError(info);
}
}, false);

}

OnCapabilitySupportedListener {
(Boolean supported);

(String info);

Using Send Location

To use the SendLocation request, you must at minimum include the longitude and

latitude of the location.

SendLocation sendLocation = new SendLocation()
.setLatitudeDegrees(42.877737)
.setLongitudeDegrees(-97.380967)
.setLocationName()
.setLocationDescription(

OasisAddress address = new OasisAddress()
.setSubThoroughfare()
.setThoroughfare()
.setLocality()
.setAdministrativeArea(

.setPostalCode()
.setCountryCode()
.setCountryName();

sendLocation.setAddress(address);
sendLocation.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
Result result = response.getResultCode();
if(result.equals(Result. SUCCESS)H{
// “SendLocation’ successfully sent
}else if(result.equals(Result.INVALID_DATA)){
// "SendLocation” was rejected. The request contained invalid data
}else if(result.equals(Result.DISALLOWED)){
// Your app is not allowed to use "SendLocation’
}

}
D

sdIManager.sendRPC(sendLocation);

Checking the Result of Send Location

The SendLocation request has three possible responses that you should expect:

1. SUCCESS - Successfully sent.
2. INVALID_DATA - The request contains invalid data and was rejected.
3. DISALLOWED - Your app does not have permission to use the SendLocation

request.

Getting the Navigation
Destination (RPC v4.1+)

The GetWayPoints and SubscribeWayPoints RPCs are designed to allow you to get the
navigation destination(s) from the active navigation app when the user has activated in-car

navigation.

Checking Your App's Permissions

Both the GetWayPoints and SubscribeWayPoints RPCs are restricted by most OEMs.
As a result, a module may reject your request if your app does not have the correct
permissions. Your SDL app may also be restricted to only being allowed to get waypoints
when your app is open (i.e. the hmiLevel is non- NONE) or when it is the currently active
app (i.e. the hmiLevel is FULL).

UUID listenerld =
sdIManager.getPermissionManager().addListener(Arrays.asList(new
PermissionElement(FunctionID.GET_WAY_POINTS, null), new
PermissionElement(FunctionID.SUBSCRIBE_WAY_POINTS, null)),
PermissionManager.PERMISSION_GROUP_TYPE_ANY, new
OnPermissionChangelListener() {
@Override
void (@NonNull Map<FunctionID, PermissionStatus>
allowedPermissions, @NonNull int permissionGroupStatus) {
PermissionStatus getWayPointPermissionStatus =
allowedPermissions.get(FunctionID.GET_WAY_POINTS);
if (getWayPointPermissionStatus != null &&
getWayPointPermissionStatus.getlsRPCAllowed()) {
// Your app has permission to send the "GetWayPoints™ request for its current
HMI level
} else {

// Your app does not have permission to send the "GetWayPoints™ request for
its current HMI level

}

PermissionStatus subscribeWayPointsPermissionStatus =
allowedPermissions.get(FunctionID.SUBSCRIBE_WAY_POINTS);
if (subscribeWayPointsPermissionStatus != null &&
subscribeWayPointsPermissionStatus.getlsRPCAllowed()) {
// Your app has permission to send the "SubscribeWayPoints™ request for its
current HMI level
} else {
// Your app does not have permission to send the "SubscribeWayPoints’
request for its current HMI level

}
}
N

Checking if the Module Supports
Waypoints

Since some modules will not support getting waypoints, you should check if the module
supports this feature before trying to use it. Once you have successfully connected to the
module, you can check the module's capabilities via the sdlManager.getSystemCapability
Manager() as shown in the example below. Please note that you only need to check once
if the module supports getting waypoints, however you must wait to perform this check

until you know that the SDL app has been opened (i.e. the hmilLevel is non- NONE).

9 NOTE

If you discover that the module does not support getting navigation
waypoints or that your app does not have the right permissions, you should
disable any buttons, voice commands, menu items, etc. in your app that
would send the GetWayPoints or SubscribeWayPoints requests.

void (OnCapabilitySupportedListener
capabilitySupportedListener) {
// Check if the module has navigation capabilities
if
('sdIManager.getSystemCapabilityManager().isCapabilitySupported(SystemCapability

capabilitySupportedListener.onCapabilitySupported(false);
return;

}

// Legacy modules (pre-RPC Spec v4.5) do not support system capabilities, so for
versions less than 4.5 we will assume "GetWayPoints™ and "SubscribeWayPoints™ are
supported if “isCapabilitySupported()” returns true

SdIMsgVersion sdIMsgVersion =
sdIManager.getRegisterApplinterfaceResponse().getSdiIMsgVersion();

if (sdIMsgVersion == null) {

capabilitySupportedListener.onCapabilitySupported(true);
return;

}

Version rpcSpecVersion = new Version(sdiMsgVersion);

if (rpcSpecVersion.isNewerThan(new Version(4, 5, 0)) < 0) {

capabilitySupportedListener.onCapabilitySupported(true);
return;

}

// Retrieve the navigation capability

sdIManager.getSystemCapabilityManager().getCapability(SystemCapability Type.NAVI
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
NavigationCapability navigationCapability = (NavigationCapability) capability;
capabilitySupportedListener.onCapabilitySupported(navigationCapability !=
null ? navigationCapability.getWayPointsEnabled() : false);

}

@Override
void (String info) {
capabilitySupportedListener.onError(info);
}
}, false);

}

OnCapabilitySupportedListener {
(Boolean supported);

(String info);

Subscribing to Waypoints

To subscribe to the navigation waypoints, you will have to set up your callback for

whenever the waypoints are updated, then send the SubscribeWayPoints RPC.

// You can subscribe any time before SDL would send the notification (such as when
you call “sdIManager.start’ or at initialization of your manager)
sdIManager.addOnRPCNotificationListener(FunctionID.ON_WAY_POINT_CHANGE,
new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {

OnWayPointChange onWayPointChangeNotification = (OnWayPointChange)
notification;

// Use the waypoint data

}
N

// After SDL has started your connection, at whatever point you want to subscribe,
send the subscribe RPC
SubscribeWayPoints subscribeWayPoints = new SubscribeWayPoints();
subscribeWayPoints.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse rpcResponse) {
if (rpcResponse.getSuccess())X
// You are now subscribed
} else {
// Handle the errors
}

}
D

sdIManager.sendRPC(subscribeWayPoints);

Unsubscribing from Waypoints

To unsubscribe from waypoint data, you must send the UnsubscribeWayPoints RPC.

UnsubscribeWayPoints unsubscribeWayPoints = new UnsubscribeWayPoints();
unsubscribeWayPoints.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse rpcResponse) {
if (rpcResponse.getSuccess()){
// You are now unsubscribed

} else {
// Handle the errors
}

}
D

sdIManager.sendRPC(unsubscribeWayPoints);

One-Time Waypoints Request

If you only need waypoint data once without an ongoing subscription, you can use GetWa
yPoints instead of SubscribeWayPoints .

GetWayPoints getWayPoints = new GetWayPoints();
getWayPoints.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse rpcResponse) {
if (rpcResponse.getSuccess()){
GetWayPointsResponse getWayPointsResponse = (GetWayPointsResponse)
rpcResponse;
// Use the waypoint data
} else {
// Handle the errors
}

}
D

sdIManager.sendRPC(getWayPoints);

Uploading Files

In almost all cases, you will not need to handle uploading images because the screen
manager API will do that for you. There are some situations, such as VR help-lists and
turn-by-turn directions, that are not currently covered by the screen manager so you will
have manually upload the image yourself in those cases. For more information about

uploading images, see the Uploading Images guide.

Uploading an MP3 Using the File
Manager

The FileManager uploads files and keeps track of all the uploaded files names during a
session. To send data with the file manager you need to create either a SdIFile or SdIAr
twork object. Both SdIFile s and SdlArtwork s can be created witha Uri , byte[] , or re
sourceld .

SdIFile audioFile = new SdIFile(, FileType.AUDIO_MP3, mp3Data, true);
sdIManager.getFileManager().uploadFile(audioFile, new CompletionListener() {
@Override
void (boolean success) {

if (success) {
// File upload successful
}
}
)

Batching File Uploads

If you want to upload a group of files, you can use the FileManager batch upload
methods. Once all of the uploads have completed you will be notified if any of the uploads
failed.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/uploading-images/

sdIManager.getFileManager().uploadFiles(sdIFileList, new
MultipleFileCompletionListener() {
@Override

void (Map<String, String> errors) {

File Persistence

SdIFile and its subclass SdlArtwork support uploading persistent files, i.e. files that are
not deleted when the car turns off. Persistence should be used for files that will be used
every time the user opens the app. If the file is only displayed for short time the file should
not be persistent because it will take up unnecessary space on the head unit. You can
check the persistence via:

Boolean isPersistent = file.isPersistent();

NOTE

Be aware that persistence will not work if space on the head unit is limited.
The FileManager will always handle uploading images if they are non-

existent.

Overwriting Stored Files

If a file being uploaded has the same name as an already uploaded file, the new file will be
ignored. To override this setting, set the SdlFile 's overwrite property to true .

file.setOverwrite(true);

Checking the Amount of File Storage
Left

To find the amount of file storage left for your app on the head unit, use the

FileManager 's bytesAvailable property.

int bytesAvailable = sdIManager.getFileManager().getBytesAvailable();

Checking if a File Has Already Been
Uploaded

You can check out if an image has already been uploaded to the head unit via the FileMa

nager 's remoteFileNames property.

Boolean filelsOnHeadUnit =

sdIManager.getFileManager().getRemoteFileNames().contains(

Deleting Stored Files

Use the file manager’s delete request to delete a file associated with a file name.

sdIManager.getFileManager().deleteRemoteFileWithName(
CompletionListener() {
@Override

void (boolean success) {

Batch Deleting Files

sdIManager.getFileManager().deleteRemoteFilesWithNames(remoteFiles, new
MultipleFileCompletionListener() {
@Override

void (Map<String, String> errors) {

Uploading Images

NOTE

If you use the ScreenManager , image uploading for template graphics, soft
buttons, and menu items is handled for you behind the scenes. However, you
will still need to manually upload your images if you need images in an alert,
VR help lists, turn-by-turn directions, or other features not currently covered

by the ScreenManager .

You should be aware of these four things when using images in your SDL app:

1. You may be connected to a head unit that does not have the ability to display
images.

2. You must upload images from your mobile device to the head unit before using
them in a template.

3. Persistent images are stored on a head unit between sessions. Ephemeral images
are destroyed when a session ends (i.e. when the user turns off their vehicle).

4. Images can not be uploaded when the app's hmiLevel is NONE. For more

information about permissions, please review Understanding Permissions.

Checking if Graphics are Supported

Before uploading images to a head unit you should first check if the head unit supports
graphics. If not, you should avoid uploading unnecessary image data. To check if graphics
are supported, check the getCapability() method of a valid SystemCapabilityManager
obtained from sdlManager.getSystemCapabilityManager() to find out the display
capabilities of the head unit.

List<lmageField> imageFields =
sdIManager.getSystemCapabilityManager().getDefaultMainWindowCapability().getImz

boolean imagesSuported = (imageFields.size() > 0);

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/understanding-permissions/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/template-images/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/template-custom-buttons/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/main-menu/

Uploading an Image Using the File
Manager

The FileManager uploads files and keeps track of all the uploaded files names during a
session. To send data with the FileManager , you need to create either a SdlFile or Sdl
Artwork object. Both SdlIFile s and SdIArtwork s can be created witha Uri , byte[] , or

resourceld .

SdlArtwork artwork = new SdlArtwork(, FileType.GRAPHIC_PNG, image,
false);
sdIManager.getFileManager().uploadFile(artwork, new CompletionListener() {
@Override
void (boolean success) {

if (success){
// Image Upload Successful
}
}
D

Batch File Uploads, Persistence, etc.

Similar to other files, artworks can be persistent, batched, overwrite, etc. See Uploading

Files for more information.

Creating an OEM Cloud App Store
(RPC v5.1+)

SDL allows OEMs to offer an app store that lets users browse and install remote cloud
apps. If the cloud app requires users to login with their credentials, the app store can use
an authentication token to automatically login users after their first session.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/uploading-files/

9 NOTE

An OEM app store can be a mobile app or a cloud app.

User Authentication

App stores can handle user authentication for the installed cloud apps. For example, users
can log in after installing a cloud app using the app store. After that, the app store will
save an authentication token for the cloud app in the local policy table. Then, the cloud
app can retrieve the authentication token from the local policy table and use it to
authenticate a user with the application. If desired, an optional parameter, CloudAppVehi
clelD , can be used to identify the head unit.

Setting and Getting Cloud App
Properties

An OEM's app store can manage the properties of a specific cloud app by setting and
getting its CloudAppProperties . This table summarizes the properties that are included
in CloudAppProperties :

appID

nicknames

enabled

authToken

cloudTransportType

hybridAppPreference

endpoint

O NOTE

v

applD for the cloud app

List of possible names for the cloud app. The
cloud app will not be allowed to connect if its

name is not contained in this list

If true, cloud app will be displayed on HMI

Used to authenticate the user, if the app

requires user authentication

Specifies the connection type Core should use.
Currently Core supports WS and WSS, but an
OEM can implement their own transport

adapter to handle different values

Specifies the user preference to use the cloud
app version, mobile app version, or whichever

connects first when both are available

Remote endpoint for websocket connections

Only trusted app stores are allowed to set or get CloudAppProperties for

other cloud apps.

Setting Cloud App Properties

App stores can set properties for a cloud app by sending a SetCloudAppProperties
request to Core to store them in the local policy table. For example, in this piece of code,
the app store can set the authToken to associate a user with a cloud app after the user

logs in to the app by using the app store:

CloudAppProperties cloudAppProperties = new CloudAppProperties(
cloudAppProperties.setAuthToken();
SetCloudAppProperties setCloudAppProperties = new
SetCloudAppProperties(cloudAppProperties);
setCloudAppProperties.setONRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {

if (response.getSuccess()) {
DebugTool.loginfo();
} else {

DebugTool.loginfo(
}
}

3
sdIManager.sendRPC(setCloudAppProperties);

Getting Cloud App Properties

To retrieve cloud properties for a specific cloud app from local policy table, app stores can
send GetCloudAppProperties and specify the appld for that cloud app as in this

example:

GetCloudAppProperties getCloudAppProperties = new GetCloudAppProperties(
);
getCloudAppProperties.setONRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()) {
DebugTool.loginfo(,);
GetCloudAppPropertiesResponse getCloudAppPropertiesResponse =
(GetCloudAppPropertiesResponse) response;
CloudAppProperties cloudAppProperties =
getCloudAppPropertiesResponse.getCloudAppProperties();
// Use cloudAppProperties
} else {
DebugTool.loginfo(
}
}
D
sdIManager.sendRPC(getCloudAppProperties);

GETTING THE CLOUD APP ICON

Cloud app developers don't need to add any code to download the app icon. The cloud app
icon will be automatically downloaded from the url provided by the policy table and sent to
Core to be later displayed on the HMI.

Getting the Authentication Token

When users install cloud apps from an OEM's app store, they may be asked to login to that
cloud app using the app store. After logging in, app store can save the authToken in the
local policy table to be used later by the cloud app for user authentication.

A cloud app can retrieve its authToken from local policy table after starting the RPC

service. The authToken can be used later by the app to authenticate the user:

String authToken = sdiIManager.getAuthToken();

Getting CloudAppVehiclelD (Optional)

The CloudAppVehiclelD is an optional parameter used by cloud apps to identify a head
unit. The content of CloudAppVehiclelD is up to the OEM's implementation. Possible
values could be the VIN or a hashed VIN.

The CloudAppVehiclelD value can be retrieved as part of the GetVehicleData RPC. To
find out more about how to retrieve CloudAppVehiclelD , check out the Retrieving Vehicle
Data section.

Encryption

Some OEMs may want to encrypt messages passed between your SDL app and the head
unit. If this is the case, when you submit your app to the OEM for review, they will ask you
to add a secuirity library to your SDL app. It is also possible to encrypt messages even if
the OEM does not require encryption. In this case, you will have to work with the OEM to
get a security library. This section will show you how to add the security library to your
SDL app and configure optional encryption.

When Encryption is Needed

OEM Required Encrypted RPCs

OEMs may want to encrypt all or some of the RPCs being transmitted between your SDL
app and SDL Core. The library will handle encrypting and decrypting RPCs that are required
to be encrypted.

OEM Required Encrypted Video and Audio

OEMs may want to encrypt video and audio streaming. Information on how to set up
encrypted video and audio streaming can be found in Video Streaming for Navigation Apps

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/retrieving-vehicle-data/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/video-streaming-for-navigation-apps/introduction/

> Introduction. The library will handle encrypting the video and audio data sent to the head

unit.

Optional Encryption

You may want to encrypt some or all of the RPCs you send to the head unit even if the
OEM does not require that they be protected. In that case you will have to manually
configure the payload protection status of every RPC that you send. Please note that if you
require that an RPC be encrypted but there is no security manager configured for the

connected head unit, then the RPC will not be sent by the library.

NOTE

For optional encryption to work, you must work with each OEM to obtain
their proprietary security library.

Creating the Encryption Configuration

Each OEM that supports SDL will have their own proprietary security library. You must add
all required security libraries in the encryption configuration when you are configuring the
SDL app.

List<Class<? SdiSecurityBase>> secList = new ArrayList<>();
secList.add(OEMSdISecurity.class);

builder.setSdISecurity(secList, serviceEncryptionListener);

Getting the Encryption Status

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/video-streaming-for-navigation-apps/introduction/

Since it can take a few moments to set up the encryption manager, you must wait until you
know that setup has completed before sending encrypted RPCs. If your RPC is sent before
setup has completed, your RPC will not be sent. You can implement the ServiceEncryptio

nListener , which is set in Builder.setSdISecurity , to get updates to the encryption

manager state.

ServiceEncryptionListener serviceEncryptionListener = new
ServiceEncryptionListener() {
@Override
void (@NonNull SessionType serviceType,
boolean isServiceEncrypted, @Nullable String error) {

if (isServiceEncrypted) {
// Encryption manager can encrypt

Setting Optional Encryption

If you want to encrypt a specific RPC, you must configure the payload protected status of
the RPC before you send it to the head unit. In order to send RPCs with optional encryption
you must call startRPCEncryption onthe sdiManager to make sure the encryption
manager gets started correctly. The best place to put startRPCEncryption is in the
successful callback of the SdIManagerListener 's onStart method.

sdIManager.startRPCEncryption();

Then, once you know the encryption manager has started successfully via encryption
manager state updates to your ServiceEncryptionListener object, you can start to send

encrypted RPCs by setting setPayloadProtected to true .

GetVehicleData getVehicleData = new GetVehicleData()
.setGps(true);
getVehicleData.setPayloadProtected(true);

sdIManager.sendRPC(getVehicleData);

OEM Exclusive Apps

The Android library can prevent apps from starting their SdlRouterService based on if

they support the vehicle type if the connection is over Bluetooth.

NOTE

If older apps are installed that use a version less than SDL Android 4.12.0, on
the first connection to the vehicle an OEM app may host the SdIRouterServ
ice but on subsequent connections, it may pass it off to another app.

NOTE

This does not work over AOA connections.

Create file for supported vehicle
types and add to Android Manifest

To implement this feature, you will need to define an XML file for supported vehicles called

supported_vehicle_type.xml in res/xml directory of the project, and add it as metaData
for SdIRouterService inits AndroidManifest . If an app defines a vehicle-type element,
then it should always have a make attribute; all other attributes are optional. However, if
you want to use modelYear or trim , you should define make and model attributes
as well. The Java Suite app library will check only the defined attributes. The below
example shows a valid vehicle type resource file.

<?xml version="1.0" encoding="utf-8"?>

<resource>
<I-- Vehicle filter for vehicle make—->
<vehicle-type
make= />
<I-- Vehicle filter for vehicle make, model and model year-->
<vehicle-type
make=
model=
modelYear= />
<l Vehicle filter for vehicle make, model and trim->
<vehicle-type
make=
model=
trim= />
</resource>

Add supported vehicle type file as metaData for SdIRouterService in AndroidManifest

<meta-data

android:name=
android:resource=

Prevent app from connecting to
unsupported vehicles

Apps can still receive an intent to start when SDL is enabled from other apps. To prevent
an OEM app from starting their SdIService , vehicle type can be retrieved in SdIReceiver.o
nSdlEnabled and the app can choose not to start SdlService if the vehicle is not

supported.

@Override
void (Context context, Intent intent) {
intent.setClass(context, SdIService.class);

VehicleType vehicleType = null;
if (intent.hasExtra(TransportConstants.VEHICLE_INFO_EXTRA)) {
vehicleType =
intent.getParcelableExtra(TransportConstants.VEHICLE_INFO_EXTRA);

}

VehicleType vehicleTypel = new
VehicleType().setMake().setModel().setModelYear(
VehicleType vehicleType2 = new

VehicleType().setMake().setModel().setTrim("SE");
List<VehicleType> supportedVehicleList = Arrays.asList(vehicleType1,
vehicleType2);

if (vehicleType != null &&
SdlApplInfo.checklIfVehicleSupported(supportedVehicleList, vehicleType)) {
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
context.startForegroundService(intent);
} else {
context.startService(intent);

Introduction

Mobile navigation allows map partners to easily display their maps as well as present
visual and audio turn-by-turn prompts on the head unit.

Navigation apps have different behavior on the head unit than normal applications. The

main differences are:

e Navigation apps don't use base screen templates. Their main view is the video
stream sent from the device.

o Navigation apps can send audio via a binary stream. This will attenuate the current
audio source and should be used for navigation commands.

» Navigation apps can receive touch events from the video stream.

=1

NOTE

In order to use SDL's Mobile Navigation feature, the app must have a
minimum requirement of Android 4.4 (SDK 19). This is due to using
Android's provided video encoder.

Configuring a Module to Stream

In order to view the stream, you need a head unit to connect with that supports streaming.
If this is a physical module created by an OEM, such as a Ford TDK, you may need special
permissions from that OEM to test streaming. Physical modules often have strict

permissions and/or encryption requirements to stream.

The alternative is to stream over TCP to open-source Core. For more details on setting up
open-source Core and an HMI, see the Install and Run guide, and to set up video streaming
for that Core and HMI, see the Audio and Video Streaming guide. We recommend using

the built-in Generic_HMI server streaming instead of GStreamer socket or pipe streaming.

Configuring a Navigation App

The basic connection setup is similar for all apps. Please follow the Integration Basics

guide for more information.

https://smartdevicelink.com/en/guides/core/getting-started/install-and-run/
https://smartdevicelink.com/en/guides/core/feature-documentation/audio-and-video-streaming/
https://github.com/smartdevicelink/generic_hmi#hmi-backend
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/integration-basics-java/

In order to create a navigation app an appHMIType of NAVIGATION must be setinthe
SdIManager 's Builder .

The second difference is the ability to call the setSdISecurity(List<Class<? extends SdISe
curityBase>> secList) method from the SdiManager.Builder if connecting to an
implementation of Core that requires secure video and audio streaming. This method
requires an array of security libraries, which will extend the SdISecurityBase class. These
security libraries are provided by the OEMs themselves, and will only work for that OEM.

There is no general catch-all security library.

SdIManager.Builder builder = new SdIManager.Builder(this, APP_ID, APP_NAME,
listener);

Vector<AppHMIType> hmiTypes = new Vector<AppHMIType>();
hmiTypes.add(AppHMIType.NAVIGATION);
builder.setAppTypes(hmiTypes);

// Add security managers if Core requires secure video & audio streaming
List<Class<? SdiSecurityBase>> secList = new ArrayList<>();

secList.add(OEMSdISecurity.class);
builder.setSdISecurity(secList, serviceEncryptionListener);

MultiplexTransportConfig mtc = new MultiplexTransportConfig(this, APP_ID,
MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);
mtc.setRequiresHighBandwidth(true);

builder.setTransportType(mtc);

sdIManager = builder.build();
sdIManager.start();

9, MUST

When compiling your app for production, make sure to include all possible

OEM security managers that you wish to support.

Keyboard Input

To present a keyboard (such as for searching for navigation destinations), you should use
the ScreenManager 's keyboard presentation feature. For more information, see the
Popup Keyboards guide.

Navigation Subscription Buttons

Head units supporting RPC v6.0+ may support navigation-specific subscription buttons for
the navigation template. These subscription buttons allow your user to manipulate the
map using hard buttons located on car's center console or steering wheel. It is important
to support these subscription buttons in order to provide your user with the expected in-
car navigation user experience. This is especially true on head units that don't support
touch input as there will be no other way for your user to manipulate the map. See
Template Subscription Buttons for a list of these navigation buttons.

When to Cancel Your Route

Between your navigation app, other navigation apps, and embedded navigation, only one
route should be in progress at a time. To know when the embedded navigation or another
navigation app has started a route, create a navigation service and when your service

becomes inactive, your app should cancel any active route.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/popup-keyboards/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/template-subscription-buttons/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/creating-an-app-service/

sdIManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SystemC
new OnSystemCapabilityListener() {
@Override
void (Object capability) {
AppServicesCapabilities appServicesCapabilities = (AppServicesCapabilities)
capability;
if (appServicesCapabilities.getAppServices() != null &&
appServicesCapabilities.getAppServices().size() > 0) {
for (AppServiceCapability appServiceCapability :
appServicesCapabilities.getAppServices()) {
if
(appServiceCapability.getUpdatedAppServiceRecord().getServiceManifest().getService

boolean serviceActive =
appServiceCapability.getUpdatedAppServiceRecord().getServiceActive();
if (IserviceActive) {
//Cancel your active route

@Override
void (String info) {
// Handle Error
}
});

Video Streaming (RPC v4.5+)

One of the most powerful features provided by SDL is the ability to stream an interactive
Android layout directly to a vehicle's heads up display. The following guide explains the
basics of this functionality.

SDL Remote Display

The SdIRemoteDisplay base class provides the easiest way to start streaming using
SDL. The SdIRemoteDisplay is extended from Android's Presentation class with
modifications to work with other aspects of the SDL Android library.

O NOTE

It is recommended that you extend this as a local class within the service
that has the SdIManager instance.

Extending this class gives developers a familiar, native experience to handle layouts and
events on screen.

O NOTE

v

You must have a valid and approved application ID from an OEM in order
receive user input from a remote display.

The following example uses a simple layout containing a single button:

Inside SdiService.java:

/...

//This class should be nested in SdIService or another class containing the
application's SdIManager instance
MyDisplay SdIRemoteDisplay{
(Context context, Display display) {
(context, display);
}

@Override
void (Bundle savedinstanceState) {
.onCreate(savedInstanceState);

setContentView(R.layout.stream);

Button button = findViewByld(R.id.button);

button.setOnClickListener(new View.OnClickListener() {
@Override
void (View view) {
DebugTool.loginfo(TAG,
}
3

res/layout/stream.xml:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlIns:android=
android:layout_width=
android:layout_height=

<Button
android:id=
android:layout_width=
android:layout_height=
android:layout_centerinParent= />

</RelativeLayout>

9 NOTE

If you are obfuscating the code in your app, make sure to exclude your class
that extends SdIRemoteDisplay . For more information on how to do that,

you can check Proguard Guidelines.

Managing the Stream

The VideoStreamManager can be used to start streaming a remote display after the Sdl
Manager has successfully been started. This is performed by calling the method startRe
moteDisplayStream(Context context, final Class<? extends SdIRemoteDisplay> remoteDis
play, final VideoStreamingParameters parameters, final boolean encrypted, VideoStreamin
gRange supportedLandscapeStreamingRange, VideoStreamingRange supportedPortraitStre

amingRange) .

Inside SdiService.java:

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/proguard-guidelines/

/...

if (sdIManager.getVideoStreamManager() != null) {
sdIManager.getVideoStreamManager().start(new CompletionListener() {
@Override
void (boolean success) {
if (success) {
sdIManager.getVideoStreamManager().startRemoteDisplayStream(
getApplicationContext(),
MyDisplay.class,
null,

false,
null,
null

} else {

DebugTool.logError(TAG,
}
}
)}
}

/...

Ending the Stream

When the HMIStatus is back to HMI_NONE it is time to stop the stream. This is
accomplished through a method stopStreaming() .

Inside SdiService.java:

/...

/*
OnRPCNotificationListeners are commonly used to perform tasks at specific HMI
levels
In this case, it is used to end streaming at HMI_NONE
*/
Map<FunctionID, OnRPCNotificationListener> onRPCNotificationListenerMap = new
HashMap<>();
onRPCNotificationListenerMap.put(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnHMIStatus status = (OnHMIStatus) notification;

if (status != null && status.getHmilLevel() == HMILevel. HMI_NONE) {
//Stop the stream

if (sdIManager.getVideoStreamManager() != null &&
sdIManager.getVideoStreamManager().isStreaming()) {
sdIManager.getVideoStreamManager().stopStreaming();

builder refers to an instance of SdIManager.Builder

The line below needs to be placed after builder is created and before builder.build()
is called

*/

builder.setRPCNotificationListeners(onRPCNotificationListenerMap);

/...

Handling HMI Scaling (RPC v6.0+)

If the HMI scales the video stream, you will have to handle scaling the projected view,
touches, and haptic rectangles yourself (this is all handled for you behind the scenes in
the VideoStreamManager API). To find out if the HMI scales the video stream, you must
for query and check the VideoStreamingCapability for the scale property. Please check
the Adaptive Interface Capabilities section for more information on how to query for this
property using the system capability manager. For information on manually handling haptic
rectangles, refer to the Haptic Input guide.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/adaptive-interface-capabilities/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/video-streaming-for-navigation-apps/supporting-haptic-input/

Video Streaming Parameters (SDL v5.1+)

Starting with SDL version 5.1+ the VideoStreamingParameters you provide will
automatically be aligned with the VideoStreamingCapabilities provided by the HMI.

If the HMI provides the scale or resolution in the VideoStreamingCapabilities the video
stream will use that scale or resolution. Otherwise, the scale or resolution you defined in
the VideoStreamingParameters will be used.

If the HMI provides the bitrate or preferred frame rate in the VideoStreamingCapabilities
and they are also defined in the VideoStreamingParamerters you provided, the smaller
bitrate or preferred frame rate will be used.

Video Framerate

Starting with SDL v5.1, the video stream manager works behind the scene to create a
consistent video stream that matches the framerate set in VideoStreamingParameters .
This is the now the default behavior but you have the option to revert to the old behavior

by setting the stableFrameRate flagto false inthe VideoStreamingParameters .

VideoStreamingParameters params = new VideoStreamingParameters();
//Turn on use of stable frame rate
params.setStableFrameRate(true);

//Set the frame rate that you would wish to stream at
params.setFrameRate(30);

Supporting Different Video Streaming Window Sizes
(RPC v7.1+)

Some HMIs support multiple view sizes and may resize your SDL app's view during video
streaming (i.e. to a collapsed view, split screen, preview mode or picture-in-picture). By
default, your app will support all the view sizes and the VideoStreamManager will resize
the video stream when the HMI notifies the app of the updated screen size.

If you wish to support only some screen sizes, you can configure the two VideoStreaming
Range parameters when starting your video stream using the startRemoteDisplay
method. One range is for landscape orientations and one range is for portrait orientations.
In these VideoStreamingRange parameters you can define different view sizes that you
wish to support in the event that the HMI resizes the view during the stream.

In the VideoStreamingRange you will define a minimum and maximum resolution,
minimum diagonal, and a minimum and maximum aspect ratio. Any values you do not
wish to use should be setto null .

If you want to support all possible landscape or portrait sizes you can simply pass null
for supportedLandscapeStreamingRange , supportedPortraitStreamingRange , or both.
If you wish to only support landscape orientation or only support portrait orientation you
"disable" the range by passing a VideoStreamingRange with all 0 values set.

/-k
This VideoStreamingRange represents a disabled range
It can be passed if you do not wish to support landscape orientation or portrait
orientation
*/
VideoStreamingRange disabledRange = new VideoStreamingRange(new

Resolution(0, 0),

new Resolution(0, 0), 0.0, 0.0, 0.0);

/*
This VideoStreamingRange represents that we will support any resolution between
500x200 and 800x400
In this case, it does not directly restrict the diagonal size or aspect ratio
*/
VideoStreamingRange landscapeRange = new VideoStreamingRange(new
Resolution(500, 200),
new Resolution(800, 400), null, null, null);
/*
This VideoStreamingRange represents that we will support any aspect ratio between
1.0 and 2.5
In this case, the resolution and diagonal size are not directly restricted
*/
VideoStreamingRange portraitRange = new VideoStreamingRange(null, null, null,
1.0, 2.5);

if (sdIManager.getVideoStreamManager() != null) {
sdIManager.getVideoStreamManager().start(new CompletionListener() {
@Override
void (boolean success) {
if (success) {
sdIManager.getVideoStreamManager().startRemoteDisplayStream(
getApplicationContext(),
MyDisplay.class,
null,
false,
landscapeRange,
portraitRange
);
} else {
DebugTool.logError(TAG,
}
}
b

NOTE

If you disable both the supportedLandscapeStreamingRange and supporte
dPortraitStreamingRange , video will not stream.

If the HMI resizes the view during the stream, the video stream will automatically restart
with the new size and the onViewResized method you defined in your presentation class

will be notified of the new screen size.

MyDisplay SdIRemoteDisplay{
(Context context, Display display) {
(context, display);

}

@Override
void (Bundle savedinstanceState) {
/...
}

//onViewResized is added in SDL v5.1+
@Override
void (int width, int height) {
DebugTool.loginfo(TAG, + width+ ", " +
height + ")");
//Update presentation based on new resolution
}
}

Audio Streaming

A navigation app can stream raw audio to the head unit. This audio data is played
immediately. If audio is already playing, the current audio source will be attenuated and

your audio will play. Raw audio must be played with the following parameters:

Format. PCM
Sample Rate: 16k

Number of Channels: 1

Bits Per Second (BPS): 16 bits per sample / 2 bytes per sample

To stream audio from a SDL app, use the AudioStreamingManager class. A reference to

this class is available from the SdIManager s audioStreamManager property.

Audio Stream Manager

The AudioStreamManager will help you to do on-the-fly transcoding and streaming of
your files in mp3 or other formats, or prepare raw PCM data to be queued and played.

Starting the Audio Manager

To stream audio, we call sdIManager.getAudioStreamManager().start() which will start
the manager. When that callback returns with a success, call sdIManager.getAudioStream
Manager().startAudioStream() . Once this callback returns successfully you can send and
play audio.

if (sdIManager.getAudioStreamManager() == null) {
// Handle the failure
return;

}

sdIManager.getAudioStreamManager().start(new CompletionListener() {
@Override
void (boolean success) {
if (Isuccess) {
// Failed to start audio streaming manager
return;

}

sdIManager.getAudioStreamManager().startAudioStream(false, new
CompletionListener() {
@Override
void (boolean success) {
if (Isuccess) {
// Failed to start audio stream

return;

}
// Push Audio Source
}
D
}
D

PLAYING FROM FILE

//Push from Uri Audio Source
sdIManager.getAudioStreamManager().pushAudioSource(audioSourceUri, new
CompletionListener() {
@Override
void (boolean success) {
if (success) {
DebugTool.loginfo(TAG,
} else {
DebugTool.loginfo(TAG,

}
}
N

//Push from Raw Audio Source
sdIManager.getAudioStreamManager().pushResource(R.raw.exampleMp3, new
CompletionListener() {
@Override
void (boolean success) {
if (success) {
DebugTool.loginfo(TAG,
} else {
DebugTool.loginfo(TAG,
}
}
i

PLAYING FROM DATA

//Push from ByteBuffer Audio Source
sdIManager.getAudioStreamManager().pushBuffer(byteBuffer, new
CompletionListener() {
@Override
void (boolean success) {
if (success) {
DebugTool.loginfo(TAG,
} else {
DebugTool.loginfo(TAG,
}
}
b

STOPPING THE AUDIO STREAM

When the stream is complete, or you receive HMI_NONE , you should stop the stream by
calling:

sdIManager.getAudioStreamManager().stopAudioStream(new CompletionListener() {
@Override
void (boolean success) {

// do something once the stream is stopped

}
D

Supporting Haptic Input (RPC
v4.5+)

SDL now supports "haptic" input: input from something other than a touch screen. This
could include trackpads, click-wheels, etc. These kinds of inputs work by knowing which
views on the screen are touchable and focusing / highlighting on those areas when the
user moves the trackpad or click wheel. When the user selects within a view, the center of
that area will be "touched".

NOTE

Currently, there are no RPCs for knowing which view is highlighted, so your
Ul will have to remain static (i.e. you should not create a scrolling menu in

your SDL app).

Automatic Focusable Rectangles

SDL has support for automatically detecting focusable views within your Ul and sending
that data to the head unit. You will still need to tell SDL when your Ul changes so that it
can re-scan and detect the views to be sent.

The easiest way to use this is by taking advantage of SDL's Presentation class. This will
automatically check if the capability is available and instantiate the manager for you. All

you have to do is set your layout:

MyPresentation SdIRemoteDisplay {

(Context context, Display display) {
(context, display);

}

@Override
void (Bundle savedinstanceState) {
.onCreate(savedinstanceState);
setContentView(R.layout.haptic_layout);
LinearLayout videoView = (LinearLayout) findViewByld(R.id.cat_view);

videoView.setOnTouchListener(new View.OnTouchListener() {
@Override
boolean (View view, MotionEvent motionEvent) {
// ...Update something on the ui

MyPresentation.this.invalidate();

return false;
}
)}

This will go through your view that was passed in and then find and send the rects to the
head unit for use. When your Ul changes, call invalidate() from your class that extends S
dIRemoteDisplay .

Manual Focusable Rects

It is also possible that you may want to create your own rects instead of using the
automated methods in the Presentation class. It is important that if sending this data
yourself that you also use the SystemCapabilityManager to check if you are on a head
unit that supports this feature. If the capability is available, it is easy to build the area you

want to become selectable:

void 0«
Rectangle rectangle = new Rectangle()
.setX((float) 1.0)
.setY((float) 1.0)
.setWidth((float) 1.0)
.setHeight((float) 1.0);

HapticRect hapticRect = new HapticRect()
.setld(123)
.setRect(rectangle);

ArrayList<HapticRect> hapticArray = new ArrayList<HapticRect>();
hapticArray.add(0, hapticRect);

SendHapticData sendHapticData = new SendHapticData();
sendHapticData.setHapticRectData(hapticArray);

sdIManager.sendRPC(sendHapticData);

Each SendHapticData RPC should contain the entirety of all clickable areas to be

accessed via haptic controls.

Displaying Turn Directions

While your app is navigating the user, you will also want to send turn by turn directions.
This is useful for if your app is in the background or if the user is in the middle of a phone
call, and gives the system additional information about the next maneuver the user must
make.

When your navigation app is guiding the user to a specific destination, you can provide the
user with visual and audio turn-by-turn prompts. These prompts will be presented even

when your SDL app is backgrounded or a phone call is ongoing.
While your app is navigating the user, you will also want to send turn by turn directions.
This is useful if your app is in the background or if the user is in the middle of a phone call,

and gives the system additional information about the next maneuver the user must make.

To create a turn-by-turn direction that provides both a visual and audio cues, a
combination of the ShowConstantTBT and AlertManeuver RPCs must should be sent
to the head unit.

O NOTE

v

If the connected device has received a phone call in the vehicle, the AlertMa
neuver is the only way for your app to inform the user of the next turn.

Visual Turn Directions

The visual data is sent using the ShowConstantTBT RPC. The main properties that

should be set are navigationText1 , navigationText2 , and turnlcon . A best practice for

navigation apps is to use the navigationText1 as the direction to give (i.e. turn right) and
navigationText2 to provide the distance to that direction (i.e. 3 mi.).

Audio Turn Directions

The audio data is sent using the AlertManeuver RPC. When sent, the head unit will speak
the text you provide (e.g. In 3 miles turn right).

Sending Audio and Visual Turn
Directions

ShowConstantTbt turnByTurn = new ShowConstantTbt()
.setNavigationText1()
.setNavigationText2()
.setTurnlcon(turnicon);
turnByTurn.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (Iresponse.getSuccess()){
DebugTool.logError(TAG,);
return;

}

AlertManeuver alertManeuver = new AlertManeuver()
.setTtsChunks(Collections.singletonList(new TTSChunk(
, SpeechCapabilities. TEXT)));
alertManeuver.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if (response.getSuccess()){
DebugTool.logError(TAG,
}
}
3
sdIManager.sendRPC(alertManeuver);
}

i
sdIManager.sendRPC(turnByTurn);

Remember when sending a Image , that the image must first be uploaded to the head unit
with the FileManager .

Clearing the Turn Directions

To clear a navigation direction from the screen, send a ShowConstantTbt with the mane
uverComplete property set to true. This will also clear the accompanying
AlertManeuver .

ShowConstantTbt turnByTurn = new ShowConstantTbt()
.setManeuverComplete(true);
turnByTurn.setOnRPCResponselListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {

if (response.getSuccess()){
DebugTool.logError(TAG,);

}

}

i
sdIManager.sendRPC(turnByTurn);

Video Streaming Menu

When building a video-streaming navigation application, you can choose to create a
custom menu using your own Ul or use the built-in SDL menu system. The SDL menu
allows you to display a menu structure so users can select menu options or submenus.
For more information about the SDL menu system, see menus. It's recommended to use
the built-in SDL menu system to have better performance, automatic driver distraction

support - such as list limitations and text sizing, and more.

To open the SDL built-in menu from your video streaming Ul, see 'Opening the Built-In
Menu' below.

Opening the Built-In Menu

The Show Menu RPC allows you to open the menu programmatically. That way, you can

open the menu from your own UL.

Show Top Level Menu

To show the top level menu use sdlManager.screenManager.openMenu .

https://smartdevicelink.com/en/guides/android/displaying-a-user-interface/main-menu/

sdIManager.getScreenManager().openMenu();

Show Sub-Menu

You can also open the menu directly to a sub-menu. This is further down the tree than the
top-level menu. To open a sub-menu, pass a cell that contains sub-cells. If the cell has no
sub-cells the method call will fail.

NOTE

The sub-cell you use in openSubMenu must be included in sdIManager.scr
eenManager.menu array. If it is not included in the array, the method call will
fail.

sdIManager.getScreenManager().openSubMenu(cellWithSubCells);

Close Application

If you choose to not use the built-in SDL menu system and instead want to use your own
menu Ul, you need to have a way for users to close your application. This should be done
through a menu option in your Ul that sends the CloseApplication RPC.

NOTE

This RPC is unnecessary if you are using OpenMenu because OEMs will

take care of providing a close button into your menu themselves.

CloseApplication closeApplication = new CloseApplication();

sdIManager.sendRPC(closeApplication);

Configuring SDL Logging

SDL Java Suite has a built-in logging framework that is designed to make debugging
easier. It provides many of the features common to other 3rd party logging frameworks for
java and can be used by your own app as well. We recommend that your app's integration
with SDL provide logging using this framework rather than any other 3rd party framework
your app may be using or System.out.print . This will consolidate all SDL related logs into

a common format and to a common destination.

Enabling the DebugTool

To make sure that log messages are displayed, you should enable the SDL Debug Tool:

DebugTool.enableDebugTool();

If you don't want the messages to be logged, you can disable the Debug Tool anytime:

DebugTool.disableDebugTool();

NOTE
If you use SDL Debug Tool to log messages without enabling the DebugTool

nothing wrong will happen. It will simply not display the log messages. This
gives the develop control on whether the logs should be displayed or not.

Logging messages

The SDL debug tool can be used to log messages with different log levels. The log level

defines how serious the log message is. This table summarizes when to use each log

level:
Info Use this to post useful information to the log
Use this when you suspect something shady is
Warning
going on
Error Use this when bad stuff happens

To log an info message:

DebugTool.loginfo(TAG,

To log a warning message:

DebugTool.logWarning(TAG,

To log an error message:

DebugTool.logError(TAG,

If you want to log error message with exception, you can add the exception as a second
parameter to the logError method:

DebugTool.logError(TAG, , new SdIException(

, SdIExceptionCause.SDL_CONNECTION_FAILED));

Filtering logs

The log level defines which logs will be logged to the target outputs. For example, if you
set the log level filter in Logcat to Warning , all error, and warning logs will be logged,
but info level logs will not be logged.

Error error
Warning error and warning

Info error, warning, and info

Updating to 4.4 (Upgrading To
Multiplexing)

This guide is to help developers get setup with the SDL Android library 4.4. Upgrading apps
to utilize the multiplexing transport flow will require us to do a few steps. This guide will

assume the SDL library is already integrated into the app.

We will make changes to:

SdIService

SdIRouterService (new)

SdIBroadcastReceiver

MainActivity

SmartDevicelLink Service

The SmartDevicelLink proxy object instantiation needs to change to the new constructor.
We also need to check for a boolean extra supplied through the intent that started the

service.

The old instantiation should look similar to this:

proxy = new SdIProxyALM(this, APP_NAME, true, APP_ID);

The new constructor should look like this

SdIService Service IProxyListenerALM {
/"

@Override
int (Intent intent, int flags, int startld) {
boolean forceConnect = intent !=null &&
intent.getBooleanExtra(TransportConstants.FORCE_TRANSPORT_CONNECTED,
false);
if (proxy == null) {
try {
//Create a new proxy using Bluetooth transport
//The listener, app name,
//whether or not it is a media app and the applicationld are supplied.
proxy = new SdIProxyALM(this.getBaseContext(),this, APP_NAME, true,
APP_ID);
} catch (SdIException e) {
//There was an error creating the proxy
if (proxy == null) {
//Stop the SdIService
stopSelf();
}
}

}else if(forceConnect){
proxy.forceOnConnected();
}

//use START_STICKY because we want the SDLService to be explicitly started
and stopped as needed.
return START_STICKY;

}

Notice we now gather the extra boolean from the intent and add to our if-else statement. If
the proxy is not null, we need to check if the supplied boolean extra is true and if so, take
action.

if (proxy == null) {
/"

}else if(forceConnect){
proxy.forceOnConnected();

}

SmartDeviceLink Router Service
(New)

The SdIRouterService will listen for a bluetooth connection with an SDL enabled module.
When a connection happens, it will alert all SDL enabled apps that a connection has been

established and they should start their SDL services.

We must implement a local copy of the SdIRouterService into our project. The class
doesn't need any modification, it's just important that we include it. We will extend the co

m.smartdevicelink.transport.SdIRouterService in our class named SdIRouterService :

NOTE

Do not include an import for com.smartdevicelink.transport.SdIRouterServi
ce . Otherwise, we will get an error for 'SdIRouterService' is already defined i

n this compilation unit .

SdIRouterService
com.smartdevicelink.transport.SdIRouterService {

//Nothing to do here
}

9, MUST

The local extension of the com.smartdevicelink.transport.SdIRouterService
must be named SdIRouterService .

9, MUST

Make sure this local class (SdIRouterService.java) is in the same package of
SdlReceiver.java (described below)

If you created the service using the Android Studio template then the service should have
been added to your AndroidManifest.xml otherwise the service needs to be added in the
manifest. Because we want our service to be seen by other SDL enabled apps, we need to
set android.exported="true" . The system may issue a lint warning because of this, so we
can suppress that using tools:ignore="ExportedService" . Once added, it should be
defined like below:

<manifest xmlns:android=
package=

<application>

<service
android:name=
android:exported=
android:process=
tools:ignore=

</service>

</application>

</manifest>

9, MUST

The SdIRouterService must be placed in a separate process with the name
com.smartdevicelink.router . If it is not in that process during its start up it
will stop itself.

SmartDeviceLink Broadcast Receiver

The SmartDevicelLink Android Library now includes a base BroadcastReceiver that needs
to be used. It's called SdIBroadcastReceiver . Our old BroadcastReceiver will just need to
extend this class instead of the Android BroadcastReceiver. Two abstract methods will be

automatically populate the class, we will fill them out soon.

SdIReceiver SdiBroadcastReceiver {

@Override
void (Context context, Intent intent) {...}

@Override
Class<? SdIRouterService>

Next, we want to make sure we supply our instance of the SdIBroadcastService with our
local copy of the SdIRouterService. We do this by simply returning the class object in the
method defineLocalSdIRouterClass:

Class<? SdIRouterService> 0{
//Return a local copy of the SdIRouterService located in your project

return com.company.mySdlApplication.SdIRouterService.class;

}

We want to start the SDL Proxy when an SDL connection is made via the SdlRouterServic

e . This is likely code included on the onReceive method call previously. We do this by
taking action in the onSdlEnabled method:

}

v

NOTE

The actual package definition for the SdIRouterService might be different.
Just make sure to return your local copy and not the class object from the
library itself.

SdIReceiver SdiBroadcastReceiver {

@Override
void (Context context, Intent intent) {
//Use the provided intent but set the class to the SdIService
intent.setClass(context, SdiService.class);
context.startService(intent);

@Override
Class<? SdIRouterService> 0 {
//Return a local copy of the SdIRouterService located in your project.
return com.company.mySdlApplication.SdIRouterService.class;

}

NOTE
The onSdlEnabled method will be the main start point for our SDL

connection session. We define exactly what we want to happen when we find

out we are connected to SDL enabled hardware.

9, MUST

SdIBroadcastReceiver must call super if onReceive is overridden

@Override
void (Context context, Intent intent) {

.onReceive(context, intent);
//your code here

}

Now we need to add two extra intent actions to or our intent filter for the

SdIBroadcastReceiver:

¢ android.bluetooth.adapter.action.STATE_CHANGED
e sdl.router.startservice

https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#ACTION_CONNECTION_STATE_CHANGED

<manifest xmlns:android=
package=

<application>

<receiver
android:name=
android:exported=
android:enabled=

<intent-filter>
<action android:name=
/>
<action
android:name=
<action
android:name=
<action android:name=
<action android:name=
</intent-filter>

</receiver>

</application>

</manifest>

9, MUST

SdIBroadcastReceiver has to be exported, or it will not work correctly

Main Activity

Our previous MainActivity class probably looked similar to this:

MainActivity Activity {

@Override
void (Bundle savedinstanceState) {
.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

// Start the SDLService
Intent sdIServicelntent = new Intent(this, SdiService.class);
startService(sdlServicelntent);

However now instead of starting the service every time we launch the application we can
do a query that will let us know if we are connected to SDL enabled hardware or not. If we
are, the onSdlEnabled method in our SdIBroadcastReceiver will be called and the proper
flow should start. We do this by removing the intent creation and startService call and

instead replace them with a single call to SdIReceiver.queryForConnectedService(Contex

).

MainActivity Activity {

@Override
void (Bundle savedinstanceState) {
.onCreate(savedinstanceState);

setContentView(R.layout.activity_main);

//1f we are connected to a module we want to start our SdIService
SdlReceiver.queryForConnectedService(this);
}
}

Updating from 4.4 10 4.5

This guide is to help developers get setup with the SDL Android library 4.5. It is assumed

that the developer is already updated to 4.4 of the library. There are a few very important

changes that we need to make to the integration to keep things working well. The first is a
few new additions to the AndroidManifest.xml and the SdIRouterService entry. Next, we

have to prepare for Android Oreo's push towards foreground services.

We will make changes to:

e AndroidManifest.xml
e SdlService

e SdIBroadcastReceiver

AndroidManifest.xml Updates

Assuming the manifest was up to date with version 4.4 requirements we need to add an
intent-filter and a meta-data item. The entire entry should look as follows:

<manifest xmlns:android=
package=

<application>

<service
android:name=
android:exported=
android:process=
tools:ignore=
<intent-filter>

<action android:name=
</intent-filter>
<meta-data android:name=
android:value=
</service>

</application>

</manifest>

Intent Filter

<intent-filter>

<action android:name=
</intent-filter>

The new versions of the SDL Android library rely on the com.smartdevicelink.router.servi
ce action to query SDL enabled apps that host router services. This allows the library to

determine which router service to start.

9, MUST

This intent-filter MUST be included.

Metadata

ROUTER SERVICE VERSION

<meta-data android:name=

android:value=

Adding the sdl_router_version metadata allows the library to know the version of the
router service that the app is using. This makes it simpler for the library to choose the

newest router service when multiple router services are available.

CUSTOM ROUTER SERVICE

<meta-data android:name= android:value=

NOTE

This is only for specific OEM applications, therefore normal developers do

not need to worry about this.

Some OEMs choose to implement custom router services. Setting the sdl_custom_rout
er metadata value to true means that the app is using something custom over the
default router service that is included in the SDL Android library. Do not include this meta-

data entry unless you know what you are doing.

Android Oreo's Push To Foreground
Services

Previous versions of Android allowed our SDL app partners to start their SDL services in
the background and attach themselves to the foregrounded SDL router service. Android
Oreo (API 26) has changed that. Due to new OS limitations, apps must start their SDL

service in the foreground.

What do | need to do?

There are a few changes to make, one in the SdIBroadcastReceiver and the other in the

SdiService (or which service the proxy is implemented).

SDLBROADCASTRECEIVER
PREVIOUS VERSION

@Override
void (Context context, Intent intent) {
Log.d(TAG,)i

intent.setClass(context, SdiService.class);
context.startService(intent);

}

SAMPLE UPDATE

@Override
void (Context context, Intent intent) {
Log.d(TAG,);
intent.setClass(context, SdiService.class);
if(Build.VERSION.SDK_INT < Build.VERSION_CODES.O) {

context.startService(intent);
telsef

context.startForegroundService(intent);

}

This means the app will start the SDL service in the background if we are on a device that
uses Android N or earlier. If the app is running on Android Oreo or newer, the service will
make a promise to the OS that the service will move into the foreground. If the service

doesn't explicitly move into the foreground an exception will be thrown.

SDLSERVICE (OR SIMILAR)

Within the SdIService class or similar you will need to add a call to start the service in
the foreground. This will include creating a notification to sit in the status bar tray. This
information and icons should be relevant for what the service is doing/going to do. If you

already start your service in the foreground, you can ignore this section.

void 0{
.onCreate();

NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);

notificationManager.createNotificationChannel(...);

Notification serviceNotification = new Notification.Builder(this, *Notification
Channel*)

.setContentTitle(...)
.setSmalllcon(....)
.setLargelcon(...)
.setContentText(...)
.setChannelld(channel.getld())
.build();

startForeground(id, serviceNotification);

}

EXITING THE FOREGROUND

It's important that you don't leave you notification in the notification tray as it is very
confusing to users. So in the onDestroy method in your service, simply call the stopFor
eground method.

@Override
void {
/

if(Build.VERSION.SDK_INT>=Build.VERSION_CODES.O)}{
NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);

if(notificationManager!=null){ /If this is the only notification on your channel

notificationManager.deleteNotificationChannel(* Notification Channel*);

}

stopForeground(true);

}
}

Notification Suggestions

We realize that pushing a notification to the notification tray is not ideal for any apps, but
with Android's push for more transparency to users it's important that we don't try to
workaround that. Android is getting stricter with their guidelines and could potentially

prevent apps from being released if they are found to be not adhering to these rules.

THE CORRECT WAY

The right way to handle the new foreground service requirement is to simply push a full-

fledged notification to the notification tray.
How to do it

@Override
void 0{
.onCreate();

if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
NotificationChannel channel = new NotificationChannel(
NotificationManager.IMPORTANCE_DEFAULT);

notificationManager.createNotificationChannel(channel);
Notification serviceNotification = new Notification.Builder(this,
channel.getld())
.setContentTitle()
.setSmalllcon(R.drawable.ic_launcher_foreground)
.build();
startForeground(id, serviceNotification);

}
}

THE NOT SO CORRECT WAY

Currently Android Oreo allows a notification to be used that has not declared a notification
channel. This results in the notification icon not actually appearing on its own. Instead it is
grouped together into the notification channel that reads "# apps are using battery" from
the Android System. This is likely to prevent breaking changes from apps that have not

updated their integration to Android Oreo, however, we fully anticipate this to be changed

in the future so it is not recommended.
How to do it

@Override
void 01
.onCreate();

if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
Notification serviceNotification = new Notification.Builder(this,

.setContentTitle()
.setSmalllcon(R.drawable.ic_launcher_foreground)
.build();

startForeground(id, serviceNotification);

}
}

How it looks

+@W 0 g 439

No SIM card — Emergency calls only T0% W 4:39
B ® 3 o v 0 =
Tuesday, Mar 27 | @ 41°F _ [o v

:"-E.__ App Three
SDL: com.livio.appthree @
Connected to

B Android System - now
3 apps are using battery
SdiPlay App Three, Sdl App

o Androdd System
USE debugging connected
Tap to disable USB debugging.

o Android System - USE charging this device ~

CLEAR ALL

THE ABSOLUTELY NOT CORRECT WAY

It is possible to create a somewhat invisible notification. This will appear to just be blank
space in the notification tray. With adding minimal content to the notification when the
user pulls down the tray it will have a very small footprint on the screen. However, this is
completely disingenuous to the user and should not be considered a solution. Android will
most likely see this as bad behavior and could prevent you from releasing your app or

even remove your app from the play store with a ban included. Don't do this.
How to do it

@Override
void 0{
.onCreate();

if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
NotificationChannel channel = new NotificationChannel(

NotificationManager.IMPORTANCE_DEFAULT);
notificationManager.createNotificationChannel(channel);
Notification serviceNotification = new Notification.Builder(this,

channel.getld())

.setSmalllcon(R.drawable.sdl_tray_invis)
.build();
startForeground(id, serviceNotification);

}
}

How it looks

3O W w49 No SIM card — Emergency calls only 67% H 4:20
v % e = O +
Tue, Mar 27 o ~
Sdl App

SdlPlay
App Three

E3 App Thres
5DL: com.livio.appthree @
Connected to

J Android System

USE debugging connected
Tap to disable USE debugging.

B Google Play Store « now

2 apps updated

Google Photos and Google Docs

T
s 5
X
T3 .
Settings

o Android System + USE charging this device

CLEAR ALL

Updating from 4.5t0 4.6

This guide is to help developers get setup with the SDL Android library 4.6. It is assumed
that the developer is already updated to 4.5 of the library. There are a few important
changes that we need to make to the integration to keep things working well. The first is
removing some of the BroadcastReceiver's intent filters in AndroidManifest.xml that are
now unnecessary. Secondly, the gradle integration of our library should now use impleme

ntation instead of compile . Lastly, the RPCRequestFactory class has been deprecated

and constructors with mandatory parameters have been added for each RPC class.

We will make changes to:

¢ AndroidManifest.xml
e build.gradle
e any usage of RPCRequestFactory

AndroidManifest.xml Updates

Assuming the manifest was up to date with version 4.5, we can now remove some of the
intent-filters (ACL_DISCONNECTED , STATE_CHANGED , AUDIO_BECOMING_NOISY)
for your app's BroadcastReceiver. The BroadcastReceiver section of the manifest should
look as follows:

<manifest xmlns:android=
package=

<application>

<receiver
android:name=
android:exported=
android:enabled=

<intent-filter>
<action android:name=

<action android:name=
</intent-filter>

</receiver>

</application>

</manifest>

Gradle Update

The previous way of including the library via compile should now use implementation .

The dependencies section of your app's build.gradle file should now appear as:

dependencies {

implementation 'com.smartdevicelink:sdl_android:4.+'

}

Deprecation of RPCRequestFactory

The RPCRequestFactory has been deprecated in 4.6. To build RPC requests, developers
should use the constructors in the desired RPC request class. For example, instead of
using RPCRequestFactory.buildAddCommand(...) to build an AddCommand request, try

the following:

AddCommand addCommand = new AddCommand(100);

addCommand.setMenuParams(new MenuParams());
proxy.sendRPCRequest(addCommand);

Updating from 4.6 to 4.7

Overview

This guide is to help developers get setup with the SDL Android library version 4.7. It is
assumed that the developer is already updated to 4.6 of the library. This version includes
the addition of the SdIManagers and a re-working of the transports which greatly enhances
the use of the SdIRouterService , along with adding the functionality for secondary

transports on supporting versions of SDL Core.

In this guide we will be focusing on the transitioning from the proxy, which implemented S
dIProxyALM into using the SdIManager system, which includes specialized sub-
managers that you can interact with through the SdIManager . We will follow the naming
convention of the guides, highlighting the previous way of implementing SDL and showing

the new ways of implementing it.

O NOTE

Moving from the SdIProxyALM implementation to the SdIManager API
will require you to manually subscribe to the notifications and responses
that you wish to receive instead of all of the notifications and responses

being passed through the [ProxyListenerALM interface.

Integration Basics

The SdIService class will contain a great deal of changes as it acts as the main bridge to
SDL functionality. There are going to be two main differences with how this class was set

up in 4.6 versus 4.7.

Removal of IProxyListenerALM

Previously, your SdlService had to implement the IProxyListenerALM interface. This
often added many unnecessary lines of code to the class due to the need to override all of
its functions. The need to do this has been removed in 4.7 with the inclusion of the SdIMa

nager APIs. Developers now only have to add the listeners they need.

4.6:

SdlService Service IProxyListenerALM {

// The proxy handles communication between the application and SDL
SdIProxyALM proxy = null;

/...

@Override
void
/%

4.7: THE REQUIREMENT TO IMPLEMENT IPROXYLISTENERALM IS
REMOVED:

SdIService Service {

// The SdIManager exposes the APIs needed to communicate between the
application and SDL

SdIManager sdIManager = null;

After removing IProxyListenerALM from the SdlService , all of its previously overridden
functions will need to be removed. If your app used any of these callback methods, it will
help to document which ones they were, as you will need to add in the listeners that you
need using the SdIManager 's addOnRPCNotificationListener .

9 NOTE

When you start using the managers, you have to make sure that your app
subscribes to notifications before sending the corresponding RPC requests

and subscriptions or else some notifications may be missed.

Creation of SdiIManager

As we no longer want to directly instantiate SdIProxyALM , we need to instantiate the Sd
IManager instead. This is best done using the SdIManager.Builder class using your
application's details and configurations. In order to receive life cycle events from the Sdl
Manager , an SdIManagerListener must be provided. The new code should resemble the
following:

SdIService Service {

//The manager handles communication between the application and SDL
SdIManager sdIManager = null;

/...

@Override
int (Intent intent, int flags, int startld) {

if (sdIManager == null) {
MultiplexTransportConfig transport = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);

// The app type to be used
Vector<AppHMIType> appType = new Vector<>();
appType.add(AppHMIType.MEDIA);

// The manager listener helps you know when certain events that pertain to
the SDL Manager happen
SdIManagerListener listener = new SdiManagerListener() {

@Override
void 0 {
// RPC listeners and other functionality can be called once this callback
is triggered.

}

@Override
void 04
SdIService.this.stopSelf();

}

@Override
void (String info, Exception e) {
}

%

// Create App Icon, this is set in the SdIManager builder
SdlArtwork applcon = new SdlArtwork(ICON_FILENAME,
FileType.GRAPHIC_PNG, R.mipmap.ic_launcher, true);

// The manager builder sets options for your session

SdIManager.Builder builder = new SdiManager.Builder(this, APP_ID,
APP_NAME, listener);

builder.setAppTypes(appType);

builder.setTransportType(transport);

builder.setApplcon(applcon);

sdIManager = builder.build();

sdIManager.start();

Once you receive the onStart callback from SdlIManager , you can add in your listeners
and start adding Ul elements. There will be more about adding the Ul elements later. The
last example in this section will be about adding specific listeners. Because we removed
the IProxyListenerALM implementation, you will have to set listeners for the needs of

your app.

Listening for RPC notifications and events

We can listen for specific events using SdIManager 's addOnRPCNotificationListener .
These listeners can be added either in the onStart() callback of the SdIManagerListene
r or after it has been triggered. The following example shows how to listen for HMI Status
notifications. Additional listeners can be added for specific RPCs by using their
corresponding FunctionID in place of the ON_HMI_STATUS in the following example
and casting the RPCNotification object to the correct type.

EXAMPLE OF A LISTENER FOR HMI STATUS:

sdIManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnHMIStatus status = (OnHMIStatus) notification;
if (status.getHmilLevel() == HMILevel. HMI_FULL && ((OnHMIStatus)

notification).getFirstRun()) {
// first time in HMI Full
}
}
3

Sending RPCs

There are new method names and locations that mimic previous functionality for sending
RPCs. These methods are located in the SdIManager and have the new names of send

RPC , sendRPCs , and sendSequentialRPCs .

4.6:

// single RPC
proxy.sendRPCRequest(request);

// multiple RPCs, non-sequential

proxy.sendRequests(rpcs, new OnMultipleRequestListener() {
/...

3

// multiple RPCs, sequential

proxy.sendSequentialRequests(rpcs, new OnMultipleRequestListener() {
/s

)

In 4.7, we use the SdIManager to send the requests.

4.7:

// single RPC
sdIManager.sendRPC(request);

// multiple RPCs, non-sequential
sdIManager.sendRPCs(rpcs, new OnMultipleRequestListener() {
/...

D

// multiple RPCs, sequential

sdIManager.sendSequentialRPCs(rpcs, new OnMultipleRequestListener() {
/s

)

Using AOA Protocol

If your app uses USB to connect to SDL, this update provides a very useful enhancement.
AOA connections now work with the SdIRouterService . This means that multiple USB

apps can be connected to the head unit at once.

SDLBROADCASTRECEIVER

Since the AOA transport will now use the multiplexing feature, it is important that your app
correctly adds functionality for the SdIRouterService . This starts in the SdIBroadcastRe
ciever .

4.6:

SdIReceiver com.smartdevicelink.SdIBroadcastReceiver {

@Override
void (Context context, Intent intent) {
//Use the provided intent but set the class to your SdIService
intent.setClass(context, SdiService.class);
context.startService(intent);

}

@Override
Class<? SdIRouterService>
return null;

}

SdIReceiver com.smartdevicelink.SdIBroadcastReceiver {

@Override
void (Context context, Intent intent) {
//Use the provided intent but set the class to your SdIService
intent.setClass(context, SdiService.class);
context.startService(intent);

}

@Override
Class<? SdIRouterService>
// define your local router service. For example:
return com.sdl.hellosdlandroid.SdIRouterService.class;

}

SDLROUTERSERVICE

The SdIRouterService will listen for a connection with an SDL enabled module. When a
connection happens, it will alert all SDL enabled apps that a connection has been
established and they should start their SDL services.

4.6:

(No implementation required).

4.7:

We must implement a local copy of the SdIRouterService into our project. The class
doesn't need any modification, it's just important that we include it. We will extend the co
m.smartdevicelink.transport.SdIRouterService in our class named SdlRouterService :

NOTE

Do not include an import for com.smartdevicelink.transport.SdIRouterServi
ce . Otherwise, we will get an error for 'SdIRouterService' is already defined i

n this compilation unit .

SdIRouterService
com.smartdevicelink.transport.SdIRouterService {

//Nothing to do here
}

9, MUST

The local extension of the com.smartdevicelink.transport.SdIRouterService
must be named SdIRouterService .

9, MUST

Make sure this local class (SdIRouterService.java) is in the same package of

SdIReceiver.java

SDLSERVICE
4.6:

transport = new USBTransportConfig(getBaseContext(), (UsbAccessory)
intent.getParcelableExtra(UsbManager.EXTRA_ACCESSORY), false, false);

MultiplexTransportConfig transport = new MultiplexTransportConfig(this, APP_ID,
MultiplexTransportConfig.FLAG_MULTI_SECURITY_MED);

ADDITIONAL CONFIGURATIONS:

If your app requires high bandwidth transport, you can now specify that:

transport.setRequiresHighBandwidth(true);

NOTE

If your app only works when a high bandwidth transport is available, you
should set setRequiresHighBandwidth to true . You cannot be certain that
all core implementations support multiple transports. You could also set Tr

ansportType.USB as your only supported primary transport

Since the SdIRouterService now works with multiple transports, you can set your own

configuration, for example:

List<TransportType> multiplexPrimaryTransports =
Arrays.asList(TransportType.USB, TransportType.BLUETOOTH);

List<TransportType> multiplexSecondaryTransports =
Arrays.asList(TransportType. TCP, TransportType.USB, TransportType.BLUETOOTH);

/...

transport.setPrimaryTransports(multiplexPrimaryTransports);
transport.setSecondaryTransports(multiplexSecondaryTransports);

NOTE

Multiple transports only work on supported versions of SDL Core.

ANDROIDMANIFEST
4.6

<uses-permission android:name=
<uses-permission android:name=
/>

<uses-feature android:name=

<service
android:name=
android:enabled= />

<receiver
android:name=
android:enabled=
android:exported=
tools:ignore=
<intent-filter>
<action android:name=
<l-For AOA —>
<action android:name=
</intent-filter>
</receiver>

<activity
android:name=
android:launchMode=
<intent-filter>
<action
android:name=
</intent-filter>

<meta-data
android:name=
android:resource=
</activity>

4.7

<uses-permission android:name=

<uses-permission android:name=

<uses-permission android:name=
/>

<uses-permission android:name=

<uses-feature android:name=

<service
android:name=
android:enabled= />

<service
android:name=
android:exported=
android:process=
tools:ignore=
<intent-filter>
<action android:name=
</intent-filter>
<meta-data android:name=

android:value=

</service>

<receiver
android:name=
android:enabled=
android:exported=
tools:ignore=
<intent-filter>
<action android:name=

<l-For AOA >
<action android:name=
<action android:name=

</intent-filter>

</receiver>

<activity
android:name=
android:launchMode=
<intent-filter>
<action
android:name=
</intent-filter>

<meta-data
android:name=
android:resource=
</activity>

Lock Screen

There has been a major overhaul for lock screens in 4.7. Complicated lock screen setups
are no longer required due to the addition of the LockScreenManager . Instead of going
over the previous lock screen tutorial and then writing another one | will give brief
instructions on how to either continue using your lock screen implementation, or
upgrading to the new managed system. This review is brief, it is recommended that you
look at the full lock screen guide.

USING YOUR CURRENT IMPLEMENTATION

If you would like to keep your current lock screen implementation, but would like to use
the SdIManager for its other functionalities, you must disable the LockScreenManager .
(This is not recommended as the new LockScreenManager takes care of a lot of boiler
plate code and reduces possible errors).

DISABLING THE LOCK SCREEN MANAGER:

To disable, create a LockScreenConfig object and set it in the SdIManager.Builder in

your SdIService.java class.

lockScreenConfig.setEnabled(false);
/...

builder.setLockScreenConfig(lockScreenConfig);

USING THE NEW LOCKSCREENMANAGER

If you want SDL to handle the lock screen logic for you, it is simple. You will remove the
classes that currently handle your lock screen, and set the variables you want for your new
lock screen as defined in the lock screen guide. This simple addition is handled during the
instantiation of the SdIManager within SdlService.java .

https://smartdevicelink.com/en/guides/android/getting-started/adding-the-lock-screen/
https://smartdevicelink.com/en/guides/android/getting-started/adding-the-lock-screen

LOCK SCREEN ACTIVITY

You must declare the SDLLockScreenActivity in your manifest. To do so, simply add the
following to your app's AndroidManifest.xml if you have not already done so:

<activity

android:name=
android:launchMode=

9, MUST

This manifest entry must be added for the lock screen feature to work.

CONFIGURATIONS

The default configurations should work for most app developers and is simple to get up
and running. However, it is easy to perform deeper configurations to the lock screen for
your app. Below are the options that are available to customize your lock screen which
builds on top of the logic already implemented in the LockScreenManager .

There is a setter in the SdIManager.Builder that allows you to set a LockScreenConfig
by calling builder.setLockScreenConfig(lockScreenConfig) . The following options are

available to be configured with the LockScreenConfig .

In order to to use these features, create a LockScreenConfig object and set it using Sdl

Manager.Builder before you build SdIManager .
Custom Background Color
In your LockScreenConfig object, you can set the background color to a color resource

that you have defined in your Colors.xml file:

lockScreenConfig.setBackgroundColor(resourceColor); // For example, R.color.black

Custom App Icon
In your LockScreenConfig object, you can set the resource location of the drawable icon

you would like displayed:

lockScreenConfig.setApplcon(applconint); // For example,

R.drawable.lockscreen_icon

Showing The Device Logo
This sets whether or not to show the connected device's logo on the default lock screen.

The logo will come from the connected hardware if set by the manufacturer. When using a
Custom View, the custom layout will have to handle the logic to display the device logo or
not. The default setting is false, but some OEM partners may require it.

In your LockScreenConfig object, you can set the boolean of whether or not you want the

device logo shown, if available:

lockScreenConfig.showDevicelLogo(true);

Setting A Custom Lock Screen View
If you'd rather provide your own layout, it is easy to set. In your LockScreenConfig object,

you can set the reference to the custom layout to be used for the lock screen. If this is

set, the other customizations described above will be ignored:

lockScreenConfig.setCustomView(customViewlint);

Displaying Information

Setting text:

Previously, to set text fields, the developer had to create a Show RPC, set the text fields,
and then send the PRC. It was also the developer's responsibility to make sure that they
set only the lines of text that are supported by the template. In 4.7, the ScreenManager
can be used and handles such logic internally. If a specific text field is not supported, it will
be automatically hyphenated with other texts to make sure that everything is displayed

correctly.

4.6:

Show show = new Show();
show.setMainField1();
show.setMainField2();
show.setMainField3()
show.setMainField4();
show.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if ((ShowResponse) response).getSuccess())
Log.i(;);
} else {
Log.i(
}

}

};
proxy.sendRPCRequest(show);

]

sdIManager.getScreenManager().beginTransaction();
sdIManager.getScreenManager().setTextField1(

sdIManager.getScreenManager().setTextField3(
sdIManager.getScreenManager().setTextField4(
sdIManager.getScreenManager().commit(new CompletionListener() {
@Override
void (boolean success) {
Log.i(TAG, + success);

)

)
sdIManager.getScreenManager().setTextField2(

)

)

)

Setting images:

Previously, to set an image, the developer had to upload the image using the PutFile RPC.
When it is uploaded, a Show RPC was then created and sent to display the image. In 4.7,
the ScreenManager handles uploading the image and sending the RPCs internally.

4.6:

Image image = new Image();

image.setimageType(ImageType.DYNAMIC);

image.setValue(); // a previously uploaded filename using PutFile
RPC

Show show = new Show();
show.setGraphic(image);
show.setCorrelationID(CorrelationldGenerator.generateld());
show.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if ((ShowResponse) response).getSuccess())
Log.i(:);
} else {
Log.i(
}
}
});
proxy.sendRPCRequest(show);

SdlArtwork sdlArtwork = new SdlArtwork(, FileType.GRAPHIC_JPEG,
R.drawable.applmage, true);
sdIManager.getScreenManager().setPrimaryGraphic(sdlArtwork);

Using soft buttons:

Previously, to add a soft button with an image the developer had to upload the image by

sending a PutFile RPC, and after the image is uploaded, creating a SoftButton object,

then creatinga Show RPC. They would then need to set the button in the RPC, and then
send the request. In 4.7, the ScreenManager takes care of sending the RPCs. The
developer just has to create softButtonObject , add a state to it, then use the ScreenMa

nager to set soft button objects.

4.6:

Image cancellmage = new Image();
cancellmage.setimageType(ImageType. DYNAMIC);

cancellmage.setValue(); // a previously uploaded filename using PutFile
RPC

List<SoftButton> softButtons = new ArrayList<>();
SoftButton cancelButton = new SoftButton();
cancelButton.setType(SoftButtonType.SBT_IMAGE);
cancelButton.setlmage(cancellmage);
cancelButton.setSoftButtonID(1);

softButtons.add(cancelButton);

Show show = new Show();

show.setSoftButtons(softButtons);
proxy.sendRPCRequest(show);

SoftButtonState softButtonState = new SoftButtonState(, , hew
SdlArtwork(, FileType.GRAPHIC_JPEG, R.drawable.cancel, true));
SoftButtonObject softButtonObject = new SoftButtonObject()
Collections.singletonList(softButtonState), softButtonState.getName(), null);
sdIManager.getScreenManager().setSoftButtonObjects(Collections.singletonList(soft

Receiving button events on previous versions of SDL had to be done using onOnButtonE
vent and onOnButtonPress callbacks from the IProxyListenerALM interface. The id
had to be checked to know the exact button that received the event. In 4.7, it is much
cleaner: a listener can be added to the SoftButtonObject , so the developer can easily tell
when and which soft button received the event.

4.6:

@Override
void (OnButtonEvent notification) {
Log.i(TAG,);

if (notification.getButtonName() == CUSTOM_BUTTON){
int ID = notification.getCustomButtonName();
Log.i(TAG, + ID);
}
}

@Override
void (OnButtonPress notification) {
Log.i(TAG,);

if (notification.getButtonName() == CUSTOM_BUTTON){
int ID = notification.getCustomButtonName();
Log.i(TAG, + ID);
}
}

softButtonObject.setOnEventListener(new SoftButtonObject.OnEventListener() {
@Override
void (SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
Log.i(TAG,);
}

@Override
void (SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
Log.i(TAG,);
}
i

Receiving Subscribe Buttons Events

Previously, your SdIService had to implement IProxyListenerALM interface which

means your SdlService class had to override all of the IProxyListenerALM callback

methods including OnButtonEvent and OnButtonPress .

4.6

@Override
void (OnHMIStatus notification) {
if(notification.getHmilLevel() == HMILevel. HMI_FULL && notification.getFirstRun())

{

SubscribeButton subscribeButtonRequest = new SubscribeButton();
subscribeButtonRequest.setButtonName(ButtonName.SEEKRIGHT);
proxy.sendRPCRequest(subscribeButtonRequest);

}
}

@@Override
void (OnButtonEvent notification) {
switch(notification.getButtonName()){
case OK:
break;
case SEEKLEFT:
break;
case SEEKRIGHT:
break;
case TUNEUP:
break;
case TUNEDOWN:
break;

}

@Override
void (OnButtonPress notification) {
switch(notification.getButtonName()){
case OK:
break;
case SEEKLEFT:
break;
case SEEKRIGHT:
break;
case TUNEUP:
break;
case TUNEDOWN:
break;

In 4.7 and the new manager APIs, in order to receive the OnButtonEvent and OnButtonP
ress notifications, your app must add a OnRPCNotificationListener usingthe SdIMana
ger 's method addOnRPCNotificationListener . This will subscribe the app to any
notifications of the provided type, in this case ON_BUTTON_EVENT and ON_BUTTON_
PRESS . The listener should be added before sending the corresponding RPC
request/subscription or else some notifications may be missed.

sdIManager.addOnRPCNotificationListener(FunctionID.ON_BUTTON_EVENT, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnButtonPress onButtonPressNotification = (OnButtonPress) notification;
switch (onButtonPressNotification.getButtonName()) {
case OK:
break;
case SEEKLEFT:
break;
case SEEKRIGHT:
break;
case TUNEUP:
break;
case TUNEDOWN:
break;

sdIManager.addOnRPCNotificationListener(FunctionID.ON_BUTTON_PRESS, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnButtonPress onButtonPressNotification = (OnButtonPress) notification;
switch (onButtonPressNotification.getButtonName()) {
case OK:
break;
case SEEKLEFT:
break;
case SEEKRIGHT:
break;
case TUNEUP:
break;
case TUNEDOWN:
break;

SubscribeButton subscribeButtonRequest = new SubscribeButton();
subscribeButtonRequest.setButtonName(ButtonName.SEEKRIGHT);
sdIManager.sendRPC(subscribeButtonRequest);

Changing The Template:

Previously, developers had to pass a string that represents the name of the templateto S
etDisplayLayout . In 4.7, a new PredefinedLayout enum is introduced to hold all possible

values for the templates.

4.6:

SetDisplayLayout setDisplayLayoutRequest = new SetDisplayLayout();
setDisplayLayoutRequest.setDisplayLayout();
try{

proxy.sendRPCRequest(setDisplayLayoutRequest);
}catch (SdIException e){

e.printStackTrace();

}

SetDisplayLayout setDisplayLayoutRequest = new SetDisplayLayout();
setDisplayLayoutRequest.setDisplayLayout(PredefinedLayout. GRAPHIC_WITH_TEXT.

sdIManager.sendRPC(setDisplayLayoutRequest);

Uploading Files and Graphics

SDL Android 4.7 introduces the FileManager , which is accessible through the SdIMana
ger . Previous methods of uploading files and performing their functions still work, but

now there are a set of convenience methods that do a lot of the boilerplate work for you.

Check out the Uploading Files and Uploading Images for code examples and detailed

explanations.

SDL File and SDL Artwork

https://smartdevicelink.com/en/guides/android/other-sdl-features/uploading-files/
https://smartdevicelink.com/en/guides/android/other-sdl-features/uploading-images/

New to version 4.7 of the SDL Android library are SdIFile and SdIlArtwork objects.
These have been created in parallel with the FileManager to help streamline SDL
workflow. SdlArtwork is an extension of SdIFile that pertains only to graphic specific
file types, and its use case is similar. For the rest of this document, SdIFile will be

described, but everything also applies to SdlArtwork .

CREATION

One of the hardest parts about getting a file into SDL was the boilerplate code needed to
convert the file into a byte array that was used by the head unit. Now, you can instantiate a
SdIFile with:

A RESOURCE ID

new SdIFile(@NonNull String fileName, @NonNull FileType fileType, int id, boolean

persistentFile)

A URI

new SdIFile(@NonNull String fileName, @NonNull FileType fileType, Uri uri, boolean
persistentFile)

And last but not least

A BYTE ARRAY

new SdIFile(@NonNull String fileName, @NonNull FileType fileType, byte[] data,

boolean persistentFile)

without the need to implement the methods needed to do the conversion of data yourself.

Uploading a File

Uploading a file with the FileManager is a simple process. With an instantiated SdIMan
ager ,

you can simply call:

sdIManager.getFileManager().uploadFile(sdIFile, new CompletionListener() {
@Override
void (boolean success) {

Getting Vehicle Data and Subscribing
to Notifications

Previously, your SdlService hadto implement IProxyListenerALM interface which
means your SdlService class had to override all of the IProxyListenerALM callback
methods including onOnVehicleData .

4.6:

@Override
void (OnHMIStatus notification) {
if(notification.getHmilLevel() == HMILevel. HMI_FULL && notification.getFirstRun())

{

SubscribeVehicleData subscribeRequest = new SubscribeVehicleData();
subscribeRequest.setPrndI(true);
subscribeRequest.setOnRPCResponselListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if(response.getSuccess(){
Log.i(,);
telsef
Log.i(
}

}
});
try {
proxy.sendRPCRequest(subscribeRequest);
} catch (SdIException €) {
e.printStackTrace();

@Override
void (OnVehicleData notification) {
PRNDL prndl = notification.getPrndl();
Log.i() prndl.toString());
}

In 4.7 and the new manager APIs, in order to receive the OnVehicleData notifications,
your app must add a OnRPCNotificationListener using the SdIManager 's method addO
nRPCNotificationListener . This will subscribe the app to any notifications of the provided
type, in this case ON_VEHICLE_DATA . The listener should be added before sending the
corresponding RPC request/subscription or else some notifications may be missed.

4.7:

sdIManager.addOnRPCNotificationListener(FunctionID.ON_VEHICLE_DATA, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnVehicleData onVehicleDataNotification = (OnVehicleData) notification;
if (onVehicleDataNotification.getPrndI() != null) {
Log.i(, +
onVehicleDataNotification.getPrndI());
}
}
i

SubscribeVehicleData subscribeRequest = new SubscribeVehicleData();
subscribeRequest.setPrndI(true);
subscribeRequest.setOnRPCResponselListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if(response.getSuccess()){
Log.i(:);
telsef{
Log.i(
}
}
i
sdIManager.sendRPC(subscribeRequest);

Getting In-Car Audio

Subscribing to AudioPassThru Notifications

Previously, your SdIService had to implement IProxyListenerALM interface which
means your SdlService class had to override all of the IProxyListenerALM callback
methods including onOnAudioPassThru .

4.6:

@Override
void (OnHMIStatus notification) {
if(notification.getHmilLevel() == HMILevel. HMI_FULL && notification.getFirstRun())
{
PerformAudioPassThru performAPT = new PerformAudioPassThru();
performAPT.setAudioPassThruDisplayText1(
performAPT.setAudioPassThruDisplayText2()i
performAPT.setlnitialPrompt(TTSChunkFactory.createSimpleTTSChunks(
)i
performAPT.setSamplingRate(SamplingRate._22KHZ);
performAPT.setMaxDuration(7000);

performAPT.setBitsPerSample(BitsPerSample._16_BIT);
performAPT.setAudioType(Audio Type.PCM);
performAPT.setMuteAudio(false);
proxy.sendRPCRequest(performAPT);
}
}

@Override
void (OnAudioPassThru notification) {
byte[] dataRcvd = notification.getAPTData();
processAPTData(dataRcvd); // Do something with audio data

}

In 4.7 and the new manager APIs, in order to receive the OnAudioPassThru notifications,
your app must add a OnRPCNotificationListener using the SdIManager 's method addO
nRPCNotificationListener . This will subscribe the app to any notifications of the provided
type, in this case ON_AUDIO_PASS_THRU . The listener should be added before sending

the corresponding RPC request/subscription or else some notifications may be missed.

4.7:

sdIManager.addOnRPCNotificationListener(FunctionID.ON_AUDIO_PASS_THRU, new
OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnAudioPassThru onAudioPassThru = (OnAudioPassThru) notification;
byte[] dataRcvd = onAudioPassThru.getAPTData();
processAPTData(dataRcvd); / Do something with audio data

}
D

PerformAudioPassThru performAPT = new PerformAudioPassThru();
performAPT.setAudioPassThruDisplayText1(
performAPT.setAudioPassThruDisplayText2();
performAPT.setlnitialPrompt(TTSChunkFactory.createSimpleTTSChunks(
)i
performAPT.setSamplingRate(SamplingRate._22KHZ);
performAPT.setMaxDuration(7000);
performAPT.setBitsPerSample(BitsPerSample._16_BIT);
performAPT.setAudio Type(Audio Type.PCM);
performAPT.setMuteAudio(false);
sdIManager.sendRPC(performAPT);

Mobile Navigation

Video Streaming:

Previously, developers had to make sure that the app was in HMI_FULL before starting the
video stream, In 4.7, after the SdIManager has called its onStart method, the developer
can start video streaming in VideoStreamingManager.start() 's CompletionListener . The
VideoStreamingManager will take care of starting the video when the app becomes
ready.

4.6:

if(notification.getHmiLevel().equals(HMILevel. HMI_FULL)){
if (notification.getFirstRun()) {
proxy.startRemoteDisplayStream(getApplicationContext(), MyDisplay.class,
null, false);

}
}

sdIManager.getVideoStreamManager().start(new CompletionListener() {
@Override
void (boolean success) {
if (success) {

sdIManager.getVideoStreamManager().startRemoteDisplayStream(getApplicationCor
MyDisplay.class, null, false);
}
}
3

Audio Streaming

With the addition of the AudioStreamingManager , which is accessed through SdIManag
er ,you can now use mp3 files in additionto raw . The AudioStreamingManager also
handles AudioStreamingCapabilities for you, so your stream will use the correct
capabilities for the connected head unit. We suggest that for any audio streaming that this
is now used. Below is the difference in streaming from 4.6 to 4.7

4.6

void {
InputStream is = getResources().openRawResource(R.raw.audio_file);

AudioStreamingParams audioParams = new AudioStreamingParams(44100, 1);
listener = proxy.startAudioStream(false, AudioStreamingCodec.LPCM,
audioParams);
if (listener = null){
try {
listener.sendAudio(readToByteBuffer(is), -1);

} catch (IOException e) {
e.printStackTrace();

void O{
proxy.endAudioStream();

ByteBuffer (InputStream inStream) |OException {
byte[l buffer = new byte[8000];
ByteArrayOutputStream outStream = new ByteArrayOutputStream(8000);
int read;
while (true) {
read = inStream.read(buffer);
if (read ==-1)
break;
outStream.write(buffer, 0, read);
}
ByteBuffer byteData = ByteBuffer.wrap(outStream.toByteArray());
return byteData;

4.7

if (sdIManager.getAudioStreamManager() != null) {
Log.i(TAG,);
sdIManager.getAudioStreamManager().start(new CompletionListener() {
@Override
void (boolean success) {
if (success) {
sdIManager.getAudioStreamManager().startAudioStream(false, new
CompletionListener() {
@Override
void (boolean success) {
if (success) {
Resources resources = getApplicationContext().getResources();
int resourceld = R.raw.audio_file;
Uri uri = new Uri.Builder()
.scheme(ContentResolver. SCHEME_ANDROID_RESOURCE)
.authority(resources.getResourcePackageName(resourceld))
.appendPath(resources.getResourceTypeName(resourceld))
.appendPath(resources.getResourceEntryName(resourceld))
.build();
sdIManager.getAudioStreamManager().pushAudioSource(uri, new
CompletionListener() {
@Override
void (boolean success) {
if (success) {
Log.i(TAG,
} else {
Log.i(TAG,
}
}
i
} else {
Log.d(TAG,
}
}
});
} else {
Log.i(TAG,
}
}
i
}

Checking Permissions:

Previously, it was not easy to check if specific permission had changed. Developers had to
keep checking onOnHMIStatus and onOnPermissionsChange callbacks and manually
check the responses to see if the permission is allowed. In 4.7, the PermissionManager
implements all of this logic internally. It keeps a cached copy of the callback responses
whenever an update is received. So developer can call isRPCAllowed() any time to know
if a permission is allowed. It also makes it very simple to add a listener.

4.6:

@Override
void (OnHMIStatus notification) {
hmilLevel = notification.getHmiLevel();
if (checkShowPermission(FunctionIlD.SHOW.toString(), hmiLevel,
permissionltems))}{
// Show RPC is allowed
}

}

@Override
void (OnPermissionsChange notification) {
permissionltems = notification.getPermissionltem();
if (checkShowPermission(FunctionIlD.SHOW.toString(), hmiLevel,
permissionltems)){
// Show RPC is allowed
}

}

boolean (String rpcName, HMILevel hmilLevel,

List<Permissionltem> permissionltems){
Permissionltem permissionltem = null;
for (Permissionltem item : permissionltems) {
if (rpcName.equals(item.getRpcName()){
permissionltem = item;
break;
}
}

if (hmiLevel == null || permissionltem == null ||
permissionltem.getHMIPermissions() == null ||
permissionltem.getHMIPermissions().getAllowed() == null){
return false;
} else if (permissionltem.getHMIPermissions().getUserDisallowed() != null){
return permissionltem.getHMIPermissions().getAllowed().contains(hmilLevel)
&& !permissionltem.getHMIPermissions().getUserDisallowed().contains(hmiLevel);
} else {
return permissionltem.getHMIPermissions().getAllowed().contains(hmiLevel);
}
}

4.7:

To check if a permission is allowed:

boolean allowed =

sdIManager.getPermissionManager().isRPCAllowed(FunctionID.SHOW);

To setup a permission listener:

List<PermissionElement> permissionElements = Collections.singletonList(new
PermissionElement(FunctionlD.SHOW, null));
UUID listenerld =
sdIManager.getPermissionManager().addListener(permissionElements,
PermissionManager.PERMISSION_GROUP_TYPE_ANY, new
OnPermissionChangelListener() {

@Override

void (@NonNull Map<FunctionID, PermissionStatus>
allowedPermissions, @NonNull int permissionGroupStatus) {
if (allowedPermissions.get(FunctionID.SHOW).getIsRPCAllowed()) {
// Show RPC is allowed

}

}
D

For more information about PermissionManager , you can check this page.

Handling a Language Change

Previously, to let your app reconnect after the user changes the head unit language, your
app had to send an intent in the onProxyClosed callback. That intent should be received
by SdlReceiver to startthe SdlService . The SdlReceiver part did not change so we will
only cover the changes in sending the intent which was done in previous versions as the

following:

https://smartdevicelink.com/en/docs/android/master/com/smartdevicelink/managers/permission/PermissionManager/

@Override

{
stopSelf();

if(reason.equals(SdiDisconnectedReason.LANGUAGE_CHANGE))

void (String info, Exception e, SdIDisconnectedReason reason)

Intent intent = new
Intent(TransportConstants.START_ROUTER_SERVICE_ACTION);
intent.putExtra(SdIReceiver. RECONNECT_LANG_CHANGE, true);
sendBroadcast(intent);
}
}

In 4.7, the app has to send the intent ina ON_LANGUAGE_CHANGE notification listener
as the following:

sdIManager.addOnRPCNotificationListener(FunctionID.ON_LANGUAGE_CHANGE,
new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
SdiService.this.stopSelf();

Intent intent = new
Intent(TransportConstants.START_ROUTER_SERVICE_ACTION);
intent.putExtra(SdIReceiver.RECONNECT_LANG_CHANGE, true);
AndroidTools.sendExplicitBroadcast(context, intent, null);
}
)}

For more information about handling language changes please visit this page.

Remote Control

Subscribing to OninteriorVehicleData Notifications

Previously, your SdlService had to implement IProxyListenerALM interface which
means your SdlService class had to override all of the IProxyListenerALM callback

methods including onOninteriorVehicleData .

https://smartdevicelink.com/en/guides/android/getting-started/adapting-to-the-head-unit-language/

4.6:

@Override
void (OnHMIStatus notification) {
if(notification.getHmilLevel() == HMILevel. HMI_FULL && notification.getFirstRun())
{

GetlnteriorVehicleData interiorVehicleData = new GetlInteriorVehicleData();
interiorVehicleData.setModuleType(ModuleType.RADIO);
interiorVehicleData.setSubscribe(true);
interiorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener()

@Override
void (int correlationld, RPCResponse response) {
GetlnteriorVehicleData getResponse = (GetInteriorVehicleData)
response;
//This can now be used to retrieve data
}
i
proxy.sendRPCRequest(interiorVehicleData);
}
}

@Override
void (OninteriorVehicleData response) {
//Perform action based on notification

}

In 4.7 and the new manager APIs, in order to receive the OninteriorVehicleData
notifications, your app must add a OnRPCNotificationListener usingthe SdIManager 's
method addOnRPCNotificationListener . This will subscribe the app to any notifications
of the provided type, in this case ON_INTERIOR_VEHICLE_DATA . The listener should be
added before sending the corresponding RPC request/subscription or else some
notifications may be missed.

4.7:

sdIManager.addOnRPCNotificationListener(FunctionID.ON_INTERIOR_VEHICLE_DATA
new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnlnteriorVehicleData oninteriorVehicleData = (OnInteriorVehicleData)
notification;
//Perform action based on notification
}
i

GetlnteriorVehicleData interiorVehicleData = new GetlInteriorVehicleData();
interiorVehicleData.setModuleType(ModuleType.RADIO);
interiorVehicleData.setSubscribe(true);
interiorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
GetlnteriorVehicleData getResponse = (GetInteriorVehicleData) response;
//This can now be used to retrieve data

}

D
sdIManager.sendRPC(interiorVehicleData);

Updating to 4.9

Overview

This guide is to help developers get setup with the SDL Java library version 4.9. It is
assumed that the developer is already updated to at least version 4.7 or 4.8 of the library.

The full release notes are published here.

The main differences between the previous release and this are mainly additive, including
3 new managers which we will describe briefly. Additionally, we have fixed an issue where
symlinks were not working on Windows machines by creating a gradle task that builds
them for you. Additionally, we have added the ability to pass a buffer to the
AudioStreamManager to play raw data.

https://github.com/smartdevicelink/sdl_java_suite/releases

Voice Command Manager

The voice command manager is accessed via the ScreenManager . It allows for an easy
way to create global voice commands for your application. These are not supposed to be
a replacement for menu voice commands, but rather an easy way to trigger main events in
your application, similar to something you might use a SoftButton for. These commands,
once sent, will be available on the system as voice commands for the duration of the

session.

An example is as follows:

List<String> list1 = Collections.singletonList(
List<String> list2 = Collections.singletonList(

VoiceCommand voiceCommand1 = new VoiceCommand(list1, new
VoiceCommandSelectionListener() {
@Override
void 0 {
Log.i(TAG,);
}
b

VoiceCommand voiceCommand2 = new VoiceCommand(list2, new
VoiceCommandSelectionListener() {
@Override
void 0 {
Log.i(TAG,);
}
b

sdIManager.getScreenManager().setVoiceCommands(Arrays.asList(voiceCommand?1

Menu Manager

Menus have now become simpler with the MenuManager , which is accessed via the Scr
eenManager . The cells, called MenuCell 's contain 2 constructors. One is for a cell itself,

and the other is a cell that contains a sub-menu. Note that currently SmartDeviceLink
(SDL) only supports sub-menus to the depth of 1.

MenuCell s contain a MenuSelectionListener which informs you that the cell has been
triggered, so that you might perform an action based on the cell selected. Note that you
can add images and voice commands to menu cells.

O NOTE

v

When submitting a list of Menu cells, or adding a list of sub cells to a menu
cell, the order in which the cells will appear from top to bottom will be the
order in which they are in the list.

Example use:

// SUB MENU CELLS FOR MAIN MENU CELL 2

// Sub cells are just normal cells
MenuCell subCell1 = new MenuCell(,null, null, new
MenuSelectionListener() {

@Override

void (TriggerSource trigger) {
Log.i(TAG, + trigger.toString());

}

i

MenuCell subCell2 = new MenuCell(,null, null, new
MenuSelectionListener() {
@Override
void (TriggerSource trigger) {
Log.i(TAG, + trigger.toString());
}
};

// THE MAIN MENU CELLS

// normal cell
MenuCell mainCell1 = new MenuCell(, null, null, new
MenuSelectionListener() {

@Override

void (TriggerSource trigger) {
Log.i(TAG, + trigger.toString());

}

});

// sub menu parent cell
MenuCell mainCell2 = new MenuCell(
Arrays.asList(subCell1,subCell2));

// Send the entire menu off to be created
sdIManager.getScreenManager().setMenu(Arrays.asList(mainCell1, mainCell2));

Choice Set Manager

Previously it required a lot of code to use Performinteraction s with SDL. To alleviate
some of this pain, we have introduced the Choice Set Manager which is accessible via the
ScreenManager . Because the Choice Set Manager covers so many items, we will do a
brief overview here. You may continue to the Popup Menus section for more detailed
information.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/popup-menus/

There are 2 main use cases for using this manager, one is to display a choice set, and the
other is to display a keyboard.

Choice Set

Displaying a choice set is achieved by creating some ChoiceCell s. If you know what your
choices will be, we recommend using the preloadChoices method. This will ensure your
ChoiceSet is ready to be displayed when you want to display it, and your user is not kept

waiting. You can preload cells as follows:

// create some choice cells

ChoiceCell cell1 = new ChoiceCell(
ChoiceCell cell2 = new ChoiceCell(
ChoiceCell cell3 = new ChoiceCell(

// create the array of choice cells
choiceCellList = Arrays.asList(cell1,cell2,cell3);

// pre-load the cells on the head unit
sdIManager.getScreenManager().preloadChoices(choiceCellList, null);

NOTE

You will want to reference this array of cells when presenting your choice
set later (even if you add more cells). This is why we are setting this list to a
variable for now.

Once you are ready to present the Choice Set, you can do so by:

ChoiceSet choiceSet = new ChoiceSet(
choiceCellList, new ChoiceSetSelectionListener() {
@Override
void (ChoiceCell choiceCell, TriggerSource triggerSource,
int rowIndex) {
// do something with the selection
}

@Override
void (String error) {
Log.e(TAG, + error);

}
b
sdIManager.getScreenManager().presentChoiceSet(choiceSet,
InteractionMode.MANUAL_ONLY);

Displaying A Keyboard

There is now also an easy way to display a keyboard, and listen for key events. You simply
need a KeyboardListener object.

KeyboardListener keyboardListener = new KeyboardListener() {
@Override
void (String inputText, KeyboardEvent event) {

}

@Override
void (KeyboardEvent event) {

}

@Override
void (String currentinputText,
KeyboardAutocompleteCompletionListener
keyboardAutocompleteCompletionListener) {

}

@Override
void (String currentinputText,
KeyboardCharacterSetCompletionListener
keyboardCharacterSetCompletionListener) {

}

@Override
void (KeyboardEvent event, String
currentlinputText) {

You can note that two of the methods contain a KeyboardAutocompleteCompletionListe
ner and a KeyboardCharacterSetCompletionListener . These listeners allow you to show
auto completion text and to modify the available keys, respectively, on supported head
units.

To actually display the keyboard, call:

sdIManager.getScreenManager().presentKeyboard(

keyboardListener);

The null parameter in this example is a KeyboardProperties object that you can

optionally pass in to modify the keyboard for this request.

Audio Stream Buffer

We now have the option to send ByteBuffer s to the AudioStreamManager to be played.

sdIManager.getAudioStreamManager().pushBuffer(byteBuffer, new
CompletionListener() {
@Override

void (boolean success) {
// do something once the buffer is played

}
D

Symlinks in Windows

With the creation of the Java Suite, we had the need to share base files between the
Android and the JavaSE and JavaEE projects. To allow the Android project to read these
base files, we created symlinks to allow the files to be seen from within the project.

However, symlinks work differently on Mac / Linux machines than they do on Windows.

To fix this, we created a gradle task to create the Windows symlinks. Simply call:

gradle buildWindowSymLinks

from Android Studio's terminal.

NOTE

You will need administrator privileges and Python installed to execute this

task.

Updating to 5.0

Overview

This guide is to help developers get setup with the SDL Java library version 5.0. It is
assumed that the developer is already updated to at least version 4.11 or 4.12 of the

library.

The full release notes are published here.

New minimum SDK

SDL now has a new minimum required SDK version of 16. You can change the minimum
SDK version in the apps build.gradle file by changing minSdkVersion to 16. An example:

defaultConfig {
applicationld "com.sdl.mobileweather"
minSdkVersion 16

targetSdkVersion 26

versionCode 27

versionName "1.7.15"

testinstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

https://github.com/smartdevicelink/sdl_java_suite/releases

AndroidX

SDL now uses AndroidX. To migrate your app to use AndroidX, In Android Studio or IntelliJ,
click on Refactor, then Migrate to AndroidX.

Refactor Build Run
Refactor This...

Rename File...
Change Signature...

Move Classes...
Copy File...

Extract
Inline...

Pull Members Up...

Migrate...

Convert to @CompileStatic
Remove Unused Resources...
Migrate to AppCompat...

Migrate to AndroidX...
Enable Instant Apps Support...
Add Right-to-Left (RTL) Support...

9 NOTE

To migrate to AndroidX you must set the compileSdkVersion to 28 in the
apps build.gradle file

Import changes

Some classes have moved packages, and imports may need to be changed.

Example:

OnSystemCapabilityListener has moved packages from:
import com.smartdevicelink.proxy.interfaces.OnSystemCapabilityListener;
to
import com.smartdevicelink.managers.lifecycle.OnSystemCapabilityListener;

SdIManagerListener changes

In 4.12 a new managerShouldUpdateLifecycle method was added and the old
managerShouldUpdateLifecycle method was deprecated. In 5.0 the deprecated method

was removed. More detail can be found here.

Before:

SdiManagerListener listener = new SdIManagerListener() {
@Override
void 0{
}

@Override
void 04
}

@Override
void (String info, Exception e) {

}

@Override
LifecycleConfigurationUpdate (Language
language, Language hmilLanguage) {
return null;

}

@Override
LifecycleConfigurationUpdate (Language
language) {
return null;

Now:

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/adapting-to-the-head-unit-language/

SdiManagerListener listener = new SdIManagerListener() {
@Override
void 04

}

@Override
void 04
}

@Override
void (String info, Exception e) {
}

@Override
LifecycleConfigurationUpdate (Language
language, Language hmilLanguage) {
return null;

Sending RPC's listener updates

When sending RPC's with a listener, onError has been removed from OnMultipleRequestLi
stenerjava and OnRPCResponseListener.java . Instead of onError getting called,
onResponse will be called whether its a success or not.

OnRPCResponselListener Before:

subscribeButtonLeft.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {

}

@Override
void (int correlationld, Result resultCode, String info) {
// Handle Error
}
D

OnRPCResponseListener Now:

subscribeButtonLeft.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if(response.getSuccess()){

// Add if statement to check success
}
}
)}

OnMultipleRequestListener Before:

sdIManager.sendRPCs(Arrays.asList(subscribeButtonLeft, subscribeButtonRight),
new OnMultipleRequestListener() {
@Override
void (int remainingRequests) {

}

@Override
void

}

@Override
void (int correlationld, Result resultCode, String info) {

}

@Override
void (int correlationld, RPCResponse response) {

OnMultipleRequestListener Now:

sdIManager.sendRPCs(Arrays.asList(subscribeButtonLeft, subscribeButtonRight),
new OnMultipleRequestListener() {
@Override
void (int remainingRequests) {

}

@Override
void

}

@Override
void (int correlationld, RPCResponse response) {
if(response.getSuccess()){
// Add if statement to check success

}

Use Multiplex instead of legacy BT &
USB

BTTransportConfig.java and USBTransportConfig have been removed from the library.
You should use MultiplexBluetoothTransport.java and MultiplexUsbTransport.java
instead.

ScreenManager Template
Management

You can now use the ScreenManager to change screen templates and day/night color

schemes. See Main Screen Templates for more detail.

Example:

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/main-screen-templates/

TemplateConfiguration configuration = new
TemplateConfiguration().setTemplate(Template).setDayColorScheme(DayColorScher

sdIManager.getScreenManager().changeLayout(configuration, new
CompletionListener() {
@Override
void (boolean success) {

Chainable RPC setters

Rpc setters are now chainable. Before you had to either use a constructor that took all

parameters or set everyone individually. Now you can chain them together.

Before:

Alert alert = new Alert();
alert.setAlertText1()i
alert.setDuration(5000);
alert.setPlayTone(true);

Now:

Alert alert = new Alert().setAlertText1().setDuration(5000).setPlayTone(true);

New DebugTool methods

There is a new way of logging information in debug mode. Before for example, we would

use Log.e to log errors, now we use the DebugTool.logError.

Log.i to DebugTool.loginfo
Logw to DebugTool.logWarning
Log.e to DebugTool.logError

Before:

Log.e(TAG,

Now:

DebugTool.logError(TAG,

NOTE

In JavaSE you must use the DebugTool, the old log methods will not work.

TTSChunkFactory removal

TTSChunkFactory.java was removed. To create a voice command you should now use T

TSChunk An example of creating and sending a voice command:

Before:

Speak msg = new Speak(TTSChunkFactory.createSimpleTTSChunks(

)
sdIManager.sendRPC(msQ);

Now:

Speak msg = new Speak(Collections.singletonList(new TTSChunk(
, SpeechCapabilities. TEXT)));

sdIManager.sendRPC(msg);

CharacterSets

Existing CharacterSet sets were not standards-compliant and are deprecated. New
character sets have been added and will be used in future head units to describe text
fields.

Updating to 5.1

Overview

This guide is to help developers get setup with the SDL Java library version 5.1. It is

assumed that the developer is already updated to at least version 5.0 of the library.

The full release notes are published here.

Maven Central

https://github.com/smartdevicelink/sdl_java_suite/releases

Starting with SDL Java library version 5.1 the release will be published to Maven Central
instead of JCenter.

To gain access to the Maven Central repository, make sure your app's build.gradle file
includes the following:

repositories {

mavenCentral()

}

SdIManagerListener changes

In 5.1 a new onSystemInfoReceived method was added to the SdIManagerListener. More
detail can be found here

9, MUST

SdIManagerListener method: onSysteminfoReceived auto generates in
Android Studio to returns false. This will cause your app to not connect. You
must change it to true or implement logic to check system info to see if you
wish for your app to connect to that system.

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/integration-basics-java/

SdiManagerListener listener = new SdIManagerListener() {
@Override
void 04

}

@Override
void 04
}

@Override
void (String info, Exception e) {
}

@Override
LifecycleConfigurationUpdate (Language
language, Language hmilLanguage) {
return null;

}

@Override
boolean (Systeminfo systeminfo) {
//Check the Systeminfo object to ensure that the connection to the device
should continue
return true;

Alert View

In 5.1 rather than sending an Alert RPC we now recommend sending an AlertView through

the ScreenManagers presentAlert method. More detail can be found here

Before:

void (String text) {
Alert alert = new Alert();
alert.setAlertText1(text);

alert.setDuration(5000);
sdIManager.sendRPC(alert);

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/alerts-and-subtle-alerts/

Now:

void (String text) {
AlertView.Builder builder = new AlertView.Builder();
builder.setText(text);
builder.setTimeout(5);
AlertView alertView = builder.build();
sdIManager.getScreenManager().presentAlert(alertView, new

AlertCompletionListener() {
@Override
void (boolean success, Integer tryAgainTime) {
Log.i(TAG, + success);
}
});

SDLRemoteDisplay

In 5.1 anew onViewResized method was added to the SDLRemoteDisplay class that

you will need to implement in your presentation class. More detail can be found here.

Before:

MyDisplay SdIRemoteDisplay{
(Context context, Display display) {
(context, display);

}

@Override
void (Bundle savedinstanceState) {

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/video-streaming-for-navigation-apps/video-streaming-java/

MyDisplay SdIRemoteDisplay{
(Context context, Display display) {
(context, display);

}

@Override
void (Bundle savedinstanceState) {
/.
}

@Override
void (int width, int height) {
DebugTool.loginfo(TAG, + width+ ", " +
height + ")");
//Update presentation based on new resolution
}
}

Updating to 5.4

Overview

This guide is to help developers get set up with the SDL Java Suite library version 5.4.0. It
is assumed that the developer is already updated to at least version 5.3.1 of the library.

The full release notes are published here.

SDL Java Suite library version 5.4.0 adds support for Android 12.

AndroidManifest Exported Flag

Starting in Android 12, any activities, services, or broadcast receivers that use intent filters
will need to explicitly declare the android:exported attribute for the given app
components. The SdIRouterService and SdIReceiver should already have the exported

https://github.com/smartdevicelink/sdl_java_suite/releases

attribute defined and set to true, but the USBAccessoryAttachmentActivity will now also
require this attribute to be set. Any activity that had an intent-filter would have a default

exported value of true. Now we need to explicitly set it.

<activity
android:name=
android:exported= <I-New Addition-->
android:launchMode="singleTop">
<intent-filter>

<action
android:name=
</intent-filter>
<l- ... —>
</activity>

Bluetooth Runtime Permissions

Starting in Android 12, for the library to be able to connect to the HMI over Bluetooth, app
developers will need to request the new BLUETOOTH_CONNECT runtime permission.

This means the permission will need to be listed in the AndroidManifest.xml file.

<uses-permission android:name=

tools:targetApi="31"/>

The developer will also need to request this permission from the user as it is a runtime

permission.

//MainActivity.java

int REQUEST_CODE = 200;

@Override
void (Bundle savedinstanceState) {

if (android.os.Build.VERSION.SDK_INT >= Build.VERSION_CODES.S &&
IcheckPermission()) {
requestPermission();
return;

}

//We are either not targeting Android 12+ or permissions are granted so we can try
to start out SdIService
SdIReceiver.queryForConnectedService(this);

boolean 04
return PackageManager.PERMISSION_GRANTED ==
ContextCompat.checkSelfPermission(getApplicationContext(),
BLUETOOTH_CONNECT);

}

void 0{
ActivityCompat.requestPermissions(this, new String[[{BLUETOOTH_CONNECT},
REQUEST_CODE);

}

@Override

void (int requestCode, @NonNull String(]
permissions, @NonNull int[] grantResults) {

switch (requestCode) {
case REQUEST_CODE:
if (grantResults.length > 0) {
boolean btConnectGranted = grantResults[0] ==

PackageManager.PERMISSION_GRANTED;

if (btConnectGranted) {
//Bluetooth permissions have been granted by the user so we can try to
start out SdlIService.
SdIReceiver.queryForConnectedService(this);

}
}

Starting Services from the
Foreground

Starting with Android 12, apps cannot start services from the background. In order to allow
the library to work as intended, the library will now need to start the "SdlService" from the

context of the active router service.
To achieve this there are a few changes that will be required in your application.

First to allow your "SdIService" to be started from an external source (the active router
service may belong to another app), you will need to export the service in your AndroidMa
nifest.xml .

<service
android:name=

android:exported= <I-New Addition-->
android:foregroundServiceType="connectedDevice">
</service>

Second in the SdIReceiver.onSdlEnabled() method the received intent will now have a

Pendinglntent extra when your service should be started.

You will need to get the PendingIntent extra and send the Pendingintent with the intent of
the service that you intend to start.

The Pendinglntent will start the service from the context of the active router service
(which is running in the foreground).

//Retrieve, Update, and Send the Pendingintent
@Override
void (Context context, Intent intent) {
DebugTool.loginfo(TAG,);
intent.setClass(context, SdiService.class);

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.S) {
if (intent.getParcelableExtra(TransportConstants.PENDING_INTENT_EXTRA) !=
null) {
Pendinglntent pendinglntent = (PendingIntent)
intent.getParcelableExtra(TransportConstants.PENDING_INTENT_EXTRA);
try {
//Here we are allowing the RouterService that is in the Foreground to start
the SdIService on our behalf
pendinglntent.send(context, 0, intent);
} catch (PendingIntent.CanceledException e) {
e.printStackTrace();

}
}

} else {
// SdIService needs to be foregrounded in Android O and above
// This will prevent apps in the background from crashing when they try to start
SdIService
// Because Android O doesn't allow background apps to start background
services
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
context.startForegroundService(intent);
} else {
context.startService(intent);

ALTERNATIVE METHOD TO AVOID EXPORTING THE
SDLSERVICE

If you do not wish to export your "SdlService" class then the library will not be able to start
the service and there is no way to start the service from the background.

However you can start your own "SdIService" while your app is in a foreground context. To
achieve this you will need a way to track if your app is in the foreground. While your app is
in the foreground you can start your "SdIService" as you normally would.

//MainActivity, Application, or where appropriate

/...
androidx.lifecycle.LifecycleObserver lifecycleObserver;

@Override
void (Bundle savedinstanceState) {

try {
lifecycleObserver = new androidx.lifecycle.LifecycleObserver() {

@androidx.lifecycle.OnLifecycleEvent(androidx.lifecycle.Lifecycle.Event. ON_START)
void 04
SdIReceiver.setlsForeground(true);

}

@androidx.lifecycle.OnLifecycleEvent(androidx.lifecycle.Lifecycle.Event. ON_STOP)
void 0{
SdIReceiver.setlsForeground(false);

s
if (androidx.lifecycle.ProcessLifecycleOwner.get() != null) {
androidx.lifecycle.ProcessLifecycleOwner.get().getLifecycle().addObserver(lifecycleOl

}
} catch (Exception e) {

e.printStackTrace();

}
}

@Override
void 0{
.onDestroy();
try {
if (androidx.lifecycle.ProcessLifecycleOwner.get() != null && lifecycleObserver !=

null) {

androidx.lifecycle.ProcessLifecycleOwner.get().getLifecycle().removeObserver(lifecyc

}
} catch (Exception e) {

e.printStackTrace();
}

lifecycleObserver = null;

//SdIReceiver.java

/...
boolean isForeground;

void (boolean status) {
isForeground = status;

}

@Override
void (Context context, Intent intent) {
DebugTool.loginfo(TAG,);
intent.setClass(context, SdiService.class);

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.S) {
if (isForeground) {
context.startForegroundService(intent);
} else {
if
(intent.getParcelableExtra(TransportConstants.PENDING_INTENT_EXTRA) != null) {
PendingIntent pendingintent = (Pendinglntent)
intent.getParcelableExtra(TransportConstants.PENDING_INTENT_EXTRA);
try {
pendinglntent.send(context, 0, intent);
} catch (Pendinglntent.CanceledException e) {
e.printStackTrace();
}
}
}
} else {
// SdIService needs to be foregrounded in Android O and above
// This will prevent apps in the background from crashing when they try to
start SdlService
// Because Android O doesn't allow background apps to start background
services
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
context.startForegroundService(intent);
} else {
context.startService(intent);

SdIService Class Name

There is now an overridable method, getSdiServiceName inthe SdlBroadcastReceiver
class. This method is used by the SdIBroadcastReceiver to catch a possible foreground

exception.

When the app tries to start the SdIService , if the service does not enter the foreground
within a set amount of time (this time is designated by the Android operating system), an

exception will be thrown and the app may encounter an ANR.

The SdIBroadcasterReceiver can catch this exception and prevent the ANR but will need
to know the name of the class that throws the exception.

By default the getSdIServiceName method will return "SdIService". If your app uses a
name other than "SdlIService" you will need to override getSdiServiceName inthe SdIRe
ceiver class to return the correct name.

/"
@Override
String 04

return SDL_SERVICE_CLASS_NAME;

Known Corner Case

When the user connects their device over USB and the user has not been granted
Bluetooth Permissions the user will be presented with a notification which will help

navigate the user to grant Bluetooth Permissions for the app.
Once the permissions are granted the Router Service will open the Bluetooth connection.

If the user then revokes these permissions, the Android operating system will kill the
application running the Router Service and the Router Service process, and none of the
service's callbacks will be called. Even though the Router Service has been killed, the HMI
will still show the previously connected apps.

Unplugging the USB cable will remove the apps from the HMI.

Updating to 5.6

Overview

This guide is to help developers get set up with the SDL Java Suite library version 5.6.0. It
is assumed that the developer is already updated to at least version 5.5.0 of the library.

The full release notes are published here.

SDL Java Suite library version 5.6.0 adds support for Android 13.

POST_NOTIFICATIONS Runtime
Permissions

Starting in Android 13, app developers will need to request the new POST_NOTIFICATION
S runtime permission in order for the SDL library and their app to display notifications.

This means the permission will need to be listed in the AndroidManifest.xml file.

<uses-permission android:name=

tools:targetApi="33"/>

The developer will also need to request this permission from the user as it is a runtime
permission. Given that apps need to request the BLUETOOTH_CONNECT permission with
Android S (API Level 31) and above, below is an example of how to request both at the

same time.

https://github.com/smartdevicelink/sdl_java_suite/releases

//MainActivity.java

int REQUEST_CODE = 200;

@Override
void (Bundle savedinstanceState) {
.onCreate(savedinstanceState);
setContentView(R.layout.activity_main);

String[] permissionsNeeded = permissionsNeeded();
if (permissionsNeeded.length > 0) {
requestPermission(permissionsNeeded, REQUEST_CODE);
for (String permission : permissionsNeeded) {
if (Manifest.permission.BLUETOOTH_CONNECT.equals(permission)) {
// We need to request BLUETOOTH_CONNECT permission to connect to
SDL via Bluetooth
return;

//1f we are connected to a module we want to start our SdIService
SdIReceiver.queryForConnectedService(this);

}
/**
* Boolean method that checks API level and check to see if we need to request
BLUETOOTH_CONNECT permission
* @return false if we need to request BLUETOOTH_CONNECT permission
*/
boolean 04
return Build.VERSION.SDK_INT >= Build.VERSION_CODES.S ?
checkPermission(Manifest.permission.BLUETOOTH_CONNECT) : true;
}
/**
* Boolean method that checks API level and check to see if we need to request
POST_NOTIFICATIONS permission

* @return false if we need to request POST_NOTIFICATIONS permission
*/

boolean 0 {
return Build.VERSION.SDK_INT >= Build.VERSION_CODES.TIRAMISU ?
checkPermission(Manifest.permission.POST_NOTIFICATIONS) : true;

}

boolean (String permission) {
return PackageManager.PERMISSION_GRANTED ==
ContextCompat.checkSelfPermission(getApplicationContext(), permission);

}

void (String[] permissions, int REQUEST_CODE) {
ActivityCompat.requestPermissions(this, permissions, REQUEST_CODE);

@NonNull String[] 0«
ArrayList<String> result = new ArrayList<>();
if (thasBTPermission()) {
result.add(Manifest.permission.BLUETOOTH_CONNECT);

}

if (thasPNPermission()) {
result.add(Manifest.permission.POST_NOTIFICATIONS);

}

return (result.toArray(new String[result.size()]));

}

@Override

void (int requestCode, @NonNull Stringf]
permissions, @NonNull int[] grantResults) {

switch (requestCode) {
case REQUEST_CODE:
if (grantResults.length > 0) {
for (inti = 0; i < grantResults.length; i++) {
if (permissionsli].equals(Manifest.permission.BLUETOOTH_CONNECT))

boolean btConnectGranted =
grantResults|i] == PackageManager.PERMISSION_GRANTED;
if (btConnectGranted) {
SdIReceiver.queryForConnectedService(this);
}

} else if
(permissionsli].equals(Manifest.permission.POST_NOTIFICATIONS)) {
boolean postNotificationGranted =
grantResults[i] == PackageManager.PERMISSION_GRANTED;
if (lpostNotificationGranted) {
// User denied permission, Notifications for SDL will not appear
// on Android 13 devices.

Updating to 5.7

Overview

This guide is to help developers get set up with the SDL Java Suite library version 5.7.0. It
is assumed that the developer is already updated to at least version 5.6.0 of the library.

The full release notes are published here.

SDL Java Suite library version 5.7.0 adds support for Android 14.

FOREGROUND_SERVICE_CONNECTED_
Permissions

Starting in Android 14, it is required to specify a foreground service type of connectedDe
vice inyour app's AndroidManifest.xml to be able to enter the foreground.

<uses-permission

android:name=
tools:targetApi="34"/>

With a foreground service type of connectedDevice , your app must either have the BLUE
TOOTH_CONNECT permission or have been the app selected to receive the USB Intent.
You must now check to see if your app has been granted either of these permissions by
the user in the SdIReceiver.onSdIEnabled callback before you start your service to
ensure your SdIService can enter the foreground. We added a helper method, AndroidTool
s.hasForegroundServiceTypePermission , to check for both permissions that can be used

at that time.

https://github.com/smartdevicelink/sdl_java_suite/releases

if (Build.VERSION.SDK_INT >=
Build.VERSION_CODES.UPSIDE_DOWN_CAKE) {
if lAndroidTools.hasForegroundServiceTypePermission(context)) {
DebugTool.loginfo(TAG,

+ context);

return;

}
}

Alternative way to satisfy connectedpevice requirement for
foreground service

If your app does not have the BLUETOOTH_CONNECT permission, and was not selected
to receive the USB accessory intent, it is still possible to request access to a connected
device (USB) so that your app's SDL related services can start in the foreground. This can
be accomplished during the onSdlEnabled callback in your SdIBroadcastReceiver as
follows:

//SdIReceiver.java

Pendinglntent pendinglntentToStartService;
Intent startSdIServicelntent;

@Override
void (Context context, Intent intent) {
DebugTool.loginfo(TAG,);
intent.setClass(context, SdiService.class);

// Starting with Android S SdIService needs to be started from a foreground
context.
// We will check the intent for a pendingintent parcelable extra
// This pendingIntent allows us to start the SdlService from the context of the
active router service which is in the foreground
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.S) {
Pendinglntent pendinglntent = (PendingIntent)
intent.getParcelableExtra(TransportConstants.PENDING_INTENT_EXTRA);
if (pendinglintent != null) {
if (Build.VERSION.SDK_INT >=
Build.VERSION_CODES.UPSIDE_DOWN_CAKE) {
if (lAndroidTools.hasForegroundServiceTypePermission(context)) {
requestUsbAccessory(context);
startSdIServicelntent = intent;
this.pendingintentToStartService = pendingintent;
DebugTool.loginfo(TAG,
+ context);
return;

}
}

try {
pendingintent.send(context, 0, intent);

} catch (Pendingintent.CanceledException e) {
e.printStackTrace();
}
}

} else {
// SdIService needs to be foregrounded in Android O and above
// This will prevent apps in the background from crashing when they try to
start SdIService
// Because Android O doesn't allow background apps to start background
services
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
context.startForegroundService(intent);
} else {
context.startService(intent);

BroadcastReceiver usbPermissionReceiver = new BroadcastReceiver()

void (Context context, Intent intent) {
String action = intent.getAction();
if (ACTION_USB_PERMISSION.equals(action) && context != null &&
startSdIServicelntent != null && pendingIntentToStartService != null) {
if (AndroidTools.hasForegroundServiceTypePermission(context)) {
try {
pendinglntentToStartService.send(context, 0, startSdiServicelntent);
context.unregisterReceiver(this);
} catch (Exception e) {
e.printStackTrace();

void (Context context) {
UsbManager manager = (UsbManager)
context.getSystemService(Context. USB_SERVICE);
UsbAccessory[] accessoryList = manager.getAccessoryList();
if (accessoryList == null || accessoryList.length == 0) {
startSdIServicelntent = null;
pendinglntentToStartService = null;
return;
}
Pendinglntent mPermissionintent = Pendingintent.getBroadcast(context, 0, new
Intent(ACTION_USB_PERMISSION), Pendinglntent.FLAG_IMMUTABLE);
IntentFilter filter = new IntentFilter(ACTION_USB_PERMISSION);

AndroidTools.registerReceiver(context, usbPermissionReceiver, filter,
Context.RECEIVER_EXPORTED);

for (UsbAccessory usbAccessory : accessoryList) {
manager.requestPermission(usbAccessory, mPermissionintent);

Does the SDL Java Suite library
work with Kotlin?

The library has not been fully tested when being referenced from a Kotlin environment.

Everything should work as expected, but if you find errors please report them to the github.

Are there any currently known issues
with Kotlin?

Even though Kotlin is compatible with Java, Kotlin has more strict rules for access
modifiers than Java. For that reason, you may see this warning when using SdIManager 's

Builder class:

Type BaseSdIManager.Builder! is inaccessible in this context due to: public open

class Builder defined in com.smartdevicelink.managers.BaseSdIManager

While the warning is present, the functionality should continue to work in Kotlin. However,
as a workaround, developers can create a Java class SdIManagerFactory that can be
accessed from Kotlin code with a static method to create an SdIManager instance and
handle all the builder code there. This will prevent the warning from the Kotlin side.

SdIManagerFactory {

SdIManager (Context context, String appID, String
appName, SdIManagerListener listener, Vector<AppHMIType> appTypes, SdlArtwork

applcon) {
SdIManager.Builder builder = new SdIManager.Builder(context, appID, appName,

listener);
builder.setAppTypes(appTypes);
builder.setTransportType(new MultiplexTransportConfig(context, appID));
builder.setApplcon(applcon);
return builder.build();

Then from the Kotlin side:

sdIManager = SdIManagerFactory.createSdiManager(this, APP_ID, APP_NAME,

listener, appTypes, applcon);

What is SDL?

SmartDeviceLink (SDL) connects in-vehicle infotainment systems to smartphone apps.
SDL allows automakers to provide highly integrated connected experiences and allows
users to operate smartphone apps through the in-vehicle infotainment screen and, if
equipped, voice recognition system.

Why do you see SDL notifications?

If you see a notification similar to the one in the screenshot below, that means you are
using an app that has an SDL integration that allows it to push content to cars that

support SDL. However, if your car doesn't support SDL, you can simply hide the

notification.
cricket 74% W 2:50
¢ %3 ©® X ¢© ¢
Tue, Jun 5 @] v

S0L: olivio. SdlApp

How do you hide the notifications?

If you would like to hide the notification, you can simply long click on the notification and

disable it as shown in the following screenshot.

cricket 74% f 2:51
¢ % ® X & b
Tue, Jun5 @] v

smartDevicelink

MORE SETTINGS DOMNE

What is the Android Router
Service?

The Android OS has limitations around the availability of certain transports (Bluetooth
RFCOMM channels, single app AOA/USB permissions). Therefore, SmartDeviceLink (SDL)
introduced a service that operates as a router, using a single transport pipe and extending
it to many different bound apps. The router service is part of the required integration to
become SDL enabled and can be hosted by any of the SDL enabled apps on a phone. Some
OEMs might choose to have their own companion app that always hosts a router service
for their specific hardware.

What is a Trusted Router Service?

Since information is being shared through the Android router service it is important that
the app hosting the router service can be trusted. This is done through a certification
process and a back-end server that maintains a database of apps that can act as a Trusted
Router Service. The SmartDevicelLink Consortium (SDLC) will verify the integration of SDL
apps to ensure there is no malicious activity. If the app is certified, it will be added to the
Trusted Router Service database and be able to act as a Trusted Router Service.

How do | add my app to the SDL
Trusted Router Service database?

For an Android application to be added to the Trusted Router Service database, the
application will need to be registered on the SDL Developer Portal and certified by the
SDLC. For more information on registration, please see this guide. Any Android
application that is certified by the SDLC will be added to the Trusted Router Service
database; there are no additional steps required as it is part of the certification process.

How do | know if an app is
hosting a Trusted Router Service?

https://d83tozu1c8tt6.cloudfront.net/media/resources/SDL_Developer_Portal_Registration_Guide.pdf

Each app will retrieve and cache a list of Trusted Router Services from the back-end
server. Based on that app's security levels, they will perform checks against the currently
running router service, and if trusted it will bind to the Trusted Router Service. If not, the

app will attempt to use its own local transport.

Multiple Processes

The SmartDeviceLink Android library uses multiple processes and there are some items
that should be understood about why that is necessary and precautions to take while
handling that situation.

Why does the router service run in its
own process?

The router service is designed to live outside the normal lifecycle of the app integrating
the SDL framework. The different process allows a level of security to cut off access to
the hosting application's data because Android allocates a different memory space for the
router service process to run. It also allows the router service to not interfere with the
hosting application's runtime; this means if the router service unexpectedly stops or
crashes, it will not take down the hosting app. This relationship also works in the opposite
direction, which is important to maintain a good user experience when apps are connected
through a router service.

Content providers and multiple
processes

Android content providers have a unique lifecycle that does not work in the expected flow.
Content providers are actually started before the Application class and following Activi
ties , Services , etc. Some libraries use this to know when their code/module can

initialize and always be ready for the entire lifecycle of the application. This is found with

many Google libraries (Firebase, Jetpack, etc).

The issue is that, by default, content providers are only attached to and initialized for the
main process. This means, when the main process starts the content provider will be
started, but if a different process other than the main process is started the content
provider will not be started. So if the app has its first start from a component that is
designed to run in a different process, the content provider won't be ready by the time

those components start up; this includes the Application instance for that process.

Why is this a problem?

The issue occurs when there is code in a developer's custom Application class that
assumes the content provider or module using the content provider lifecycle has already
been initialized, but an instance of that child Application class is created for a process
outside of the main process.

For example:

public class MyApplication extends Application {

@Override
public void onCreate() {
super.onCreate();

ModuleUsingContentProviderForlnit.doSomething();

If an instance of this extended Application class is created outside the main process
before the main process has started, this application will crash with a runtime exception.
This can happen when components that use a different process are started directly
instead of the app itself being launched by the user directly. The SDL library does this to
provide a seamless connection for apps to head units without the requirement of user

interaction.

Workaround

Depending on the module that uses a content provider for initialization, it could be
possible to start/initialize it from the onCreate method of the extended Application
class. It should be noted that the module would then need to be set up for a multiple
process environment, which is not always the case.

If the module can't be initialized in this way, then the Application child class will need to

keep a flag that prevents code from executing that would cause errors.

For SDL the solution can be as follows:

public class MyApplication extends Application {

private static final String ROUTER_SERVICE_PROCESS =

’

boolean isSdIProcessFlag = false;

@Override
public void onCreate() {
super.onCreate();

isSdIProcessFlag = isSdIProcess();
if (isSdIProcessFlag) {
//This application instance is running in the SDL process
return;
}

ModuleUsingContentProviderForlnit.doSomething();

}

/**
*

* @return if this process is the SDL router service process
*/

private boolean isSdIProcess(){
int myPid = android.os.Process.myPid();
ActivityManager am =
(ActivityManager)this.getSystemService(ACTIVITY_SERVICE);
if (am == null || am.getRunningAppProcesses() == null) {

return false;

}

for (ActivityManager.RunningAppProcessinfo processinfo :
am.getRunningAppProcesses()) {
if (processinfo = null && processlinfo.pid == myPid) {
return ROUTER_SERVICE_PROCESS.equals(processinfo.processName);
}

}

return false;

}
}

9 NOTE

If other callback methods in your Application class are used, they must

also check this flag to prevent unintended behavior.

The use of this flag can help prevent errors when extending the Application class that
assume it always has the main process started first. This solution could be modified to
change the flag to monitor if this is the main process or not very easily.

Custom Application classes instance for each process

While the documentation on this is a little scarce, the Android OS creates a new instance
of the supplied Application class for each process that is started in your app. This
means your custom Application class needs to be ready to run on different processes.
The previous example is a good sample that can prevent code from executing in your

custom class that is only intended to run on the main process.

