
Android Guides
Document current as of 07/19/2021 03:06 PM.

In order to build your app on a SmartDeviceLink (SDL) Core, the SDL software

development kit (SDK) must be installed in your app. The following steps will guide you

through adding the SDL SDK to your workspace and configuring the environment.

Each SDL Android library release is published to MavenCentral. By adding a few lines in

their app's gradle script, developers can compile with the latest SDL Android release.

To gain access to the MavenCentral repository, make sure your app's build.gradle file

includes the following:

Installation

The SDL SDK is currently supported on Android 4.1 (Jelly Bean) and above.

NOT E

Install SDL SDK

https://github.com/smartdevicelink/sdl_java_suite
https://sdl-devportal-media-production.s3.amazonaws.com/

repositories {
 mavenCentral()
}

To compile with a release of SDL Android, include the following line in your app's build.gr

adle file,

dependencies {
 implementation 'com.smartdevicelink:sdl_android:{version}'
}

and replace {version} with the desired release version in format of x.x.x . The list of

releases can be found here.

To compile release 5.2.0, use the following line:

dependencies {
 implementation 'com.smartdevicelink:sdl_android:5.2.0'
}

To compile the latest minor release of major version 5, use:

dependencies {
 implementation 'com.smartdevicelink:sdl_android:5.+'
}

Gradle Build

Examples

https://github.com/smartdevicelink/sdl_java_suite/releases

To Find more information on installation, read our README.

An app id is required for production level apps. The app id gives your app special

permissions to access vehicle data. If your app does not need to access vehicle data, a

dummy app id (i.e. creating a fake id like "1234") is sufficient during the development

stage. However, you must get an app id before releasing the app to the public.

To obtain an app id, sign up at smartdevicelink.com.

Some permissions are required to be granted to the SDL app in order for it to work

properly. In the AndroidManifest file, we need to ensure we have the following system

permissions:

Internet - Used by the mobile library to communicate with a SDL Server

Bluetooth - Primary transport for SDL communication between the device and the

vehicle's head-unit

Access Network State - Required to check if WiFi is enabled on the device

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.company.mySdlApplication">

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.BLUETOOTH"/>
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"
/>

</manifest>

SDK Configuration

1. Get an App Id

2. Add Required System Permissions

https://github.com/smartdevicelink/sdl_java_suite
https://www.smartdevicelink.com/
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_NETWORK_STATE

If targeting Android R (API Level 30) or higher, it is required to add the SDL specific entries

into the app's queries tag in the AndroidManifest.xml . If the tag already exists, just the

intents need to be added. If the tag does not yet exist in the manifest, they can be added

after the permissions are declared but before the application tag is opened.

<queries>
 <intent>
 <action android:name="com.smartdevicelink.router.service" />
 </intent>
 <intent>
 <action android:name="sdl.router.startservice" />
 </intent>
</queries>

If the app is targeting Android P (API Level 28) or higher, the Android

Manifest file should also have the following permission to allow the app to

start a foreground service:

<uses-permission
android:name="android.permission.FOREGROUND_SERVICE" />

NOT E

3. Add Required SDL Queries

The SDL Android library uses these queries to determine which app should host the router

service, what apps to notify when there's an SDL connection, etc. As will be seen in the

next sections, these intents are used in the intent filters for the SdlRouterService and the

SdlBroadcastReceiver .

In this guide, we exclusively use Android Studio. We are going to set-up a bare-bones

application so you get started using SDL.

A SmartDeviceLink Service should be created to manage the lifecycle of the SDL session.

The SdlService should build and start an instance of the SdlManager which will

automatically connect with a head unit when available. This SdlManager will handle

sending and receiving messages to and from SDL after it is connected.

Integration Basics

The SDL Mobile library supports Android 2.2.x (API Level 8) or higher.

NOT E

SmartDeviceLink Service

https://developer.android.com/about/versions/android-2.2.html

Create a new service and name it appropriately, for this guide we are going to call it SdlS

ervice .

public class SdlService extends Service {
 //...
}

If you created the service using the Android Studio template then the service should have

been added to your AndroidManifest.xml . If not, then service needs to be defined in the

manifest:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.company.mySdlApplication">

 <application>

 <service
 android:name=".SdlService"
 android:enabled="true"/>

 </application>

</manifest>

Please be aware that using an Activity to host the SDL implementation will

not work. Android 10 has restrictions on starting activities from the

background and that is how the SDL library will start the supplied

component. SDL apps should only use a foreground service to host the SDL

implementation.

NOT E

https://developer.android.com/guide/components/activities/background-starts

Because of Android Oreo's requirements, it is mandatory that services enter the

foreground for long running tasks. The first bit of integration is ensuring that happens in

the onCreate method of the SdlService or similar. Within the service that implements

the SDL lifecycle you will need to add a call to start the service in the foreground. This will

include creating a notification to sit in the status bar tray. This information and icons

should be relevant for what the service is doing/going to do. If you already start your

service in the foreground, you can ignore this section.

Android API 29 adds a new attribute foregroundServiceType to specify the

type of foreground service.

Starting with Android API 29 please include android:foregroundServiceType

='connectedDevice' to the service tag for SdlService in your

AndroidManifest.xml

NOT E

Entering the Foreground

https://developer.android.com/reference/android/R.attr#foregroundServiceType

@Override
public void onCreate() {
 super.onCreate();
 //...
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
 NotificationChannel channel = new NotificationChannel("channelId",
"channelName", NotificationManager.IMPORTANCE_DEFAULT);
 NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
 if (notificationManager != null) {
 notificationManager.createNotificationChannel(channel);
 Notification serviceNotification = new Notification.Builder(this,
channel.getId())
 .setContentTitle(...)
 .setSmallIcon(...)
 .setContentText(...)
 .setChannelId(channel.getId())
 .build();
 startForeground(FOREGROUND_SERVICE_ID, serviceNotification);
 }
 }
}

It's important that you don't leave your notification in the notification tray as it is very

confusing to users. So in the onDestroy method in your service, simply call the stopFor

eground method.

The sample code checks if the OS is of Android Oreo or newer to start a

foreground service. It is up to the app developer if they wish to start the

notification in previous versions.

NOT E

Exiting the Foreground

@Override
public void onDestroy(){
 //...
 if(Build.VERSION.SDK_INT>=Build.VERSION_CODES.O){
 NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
 if(notificationManager!=null){ //If this is the only notification on your channel
 notificationManager.deleteNotificationChannel(* Notification Channel*);
 }
 stopForeground(true);
 }
}

In order to correctly connect to an SDL enabled head unit developers need to implement

methods for the proper creation and disposing of an SdlManager in our SdlService .

Implementing SDL Manager

An instance of SdlManager cannot be reused after it is closed and properly

disposed of. Instead, a new instance must be created. Only one instance of

SdlManager should be in use at any given time.

NOT E

SdlManagerListener method: onSystemInfoReceived auto generates in

Android Studio to returns false. This will cause your app to not connect. You

must change it to true or implement logic to check system info to see if you

wish for your app to connect to that system.

MUS T

public class SdlService extends Service {

 //The manager handles communication between the application and SDL
 private SdlManager sdlManager = null;

 //...

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {

 if (sdlManager == null) {
 MultiplexTransportConfig transport = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);

 // The app type to be used
 Vector<AppHMIType> appType = new Vector<>();
 appType.add(AppHMIType.MEDIA);

 // The manager listener helps you know when certain events that pertain to
the SDL Manager happen
 SdlManagerListener listener = new SdlManagerListener() {

 @Override
 public void onStart() {
 // After this callback is triggered the SdlManager can be used to interact
with the connected SDL session (updating the display, sending RPCs, etc)
 }

 @Override
 public void onDestroy() {
 SdlService.this.stopSelf();
 }

 @Override
 public void onError(String info, Exception e) {
 }

 @Override
 public LifecycleConfigurationUpdate
managerShouldUpdateLifecycle(Language language, Language hmiLanguage) {
 return null;
 }

 @Override
 public boolean onSystemInfoReceived(SystemInfo systemInfo) {
 // Check the SystemInfo object to ensure that the connection to the
device should continue
 return true;
 }
 };

 // Create App Icon, this is set in the SdlManager builder

 SdlArtwork appIcon = new SdlArtwork(ICON_FILENAME,
FileType.GRAPHIC_PNG, R.mipmap.ic_launcher, true);

 // The manager builder sets options for your session
 SdlManager.Builder builder = new SdlManager.Builder(this, APP_ID,
APP_NAME, listener);
 builder.setAppTypes(appType);
 builder.setTransportType(transport);
 builder.setAppIcon(appIcon);
 sdlManager = builder.build();
 sdlManager.start();
 }

 return START_STICKY;
 }
}

The onDestroy() method from the SdlManagerListener is called whenever the manager

detects some disconnect in the connection, whether initiated by the app, by SDL, or by the

device’s connection.

This is a custom icon for your application. Please refer to Adaptive Interface Capabilities

for icon sizes.

builder.setAppIcon(appIcon);

The sdlManager must be shutdown properly in the SdlService.onDestroy()

callback using the method sdlManager.dispose() .

MUS T

OP TIONAL SDL MANAGER BU IL DER PARAMETERS

A PP I CON

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/adaptive-interface-capabilities/

The app type is used by car manufacturers to decide how to categorize your app. Each car

manufacturer has a different categorization system. For example, if you set your app type

as media, your app will also show up in the audio tab as well as the apps tab of Ford’s

SYNC® 3 head unit. The app type options are: default, communication, media (i.e.

music/podcasts/radio), messaging, navigation, projection, information, and social.

Vector<AppHMIType> appHMITypes = new Vector<>();
appHMITypes.add(AppHMIType.MEDIA);

builder.setAppTypes(appHMITypes);

This is a shortened version of your app name that is substituted when the full app name

will not be visible due to character count constraints. You will want to make this as short

as possible.

builder.setShortAppName(shortAppName);

You can customize the color scheme of your initial template on head units that support

this feature using the builder . For more information, see the Customizing the Template

guide section.

A PP T Y PE

Navigation and projection applications both use video and audio byte

streaming. However, navigation apps require special permissions from

OEMs, and projection apps are only for internal use by OEMs.

NOT E

S HOR T A PP NA ME

T EMPL AT E COL OR I NG

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/customizing-look-and-functionality/customizing-the-template/

A lock screen is used to prevent the user from interacting with the app on the smartphone

while they are driving. When the vehicle starts moving, the lock screen is activated.

Similarly, when the vehicle stops moving, the lock screen is removed. You must

implement a lock screen in your app for safety reasons. Any application without a lock

screen will not get approval for release to the public.

The SDL SDK can take care of the lock screen implementation for you, automatically

using your app logo and the connected vehicle logo. If you do not want to use the default

lock screen, you can implement your own custom lock screen.

LockScreenConfig lockScreenConfig = new LockScreenConfig();
builder.setLockScreenConfig(lockScreenConfig);

You should also declare the SDLLockScreenActivity in your manifest. For more

information, please refer to the Adding the Lock Screen section.

Some OEMs may want to encrypt messages passed between your SDL app and the head

unit. If this is the case, when you submit your app to the OEM for review, they will ask you

to add a security library to your SDL app. See the Encryption section.

The file manager configuration allows you to configure retry behavior for uploading files

and images. The default configuration attempts one re-upload, but will fail after that.

FileManagerConfig fileManagerConfig = new FileManagerConfig();
fileManagerConfig.setArtworkRetryCount(2);
fileManagerConfig.setFileRetryCount(2);

builder.setFileManagerConfig(fileManagerConfig);

The desired language to be used on display/HMI of connected module can be set.

L OCK S CR EEN CONF I G UR AT I ON

S DL S ECUR I T Y

F I L E MA NA G ER CONF I G UR AT I ON

L A NG UA G E

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/adding-the-lock-screen/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/encryption/

builder.setLanguage(Language.EN_US);

You can listen for specific events using SdlManager 's builder setRPCNotificationListen

ers . The following example shows how to listen for HMI Status notifications. Additional

listeners can be added for specific RPCs by using their corresponding FunctionID in

place of the ON_HMI_STATUS in the following example and casting the RPCNotificatio

n object to the correct type.

Map<FunctionID, OnRPCNotificationListener> onRPCNotificationListenerMap = new
HashMap<>();
onRPCNotificationListenerMap.put(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnHMIStatus onHMIStatus = (OnHMIStatus) notification;
 if (onHMIStatus.getHmiLevel() == HMILevel.HMI_FULL &&
onHMIStatus.getFirstRun()){
 // first time in HMI Full
 }
 }
});
builder.setRPCNotificationListeners(onRPCNotificationListenerMap);

Set a hashID for your application that can be used over connection cycles (i.e. loss of

connection, ignition cycles, etc.).

builder.setResumeHash(hashID);

L I S T ENI NG F OR R PC NOT I F I CAT I ONS A ND EVENT S

HA S H R ES UMPT I ON

DETERMINING SDL SU P P ORT

You have the ability to determine a minimum SDL protocol and a minimum SDL RPC

version that your app supports. You can also check the connected vehicle type and

disconnect if the vehicle module is not supported. We recommend not setting these

values until your app is ready for production. The OEMs you support will help you

configure correct values during the application review process.

If a head unit is blocked by protocol version, your app icon will never appear on the head

unit's screen. If you configure your app to block by RPC version, it will appear and then

quickly disappear. So while blocking with minimumProtocolVersion is preferable, mini

mumRPCVersion allows you more granular control over which RPCs will be present.

builder.setMinimumProtocolVersion(new Version("3.0.0"));
builder.setMinimumRPCVersion(new Version("4.0.0"));

If you are blocking by vehicle type and you are connected over RPC v7.1+, your app icon

will never appear on the head unit's screen. If you are connected over RPC v7.0 or below, it

will appear and then quickly disappear. To implement this type of blocking, you need to set

up the SDLManagerListener . You will then implement logic in onSystemInfoReceived

method and return true if you want to continue the connection and false if you wish to

disconnect.

The SdlRouterService will listen for a connection with an SDL enabled module. When a

connection happens, it will alert all SDL enabled apps that a connection has been

established and they should start their SDL services.

We must implement a local copy of the SdlRouterService into our project. The class

doesn't need any modification, it's just important that we include it. We will extend the co

m.smartdevicelink.transport.SdlRouterService in our class named SdlRouterService :

BL OCKI NG BY VER S I ON

BL OCKI NG BY VEHI CL E T Y PE

SmartDeviceLink Router Service

public class SdlRouterService extends
com.smartdevicelink.transport.SdlRouterService {
 //Nothing to do here
}

If you created the service using the Android Studio template then the service should have

been added to your AndroidManifest.xml otherwise the service needs to be added in the

manifest. Because we want our service to be seen by other SDL enabled apps, we need to

set android:exported="true" . The system may issue a lint warning because of this, so we

can suppress that using tools:ignore="ExportedService" .

Do not include an import for com.smartdevicelink.transport.SdlRouterServi

ce . Otherwise, we will get an error for 'SdlRouterService' is already defined i

n this compilation unit .

NOT E

The local extension of the com.smartdevicelink.transport.SdlRouterService

must be named SdlRouterService .

MUS T

Make sure this local class SdlRouterService.java is in the same package of

SdlReceiver.java (described below)

MUS T

<intent-filter>
 <action android:name="com.smartdevicelink.router.service"/>
</intent-filter>

The new versions of the SDL Android library rely on the com.smartdevicelink.router.servi

ce action to query SDL enabled apps that host router services. This allows the library to

determine which router service to start.

Android API 29 adds a new attribute foregroundServiceType to specify the

type of foreground service.

Starting with Android API 29 please include android:foregroundServiceType

='connectedDevice' to the service tag for SdlRouterService in your

AndroidManifest.xml

NOT E

The SdlRouterService must be placed in a separate process with the name

com.smartdevicelink.router . If it is not in that process during its start up it

will stop itself.

MUS T

Intent Filter

This intent-filter MUST be included.

MUS T

https://developer.android.com/reference/android/R.attr#foregroundServiceType

<meta-data android:name="sdl_router_version"
android:value="@integer/sdl_router_service_version_value" />

Adding the sdl_router_version metadata allows the library to know the version of the

router service that the app is using. This makes it simpler for the library to choose the

newest router service when multiple router services are available.

<meta-data android:name="sdl_custom_router" android:value="false" />

Some OEMs choose to implement custom router services. Setting the sdl_custom_rout

er metadata value to true means that the app is using something custom over the

Metadata

ROU TER SERV IC E V ERSION

C U STOM ROU TER SERV IC E

This is only for specific OEM applications, therefore normal developers do

not need to worry about this.

NOT E

default router service that is included in the SDL Android library. Do not include this meta-

data entry unless you know what you are doing.

The final router service entry in the AndroidManifest.xml file should look like the

following:

<service
 android:name=".SdlRouterService"
 android:enabled="true"
 android:exported="true"
 android:foregroundServiceType="connectedDevice"
 android:process="com.smartdevicelink.router">

 <intent-filter>
 <action android:name="com.smartdevicelink.router.service" />
 </intent-filter>

 <meta-data
 android:name="sdl_router_version"
 android:value="@integer/sdl_router_service_version_value" />
</service>

The Android implementation of the SdlManager relies heavily on the OS's bluetooth and

USB intents. When the phone is connected to SDL and the router service has sent a

connection intent, the app needs to create an SdlManager , which will bind to the already

connected router service. As mentioned previously, the SdlManager cannot be re-used.

When a disconnect between the app and SDL occurs, the current SdlManager must be

disposed of and a new one created.

The SDL Android library has a custom broadcast receiver named SdlBroadcastReceiver

that should be used as the base for your BroadcastReceiver . It is a child class of

Android's BroadcastReceiver so all normal flow and attributes will be available. Two

abstract methods will be automatically populate the class, we will fill them out soon.

Create a new SdlBroadcastReceiver and name it appropriately, for this guide we are

going to call it SdlReceiver :

SmartDeviceLink Broadcast Receiver

public class SdlReceiver extends SdlBroadcastReceiver {

 @Override
 public void onSdlEnabled(Context context, Intent intent) {
 //...

 }

 @Override
 public Class<? extends SdlRouterService> defineLocalSdlRouterClass() {
 //...
 }
}

 @Override
 public void onReceive(Context context, Intent intent) {
 super.onReceive(context, intent);
 //your code here
 }

If you created the BroadcastReceiver using the Android Studio template then the service

should have been added to your AndroidManifest.xml otherwise the receiver needs to be

defined in the manifest. Regardless, the manifest needs to be edited so that the SdlBroad

castReceiver needs to respond to the following intents:

android.bluetooth.device.action.ACL_CONNECTED

sdl.router.startservice

SdlBroadcastReceiver must call super if onReceive is overridden

MUS T

https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html#ACTION_ACL_CONNECTED

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.company.mySdlApplication">

 <application>

 <receiver
 android:name=".SdlReceiver"
 android:exported="true"
 android:enabled="true">

 <intent-filter>
 <action android:name="android.bluetooth.device.action.ACL_CONNECTED"
/>
 <action android:name="sdl.router.startservice" />
 </intent-filter>

 </receiver>

 </application>

</manifest>

Next, we want to make sure we supply our instance of the SdlBroadcastService with our

local copy of the SdlRouterService . We do this by simply returning the class object in the

The intent sdl.router.startservice is a custom intent that will come from

the SdlRouterService to tell us that we have just connected to an SDL

enabled piece of hardware.

NOT E

SdlBroadcastReceiver has to be exported, or it will not work correctly

MUS T

method defineLocalSdlRouterClass :

public class SdlReceiver extends SdlBroadcastReceiver {
 @Override
 public void onSdlEnabled(Context context, Intent intent) {

 }

 @Override
 public Class<? extends SdlRouterService> defineLocalSdlRouterClass() {
 //Return a local copy of the SdlRouterService located in your project
 return com.company.mySdlApplication.SdlRouterService.class;
 }
}

We want to start the SdlManager when an SDL connection is made via the SdlRouterSe

rvice . We do this by taking action in the onSdlEnabled method:

Apps must start their service in the foreground as of Android Oreo (API 26).

MUS T

public class SdlReceiver extends SdlBroadcastReceiver {

 @Override
 public void onSdlEnabled(Context context, Intent intent) {
 //Use the provided intent but set the class to the SdlService
 intent.setClass(context, SdlService.class);
 if(Build.VERSION.SDK_INT < Build.VERSION_CODES.O) {
 context.startService(intent);
 }else{
 context.startForegroundService(intent);
 }
 }

 @Override
 public Class<? extends SdlRouterService> defineLocalSdlRouterClass() {
 //Return a local copy of the SdlRouterService located in your project
 return com.company.mySdlApplication.SdlRouterService.class;
 }
}

Now that the basic connection infrastructure is in place, we should add methods to start

the SdlService when our application starts. In onCreate() in your main activity, you need

to call a method that will check to see if there is currently an SDL connection made. If

there is one, the onSdlEnabled method will be called and we will follow the flow we

already set up:

The onSdlEnabled method will be the main start point for our SDL

connection session. We define exactly what we want to happen when we find

out we are connected to SDL enabled hardware.

NOT E

Main Activity

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 //If we are connected to a module we want to start our SdlService
 SdlReceiver.queryForConnectedService(this);
 }
}

In order to view your SDL app, you must connect your device to a head unit that supports

SDL Core. If you do not have access to a head unit, we recommend using the Manticore

web-based emulator for testing how your SDL app reacts to real-world vehicle events, on-

screen interactions and voice recognition.

You will have to configure different connection types based on whether you are connecting

to a head unit or an emulator. When connecting to a head unit, you must configure a Mult

iplex connection. Likewise, when connecting to an emulator, a TCP connection must be

configured.

To connect to an emulator such as Manticore or a local Ubuntu SDL Core-based emulator

you must implement a TCP connection when configuring your SDL app.

Connecting to an Infotainment
System

Connecting to an Emulator

Getting the IP Address and Port

https://smartdevicelink.com/resources/manticore/
https://smartdevicelink.com/resources/manticore/
https://github.com/smartdevicelink/sdl_core

To connect to a virtual machine running the Ubuntu SDL Core-based emulator, you will use

the IP address of the Ubuntu OS and 12345 for the port. You may have to enable port

forwarding on your virtual machine if you want to connect using a real device instead of a

simulated device.

Once you launch an instance of Manticore, you will be given an IP address and port

number that you can use to configure your TCP connection.

// Set the SdlManager.Builder transport
builder.setTransportType(new TCPTransportConfig(<IP ADDRESS>, <PORT>, false));

To connect your device directly to a production vehicle head unit or Test Development Kit

(TDK), make sure to implement a Multiplex connection. Then connect the device using a

USB cord or, if the head unit supports it, Bluetooth.

// Set the SdlManager.Builder transport
builder.setTransportType(new MultiplexTransportConfig(context, <APP ID>));

GENERIC SDL C ORE

MANTIC ORE

Setting the IP Address and Port

Connecting to a Head Unit

Running the SDL App

https://github.com/smartdevicelink/sdl_core

Build and run the project in Android Studio, targeting the device or simulator that you want

to test your app with. Your app should compile and launch on your device of choosing. If

your connection configuration is setup correctly, you should see your SDL app icon appear

on the HMI screen:

To open your app, click on your app's icon in the HMI.

This is the main screen of your SDL app. If you get to this point, your SDL app is working.

If you are having issues with connecting to an emulator or head unit, please see our

troubleshooting tips in the Example Apps section of the guide.

The lock screen is a vital part of your SDL app because it prevents the user from using the

phone while the vehicle is in motion. SDL takes care of the lock screen for you. If you

prefer your own look, but still want the recommended logic that SDL provides for free, you

can also set your own custom lock screen.

Troubleshooting

Adding the Lock Screen

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/example-apps/

You must declare the SDLLockScreenActivity in your manifest. To do so, simply add the

following to your app's AndroidManifest.xml if you have not already done so:

<activity
android:name="com.smartdevicelink.managers.lockscreen.SDLLockScreenActivity"
 android:launchMode="singleTop"/>

If you have implemented the SdlManager and defined the SDLLockScreenActivity in

your manifest, you have a working default lockscreen configuration.

Configure the Lock Screen Activity

This manifest entry must be added for the lock screen feature to work.

MUS T

Using the Provided Lock Screen

It is possible to customize the background color and app icon in the default provided

lockscreen. If you choose not to set your own app icon the library will use the SDL logo.

When customizing your lock screen please define a LockScreenConfig and set it using

the builder for your SdlManager .

LockScreenConfig lockScreenConfig = new LockScreenConfig();
builder.setLockScreenConfig(lockScreenConfig);

Customizing the Default Lock Screen

lockScreenConfig.setBackgroundColor(resourceColor); // For example,
getResources().getColor(R.color.black) or Color.parseColor("#000000");

Custom Background Color

Custom App Icon

lockScreenConfig.setAppIcon(appIconInt); // For example, R.drawable.lockscreen
icon

The default lock screen handles retrieving and setting the OEM logo from head units that

support this feature.

This feature can be disabled on the default lock screen by setting showDeviceLogo to

false.

Showing the OEM Logo

lockScreenConfig.showDeviceLogo(false);

If you would like to use your own lock screen instead of the one provided by the library, but

still use the logic we provide, you can use a new initializer within LockScreenConfig .

lockScreenConfig.setCustomView(customViewInt);

In SDL Android v4.10, a new parameter displayMode has been added to the LockScreen

Config to control the state of the lock screen and the older boolean parameters have

been deprecated.

Creating a Custom Lock Screen

Customizing the Lock Screen State

D I S P L A Y M O D E D E S C R I P T I O N

Please note that a lock screen will be required by most OEMs. You can disable the lock

screen manager, but you will then be required to implement your own logic for showing

and hiding the lock screen. This is not recommended as the LockScreenConfig adheres

to most OEM lock screen requirements. However, if you must create a lock screen

manager from scratch, the library's lock screen manager can be disabled via the LockScre

enConfig as follows:

LockScreenConfig lockScreenConfig = new LockScreenConfig();
lockScreenConfig.setDisplayMode(LockScreenConfig.DISPLAY_MODE_NEVER);

never

The lock screen should never be shown. This

should almost always mean that you will build

your own lock screen

requiredOnly
The lock screen should only be shown when it

is required by the head unit

optionalOrRequired

The lock screen should be shown when required

by the head unit or when the head unit says

that its optional, but not in other cases, such as

before the user has interacted with your app on

the head unit

always
The lock screen should always be shown after

connection

Disabling the Lock Screen

Making the Lock Screen Always On

The lock screen manager is configured to dismiss the lock screen when it is safe to do

so. To always have the lock screen visible when the device is connected to the head unit,

simply update the lock screen configuration.

LockScreenConfig lockScreenConfig = new LockScreenConfig();
lockScreenConfig.setDisplayMode(LockScreenConfig.DISPLAY_MODE_ALWAYS);

Starting in RPC v6.0+ users may now have the ability to dismiss the lock screen by

swiping the lock screen down. Not all OEMs support this new feature. A dismissible lock

screen is enabled by default if the head unit enables the feature, but you can disable it

manually as well.

Enabling User Lockscreen Dismissal (Passenger Mode)

To disable this feature, set LockScreenConfig s enableDismissGesture to false.

LockScreenConfig lockScreenConfig = new LockScreenConfig();
lockScreenConfig.enableDismissGesture(false);

Incorporating AOA into an SDL enabled app allows it to create and register an SDL session

over USB. This guide will assume the app has already integrated the SDL library as laid out

in the previous guides. AOA connections are sent through the SDLRouterService to

bypass an Android limitation of only one app being able to be used through the AOA intent.

Prerequisites:

Installation guide

SDK Configuration guide

Integration Basics guide

We will add or make changes to:

Android Manifest (of your app)

SdlService (optional)

The Installation, SDK Configuration, and Integration Basics guides must be completed

before enabling the use of the AOA USB transport. The remainder of the guide will assume

all steps will be followed.

To use the AOA protocol, you must specify so in your app's Manifest with:

<uses-feature android:name="android.hardware.usb.accessory"/>

Using Android Open Accessory
Protocol

Prerequisites

Android Manifest

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/installation/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/sdk-configuration/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/integration-basics-java/

The SDL Android library houses a USBAccessoryAttachmentActivity that you need to

add between your Manifest's <application>…</application> tags:

<activity
android:name="com.smartdevicelink.transport.USBAccessoryAttachmentActivity"
 android:launchMode="singleTop">
 <intent-filter>
 <action
android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED" />
 </intent-filter>

 <meta-data
 android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED"
 android:resource="@xml/accessory_filter" />
</activity>

Media applications do not register over AOA since by default there are no audio streaming

methods available.

To get media applications to register, when creating the connection you need to set flag

requiresAudioSupport to false:

This feature will not work without including this line!

MUS T

The accessory_filter.xml file is included with the SDL Android Library

NOT E

Media Apps

MultiplexTransportConfig multiplexTransportConfig = new
MultiplexTransportConfig(getBaseContext(), APP_ID,
MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);
multiplexTransportConfig.setRequiresAudioSupport(false);

As long as the app doesn't require high bandwidth, it shouldn't matter which transport is

being connected. A multiplex transport should be used like the one that follows:

@Override
 public int onStartCommand(Intent intent, int flags, int startId) {

 if (sdlManager == null) {
 MultiplexTransportConfig transport = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);

 SdlManagerListener listener = new SdlManagerListener() {
 //...
 };

 // ...

 builder.setTransportType(transport);
 sdlManager = builder.build();
 sdlManager.start();
 }
 ...
 }

The new MultiplexingConfig allows for apps to be able to connect via Bluetooth and USB

as primary transports. If you want your app to only use USB / AOA, then you should

specifically only set that as the only allowed primary transport.

When defining your transport, also pass in a custom list that only contains the USB:

SmartDeviceLink Service

Using only USB / AOA

List<TransportType> multiplexPrimaryTransports = Arrays.asList(TransportType.USB);

MultiplexTransportConfig transport = new MultiplexTransportConfig(this, appId,
MultiplexTransportConfig.FLAG_MULTI_SECURITY_MED);

transport.setPrimaryTransports(multiplexPrimaryTransports);

Since the SdlRouterService now handles both bluetooth and AOA/USB connections, an

app will be connected to the transport that connects first if the app includes it in their

transport config. If a module supports secondary transports, the second transport to be

connected of bluetooth or USB will be available as well as potentially TCP. This means

even though the app might register over bluetooth, if USB or TCP are available those

transports will be available for high bandwidth services. For more information please see

the Multiple Transport Guide.

The multiple transports feature allows apps to carry their SDL session over multiple

transports. The first transport that the app connects with is referred to as the primary

transport and a transport connected at a later point is the secondary transport. For

example, apps can register over Bluetooth or USB as a primary transport, then connect

over WiFi when necessary (ex. to allow video/audio streaming) as a secondary transport.

This feature is supported on connections with protocol version 5.1+, which is supported

on SDL Android 4.7+ and SDL Core 5.0+.

Multiple Transports

Multiple Transports (Protocol
v5.1+)

Primary Transports

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/multiple-transports/

On head units that support multiple transports, the primary transport will be used for RPC

communication while the secondary transport will be used for high bandwidth services

such as streaming video data for navigation applications. If no high-bandwidth secondary

transport is present, the primary transport will be used for all needed services that the

transport supports.

Whether your app supports both Bluetooth and/or USB connections is determined by what

you set as acceptable primary transports. By default, both USB and Bluetooth are

supported and should be kept unless there is a specific reason otherwise. If you list

multiple primary transports and one disconnects, if another included transport is available

the app will automatically attempt to connect and register to it.

List<TransportType> multiplexPrimaryTransports = Arrays.asList(TransportType.USB,
TransportType.BLUETOOTH);
MultiplexTransportConfig mtc = new MultiplexTransportConfig(this, APP_ID,
MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);
mtc.setPrimaryTransports(multiplexPrimaryTransports);

If you only want to use Bluetooth or USB, simply pass in a list with the one you want.

Certain app types will require a high bandwidth transport to be available, which could be

either primary or secondary transports. If this is the case, an app will only be registered if

a high bandwidth transport is either connected or available to connect.

Supporting specific primary transports

For the best compatibility we suggest supporting both primary transports.

NOT E

Requiring High Bandwidth

If this is the case for your app you can set the setRequiresHighBandwidth flag to true :

MultiplexTransportConfig mtc = new MultiplexTransportConfig(this, APP_ID,
MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);

mtc.setRequiresHighBandwidth(true);

While some app's main integration requires high bandwidth, it is possible to support a low

bandwidth integration for better visibility. As an example, a navigation app might require

high bandwidth transport to stream their map view but could provide a low bandwidth

integration that displays turn-by-turn directions. Another simple low bandwidth integration

could simply be displaying a message that instructs the user to connect USB or WiFi to

enable the app. In this case the app should set the requires high bandwidth flag to false, as

it is by default.

MultiplexTransportConfig mtc = new MultiplexTransportConfig(this, APP_ID,
MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);

mtc.setRequiresHighBandwidth(false);

Secondary transports must be enabled by the module to which the app is connecting. In

addition to Bluetooth and USB (which are primary transports), TCP over WiFi is a

supported secondary transport.

Setting secondary transports that your app supports is similar to setting the primary

transports:

High bandwidth app with low bandwidth support

Secondary Transports

List<TransportType> multiplexPrimaryTransports = Arrays.asList(TransportType.USB,
TransportType.BLUETOOTH);
List<TransportType> multiplexSecondaryTransports =
Arrays.asList(TransportType.TCP, TransportType.USB, TransportType.BLUETOOTH);
MultiplexTransportConfig mtc = new MultiplexTransportConfig(this, APP_ID,
MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);
mtc.setPrimaryTransports(multiplexPrimaryTransports);
mtc.setSecondaryTransports(multiplexSecondaryTransports);

By default, all three transports are set as supported secondary transports.

Since a head unit can support multiple languages, you may want to add support for more

than one language to your SDL app. The SDL library allows you to check which language is

currently used by the head unit. If desired, the app's name and the app's text-to-speech

(TTS) name can be customized to reflect the head unit's current language. If your app

name is not part of the current lexicon, you should tell the VR system how a native

speaker will pronounce your app name by setting the TTS name using phonemes from

either the Microsoft SAPI phoneme set or from the LHPLUS phoneme set.

The initial configuration of the SdlManager requires a default language when setting the

Builder . If not set, the SDL library uses American English (EN_US) as the default

language. The connection will fail if the head unit does not support the language set in

the Builder . The RegisterAppInterface response RPC will return INVALID_DATA as the

reason for rejecting the request.

Adapting to the Head Unit
Language

Setting the Default Language

https://en.wikipedia.org/wiki/Phoneme

If your app does not support the current head unit language, you should decide on a default

language to use in your app. All text should be created using this default language.

Unfortunately, your VR commands will probably not work as the VR system will not

recognize your users' pronunciation.

After starting the SDLManager you can check the sdlManager.getRegisterAppInterfaceR

esponse() property for the head unit's language and hmiDisplayLanguage . The langu

age property gives you the current VR system language; hmiDisplayLanguage the

current display text language.

Language headUnitLanguage =
sdlManager.getRegisterAppInterfaceResponse().getLanguage();
Language headUnitHMILanguage =
sdlManager.getRegisterAppInterfaceResponse().getHmiDisplayLanguage();

To customize the app name for the head unit's current language, implement the following

steps:

1. Set the default language in the Builder.

2. Implement the sdlManagerListener's managerShouldUpdateLifecycle(Language lang

uage, Language hmiLanguage) method. If the module's current HMI language or

voice recognition (VR) language is different from the app's default language, the

listener will be called with the module's current HMI and/or VR language. Return a Li

fecycleConfigurationUpdate with the new appName and/or ttsName.

What if My App Does Not Support the Head Unit
Language?

Checking the Current Head Unit Language

Updating the SDL App Name

@Override
public LifecycleConfigurationUpdate managerShouldUpdateLifecycle(Language
language, Language hmiLanguage) {
 boolean isNeedUpdate = false;
 String appName = APP_NAME;
 String ttsName = APP_NAME;
 switch (language) {
 case ES_MX:
 isNeedUpdate = true;
 ttsName = APP_NAME_ES;
 break;
 case FR_CA:
 isNeedUpdate = true;
 ttsName = APP_NAME_FR;
 break;
 default:
 break;
 }
 switch (hmiLanguage) {
 case ES_MX:
 isNeedUpdate = true;
 appName = APP_NAME_ES;
 break;
 case FR_CA:
 isNeedUpdate = true;
 appName = APP_NAME_FR;
 break;
 default:
 break;
 }
 if (isNeedUpdate) {
 Vector<TTSChunk> chunks = new Vector<>(Collections.singletonList(new
TTSChunk(ttsName, SpeechCapabilities.TEXT)));
 return new LifecycleConfigurationUpdate(appName, null, chunks, null);
 } else {
 return null;
 }
}

Understanding Permissions

While creating your SDL app, remember that just because your app is connected to a head

unit it does not mean that the app has permission to send the RPCs you want. If your app

does not have the required permissions, requests will be rejected. There are three

important things to remember in regards to permissions:

1. You may not be able to send a RPC when the SDL app is closed, in the background,

or obscured by an alert. Each RPC has a set of hmiLevels during which it can be

sent.

2. For some RPCs, like those that access vehicle data or make a phone call, you may

need special permissions from the OEM to use. This permission is granted when

you submit your app to the OEM for approval. Each OEM decides which RPCs it will

restrict access to, so it is up you to check if you are allowed to use the RPC with the

head unit.

3. Some head units may not support all RPCs.

When your app is connected to the head unit you will receive notifications when the SDL

app's HMI status changes. Your app can be in one of four different hmiLevel s:

HMI Levels

H M I L E V E L W H A T D O E S T H I S M E A N ?

Be careful with sending user interface related RPCs in the NONE and BACKGROUND

levels; some head units may reject RPCs sent in those states. We recommended that you

wait until your app's hmiLevel enters FULL to set up your app's UI.

To get more detailed information about the state of your SDL app check the current

system context. The system context will let you know if a menu is open, a VR session is

in progress, an alert is showing, or if the main screen is unobstructed. You can find more

information about the system context below.

Monitoring HMI Status is possible through an OnHMIStatus notification that you can

subscribe to via the SdlManager.Builder 's setRPCNotificationListeners .

NONE
The user has not yet opened your app, or the

app has been killed.

BACKGROUND
The user has opened your app, but is currently

in another part of the head unit.

LIMITED

This level only applies to media and navigation

apps (i.e. apps with an appType of MEDIA
or NAVIGATION). The user has opened your

app, but is currently in another part of the head

unit. The app can receive button presses from

the play, seek, tune, and preset buttons.

FULL Your app is currently in focus on the screen.

Monitoring the HMI Level

Map<FunctionID, OnRPCNotificationListener> onRPCNotificationListenerMap = new
HashMap<>();
onRPCNotificationListenerMap.put(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnHMIStatus onHMIStatus = (OnHMIStatus) notification;
 if (onHMIStatus.getHmiLevel() == HMILevel.HMI_FULL &&
onHMIStatus.getFirstRun()){
 // first time in HMI Full
 }
 }
});
builder.setRPCNotificationListeners(onRPCNotificationListenerMap);

The PermissionManager allows developers to easily query whether specific RPCs are

allowed or not in the current state of the app. It also allows a listener to be added for

RPCs or their parameters so that if there are changes in their permissions, the app will be

notified.

You can also retrieve the status of a group of RPCs. First, you can retrieve the permission

status of the group of RPCs as a whole: whether or not those RPCs are all allowed, all

boolean allowed =
sdlManager.getPermissionManager().isRPCAllowed(FunctionID.SHOW);

// You can also check if a permission parameter is allowed
boolean parameterAllowed =
sdlManager.getPermissionManager().isPermissionParameterAllowed(FunctionID.GET
 GetVehicleData.KEY_RPM);

Permission Manager

Checking Current Permissions of a Single RPC

Checking Current Permissions of a Group of RPCs

disallowed, or some are allowed and some are disallowed. This will allow you to know, for

example, if a feature you need is allowed based on the status of all the RPCs needed for

the feature.

The previous snippet will give a quick generic status for all permissions together.

However, if you want to get a more detailed result about the status of every permission or

parameter in the group, you can use the getStatusOfPermissions method.

List<PermissionElement> permissionElements = new ArrayList<>();
permissionElements.add(new PermissionElement(FunctionID.SHOW, null));
permissionElements.add(new PermissionElement(FunctionID.GET_VEHICLE_DATA,
Arrays.asList(GetVehicleData.KEY_RPM, GetVehicleData.KEY_SPEED)));

int groupStatus =
sdlManager.getPermissionManager().getGroupStatusOfPermissions(permissionElem

switch (groupStatus) {
 case PermissionManager.PERMISSION_GROUP_STATUS_ALLOWED:
 // Every permission in the group is currently allowed
 break;
 case PermissionManager.PERMISSION_GROUP_STATUS_DISALLOWED:
 // Every permission in the group is currently disallowed
 break;
 case PermissionManager.PERMISSION_GROUP_STATUS_MIXED:
 // Some permissions in the group are allowed and some disallowed
 break;
 case PermissionManager.PERMISSION_GROUP_STATUS_UNKNOWN:
 // The current status of the group is unknown
 break;
}

If desired, you can set a listener for a group of permissions. The listener will be called

when the permissions for the group changes. If you want to be notified when the

permission status of any of RPCs in the group change, set the groupType to PERMISSIO

N_GROUP_TYPE_ANY . If you only want to be notified when all of the RPCs in the group

are allowed, or go from allowed to some/all not allowed, set the groupType to PERMISS

ION_GROUP_TYPE_ALL_ALLOWED .

List<PermissionElement> permissionElements = new ArrayList<>();
permissionElements.add(new PermissionElement(FunctionID.SHOW, null));
permissionElements.add(new PermissionElement(FunctionID.GET_VEHICLE_DATA,
Arrays.asList(GetVehicleData.KEY_RPM, GetVehicleData.KEY_AIRBAG_STATUS)));

Map<FunctionID, PermissionStatus> status =
sdlManager.getPermissionManager().getStatusOfPermissions(permissionElements);

if (status.get(FunctionID.GET_VEHICLE_DATA).getIsRPCAllowed()){
 // GetVehicleData RPC is allowed
}

if
(status.get(FunctionID.GET_VEHICLE_DATA).getAllowedParameters().get(GetVehicle
{
 // rpm parameter in GetVehicleData RPC is allowed
}

Observing Permissions

When you set up the listener, you will get a unique id back. Use this id to unsubscribe to

the permissions at a later date.

sdlManager.getPermissionManager().removeListener(listenerId);

If you want more detail about the current state of your SDL app you can monitor the audio

playback state as well as get notifications when something blocks the main screen of

List<PermissionElement> permissionElements = new ArrayList<>();
permissionElements.add(new PermissionElement(FunctionID.SHOW, null));
permissionElements.add(new PermissionElement(FunctionID.GET_VEHICLE_DATA,
Arrays.asList(GetVehicleData.KEY_RPM, GetVehicleData.KEY_AIRBAG_STATUS)));

UUID listenerId =
sdlManager.getPermissionManager().addListener(permissionElements,
PermissionManager.PERMISSION_GROUP_TYPE_ANY, new
OnPermissionChangeListener() {
 @Override
 public void onPermissionsChange(@NonNull Map<FunctionID, PermissionStatus>
updatedPermissionStatuses, @NonNull int updatedGroupStatus) {
 if
(updatedPermissionStatuses.get(FunctionID.GET_VEHICLE_DATA).getIsRPCAllowed(
 {
 // GetVehicleData RPC is allowed
 }

 if
(updatedPermissionStatuses.get(FunctionID.GET_VEHICLE_DATA).getAllowedParame
{
 // rpm parameter in GetVehicleData RPC is allowed
 }
 }
});

Stopping Observation of Permissions

Additional HMI State Information

your app.

The Audio Streaming State informs your app whether or not the driver will be able to hear

your app's audio. It will be either AUDIBLE , NOT_AUDIBLE , or ATTENUATED .

You will get these notifications when an alert pops up, when you start recording the in-car

audio, when voice recognition is active, when another app takes audio control, when a

navigation app is giving directions, etc.

A U D I O S T R E A M I N G S TA T E W H A T D O E S T H I S M E A N ?

sdlManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnHMIStatus status = (OnHMIStatus) notification;
 AudioStreamingState streamingState = status.getAudioStreamingState();
 }
});

Audio Streaming State

AUDIBLE
Any audio you are playing will be audible to the

user

ATTENUATED

Some kind of audio mixing is occurring

between what you are playing, if anything, and

some system level audio or navigation

application audio.

NOT_AUDIBLE
Your streaming audio is not audible. This could

occur during a VRSESSION System Context.

System Context

The System Context informs your app if there is potentially a blocking HMI component

while your app is still visible. An example of this would be if your application is open and

you display an alert. Your app will receive a system context of ALERT while it is

presented on the screen, followed by MAIN when it is dismissed.

S Y S T E M C O N T E X T S TA T E W H A T D O E S T H I S M E A N ?

sdlManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnHMIStatus status = (OnHMIStatus) notification;
 SystemContext systemContext = status.getSystemContext();
 }
});

MAIN
No user interaction is in progress that could be

blocking your app's visibility.

VRSESSION Voice recognition is currently in progress.

MENU A menu interaction is currently in-progress.

HMI_OBSCURED

The app's display HMI is being blocked by

either a system or other app's overlay (another

app's alert, for instance).

ALERT An alert that you have sent is currently visible.

Checking Supported Features

New features are always being added to SDL, however, you or your users may be

connecting to modules that do not support the newest features. If your SDL app attempts

to use an unsupported feature your request will be ignored by the module.

When you are implementing a feature you should always assume that some modules your

users connect to will not support the feature or that the user may have disabled

permissions for this feature on their head unit. The best way to deal with unsupported

features is to check if the feature is available before attempting to use it and to handle

error responses.

The easiest way to check if a feature is supported is to query the library's System

Capability Manager. For more details on how get this information, please see the Adaptive

Interface Capabilities guide.

When you are trying to use a feature, you can watch for an error response to the RPC

request you sent to the module. If the response contains an error, you may be able to

check the result enum to determine if the feature is disabled. If the response that comes

back is of the type GenericResponse , the module doesn't understand your request.

request.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (!response.getSuccess()) {
 // The request was not successful, check the response.getResultCode() and
response.getInfo() for more information.
 } else {
 // The request was successful
 }
 }
});
sdlManager.sendRPC(request);

Checking the System Capability Manager

Handling RPC Error Responses

Checking if a Feature is Supported by Version

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/adaptive-interface-capabilities/

When you connect successfully to a head unit, SDL will automatically negotiate the

maximum SDL RPC version supported by both the module and your SDL SDK. If the feature

you want to support was added in a version less than or equal to the version returned by

the head unit, then your head unit may support the feature. Remember that the module may

still disable the feature, or the user may still have disabled permissions for the feature in

some cases. It's best to check if the feature is supported through the System Capability

Manager first, but you may also check the negotiated version to know if the head unit was

built before the feature was designed.

Throughout these guides you may see headers that contain text like "RPC 6.0+". That

means that if the negotiated version is 6.0 or greater, then SDL supports the feature but

the above caveats may still apply.

SdlMsgVersion rpcSpecVersion =
sdlManager.getRegisterAppInterfaceResponse().getSdlMsgVersion();

When connecting to Core via Multiplex transport, your SDL app will use a Router Service

housed within your app or another SDL enabled app.

To help ensure the validity of the Router Service, you can select the security level explicitly

when you create your Multiplex transport in your app's SdlService:

int securityLevel = FLAG_MULTI_SECURITY_MED;

BaseTransportConfig transport = new MultiplexTransportConfig(context, appId,
securityLevel);

Setting Security Level for
Multiplexing

If you create the transport without specifying the security level, it will be set to FLAG_MUL

TI_SECURITY_MED by default.

S E C U R I T Y F L A G M E A N I N G

Security Levels

FLAG_MULTI_SECURITY_OFF
Multiplexing security turned off. All router

services are trusted.

FLAG_MULTI_SECURITY_LOW

Multiplexing security will be minimal. Only

trusted router services will be used. Trusted

router list will be obtained from server. List will

be refreshed every 20 days or during next

connection session if an SDL enabled app has

been installed or uninstalled.

FLAG_MULTI_SECURITY_MED

Multiplexing security will be on at a normal

level. Only trusted router services will be used.

Trusted router list will be obtained from server.

List will be refreshed every 7 days or during next

connection session if an SDL enabled app has

been installed or uninstalled.

FLAG_MULTI_SECURITY_HIGH

Multiplexing security will be very strict. Only

trusted router services installed from trusted

app stores will be used. Trusted router list will

be obtained from server. List will be refreshed

every 7 days or during next connection session

if an SDL enabled app has been installed or

uninstalled.

Applying to the Trusted Router
Service Database

For an Android application to be added to the Trusted Router Service database, the

application will need to be registered on the SDL Developer Portal and certified by the

SDLC. For more information on registration, please see this guide.

Any Android application that is certified by the SDLC will be added to the Trusted Router

Service database; there are no additional steps required as it is part of the certification

process.

Please consult the Trusted Router Service FAQs if you have any additional questions.

SmartDeviceLink and its dependent libraries are open source and not intended to be

obfuscated. When using Proguard in an app that integrates SmartDeviceLink, it is

necessary to follow these guidelines.

Apps that are code shrinking a release build with Proguard typically have a section

resembling this snippet in their build.gradle :

android {
 buildTypes {
 release {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
 }
 ...
}

Proguard Guidelines

Required Proguard Rules

https://d83tozu1c8tt6.cloudfront.net/media/resources/SDL_Developer_Portal_Registration_Guide.pdf
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/frequently-asked-questions/trusted-router-service/

Developers using Proguard in this manner should be sure to include the following lines in

their proguard-rules.pro file:

-keep class com.smartdevicelink.** { *; }
-keep class com.livio.** { *; }
Video streaming apps must add the following line
-keep class ** extends com.smartdevicelink.streaming.video.SdlRemoteDisplay { *; }

This guide takes you through the steps needed to get the sample project, Hello Sdl,

connected a module.

To get the example app, download or clone the sdl_java_suite. The Hello Sdl Android app is

a package within the SDL Android library. Open the sdl_java_suite/android project using

"Open an existing Android Studio project" in Android Studio. We will use Android Studio

throughout this guide as it is the official IDE for Android development.

Hello Sdl Android has been built with different build flavors that allow you to quickly

connect the app to an emulator or hardware. You can choose your flavor in the Build

Failure to include these Proguard rules may result in a failed build or cause

issues during runtime.

NOT E

Example Apps

Build Flavors

https://github.com/smartdevicelink/sdl_java_suite
https://developer.android.com/studio/index.html

Variant menu. To open the menu, select Build > Select Build Variant. A small window will

appear on the bottom left of your IDE that allows you to choose a flavor.

There are many flavors to choose from but for now we will only be concerned with the

debug build variants:

multi - Multiplexing - Bluetooth, USB, TCP (as secondary transport)

multi_high_bandwidth - Multiplexing for apps that require a high bandwidth transport

tcp - Transmission Control Protocol - Only used for debugging purposes

You will mainly be dealing with multi build variants if connecting to TDK, or tcp if

connecting to Manticore or another emulator.

You can use a simulated or a real device to connect the example app to an emulator. To

connect the example app to Manticore or another emulator, make sure you are using tcp

Debug build flavor. You must update the IP address and port number in the Hello Sdl

Android project so it knows where your emulator is running. Please check the Connecting

to an Infotainment System guide for more detailed instructions on how to get the

emulator's IP address and port number.

1. In the main Java folder of Hello Sdl Android, open up SdlService.java .

2. At the top of this file, locate the variable declaration for DEV_MACHINE_IP_ADDRESS

and change it to your emulator's IP address. Set the TCP_PORT to your emulator's port

number.

private static final String DEV_MACHINE_IP_ADDRESS = "192.168.1.78"; // Update
private static final int TCP_PORT = 12345; // Update

Connecting to an Infotainment
System

Emulator

https://smartdevicelink.com/resources/manticore/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/connecting-to-an-infotainment-system/

3. Make sure the emulator is running, then build and run the app on a real device or a

simulated device. The SDL app should show up on the HMI.

You need a real device to connect the example app to production or debug hardware. To

connect the example app via Bluetooth or USB, all you need to do to is select the multi_s

ec_offDebug build flavor and then run the app on an Android device. You can find more

information about the USB transport in the Using AOA Protocol guide.

If using the Bluetooth transport, make sure to first pair your Android phone to the hardware

before attempting to connect your SDL app.

If your app compiles and but does not show up on the HMI, there are a few things you

should check:

1. Make sure that you have changed the IP in SdlService.java to match the machine

running SDL Core. Being on the same network is also important.

2. If you are sure that the IP is correct and it is still not showing up, make sure the

Build Flavor that is running is tcpDebug.

3. If the two above don't work, make sure there is no firewall blocking the incoming

port 12345 on the machine or VM running SDL Core. Also, make sure your firewall

allows that outgoing port.

4. There are different network configurations needed for different virtualization

software (VirtualBox, VMware, etc). Make sure yours is set up correctly. Or use

Manticore.

1. Make sure the build flavor multi_sec_offDebug is selected.

2. Ensure your phone is properly paired with the TDK

Head Unit

Troubleshooting

TCP Debug Transport

Bluetooth

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/using-aoa-protocol/
https://smartdevicelink.com/resources/manticore/

3. Make sure Bluetooth is turned on - on both the TDK and your phone

4. Make sure apps are enabled on the TDK (in settings)

Since each car manufacturer has different user interface style guidelines, the number of

lines of text, soft and hard buttons, and images supported will vary between different types

of head units. The system will send information to your app about its capabilities for

various user interface elements. You should use this information to create the user

interface of your SDL app.

You can access these properties on the sdlManager.getSystemCapabilityManager()

instance.

Adaptive Interface Capabilities

System Capability Manager
Properties

PA R A M E T E R S D E S C R I P T I O N R P C V E R S I O N

SystemCapabilityType.DISP

LAYS

Specifies display related

information. The primary

display will be the first element

within the array. Windows

within that display are different

places that the app could be

displayed (such as the main

app window and various

widget windows).

RPC v6.0+

SystemCapabilityType.HMI_

ZONE

Specifies HMI Zones in the

vehicle. There may be a HMI

available for back seat

passengers as well as front

seat passengers.

RPC v1.0+

SystemCapabilityType.SPEE

CH

Contains information about

TTS capabilities on the SDL

platform. Platforms may

support text, SAPI phonemes,

LH PLUS phonemes, pre-

recorded speech, and silence.

RPC v1.0+

Currently only available in the

SDL_iOS and SDL JavaScript

libraries

RPC v3.0+

SystemCapabilityType.VOIC

E_RECOGNITION

The voice-recognition

capabilities of the connected

SDL platform. The platform

may be able to recognize

spoken text in the current

language.

RPC v1.0+

SystemCapabilityType.AUDI

O_PASSTHROUGH

Describes the sampling rate,

bits per sample, and audio

types available.

RPC v2.0+

PA R A M E T E R S D E S C R I P T I O N R P C V E R S I O N

SystemCapabilityType.PCM_

STREAMING

Describes different audio type

configurations for the audio

PCM stream service, e.g.

{8kHz,8-bit,PCM}.

RPC v4.1+

SystemCapabilityType.HMI

Returns whether or not the app

can support built-in navigation

and phone calls.

RPC v3.0+

SystemCapabilityType.APP_

SERVICES

Describes the capabilities of

app services including what

service types are supported and

the current state of services.

RPC v5.1+

SystemCapabilityType.NAVI

GATION

Describes the built-in vehicle

navigation system's APIs.
RPC v4.5+

SystemCapabilityType.PHO

NE_CALL

Describes the built-in phone

calling capabilities of the IVI

system.

RPC v4.5+

SystemCapabilityType.VIDE

O_STREAMING

Describes the abilities of the

head unit to video stream

projection applications.

RPC v4.5+

SystemCapabilityType.REM

OTE_CONTROL

Describes the abilities of an

app to control built-in aspects

of the IVI system.

RPC v4.5+

SystemCapabilityType.SEAT

_LOCATION

Describes the positioning of

each seat in a vehicle
RPC v6.0+

Deprecated Properties

The following properties are deprecated on SDL Android 4.10 because as of RPC v6.0 they

are deprecated. However, these properties will still be filled with information. When

connected on RPC <6.0, the information will be exactly the same as what is returned in the

RegisterAppInterfaceResponse and SetDisplayLayoutResponse . However, if connected

on RPC >6.0, the information will be converted from the newer-style display information,

which means that some information will not be available.

PA R A M E T E R S D E S C R I P T I O N

Images may be formatted as PNG, JPEG, or BMP. You can find which image types and

resolutions are supported using the system capability manager.

Since the head unit connection is often relatively slow (especially over Bluetooth), you

should pay attention to the size of your images to ensure that they are not larger than they

SystemCapabilityType.DISPLAY

Information about the HMI display. This

includes information about available

templates, whether or not graphics are

supported, and a list of all text fields and the

max number of characters allowed in each text

field.

SystemCapabilityType.BUTTON

A list of available buttons and whether the

buttons support long, short and up-down

presses.

SystemCapabilityType.SOFTBUTTON

A list of available soft buttons and whether the

button support images. Also, information

about whether the button supports long, short

and up-down presses.

SystemCapabilityType.PRESET_BANK
If returned, the platform supports custom on-

screen presets.

Image Specifics

need to be. If an image is uploaded that is larger than the supported size, the image will be

scaled down by Core.

Below is a table with example image sizes. Check the SystemCapabilityManager for the

exact image sizes desired by the system you are connecting to. The connected system

should be able to scale down larger sizes, but if the image you are sending is much larger

than desired, then performance will be impacted.

ImageField field =
sdlManager.getSystemCapabilityManager().getDefaultMainWindowCapability().getIma

ImageResolution resolution = field.getImageResolution();

EXAMP L E IMAGE SIZES

I M A G E N A
M E

U S E D I N
R P C D E TA I L S S I Z E T Y P E

softButtonIm

age
Show

Image shown on

softbuttons on

the base screen

70x70px png, jpg, bmp

choiceImage
CreateInteractio

nChoiceSet

Image shown in

the manual part

of an

performInteracti

on either big

(ICON_ONLY) or

small

(LIST_ONLY)

70x70px png, jpg, bmp

choiceSecon

daryImage

CreateInteractio

nChoiceSet

Image shown on

the right side of

an entry in

(LIST_ONLY)

performInteracti

on

35x35px png, jpg, bmp

vrHelpItem
SetGlobalProper

ties

Image shown

during voice

interaction

35x35px png, jpg, bmp

menuIcon
SetGlobalProper

ties

Image shown on

the “More…”

button

35x35px png, jpg, bmp

cmdIcon AddCommand

Image shown for

commands in

the "More…"

menu

35x35px png, jpg, bmp

I M A G E N A
M E

U S E D I N
R P C D E TA I L S S I Z E T Y P E

Capabilities that can be updated can be queried and subscribed to using the SystemCapa

bilityManager .

You should check if the head unit supports your desired capability before subscribing to or

updating the capability.

Most head units provide features that your app can use: making and receiving phone calls,

an embedded navigation system, video and audio streaming, as well as supporting app

services. To pull information about this capability, use the SystemCapabilityManager to

boolean navigationSupported =
sdlManager.getSystemCapabilityManager().isCapabilitySupported(SystemCapabilityTy

appIcon SetAppIcon

Image shown as

Icon in the

"Mobile Apps"

menu

70x70px png, jpg, bmp

graphic Show

Image shown on

the base screen

as cover art

185x185px png, jpg, bmp

Querying and Subscribing System
Capabilities

Determining Support for System Capabilities

Manual Querying for System Capabilities

query the head unit for the desired capability. If a capability is unavailable, the query will

return null .

In addition to getting the current system capabilities, it is also possible to subscribe for

updates when the head unit capabilities change. Since this information must be queried

from Core you must implement the OnSystemCapabilityListener .

sdlManager.getSystemCapabilityManager().getCapability(SystemCapabilityType.APP_
 new OnSystemCapabilityListener() {
 @Override
 public void onCapabilityRetrieved(Object capability) {
 AppServicesCapabilities servicesCapabilities = (AppServicesCapabilities)
capability;
 }

 @Override
 public void onError(String info) {
 // Handle Error
 }
}, false);

Subscribing to System Capabilities (RPC v5.1+)

If supportsSubscriptions == false , you can still subscribe to capabilities,

however, you must manually poll for new capability updates using getCapab

ility(type, listener, forceUpdate) with forceUpdate set to true . All

subscriptions will be automatically updated when that method returns a new

value.

The DISPLAYS type can be subscribed on all SDL versions.

NOT E

boolean supportsSubscriptions =
sdlManager.getSystemCapabilityManager().supportsSubscriptions();

Each head unit manufacturer supports a set of user interface templates. These templates

determine the position and size of the text, images, and buttons on the screen. Once the

app has connected successfully with an SDL enabled head unit, a list of supported

templates is available on sdlManager.getSystemCapabilityManager().getDefaultMainWind

owCapability().getTemplatesAvailable() .

sdlManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SystemC
 new OnSystemCapabilityListener() {
 @Override
 public void onCapabilityRetrieved(Object capability) {
 AppServicesCapabilities servicesCapabilities = (AppServicesCapabilities)
capability;
 }

 @Override
 public void onError(String info) {
 // Handle Error
 }
});

C HEC KING IF THE HEAD U NIT SU P P ORTS SU BSC RIP TIONS

SU BSC RIBE TO A C APABIL ITY

Main Screen Templates

To change a template at any time, use ScreenManager.changeLayout() . This guide

requires SDL Java Suite version 5.0. If using an older version, use the SetDisplayLayout

RPC.

Template changes can also be batched with text and graphics updates:

TemplateConfiguration templateConfiguration = new
TemplateConfiguration().setTemplate(PredefinedLayout.GRAPHIC_WITH_TEXT.toStrin

sdlManager.getScreenManager().changeLayout(templateConfiguration, new
CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 DebugTool.logInfo(TAG, "Layout set successfully");
 } else {
 DebugTool.logInfo(TAG, "Layout not set successfully");
 }
 }
});

Change the Template

When changing the layout, you may get an error or failure if the update is

"superseded." This isn't technically a failure, because changing the layout has

not yet been attempted. The layout or batched operation was cancelled

before it could be completed because another operation was requested. The

layout change will then be inserted into the future operation and completed

then.

NOT E

sdlManager.getScreenManager().beginTransaction();
sdlManager.getScreenManager().setTextField1("Line of Text");
sdlManager.getScreenManager().changeLayout(templateConfiguration, new
CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 // This listener will be ignored, and will use the CompletionListener sent in
commit.
 }
});
sdlManager.getScreenManager().setPrimaryGraphic(sdlArtwork);
sdlManager.getScreenManager().commit(new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 DebugTool.logInfo(TAG, "The data and template have been set successfully");
 }
 }
});

There are fifteen standard templates to choose from, however some head units may only

support a subset of these templates. The following examples show how templates will

appear on the Generic HMI and Ford's SYNC® 3 HMI.

Available Templates

MEDIA

https://github.com/smartdevicelink/generic_hmi
https://developer.ford.com/

MEDIA (WITH A P ROGRESS BAR)

NON-MEDIA

GRAP HIC WITH TEXT

TEXT WITH GRAP HIC

TIL ES ONLY

GRAP HIC WITH TIL ES

TIL ES WITH GRAP HIC

GRAP HIC WITH TEXT AND SOFT BU TTONS

TEXT AND SOFT BU TTONS WITH GRAP HIC

GRAP HIC WITH TEXT BU TTONS

DOU BL E GRAP HIC WITH SOFT BU TTONS

TEXT BU TTONS WITH GRAP HIC

TEXT BU TTONS ONLY

L ARGE GRAP HIC WITH SOFT BU TTONS

L ARGE GRAP HIC ONLY

You can easily display text, images, and buttons using the ScreenManager . To update the

UI, simply give the manager your new data and (optionally) sandwich the update between

the manager's beginTransaction() and commit() methods.

Template Text

Text Fields

S C R E E N M A N A G E R PA R A M E T E R N A M E D E S C R I P T I O N

textField1
The text displayed in a single-line display, or in

the upper display line of a multi-line display

textField2
The text displayed on the second display line of

a multi-line display

textField3
The text displayed on the third display line of a

multi-line display

textField4
The text displayed on the bottom display line of

a multi-line display

mediaTrackTextField
The text displayed in the in the track field; this

field is only valid for media applications

textAlignment
The text justification for the text fields; the text

alignment can be left, center, or right

textField1Type The type of data provided in textField1

textField2Type The type of data provided in textField2

textField3Type The type of data provided in textField3

textField4Type The type of data provided in textField4

title The title of the displayed template

Showing Text

sdlManager.getScreenManager().beginTransaction();
sdlManager.getScreenManager().setTextField1("Line 1 of Text");
sdlManager.getScreenManager().setTextField2("Line 2 of Text");
sdlManager.getScreenManager().commit(new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 DebugTool.logInfo(TAG, "ScreenManager update complete: " + success);
 }
});

To remove text from the screen simply set the screen manager property to null .

sdlManager.getScreenManager().setTextField1(null);
sdlManager.getScreenManager().setTextField2(null);

You can easily display text, images, and buttons using the ScreenManager . To update the

UI, simply give the manager your new data and (optionally) sandwich the update between

the manager's beginTransaction() and commit() methods.

Removing Text

Template Images

Image Fields

S C R E E N M A N A G E R PA R A M E T E R N A M E D E S C R I P T I O N

sdlManager.getScreenManager().beginTransaction();
sdlManager.getScreenManager().setPrimaryGraphic(sdlArtwork);
sdlManager.getScreenManager().commit(new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 DebugTool.logInfo(TAG, "ScreenManager update complete: " + success);
 }
});

To remove an image from the screen you just need to set the screen manager property to

null .

sdlManager.getScreenManager().setPrimaryGraphic(null);

When a file is to be uploaded to the module, the library checks if a file with the same name

has already been uploaded to module and skips the upload if it can. For cases where an

image by the same name needs to be re-uploaded, the SdlArtwork / SdlFile 's overwrit

primaryGraphic
The primary image in a template that supports

images

secondaryGraphic
The second image in a template that supports

multiple images

Showing Images

Removing Images

Overwriting Images

e property should be used. Setting overwrite to true before passing the image to a Sc

reenManager method such as setPrimaryGraphic() and setSecondaryGraphic() will

force the image to be re-uploaded. This includes methods such as preloadChoices()

where the arguments passed in contain images.

Templated images are tinted by Core so the image is visible regardless of whether your

user has set the head unit to day or night mode. For example, if a head unit is in night

mode with a dark theme (see Customizing the Template section for more details on how

to customize theme colors), then your templated images will be displayed as white. In the

day theme, the image will automatically change to black.

Soft buttons, menu icons, and primary / secondary graphics can all be templated. Images

that you wish to template must be PNGs with a transparent background and only one color

for the icon. Therefore, templating is only useful for things like icons and not for images

that must be rendered in a specific color.

Please note that many production modules on the road do not refresh the

HMI with the new image if the file name has not changed. If you want the

image to refresh on the screen immediately, we suggest using two image

names and toggling back and forth between the names each time you update

the image.

This issue may also extend to menus, alerts, and other UI features even if

they're not on-screen at the time. Because of these issues, we do not

recommend that you try to overwrite an image. Instead, you can delete an

image file using the SdlFileManager and re-upload it once the deletion

completes, or you may use a different file name.

NOT E

Templating Images (RPC v5.0+)

Templated Images Example

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/customizing-look-and-functionality/customizing-the-template/

In the screenshots below, the shuffle and repeat icons have been templated. In night mode,

the icons are tinted white and in day mode the icons are tinted black.

NI G HT MODE

DAY MODE

SdlArtwork image = new SdlArtwork("<#ArtworkName#>", FileType.GRAPHIC_PNG,
image, true);
image.setTemplateImage(true);

Static icons are pre-existing images on the remote system that you may reference and use

in your own application. Each OEM will design their own custom static icons but you can

get an overview of the available icons from the icons designed for the open source

Generic HMI. Static icons are fully supported by the screen manager via an SdlArtwork

initializer. Static icons can be used in primary and secondary graphic fields, soft button

image fields, and menu icon fields.

Static Icons

https://smartdevicelink.com/en/guides/sdl-overview-guides/user-interface/static-icons/

SdlArtwork staticIconArt = new SdlArtwork(StaticIconName.ALBUM);

You can easily create and update custom buttons (called Soft Buttons in SDL) using the S

creenManager . To update the UI, simply give the manager your new data and (optionally)

sandwich the update between the manager's beginTransaction() and commit()

methods.

S C R E E N M A N A G E R PA R A M E T E R N A M E D E S C R I P T I O N

To create a soft button using the ScreenManager , you only need to create a custom

name for the button and provide the text for the button's label and/or an image for the

button's icon. If your button cycles between different states (e.g. a button used to set the

repeat state of a song playlist can have three states: repeat-off, repeat-one, and repeat-all),

you can create all the states on initialization.

There are three different ways to create a soft button: with only text, with only an image, or

with both text and an image. If creating a button with an image, we recommend that you

Template Custom Buttons

Soft Button Fields

softButtonObjects
An array of buttons. Each template supports a

different number of soft buttons

Creating Soft Buttons

template the image so its color works well with both the day and night modes of the head

unit. For more information on templating images please see the Template Images guide.

Text Only Soft Buttons

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/template-images/

You can use the SystemCapabilityManager to check if the HMI supports soft buttons

with images. If you send image-only buttons to a HMI that does not support images, then

the library will not send the buttons as they will be rejected by the head unit. If all your soft

buttons have text in addition to images, the library will send the text-only buttons if the

head unit does not support images.

SoftButtonState textState = new SoftButtonState("<#State Name#>", "<#Button Label
Text#>", null);
SoftButtonObject softButtonObject = new SoftButtonObject("softButtonObject",
Collections.singletonList(textState), textState.getName(), new
SoftButtonObject.OnEventListener() {
 @Override
 public void onPress(SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
 }

 @Override
 public void onEvent(SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {

 }
});

sdlManager.getScreenManager().beginTransaction();
sdlManager.getScreenManager().setSoftButtonObjects(Collections.singletonList(soft

sdlManager.getScreenManager().commit(new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 DebugTool.logInfo(TAG, "ScreenManager update complete: " + success);
 }
});

Image Only Soft Buttons

Once you know that the HMI supports images in soft buttons you can create and send the

image-only soft buttons.

List<SoftButtonCapabilities> softButtonCapabilitiesList =
sdlManager.getSystemCapabilityManager().getDefaultMainWindowCapability().getSof

boolean imageSupported = (!softButtonCapabilitiesList.isEmpty()) ?
softButtonCapabilitiesList.get(0).getImageSupported() : false;

SoftButtonState imageState = new SoftButtonState("<#State Name#>", null,
sdlArtwork);
SoftButtonObject softButtonObject = new SoftButtonObject("softButtonObject",
Collections.singletonList(imageState), imageState.getName(), new
SoftButtonObject.OnEventListener() {
 @Override
 public void onPress(SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
 }

 @Override
 public void onEvent(SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
 }
});

sdlManager.getScreenManager().beginTransaction();
sdlManager.getScreenManager().setSoftButtonObjects(Collections.singletonList(soft

sdlManager.getScreenManager().commit(new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 DebugTool.logInfo(TAG, "ScreenManager update complete: " + success);
 }
});

Image and Text Soft Buttons

When a button is highlighted its background color will change to indicate that it has been

selected.

SoftButtonState textAndImageState = new SoftButtonState("<#State Name#>", "
<#Button Label Text#>", sdlArtwork);
SoftButtonObject softButtonObject = new SoftButtonObject("softButtonObject",
Collections.singletonList(textAndImageState), textAndImageState.getName(), new
SoftButtonObject.OnEventListener() {
 @Override
 public void onPress(SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
 }

 @Override
 public void onEvent(SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
 }
});

sdlManager.getScreenManager().beginTransaction();
sdlManager.getScreenManager().setSoftButtonObjects(Collections.singletonList(soft

sdlManager.getScreenManager().commit(new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 DebugTool.logInfo(TAG, "ScreenManager update complete: " + success);
 }
});

Highlighting a Soft Button

HIGHL IGHT ON

HIGHL IGHT OFF

SoftButtonState softButtonState1 = new SoftButtonState("Soft Button State Name",
"On", sdlArtwork);
softButtonState1.setHighlighted(true);
SoftButtonState softButtonState2 = new SoftButtonState("Soft Button State Name 2",
"Off", sdlArtwork);
softButtonState2.setHighlighted(false);
SoftButtonObject softButtonObject = new SoftButtonObject("softButtonObject",
Arrays.asList(softButtonState1, softButtonState2), softButtonState1.getName(), new
SoftButtonObject.OnEventListener() {
 @Override
 public void onPress(SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
 softButtonObject.transitionToNextState();
 }

 @Override
 public void onEvent(SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
 }
});

When the soft button state needs to be updated, simply tell the SoftButtonObject to

transition to the next state. If your button states do not cycle in a predictable order, you

can also tell the soft button which state to transition to by passing the stateName of the

new soft button state.

SoftButtonState state1 = new SoftButtonState("<#State1 Name#>", "<#Button1 Label
Text#>", sdlArtwork);
SoftButtonState state2 = new SoftButtonState("<#State2 Name#>", "<#Button2 Label
Text#>", sdlArtwork);

SoftButtonObject softButtonObject = new SoftButtonObject("softButtonObject",
Arrays.asList(state1, state2), state1.getName(), new
SoftButtonObject.OnEventListener() {
 @Override
 public void onPress(SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
 }

 @Override
 public void onEvent(SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
 }
});

sdlManager.getScreenManager().beginTransaction();
sdlManager.getScreenManager().setSoftButtonObjects(Collections.singletonList(soft

sdlManager.getScreenManager().commit(new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 DebugTool.logInfo(TAG, "ScreenManager update complete: " + success);
 }
});

// Transition to a new state
SoftButtonObject retrievedSoftButtonObject =
sdlManager.getScreenManager().getSoftButtonObjectByName("softButtonObject");
retrievedSoftButtonObject.transitionToNextState();

Updating Soft Button States

Deleting Soft Buttons

To delete soft buttons, simply pass the screen manager a new array of soft buttons. To

delete all soft buttons, simply pass the screen manager an empty array.

sdlManager.getScreenManager().setSoftButtonObjects(Collections.EMPTY_LIST);

You can also send soft buttons manually using the Show RPC. Note that if you do so,

you must not mix the ScreenManager soft buttons and manually sending the Show

RPC. Additionally, the ScreenManager takes soft button ids 0 - 10000. Ensure that if you

use custom RPCs, that the soft button ids you use are outside of this range.

This guide shows you how to subscribe and react to "subscription" buttons. Subscription

buttons are used to detect when the user has interacted with buttons located in the car's

center console or steering wheel. A subscription button may also show up as part of your

template, however, the text and/or image used in the button is determined by the template

and is (usually) not customizable.

In the screenshot below, the pause, seek left and seek right icons are subscription

buttons. Once subscribed to, for example, the seek left button, you will be notified when

the user selects the seek left button on the HMI or when they select the seek left button

on the car's center console and/or steering wheel.

Using RPCs

Template Subscription Buttons

There are three general types of subscriptions buttons: audio related buttons only used for

media apps, navigation related buttons only used for navigation apps, and general buttons,

like preset buttons and the OK button, that can be used with all apps. Please note that if

your app type is not MEDIA or NAVIGATION , your attempt to subscribe to media-only

or navigation-only buttons will be rejected.

Types of Subscription Buttons

B U T T O N A P P T Y P E R P C V E R S I O N

Ok All v1.0+

Preset 0-9 All v1.0+

Search All v1.0+

Play / Pause Media only v5.0+

Seek left Media only v1.0+

Seek right Media only v1.0+

Tune up Media only v1.0+

Tune down Media only v1.0+

Center Location Navigation only v6.0+

Zoom In Navigation only v6.0+

Zoom Out Navigation only v6.0+

Pan Up Navigation only v6.0+

Pan Up-Right Navigation only v6.0+

Pan Right Navigation only v6.0+

Pan Down-Right Navigation only v6.0+

Pan Down Navigation only v6.0+

B U T T O N A P P T Y P E R P C V E R S I O N

You can easily subscribe to subscription buttons using the ScreenManager . Simply tell

the manager which button to subscribe and you will be notified when the user selects the

button.

Once you have subscribed to the button, the listener will be called when the button has

been selected. If there is an error subscribing to the button the error message will be

returned in the error parameter.

Pan Down-Left Navigation only v6.0+

Pan Left Navigation only v6.0+

Pan Up-Left Navigation only v6.0+

Toggle Tilt Navigation only v6.0+

Rotate Clockwise Navigation only v6.0+

Rotate Counter-Clockwise Navigation only v6.0+

Toggle Heading Navigation only v6.0+

Subscribing to Subscription Buttons

Subscribe with a Listener

OnButtonListener playPauseButtonListener = new OnButtonListener() {
 @Override
 public void onPress(ButtonName buttonName, OnButtonPress buttonPress) {

 }

 @Override
 public void onEvent(ButtonName buttonName, OnButtonEvent buttonEvent) {

 }

 @Override
 public void onError(String info) {

 }
};

sdlManager.getScreenManager().addButtonListener(ButtonName.PLAY_PAUSE,
playPauseButtonListener);

To unsubscribe to a subscription button, simply tell the ScreenManager which button

name and listener object to unsubscribe.

sdlManager.getScreenManager().removeButtonListener(ButtonName.PLAY_PAUSE,
playPauseButtonListener);

The play/pause, seek left, seek right, tune up, and tune down subscribe buttons can only be

used if the app type is MEDIA . Depending on the OEM, the subscribed button could show

up as an on-screen button in the MEDIA template, work as a physical button on the car

Unsubscribing from Subscription
Buttons

Media Buttons

console or steering wheel, or both. For example, Ford's SYNC® 3 HMI will add the

play/pause, seek right, and seek left soft buttons to the media template when you

subscribe to those buttons. However, those buttons will also trigger when the user uses

the seek left / seek right buttons on the steering wheel.

If desired, you can change the style of the play/pause button image between a play, stop,

or pause icon by updating the audio streaming indicator, and you can also set the style of

the next/previous buttons between a track or time seek style. See the Media Clock guide

for more information.

Before library v.4.7 and RPC v5.0, Ok and PlayPause were combined into

Ok . Subscribing to Ok will, in v4.7+, also subscribe you to PlayPause .

This means that for the time being, you should not simultaneously subscribe

to Ok and PlayPause . In a future major version, this will change. For now,

only subscribe to either Ok or PlayPause and the library will execute the

right action based on the connected head unit.

NOT E

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/media-clock/

sdlManager.getScreenManager().addButtonListener(ButtonName.PLAY_PAUSE, new
OnButtonListener() {
 @Override
 public void onPress (ButtonName buttonName, OnButtonPress buttonPress) {
 switch (buttonPress.getButtonPressMode()) {
 case SHORT:
 // The user short pressed the button
 case LONG:
 // The user long pressed the button
 }
 }

 @Override
 public void onEvent (ButtonName buttonName, OnButtonEvent buttonEvent) { }

 @Override
 public void onError (String info) {
 // There was an error subscribing to the button
 }
});

All app types can subscribe to preset buttons. Depending on the OEM, the preset buttons

may be added to the template when subscription occurs. Preset buttons can also be

physical buttons on the console that will notify the subscriber when selected. An OEM

may support only template buttons or only hard buttons or they may support both

template and hard buttons. The screenshot below shows how the Ford SYNC® 3 HMI

displays the preset buttons on the HMI.

Preset Buttons

Checking if Preset Buttons are Supported

You can check if a HMI supports subscribing to preset buttons, and if so, how many preset

buttons are supported, by checking the system capability manager.

OnButtonListener onButtonListener = new OnButtonListener() {
 @Override
 public void onPress(ButtonName buttonName, OnButtonPress buttonPress) {
 switch (buttonName) {
 case PRESET_1:
 // The user short or long pressed the preset 1 button
 break;
 case PRESET_2:
 // The user short or long pressed the preset 2 button
 break;
 }
 }

 @Override
 public void onEvent (ButtonName buttonName, OnButtonEvent buttonEvent) { }

 @Override
 public void onError (String info) {
 // There was an error subscribing to the button
 }
};

sdlManager.getScreenManager().addButtonListener(ButtonName.PRESET_1,
onButtonListener);
sdlManager.getScreenManager().addButtonListener(ButtonName.PRESET_2,
onButtonListener);

Integer numOfCustomPresetsAvailable =
sdlManager.getSystemCapabilityManager().getDefaultMainWindowCapability().getNum

Subscribing to Preset Buttons

Navigation Buttons

Head units supporting RPC v6.0+ may support subscription buttons that allow your user to

drag and scale the map using hard buttons located on car's center console or steering

wheel. Subscriptions to navigation buttons will only succeed if your app's type is NAVIG

ATION . If subscribing to these buttons succeeds, you can remove any buttons of your

own from your map screen. If subscribing to these buttons fails, you can display buttons

of your own on your map screen.

sdlManager.getScreenManager().addButtonListener(ButtonName.NAV_PAN_UP, new
OnButtonListener() {
 @Override
 public void onPress (ButtonName buttonName, OnButtonPress buttonPress) {
 switch (buttonPress.getButtonPressMode()) {
 case SHORT:
 // The user short pressed the button
 case LONG:
 // The user long pressed the button
 }
 }

 @Override
 public void onEvent (ButtonName buttonName, OnButtonEvent buttonEvent) { }

 @Override
 public void onError (String info) {
 // There was an error subscribing to the button
 }
});

You have two different options when creating menus. One is to simply add items to the

default menu available in every template. The other is to create a custom menu that pops

up when needed. You can find more information about these popups in the Popup Menus

section. This guide will cover using the default menu / menu button.

Subscribing to Navigation Buttons

Main Menu

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/popup-menus/

On some newer head units, you may have the option to display menu items as a grid of

tiles instead of the default list layout. To determine if the head unit supports the tiles

layout, check the SystemCapabilityManager 's getDefaultMainWindowCapability().getMe

nuLayoutsAvailable() property after successfully connecting to the head unit. To set the

menu layout using the screen manager, you will need to set the ScreenManager.menuCon

figuration property.

Every template has a main menu button. The position of this button varies

between templates and cannot be removed from the template. Some OEMs

may format certain templates to not display the main menu button if you

have no menu items (such as the navigation map view).

NOT E

Setting the Menu Layout (RPC v6.0+)

L IST MENU L AYOU T

GRID MENU L AYOU T

MenuConfiguration menuConfiguration = new MenuConfiguration(mainMenuLayout,
submenuLayout);
sdlManager.getScreenManager().setMenuConfiguration(menuConfiguration);

The best way to create and update your menu is to the use the Screen Manager API. The

screen manager contains two menu related properties: menu , and voiceCommands .

Setting an array of MenuCell s into the menu property will automatically set and update

your menu and submenus, while setting an array of VoiceCommand s into the voiceCom

mands property allows you to use "hidden" menu items that only contain voice

recognition data. The user can then use the IVI system's voice engine to activate this

command even though it will not be displayed within the main menu.

Adding Menu Items

To find out more information on how to create voiceCommands see the related

documentation.

Head units supporting RPC v7.1+ may support displaying secondaryText , t

ertiaryText , and secondaryArtwork . This gives the user a richer experience

by displaying more data. Attempting to set this data on head units that do

not support RPC 7.1+ will result in that data not being displayed to the user.

To determine if the head unit supports displaying these fields, you can check

the SystemCapabilityManager 's getDefaultMainWindowCapability().getTex

tFields() / getDefaultMainWindowCapability().getImageFields() properties

after successfully connecting to the head unit. Then check those arrays for

objects with the related text / image field names.

NOT E

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/speech-and-audio/setting-up-voice-commands/

// Create the menu cell
MenuCell cell = new MenuCell("Cell text", "Secondary Text", "Tertiary Text", null, null,
Collections.singletonList("cell text"), new MenuSelectionListener() {
 @Override
 public void onTriggered(TriggerSource trigger) {
 // Menu item was selected, check the `triggerSource` to know if the user used
touch or voice to activate it
 // Handle the Cell's Selection
 }
});

sdlManager.getScreenManager().setMenu(Collections.singletonList(cell));

Adding a submenu is as simple as adding subcells to a SdlMenuCell . The submenu is

automatically displayed when selected by the user. Currently menus only support one layer

of subcells. In RPC v6.0+ it is possible to set individual submenus to use different layouts

such as tiles or lists.

// Create the inner menu cell
MenuCell innerCell = new MenuCell("inner menu cell", "secondary text", "tertiary test",
null, null,Collections.singletonList("inner menu cell"), new MenuSelectionListener() {
 @Override
 public void onTriggered(TriggerSource trigger) {
 // Menu item was selected, check the `triggerSource` to know if the user used
touch or voice to activate it
 // Handle the cell's selection
 }
});

// Create and set the submenu cell
MenuCell cell = new MenuCell("cell", "secondary text", "tertiary text",
MenuLayout.LIST, null, null, Collections.singletonList(innerCell));

sdlManager.getScreenManager().setMenu(Collections.singletonList(cell));

Adding Submenus

Menu Item Artwork

Artworks will be automatically handled when using the screen manager API. First, a "non-

artwork" menu will be displayed, then, when the artworks have finished uploading, the

"artwork-ified" menu will be displayed. If you are doing this manually with RPCs, you will

have to upload artworks using the file manager yourself and send the correct menu when

they are ready.

The screen manager will intelligently handle deletions for you. If you want to show new

menu items, simply set a new array of menu cells. If you want to have a blank menu, set

an empty array. On supported systems, the library will calculate the optimal adds / deletes

to create the new menu. If the system doesn't support this sort of dynamic updating, the

entire list will be removed and re-added.

If you are doing this manually, you must use the DeleteCommand and DeleteSubMenu

RPCs, passing the cmdID s you wish to delete.

Starting with SDL v5.1+ menu cells and sub-menu cells no longer require unique titles in

order to be presented. For example, if you are trying to display points of interest as a list

you can now have multiple locations with the same name but are not the same location.

You cannot present multiple cells that are exactly the same. They must have some

property that makes them different, such as secondaryText or an artwork.

Deleting and Changing Menu Items

Duplicate Menu Titles

R PC V7.1+ CONNECT I ONS

The titles on the menu will be displayed as provided even if there are duplicate titles.

The titles on the menu will have a number appended to them when there are duplicate

titles.

R PC V7.0 A ND BEL OW CONNECT I ONS

The AddCommand RPC can be used to add items to the root menu or to a submenu.

Each AddCommand RPC must be sent with a unique id, a voice-recognition command,

and a set of menu parameters. The menu parameters include the menu name, the position

of the item in the menu, and the id of the menu item’s parent. If the menu item is being

added to the root menu, then the parent id is 0. If it is being added to a submenu, then the

parent id is the submenu’s id.

To create a submenu using RPCs, you must use a AddSubMenu RPC with a unique id.

When a response is received from the SDL Core, check if the submenu was added

successfully. If it was, send an AddCommand RPC for each item in the submenu.

Using RPCs

SDL supports modal menus. The user can respond to the list of menu options via touch,

voice (if voice recognition is supported by the head unit), or by keyboard input to search or

filter the menu.

There are several UX considerations to take into account when designing your menus. The

main menu should not be updated often and should act as navigation for your app. Popup

menus should be used to present a selection of options to your user.

Presenting a popup menu is similar to presenting a modal view to request input from your

user. It is possible to chain together menus to drill down, however, it is recommended to

do so judiciously. Requesting too much input from a driver while they are driving is

distracting and may result in your app being rejected by OEMs.

You should not mix usage of the ScreenManager menu features and menu

RPCs described above. You must use either one system or the other, but not

both.

NOT E

Popup Menus

Presenting a Popup Menu

L A Y O U T M O D E F O R M A T T I N G D E S C R I P T I O N

A ChoiceCell is similar to a RecyclerView without the ability to configure your own UI.

We provide several properties on the ChoiceCell to set your data, but the layout itself is

determined by the manufacturer of the head unit.

ChoiceCell cell = new ChoiceCell("cell1 text", Collections.singletonList("cell1"), null);
ChoiceCell fullCell = new ChoiceCell("cell2 text", "cell2 secondaryText", "cell2
tertiaryText", Collections.singletonList("cell2"), image1Artwork, image2Artwork);

Present as Icon A grid of buttons with images

Present Searchable as Icon
A grid of buttons with images along with a

search field in the HMI

Present as List A vertical list of text

Present Searchable as List
A vertical list of text with a search field in the

HMI

Creating Cells

On many systems, including VR commands will be exponentially slower than

not including them. However, including them is necessary for a user to be

able to respond to your prompt with their voice.

NOT E

If you know the content you will show in the popup menu long before the menu is shown

to the user, you can "preload" those cells in order to speed up the popup menu

presentation at a later time. Once you preload a cell, you can reuse it in multiple popup

menus without having to send the cell content to Core again.

sdlManager.getScreenManager().preloadChoices(Arrays.asList(cell, fullCell), new
CompletionListener() {
 @Override
 public void onComplete(boolean b) {
 // code
 }
});

To show a popup menu to the user, you must present the menu. If some or all of the cells

in the menu have not yet been preloaded, calling the present API will preload the cells

and then present the menu once all the cells have been uploaded. Calling present

without preloading the cells can take longer than if the cells were preloaded earlier in the

app's lifecycle especially if your cell has voice commands. Subsequent menu

presentations using the same cells will be faster because the library will reuse those cells

(unless you have deleted them).

Preloading Cells

Presenting a Menu

MENU - L I S T

MENU - I CON

In order to present a menu, you must bundle together a bunch of ChoiceCell s into an Ch

oiceSet .

Some notes on various parameters (full documentation is available as API documentation

on this website):

Title: This is the title of the menu when presented

Listeners: You must implement this listener interface to receive callbacks based on

the user's interaction with the menu

Layout: You may present your menu as a set of tiles (like a GridView) or a list (like

a RecyclerView). If you are using tiles, it's recommended to use artworks on each

item.

When you preload a cell, you do not need to maintain a reference to it. If you

reuse a cell with the same properties that has already been preloaded (or

previously presented), the cell will automatically be reused.

NOT E

C REATING A C HOIC E SET

If the ChoiceSet contains an invalid set of ChoiceCell s, presenting the C

hoiceSet will fail. This can happen, for example, if you have duplicate title

text or if some, but not all choices have voice commands.

NOT E

ChoiceSet choiceSet = new ChoiceSet("ChoiceSet Title", Arrays.asList(cell, fullCell),
new ChoiceSetSelectionListener() {
 @Override
 public void onChoiceSelected(ChoiceCell choiceCell, TriggerSource triggerSource,
int rowIndex) {
 // You will be passed the `cell` that was selected, the manner in which it was
selected (voice or text), and the index of the cell that was passed.
 // handle selection
 }

 @Override
 public void onError(String error) {
 // handle error
 }
});

Finally, you will present the menu. When you do so, you must choose a mode to present

it in. If you have no vrCommands on the choice cell you should choose manualOnly . If

vrCommands are available, you may choose voiceRecognitionOnly or both .

You may want to choose this based on the trigger source leading to the menu being

presented. For example, if the menu was presented via the user touching the screen, you

may want to use a mode of manualOnly or both , but if the menu was presented via

the user speaking a voice command, you may want to use a mode of voiceRecognition

Only or both .

It may seem that the answer is to always use both . However, remember that you must

provide vrCommand s on all cells to use both , which is exponentially slower than not

providing vrCommand s (this is especially relevant for large menus, but less important

for smaller ones). Also, some head units may not provide a good user experience for bot

h .

P RESENTING THE MENU WITH A MODE

I N T E R A C T I O N M O D E D E S C R I P T I O N

Manual only Interactions occur only through the display

VR only
Interactions occur only through text-to-speech

and voice recognition

Both
Interactions can occur both manually or

through VR

MENU - MA NUA L ONLY MODE

MENU - VOI CE ONLY MODE

sdlManager.getScreenManager().presentChoiceSet(choiceSet,
InteractionMode.MANUAL_ONLY);

In addition to presenting a standard menu, you can also present a "searchable" menu, that

is, a menu with a keyboard input box at the top. For more information on implementing the

keyboard callbacks, see the Popup Keyboards guide.

Presenting a Searchable Menu

MENU WI T H S EA R CH

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/popup-keyboards/

sdlManager.getScreenManager().presentSearchableChoiceSet(choiceSet,
InteractionMode.MANUAL_ONLY, keyboardListener);

You can discover cells that have been preloaded on sdlManager.getScreenManager().getP

reloadedChoices() . You may then pass an array of cells to delete from the remote

system. Many times this is not necessary, but if you have deleted artwork used by cells,

for example, you should delete the cells as well.

sdlManager.getScreenManager().deleteChoices(<List of choices to delete>);

Deleting Cells

Dismissing the Popup Menu (RPC v6.0+)

You can dismiss a displayed choice set before the timeout has elapsed by sending a Can

celInteraction request. If you presented the choice set using the screen manager, you can

dismiss the choice set by calling cancel on the ChoiceCell object that you presented.

choiceSet.cancel();

Starting with SDL v5.1+ choice cells no longer require unique titles in order to be

presented. For example, if you are trying to display points of interest as a list you can now

have multiple locations with the same name but are not the same location. You cannot

present multiple cells that are exactly the same. They must have some property that

makes them different, such as secondaryText or an artwork.

If connected to older head units that do not support this feature, the cancel

request will be ignored, and the choice set will persist on the screen until the

timeout has elapsed or the user dismisses it by making a selection.

NOT E

Duplicate Cell Titles

R PC V7.1+ CONNECT I ONS

The titles on the choice set will be displayed as provided even if there are duplicate titles.

The titles on the choice set will have a number appended to them when there are duplicate

titles.

R PC V7.0 A ND BEL OW CONNECT I ONS

If you don't want to use the ScreenManager , you can do this manually using the Choice ,

CreateInteractionChoiceSet , and PerformInteraction . You will need to create

Choice s, bundle them into CreateInteractionChoiceSet s. As this is no longer a

recommended course of action, we will leave it to you to figure out how to manually do it.

Note that if you do manually create a PerformInteraction and want to set a cancel id, the

ScreenManager takes cancel ids 0 - 10000. Any cancel id you set must be outside of that

range.

Using RPCs

Popup Keyboards

Presenting a keyboard or a popup menu with a search field requires you to implement the

KeyboardListener . Note that the initialText in the keyboard case often acts as

"placeholder text" and not as true initial text.

You should present a keyboard to users when your app contains a "search" field. For

example, in a music player app, you may want to give the user a way to search for a song

or album. A keyboard could also be useful in an app that displays nearby points of interest,

or in other situations.

Presenting a Keyboard

Keyboards are unavailable for use in many countries when the driver is

distracted. This is often when the vehicle is moving above a certain speed,

such as 5 miles per hour. This will be automatically managed by the system.

Your keyboard may be disabled or an error returned if the driver is distracted.

NOT E

int cancelId = sdlManager.getScreenManager().presentKeyboard("Initial text", null,
keyboardListener);

Using the KeyboardListener involves implementing several methods:

Implementing the Keyboard Listener

KeyboardListener keyboardListener = new KeyboardListener() {
 @Override
 public void onUserDidSubmitInput(String inputText, KeyboardEvent event) {
 switch (event) {
 case ENTRY_VOICE:
 // The user decided to start voice input, you should start an AudioPassThru
session if supported
 break;
 case ENTRY_SUBMITTED:
 // The user submitted some text with the keyboard
 break;
 default:
 break;
 }
 }

 @Override
 public void onKeyboardDidAbortWithReason(KeyboardEvent event) {
 switch (event) {
 case ENTRY_CANCELLED:
 // The user cancelled the keyboard interaction
 break;
 case ENTRY_ABORTED:
 // The system aborted the keyboard interaction
 break;
 default:
 break;
 }
 }

 @Override
 public void updateAutocompleteWithInput(String currentInputText,
KeyboardAutocompleteCompletionListener
keyboardAutocompleteCompletionListener) {
 // Check the input text and return a list of autocomplete results

keyboardAutocompleteCompletionListener.onUpdatedAutoCompleteList(updatedAuto

 }

 @Override
 public void updateCharacterSetWithInput(String currentInputText,
KeyboardCharacterSetCompletionListener
keyboardCharacterSetCompletionListener) {
 // Check the input text and return a set of characters to allow the user to enter
 }

 @Override
 public void onKeyboardDidSendEvent(KeyboardEvent event, String
currentInputText) {
 // This is sent upon every event, such as keypresses, cancellations, and aborting
 }

You can change default keyboard properties by updating sdlManager.getScreenManager().

setKeyboardConfiguration() . If you want to change the keyboard configuration for only

one keyboard session and keep the default keyboard configuration unchanged, you can

pass a single-use KeyboardProperties to presentKeyboard() .

You can modify the keyboard language by changing the keyboard configuration's languag

e . For example, you can set an EN_US keyboard. It will default to EN_US if not

otherwise set.

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
 .setLanguage(Language.EN_US);

sdlManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

 @Override
 public void onKeyboardDidUpdateInputMask(KeyboardEvent event) {
 switch (event) {
 case INPUT_KEY_MASK_ENABLED:
 // The user enabled input key masking
 break;
 case INPUT_KEY_MASK_DISABLED:
 // The user disabled input key masking
 break;
 default:
 break;
 }
 }
};

Configuring Keyboard Properties

KEYBOARD L ANGU AGE

L IMITED C HARAC TER L IST

You can modify the keyboard to enable only some characters by responding to the update

CharacterSetWithInput listener method or by changing the keyboard configuration before

displaying the keyboard. For example, you can enable only "a", "b" , and "c" on the

keyboard. All other characters will be greyed out (disabled).

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
 .setLimitedCharacterList(Arrays.asList("a", "b", "c"));

sdlManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

You can modify the keyboard to allow an app to pre-populate the text field with a list of

suggested entries as the user types by responding to the updateAutocompleteWithInput

listener method or by changing the keyboard configuration before displaying the keyboard.

For example, you can display recommended searches "test1", "test2", and "test3" if the

user types "tes".

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
 .setAutoCompleteList(Arrays.asList("test1", "test2", "test3"));

sdlManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

AU TOC OMP L ETE L IST

A list of autocomplete results is only available on RPC 6.0+ connections. On

connections < RPC 6.0, only the first item will be available to the user.

NOT E

You can modify the keyboard layout by changing the keyboard configuration's keyboardL

ayout . For example, you can set a NUMERIC keyboard. It will default to QWERTY if not

otherwise set.

KEYBOARD L AYOU T

The numeric keyboard layout is only available on RPC 7.1+. See the section

Checking Keyboard Capabilities to determine if this layout is available.

NOT E

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
 .setKeyboardLayout(KeyboardLayout.NUMERIC);

sdlManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

You can modify the keyboard to mask the entered characters by changing the keyboard

configuration's maskInputCharacters .

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
 .setKeyboardLayout(KeyboardLayout.NUMERIC)
 .setMaskInputCharacters(KeyboardInputMask.ENABLE_INPUT_KEY_MASK);

sdlManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

INP U T MASKING (RP C 7.1+)

Each keyboard layout has a number of keys that can be customized to your app's needs.

For example, you could set two of the customizable keys in QWERTY layout to be "!" and

"?" as seen in the image below. The available number and location of these custom keys is

determined by the connected head unit. See the section Checking Keyboard Capabilities to

determine how many custom keys are available for any given layout.

KeyboardProperties keyboardConfiguration = new KeyboardProperties()
 .setKeyboardLayout(KeyboardLayout.QWERTY)
 .setCustomKeys(Arrays.asList("!", "?"));

sdlManager.getScreenManager().setKeyboardConfiguration(keyboardConfiguration);

C U STOM KEYS (RP C 7.1+)

Each head unit may support different keyboard layouts and each layout can support a

different number of custom keys. Head units may not support masking input. If you want

to know which keyboard features are supported on the connected head unit, you can

check the KeyboardCapabilities :

WindowCapability windowCapability =
sdlManager.getSystemCapabilityManager().getDefaultMainWindowCapability();
KeyboardCapabilities keyboardCapabilities =
windowCapability.getKeyboardCapabilities();

// List of layouts and number of custom keys supported by each layout
List<KeyboardLayoutCapability> keyboardLayouts =
keyboardCapabilities.getSupportedKeyboards();

// Boolean represents whether masking is supported or not
boolean maskInputSupported =
keyboardCapabilities.getMaskInputCharactersSupported();

You can dismiss a displayed keyboard before the timeout has elapsed by sending a Canc

elInteraction request. If you presented the keyboard using the screen manager, you can

dismiss the choice set by calling dismissKeyboard with the cancelID that was returned

(if one was returned) when presenting.

Checking Keyboard Capabilities (RPC v7.1+)

Dismissing the Keyboard (RPC v6.0+)

If connected to older head units that do not support this feature, the cancel

request will be ignored, and the keyboard will persist on the screen until the

timeout has elapsed or the user dismisses it by making a selection.

NOT E

sdlManager.getScreenManager().dismissKeyboard(cancelId);

If you don't want to use the ScreenManager , you can do this manually using the Perform

Interaction RPC request. As this is no longer a recommended course of action, we will

leave it to you to figure out how to manually do it.

Note that if you do manually create a PerformInteraction and want to set a cancel id, the

ScreenManager takes cancel ids 0 - 10000. Any cancel id you set must be outside of that

range.

SDL supports two types of alerts: a large popup alert that typically takes over the whole

screen and a smaller subtle alert that only covers a small part of screen.

Your SDL app may be restricted to only being allowed to send an alert when your app is

open (i.e. the hmiLevel is non- NONE) or when it is the currently active app (i.e. the h

miLevel is FULL). Subtle alert is a new feature (RPC v7.0+) and may not be supported on

all modules.

boolean isAlertAllowed =
sdlManager.getPermissionManager().isRPCAllowed(FunctionID.ALERT);
boolean isSubtleAlertAllowed =
sdlManager.getPermissionManager().isRPCAllowed(FunctionID.SUBTLE_ALERT);

Using RPCs

Alerts and Subtle Alerts

Checking if the Module Supports
Alerts

An alert is a large pop-up window showing a short message with optional buttons. When

an alert is activated, it will abort any SDL operation that is in-progress, except the already-

in-progress alert. If an alert is issued while another alert is still in progress the newest

alert will wait until the current alert has finished.

Depending on the platform, an alert can have up to three lines of text, a progress indicator

(e.g. a spinning wheel or hourglass), and up to four soft buttons.

Alerts

A L ER T WI T H NO S OF T BUT T ONS

Use the AlertView to set all the properties of the alert you want to present.

If no soft buttons are added to an alert some modules may add a default

"cancel" or "close" button.

NOT E

A L ER T WI T H S OF T BUT T ONS

Creating the AlertView

AlertView.Builder builder = new AlertView.Builder();
builder.setText("Text");
builder.setSecondaryText("Secondary Text");
builder.setAudio(AlertAudioData);
AlertView alertView = builder.build();

alertView.setSoftButtons(List<SoftButtonObject>);

An alert can include a custom or static (built-in) image that will be displayed within the

alert.

An AlertView must contain at least either text , secondaryText or audi

o for the alert to be presented.

NOT E

TEXT

BU TTONS

IC ON

alertView.setIcon(SdlArtwork);

An optional timeout can be added that will dismiss the alert when the duration is over.

Typical timeouts are between 3 and 10 seconds. If omitted, a default of 5 seconds is used.

// 5 seconds
alertView.setTimeout(5);

TIMEOU TS

Not all modules support a progress indicator. If supported, the alert will show an

animation that indicates that the user must wait (e.g. a spinning wheel or hourglass, etc).

If omitted, no progress indicator will be shown.

alertView.setShowWaitIndicator(true);

An alert can also speak a prompt or play a sound file when the alert appears on the

screen. This is done by creating an AlertAudioData object and setting it in the AlertView

AlertAudioData alertAudioData = new AlertAudioData("Text to Speak");
alertView.setAudio(alertAudioData);

AlertAudioData can also play an audio file.

AlertAudioData alertAudioData = new AlertAudioData(sdlFile);
alertView.setAudio(alertAudioData);

You can also play a combination of audio files and text-to-speech strings. The audio will

be played in the order you add them to the AlertAudioData object.

AlertAudioData alertAudioData = new AlertAudioData(sdlFile);
List<String> textToSpeech = new ArrayList<>();
textToSpeech.add("Text to speak");
alertAudioData.addSpeechSynthesizerStrings(textToSpeech);

P ROGRESS INDIC ATOR

TEXT-TO-SP EEC H

To play a notification sound when the alert appears, set playTone to true .

AlertAudioData alertAudioData = new AlertAudioData("Text to Speak");
alertAudioData.setPlayTone(true);

AlertView alertView = builder.build();
sdlManager.getScreenManager().presentAlert(alertView, new
AlertCompletionListener() {
 @Override
 public void onComplete(boolean success, Integer tryAgainTime) {
 if(success){
 // Alert was presented successfully
 }
 }
});

You can cancel an alert that has not yet been sent to the head unit.

On systems with RPC v6.0+ you can dismiss a displayed alert before the timeout has

elapsed. This feature is useful if you want to show users a loading screen while

performing a task, such as searching for a list for nearby coffee shops. As soon as you

have the search results, you can cancel the alert and show the results.

P L AY TONE

Showing the Alert

Canceling/Dismissing the Alert

alertView.cancel();

You can also use RPCs to present alerts. You need to use the Alert RPC to do so. Note

that if you do so, you must avoid using soft button ids 0 - 10000 and cancel ids 0 - 10000

because these ranges are used by the ScreenManager .

A subtle alert is a notification style alert window showing a short message with optional

buttons. When a subtle alert is activated, it will not abort other SDL operations that are in-

If connected to older head units that do not support this feature, the cancel

request will be ignored, and the alert will persist on the screen until the

timeout has elapsed or the user dismisses the alert by selecting a button.

NOT E

Canceling the alert will only dismiss the displayed alert. If the alert has

audio, the speech will play in its entirety even when the displayed alert has

been dismissed. If you know you will cancel an alert, consider setting a

short audo message like "searching" instead of "searching for coffee shops,

please wait."

NOT E

Using RPCs

Subtle Alerts (RPC v7.0+)

progress like the larger pop-up alert does. If a subtle alert is issued while another subtle

alert is still in progress the newest subtle alert will simply be ignored.

Touching anywhere on the screen when a subtle alert is showing will dismiss the alert. If

the SDL app presenting the alert is not currently the active app, touching inside the subtle

alert will open the app.

Depending on the platform, a subtle alert can have up to two lines of text and up to two

soft buttons.

Because SubtleAlert is not currently supported in the ScreenManager ,

you need to be careful when setting soft buttons or cancel ids to ensure that

they do not conflict with those used by the ScreenManager . The ScreenM

anager takes soft button ids 0 - 10000 and cancel ids 0 - 10000. Ensure that

if you use custom RPCs that the soft button ids and cancel ids are outside

of this range.

NOT E

S UBT L E A L ER T WI T H NO S OF T BUT T ONS

S UBT L E A L ER T WI T H S OF T BUT T ONS

The following steps show you how to add text, images, buttons, and sound to your subtle

alert. Please note that at least one line of text or the "text-to-speech" chunks must be set

in order for your subtle alert to work.

SubtleAlert subtleAlert = new SubtleAlert()
 .setAlertText1("Line 1")
 .setAlertText2("Line 2")
 .setCancelID(cancelId);

Creating the Subtle Alert

TEXT

BU TTONS

// Soft buttons
final int softButtonId = 123; // Set it to any unique ID
SoftButton okButton = new SoftButton(SoftButtonType.SBT_TEXT, softButtonId);
okButton.setText("OK");

// Set the softbuttons(s) to the subtle alert
subtleAlert.setSoftButtons(Collections.singletonList(okButton));

// This listener is only needed once, and will work for all of soft buttons you send
with your subtle alert
sdlManager.addOnRPCNotificationListener(FunctionID.ON_BUTTON_PRESS, new
OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnButtonPress onButtonPress = (OnButtonPress) notification;
 if (onButtonPress.getCustomButtonID() == softButtonId){
 DebugTool.logInfo(TAG, "Ok button pressed");
 }
 }
});

A subtle alert can include a custom or static (built-in) image that will be displayed within

the subtle alert. Before you add the image to the subtle alert, make sure the image is

uploaded to the head unit using the FileManager . Once the image is uploaded, you can

show the alert with the icon.

subtleAlert.setAlertIcon(new Image("artworkName", ImageType.DYNAMIC));

IC ON

An optional timeout can be added that will dismiss the subtle alert when the duration is

over. Typical timeouts are between 3 and 10 seconds. If omitted, a default of 5 seconds is

used.

subtleAlert.setDuration(5000);

A subtle alert can also speak a prompt or play a sound file when the subtle alert appears

on the screen. This is done by setting the ttsChunks parameter.

subtleAlert.setTtsChunks(Collections.singletonList(new TTSChunk("Text to Speak",
SpeechCapabilities.TEXT)));

The ttsChunks parameter can also take a file to play/speak. For more information on

how to upload the file please refer to the Playing Audio Indications guide.

TTSChunk ttsChunk = new TTSChunk(sdlFile.getName(), SpeechCapabilities.FILE);
subtleAlert.setTtsChunks(Collections.singletonList(ttsChunk));

TIMEOU TS

TEXT-TO-SP EEC H

Showing the Subtle Alert

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/speech-and-audio/playing-audio-indications/

// Handle RPC response
subtleAlert.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (response.getSuccess()){
 DebugTool.logInfo(TAG, "Subtle Alert was shown successfully");
 }
 }
});
sdlManager.sendRPC(subtleAlert);

If desired, you can be notified when the user tapped on the subtle alert by registering for

the OnSubtleAlertPressed notification.

You can dismiss a displayed subtle alert before the timeout has elapsed.

sdlManager.addOnRPCNotificationListener(FunctionID.ON_SUBTLE_ALERT_PRESSED
 new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 // The subtle alert was pressed
 }
});

Checking if the User Dismissed the Subtle Alert

Dismissing the Subtle Alert

Canceling the subtle alert will only dismiss the displayed alert. If you have

set the ttsChunk property, the speech will play in its entirety even when the

displayed subtle alert has been dismissed. If you know you will cancel a

subtle alert, consider setting a short ttsChunk .

NOT E

There are two ways to dismiss a subtle alert. The first way is to dismiss a specific subtle

alert using a unique cancelID assigned to the subtle alert. The second way is to dismiss

whichever subtle alert is currently on-screen.

// `cancelID` is the ID that you assigned when creating and sending the alert
CancelInteraction cancelInteraction = new
CancelInteraction(FunctionID.SUBTLE_ALERT.getId(), cancelID);
cancelInteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (response.getSuccess()){
 DebugTool.logInfo(TAG, "Subtle alert was dismissed successfully");
 }
 }
});
sdlManager.sendRPC(cancelInteraction);

CancelInteraction cancelInteraction = new
CancelInteraction(FunctionID.SUBTLE_ALERT.getId());
cancelInteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (response.getSuccess()){
 DebugTool.logInfo(TAG, "Subtle Alert was dismissed successfully");
 }
 }
});
sdlManager.sendRPC(cancelInteraction);

DISMISSING A SP EC IF IC SU BTL E AL ERT

DISMISSING THE C U RRENT SU BTL E AL ERT

The media clock is used by media apps to present the current timing information of a

playing media item such as a song, podcast, or audiobook.

The media clock consists of three parts: the progress bar, a current position label and a

remaining time label. In addition, you may want to update the play/pause button icon to

reflect the current state of the audio or the media forward / back buttons to reflect if it will

skip tracks or time.

Media Clock

Ensure your app has an appType of media and you are using the media

template before implementing this feature.

NOT E

In order to count up using the timer, you will need to set a start time that is less than the

end time. The "bottom end" of the media clock will always start at 0:00 and the "top end"

will be the end time you specified. The start time can be set to any position between 0 and

the end time. For example, if you are starting a song at 0:30 and it ends at 4:13 the

media clock timer progress bar will start at the 0:30 position and start incrementing up

automatically every second until it reaches 4:13 . The current position label will start

counting upwards from 0:30 and the remaining time label will start counting down from

3:43 . When the end is reached, the current time label will read 4:13 , the remaining time

label will read 0:00 and the progress bar will stop moving.

The play / pause indicator parameter is used to update the play / pause button to your

desired button type. This is explained below in the section "Updating the Audio Indicator"

Counting Up

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().countUpFromStartTimeInterval(30, 253,
AudioStreamingIndicator.PAUSE);
sdlManager.sendRPC(mediaClock);

Counting down is the opposite of counting up (I know, right?). In order to count down using

the timer, you will need to set a start time that is greater than the end time. The timer bar

moves from right to left and the timer will automatically count down. For example, if

you're counting down from 10:00 to 0:00 , the progress bar will be at the leftmost

position and start decrementing every second until it reaches 0:00 .

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().countDownFromStartTimeInterval(600, 0,
AudioStreamingIndicator.PAUSE);
sdlManager.sendRPC(mediaClock);

When pausing the timer, it will stop the timer as soon as the request is received and

processed. When a resume request is sent, the timer begins again at the paused time as

soon as the request is processed. You can update the start and end times using a pause

command to change the timer while remaining paused.

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().pauseWithPlayPauseIndicator(AudioStreamingIndicator.PLAY)

sdlManager.sendRPC(mediaClock);

Counting Down

Pausing & Resuming

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().updatePauseWithNewStartTimeInterval(60, 240,
AudioStreamingIndicator.PLAY);
sdlManager.sendRPC(mediaClock);

Clearing the timer removes it from the screen.

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().clearWithPlayPauseIndicator(AudioStreamingIndicator.PLAY);
sdlManager.sendRPC(mediaClock);

The audio indicator is, essentially, the play / pause button. You can tell the system which

icon to display on the play / pause button to correspond with how your app works. For

example, if audio is currently playing you can update the play/pause button to show the

pause icon. On older head units, the audio indicator shows an icon with both the play and

pause indicators and the icon can not be updated.

For example, a radio app will probably want two button states: play and stop. A music app,

in contrast, will probably want a play and pause button. If you don't send any audio

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().resumeWithPlayPauseIndicator(AudioStreamingIndicator.PAUS

sdlManager.sendRPC(mediaClock);

Clearing the Timer

Setting the Play / Pause Button Style
(RPC v5.0+)

indicator information, a play / pause button will be displayed.

As of RPC v7.1, you can set the style of the media forward / back buttons to show icons

for skipping time (in seconds) forward and backward instead of skipping tracks. The

skipping time style is common in podcast & audiobook media apps.

When you set the skip indicator style, you can set type TRACK , which is the default style

that shows "skip forward" and "skip back" indicators. This is the only style available on

RPC < 7.1 connections. You can also set the new type TIME , which will allow you to set

the number of seconds and display indicators for skipping forward and backward in time.

Setting The Media Forward / Back
Button Style (RPC v7.1+)

Track Style

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().countUpFromStartTimeInterval(0, 300,
AudioStreamingIndicator.PAUSE);
SeekStreamingIndicator trackStyle = new
SeekStreamingIndicator(SeekIndicatorType.TRACK);
mediaClock.setForwardSeekIndicator(trackStyle);
mediaClock.setBackSeekIndicator(trackStyle);
sdlManager.sendRPC(mediaClock);

Time Style

SetMediaClockTimer mediaClock = new
SetMediaClockTimer().countUpFromStartTimeInterval(0, 300,
AudioStreamingIndicator.PAUSE);
SeekStreamingIndicator seek45Style = new
SeekStreamingIndicator(SeekIndicatorType.TIME);
seek45Style.setSeekTime(45);
SeekStreamingIndicator seek10Style = new
SeekStreamingIndicator(SeekIndicatorType.TIME);
seek10Style.setSeekTime(10);
mediaClock.setForwardSeekIndicator(seek45Style);
mediaClock.setBackSeekIndicator(seek10Style);
sdlManager.sendRPC(mediaClock);

Many audio apps that support podcasts and audiobooks allow the user to adjust the audio

playback rate.

As of RPC v7.1, you can set the rate that the audio is playing at to ensure the media clock

accurately reflects the audio.

For example, a user can play a podcast at 125% speed or at 75% speed.

//Play Audio at 50% or half speed
SetMediaClockTimer mediaClockSlow = new
SetMediaClockTimer().countUpFromStartTimeInterval(30, 253,
AudioStreamingIndicator.PAUSE);
mediaClockSlow.setCountRate(0.5f);
sdlManager.sendRPC(mediaClockSlow);

//Play Audio at 200% or double speed
SetMediaClockTimer mediaClockFast = new
SetMediaClockTimer().countUpFromStartTimeInterval(30, 253,
AudioStreamingIndicator.PAUSE);
mediaClockFast.setCountRate(2.0f);
sdlManager.sendRPC(mediaClockFast);

Adding Custom Playback Rate (RPC
v7.1+)

A Slider creates a full screen or pop-up overlay (depending on platform) that a user can

control. There are two main Slider layouts, one with a static footer and one with a

dynamic footer.

A slider popup with a static footer displays a single, optional, footer message below the

slider UI. A dynamic footer can show a different message for each slider position.

CountRate has a default value of 1.0, and the CountRate will be reset to

1.0 if any SetMediaClockTimer request does not have the parameter set.

To ensure that you maintain the correct CountRate in your application

make sure to set the parameter in all SetMediaClockTimer requests

(including when sending a RESUME request).

NOT E

Slider

The slider will persist on the screen until the timeout has elapsed or the user

dismisses the slider by selecting a position or canceling.

NOT E

Slider UI

DY NA MI C S L I DER I N POS I T I ON 1

DY NA MI C S L I DER I N POS I T I ON 2

Slider slider = new Slider();

The number of selectable items on a horizontal axis.

// Must be a number between 2 and 26
slider.setNumTicks(5);

Creating the Slider

Ticks

Position

The initial position of slider control (cannot exceed numTicks).

// Must be a number between 1 and 26
slider.setPosition(1);

The header to display.

// Max length 500 chars
slider.setSliderHeader("This is a Header");

The footer will have the same message across all positions of the slider.

// Max length 500 chars
slider.setSliderFooter(Collections.singletonList("Static Footer"));

This type of footer will have a different message displayed for each position of the slider.

The footer is an optional parameter. The footer message displayed will be based off of the

slider's current position. The footer array should be the same length as numTicks

because each footer must correspond to a tick value. Or, you can pass null to have no

footer at all.

// Array length 1 - 26, Max length 500 chars
slider.setSliderFooter(Arrays.asList("Footer 1","Footer 2","Footer 3"));

Header

Static Footer

Dynamic Footer

An ID for this specific slider to allow cancellation through the CancelInteraction RPC.

The ScreenManager takes cancel ids 0 - 10000, so ensure any cancel id that you set is

outside of that range.

slider.setCancelID(10045);

slider.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (response.getSuccess()) {
 SliderResponse sliderResponse = (SliderResponse) response;
 DebugTool.logInfo(TAG, "Slider Position Set: " +
sliderResponse.getSliderPosition());
 }
 }
});
sdlManager.sendRPC(slider);

You can dismiss a displayed slider before the timeout has elapsed by dismissing either a

specific slider or the current slider.

Cancel ID

Show the Slider

Dismissing a Slider (RPC v6.0+)

// `cancelID` is the ID that you assigned when creating the slider
CancelInteraction cancelInteraction = new
CancelInteraction(FunctionID.SLIDER.getId(), cancelID);
cancelInteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (response.getSuccess()){
 DebugTool.logInfo(TAG, "Slider was dismissed successfully");
 }
 }
});
sdlManager.sendRPC(cancelInteraction);

CancelInteraction cancelInteraction = new
CancelInteraction(FunctionID.SLIDER.getId());
cancelInteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (response.getSuccess()){
 DebugTool.logInfo(TAG, "Slider was dismissed successfully");
 }
 }
});
sdlManager.sendRPC(cancelInteraction);

If connected to older head units that do not support this feature, the cancel

request will be ignored, and the slider will persist on the screen until the

timeout has elapsed or the user dismisses by selecting a position or

canceling.

NOT E

Dismissing a Specific Slider

Dismissing the Current Slider

A ScrollableMessage creates an overlay containing a large block of formatted text that

can be scrolled. It contains a body of text, a message timeout, and up to eight soft

buttons. To display a scrollable message in your SDL app, you simply send a ScrollableM

essage RPC request.

Scrollable Message

The message will persist on the screen until the timeout has elapsed or the

user dismisses the message by selecting a soft button or cancelling (if the

head unit provides cancel UI).

NOT E

Scrollable Message UI

Currently, you can only create a scrollable message view to display on the screen using

RPCs.

Creating the Scrollable Message

The ScreenManager takes soft button ids 0 - 10000. Ensure that if you use

custom RPCs, that the soft button ids you use are outside of this range.

NOT E

// Create Message To Display
String scrollableMessageText = "Lorem ipsum dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Vestibulum
mattis ullamcorper velit sed ullamcorper morbi tincidunt ornare. Purus in massa
tempor nec feugiat nisl pretium fusce id. Pharetra convallis posuere morbi leo urna
molestie at elementum eu. Dictum sit amet justo donec enim diam.";

// Create SoftButtons
SoftButton softButton1 = new SoftButton(SoftButtonType.SBT_TEXT, 0);
softButton1.setText("Button 1");

SoftButton softButton2 = new SoftButton(SoftButtonType.SBT_TEXT, 1);
softButton2.setText("Button 2");

// Create SoftButton Array
List<SoftButton> softButtonList = Arrays.asList(softButton1, softButton2);

// Create ScrollableMessage Object
ScrollableMessage scrollableMessage = new ScrollableMessage()
 .setScrollableMessageBody(scrollableMessageText)
 .setTimeout(50000)
 .setSoftButtons(softButtonList);

// Set cancelId
scrollableMessage.setCancelID(cancelId);

// Send the scrollable message
sdlManager.sendRPC(scrollableMessage);

To listen for OnButtonPress events for SoftButton s, we need to add a listener that

listens for their Id's:

sdlManager.addOnRPCNotificationListener(FunctionID.ON_BUTTON_PRESS, new
OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnButtonPress onButtonPress = (OnButtonPress) notification;
 switch (onButtonPress.getCustomButtonID()){
 case 0:
 DebugTool.logInfo(TAG, "Button 1 Pressed");
 break;
 case 1:
 DebugTool.logInfo(TAG, "Button 2 Pressed");
 break;
 }
 }
});

You can dismiss a displayed scrollable message before the timeout has elapsed. You can

dismiss a specific scrollable message, or you can dismiss the scrollable message that is

currently displayed.

Dismissing a Scrollable Message
(RPC v6.0+)

If connected to older head units that do not support this feature, the cancel

request will be ignored, and the scrollable message will persist on the

screen until the timeout has elapsed or the user dismisses the message by

selecting a button.

NOT E

Dismissing a Specific Scrollable Message

// `cancelID` is the ID that you assigned when creating and sending the alert
CancelInteraction cancelInteraction = new
CancelInteraction(FunctionID.SCROLLABLE_MESSAGE.getId(), cancelID);
cancelInteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (response.getSuccess()){
 DebugTool.logInfo(TAG, "Scrollable message was dismissed successfully");
 }
 }
});
sdlManager.sendRPC(cancelInteraction);

CancelInteraction cancelInteraction = new
CancelInteraction(FunctionID.SCROLLABLE_MESSAGE.getId());
cancelInteraction.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (response.getSuccess()){
 DebugTool.logInfo(TAG, "Scrollable message was dismissed successfully");
 }
 }
});
sdlManager.sendRPC(cancelInteraction);

You have the ability to customize the look and feel of the template. How much

customization is available depends on the RPC version of the head unit you are connected

with as well as the design of the HMI.

Dismissing the Current Scrollable Message

Customizing the Template

You can customize the color scheme of your app using template coloring APIs.

You can change the template colors of the initial template layout in the lifecycleConfigur

ation .

Customizing Template Colors (RPC
v5.0+)

Customizing the Default Layout

// Set color schemes
RGBColor green = new RGBColor(126, 188, 121);
RGBColor white = new RGBColor(249, 251, 254);
RGBColor grey = new RGBColor(186, 198, 210);
RGBColor darkGrey = new RGBColor(57, 78, 96);

TemplateColorScheme dayColorScheme = new TemplateColorScheme()
 .setBackgroundColor(white)
 .setPrimaryColor(green)
 .setSecondaryColor(grey);
builder.setDayColorScheme(dayColorScheme);

TemplateColorScheme nightColorScheme = new TemplateColorScheme()
 .setBackgroundColor(white)
 .setPrimaryColor(green)
 .setSecondaryColor(darkGrey);
builder.setNightColorScheme(nightColorScheme);

You can change the template color scheme when you change layouts. This guide requires

SDL Java Suite version 5.0. If using an older version, use SetDisplayLayout (any RPC

version) or Show (RPC v6.0+) request.

You may only change the template coloring once per template; that is, you

cannot call changeLayout , SetDisplayLayout or Show for the template

you are already on and expect the color scheme to update.

NOT E

Customizing Future Layouts

// Set color schemes
RGBColor green = new RGBColor(126, 188, 121);
RGBColor white = new RGBColor(249, 251, 254);
RGBColor grey = new RGBColor(186, 198, 210);
RGBColor darkGrey = new RGBColor(57, 78, 96);

TemplateColorScheme dayColorScheme = new TemplateColorScheme()
 .setBackgroundColor(white)
 .setPrimaryColor(green)
 .setSecondaryColor(grey);

TemplateColorScheme nightColorScheme = new TemplateColorScheme()
 .setBackgroundColor(white)
 .setPrimaryColor(green)
 .setSecondaryColor(darkGrey);

TemplateConfiguration templateConfiguration = new TemplateConfiguration()
 .setTemplate(PredefinedLayout.GRAPHIC_WITH_TEXT.toString())
 .setDayColorScheme(dayColorScheme)
 .setNightColorScheme(nightColorScheme);

sdlManager.getScreenManager().changeLayout(templateConfiguration, new
CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 // Color set with template change
 } else {
 // Color and template not changed
 }
 }
});

You can also customize the title and icon of the main menu button that appears on your

template layouts. The menu icon must first be uploaded with a specific name through the

file manager; see the Uploading Images section for more information on how to upload

your image.

Customizing the Menu Title and Icon

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/uploading-images/

// The image must be uploaded before referencing the image name here
SetGlobalProperties setGlobalProperties = new SetGlobalProperties()
 .setMenuTitle("customTitle")
 .setMenuIcon(image);

setGlobalProperties.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (response.getSuccess()){
 // Success
 }
 }
});
sdlManager.sendRPC(setGlobalProperties);

If you present keyboards in your app – such as in searchable interactions or another

custom keyboard – you may wish to customize the keyboard for your users. The best way

to do this is through the ScreenManager . For more information presenting keyboards,

see the Popup Keyboards section.

You can modify the language of the keyboard to change the characters that are displayed.

KeyboardProperties keyboardProperties = new KeyboardProperties()
 .setLanguage(Language.HE_IL) // Set to Israeli Hebrew
 .setKeyboardLayout(KeyboardLayout.AZERTY); // Set to AZERTY

sdlManager.getScreenManager().setKeyboardConfiguration(keyboardProperties);

Customizing the Keyboard (RPC
v3.0+)

Setting Keyboard Properties

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/popup-keyboards/

While there are other keyboard properties available on KeyboardProperties , these will be

overridden by the screen manager. The keypressMode must be a specific configuration

for the screen manager's callbacks to work properly. The limitedCharacterList , autoCo

mpleteText , and autoCompleteList will be set on a per-keyboard basis when calling sdl

Manager.getScreenManager.presentKeyboard(...) , should custom keyboard properties be

set.

On some head units it is possible to display a customized help menu or speak a custom

command if the user asks for help while using your app. The help menu is commonly used

to let users know what voice commands are available, however, it can also be customized

to help your user navigate the app or let them know what features are available.

You can customize the help menu with your own title and/or menu options. If you don't

customize these options, then the head unit's default menu will be used.

If you wish to use an image, you should check the sdlManager.getSystemCapabilityMana

ger().getDefaultMainWindowCapability().getImageFields(); for an imageField.name of vr

HelpItem to see if that image is supported. If vrHelpItem is in the imageFields array,

then it can be used. You will then need to upload the image using the file manager before

using it in the request. See the Uploading Images section for more information.

Other Properties

Customizing Help Prompts

Configuring the Help Menu

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/uploading-images/

SetGlobalProperties setGlobalProperties = new SetGlobalProperties();
setGlobalProperties.setVrHelpTitle("What Can I Say?");

VrHelpItem item1 = new VrHelpItem("Show Artists", 1);
item1.setImage(image); // a previously uploaded image or null

VrHelpItem item2 = new VrHelpItem("Show Albums", 2);
item2.setImage(image); // a previously uploaded image or null

setGlobalProperties.setVrHelp(Arrays.asList(item1, item2));
setGlobalProperties.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 // The help menu is updated
 }
});
sdlManager.sendRPC(setGlobalProperties);

On head units that support voice recognition, a user can request assistance by saying

"Help." In addition to displaying the help menu discussed above a custom spoken text-to-

speech response can be spoken to the user.

SetGlobalProperties setGlobalProperties = new SetGlobalProperties();
setGlobalProperties.setHelpPrompt(Collections.singletonList(new TTSChunk("Your
custom help prompt", SpeechCapabilities.TEXT)));
setGlobalProperties.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (response.getSuccess()) {
 // The help prompt is updated
 } else {
 // Handle Error
 }
 }
});
sdlManager.sendRPC(setGlobalProperties);

Configuring the Help Prompt

If you display any sort of popup menu or modal interaction that has a timeout – such as

an alert, interaction, or slider – you can create a custom text-to-speech response that will

be spoken to the user in the event that a timeout occurs.

SetGlobalProperties setGlobalProperties = new SetGlobalProperties();
setGlobalProperties.setTimeoutPrompt(Collections.singletonList(new
TTSChunk("Your custom help prompt", SpeechCapabilities.TEXT)));
setGlobalProperties.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (response.getSuccess()) {
 // The timeout prompt is updated
 } else {
 // Handle Error
 }
 }
});
sdlManager.sendRPC(setGlobalProperties);

You can also reset your customizations to the help menu or spoken prompts. To do so,

you will send a ResetGlobalProperties RPC with the fields that you wish to clear.

Configuring the Timeout Prompt

Clearing Help Menu and Prompt
Customizations

// Reset the help menu
ResetGlobalProperties resetGlobalProperties = new
ResetGlobalProperties(Arrays.asList(GlobalProperty.VRHELPITEMS,
GlobalProperty.VRHELPTITLE));

// Reset the menu icon and title
ResetGlobalProperties resetGlobalProperties = new
ResetGlobalProperties(Arrays.asList(GlobalProperty.MENUICON,
GlobalProperty.MENUNAME));

// Reset spoken prompts
ResetGlobalProperties resetGlobalProperties = new
ResetGlobalProperties(Arrays.asList(GlobalProperty.HELPPROMPT,
GlobalProperty.TIMEOUTPROMPT));

// To send any one of these, use the typical format:
resetGlobalProperties.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (response.getSuccess()) {
 // The global properties are reset
 } else {
 // Handle Error
 }
 }
});
sdlManager.sendRPC(resetGlobalProperties);

Since your user will be driving while interacting with your SDL app, speech phrases can

provide important feedback to your user. At any time during your app's lifecycle you can

send a speech phrase using the Speak request and the head unit's text-to-speech (TTS)

engine will produce synthesized speech from your provided text.

When using the Speak RPC, you will receive a response from the head unit once the

operation has completed. From the response you will be able to tell if the speech was

completed, interrupted, rejected or aborted. It is important to keep in mind that a speech

request can interrupt another ongoing speech request. If you want to chain speech

Playing Spoken Feedback

requests you must wait for the current speech request to finish before sending the next

speech request.

The speech request you send can simply be a text phrase, which will be played back in

accordance with the user's current language settings, or it can consist of phoneme

specifications to direct SDL’s TTS engine to speak a language-independent, speech-

sculpted phrase. It is also possible to play a pre-recorded sound file (such as an MP3)

using the speech request. For more information on how to play a sound file please refer to

Playing Audio Indications.

Once you have successfully connected to the module, you can access supported speech

capabilities properties on the sdlManager.getSystemCapabilityManager() instance.

Below is a list of commonly supported speech capabilities.

sdlManager.getSystemCapabilityManager().getCapability(SystemCapabilityType.SPEE
 new OnSystemCapabilityListener() {
 @Override
 public void onCapabilityRetrieved(Object capability) {
 List<SpeechCapabilities> speechCapabilities = (List<SpeechCapabilities>)
capability;
 }

 @Override
 public void onError(String info) {
 // Handle error
 }
}, false);

Creating the Speak Request

Getting the Supported Speech Capabilities

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/speech-and-audio/playing-audio-indications/

S P E E C H C A PA B I L I T Y D E S C R I P T I O N

Once you know what speech capabilities are supported by the module, you can create the

speak requests.

TTSChunk ttsChunk = new TTSChunk("hello", SpeechCapabilities.TEXT);
List<TTSChunk> ttsChunkList = Collections.singletonList(ttsChunk);
Speak speak = new Speak(ttsChunkList);

TTSChunk ttsChunk = new TTSChunk("h eh - l ow 1",
SpeechCapabilities.SAPI_PHONEMES);
List<TTSChunk> ttsChunkList = Collections.singletonList(ttsChunk);
Speak speak = new Speak(ttsChunkList);

Text Text phrases

SAPI Phonemes Microsoft speech synthesis API

File A pre-recorded sound file

Creating Different Types of Speak Requests

TEXT P HRASE

SAP I P HONEMES P HRASE

speak.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 SpeakResponse speakResponse = (SpeakResponse) response;
 if (!speakResponse.getSuccess()){
 switch (speakResponse.getResultCode()){
 case DISALLOWED:
 DebugTool.logInfo(TAG, "The app does not have permission to use the
speech request");
 break;
 case REJECTED:
 DebugTool.logInfo(TAG, "The request was rejected because a higher
priority request is in progress");
 break;
 case ABORTED:
 DebugTool.logInfo(TAG, "The request was aborted by another higher
priority request");
 break;
 default:
 DebugTool.logInfo(TAG, "Some other error occurred");
 }
 return;
 }
 DebugTool.logInfo(TAG, "Speech was successfully spoken");
 }
});
sdlManager.sendRPC(speak);

You can pass an uploaded audio file's name to TTSChunk , allowing any API that takes a

text-to-speech parameter to pass and play your audio file. A sports app, for example, could

play a distinctive audio chime to notify the user of a score update alongside an Alert

request.

Sending the Speak Request

Playing Audio Indications (RPC
v5.0+)

The first step is to make sure the audio file is available on the remote system. To upload

the file use the FileManager .

SdlFile audioFile = new SdlFile("Audio file name", FileType.AUDIO_MP3, fileUri, true);
sdlManager.getFileManager().uploadFile(audioFile, new CompletionListener() {
 @Override
 public void onComplete(boolean success) {

 }
});

For more information about uploading files, see the Uploading Files guide.

Now that the file is uploaded to the remote system, it can be used in various RPCs, such

as Speak , Alert , and AlertManeuver . To use the audio file in an alert, you simply need

to construct a TTSChunk referring to the file's name.

Alert alert = new Alert()
 .setAlertText1("Alert Text 1")
 .setAlertText2("Alert Text 2")
 .setDuration(5000)
 .setTtsChunks(Arrays.asList(new TTSChunk("Audio file name",
SpeechCapabilities.FILE)));
sdlManager.sendRPC(alert);

Uploading the Audio File

Using the Audio File

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/uploading-files/

Voice commands are global commands available anywhere on the head unit to users of

your app. Once the user has opened your SDL app (i.e. your SDL app has left the HMI state

of NONE) they have access to the voice commands you have setup. Your app will be

notified when a voice command has been triggered even if the SDL app has been

backgrounded.

You have the ability to create voice command shortcuts to your Main Menu cells which we

highly recommended that you implement. Global voice commands should be created for

functions that you wish to make available as voice commands that are not available as

menu cells. We recommend creating global voice commands for common actions such

as the actions performed by your Soft Buttons.

To create voice commands, you simply create and set VoiceCommand objects to the v

oiceCommands List on the screen manager.

Setting Up Voice Commands

The head unit manufacturer will determine how these voice commands are

triggered, and some head units will not support voice commands.

NOT E

Creating Voice Commands

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/main-menu/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/template-custom-buttons/

The library automatically filters out empty strings and whitespace-only strings from a

voice command's list of strings. For example, if a voice command has the following list

values: [" ", "CommandA", "", "Command A"] the library will filter it to: ["CommandA", "Co

mmand A"] .

If you provide a list of voice commands which only contains empty string and whitespace-

only strings across all of the voice commands, the upload request will be aborted and the

previous voice commands will remain available.

Voice commands that are sent with duplicate strings in different voice commands, such

as:

{
 Command1: ["Command A", "Command B"],
 Command2: ["Command B", "Command C"],
 Command3: ["Command D", "Command E"]
}

VoiceCommand voiceCommand = new
VoiceCommand(Collections.singletonList("Command One"), new
VoiceCommandSelectionListener() {
 @Override
 public void onVoiceCommandSelected() {
 // Handle the VoiceCommand's Selection
 }
});

sdlManager.getScreenManager().setVoiceCommands(Collections.singletonList(voice

Unsupported Voice Commands

Duplicate Strings in Voice Commands

DU P L IC ATES BETWEEN DIFFERENT C OMMANDS

Then the manager will abort the upload request. The previous voice commands will

remain available.

If any individual voice command contains duplicate strings, they will be reduced to one.

For example, if the voice commands to be sent are:

{
 Command1: ["Command A", "Command A", "Command B"],
 Command2: ["Command C", "Command D"]
}

Then the manager will strip the duplicates to:

{
 Command1: ["Command A", "Command B"],
 Command2: ["Command C", "Command D"]
}

To delete previously set voice commands, you just have to set an empty List to the voice

Commands List on the screen manager.

sdlManager.getScreenManager().setVoiceCommands(Collections.
<VoiceCommand>emptyList());

DU P L IC ATES IN THE SAME C OMMAND

Deleting Voice Commands

If you wish to do this without the aid of the screen manager, you can create AddComman

d objects without the menuParams parameter to create global voice commands.

Capturing in-car audio allows developers to interact with users by requesting raw audio

data provided to them from the car's microphones. In order to gather the raw audio from

the vehicle, you must leverage the PerformAudioPassThru RPC.

SDL does not support automatic speech cancellation detection, so if this feature is

desired, it is up to the developer to implement. The user may press an "OK" or "Cancel"

button, the dialog may timeout, or you may close the dialog with EndAudioPassThru .

Setting voice command strings composed only of whitespace characters

will be considered invalid (e.g. " ") and your request will be aborted by the

module.

NOT E

Using RPCs

Getting Microphone Audio

SDL does not support an open microphone. However, SDL is working on

wake-word support in the future. You may implement a voice command and

start an audio pass thru session when that voice command occurs.

NOT E

Before you start an audio capture session you need to find out what audio pass thru

capabilities the module supports. You can then use that information to start an audio pass

thru session.

You must use a sampling rate, bit rate, and audio type supported by the module. Once you

have successfully connected to the module, you can access these properties on the sdlM

anager.getSystemCapabilityManager instance.

The module may return one or multiple supported audio pass thru capabilities. Each

capability will have the following properties:

sdlManager.getSystemCapabilityManager().getCapability(SystemCapabilityType.AUDI
 new OnSystemCapabilityListener() {
 @Override
 public void onCapabilityRetrieved(Object capability) {
 List<AudioPassThruCapabilities> audioPassThruCapabilities =
(List<AudioPassThruCapabilities>) capability;
 }

 @Override
 public void onError(String info) {
 // Handle Error
 }
}, false);

Starting Audio Capture

Getting the Supported Capabilities

A U D I O PA S S T H R U
C A PA B I L I T Y PA R A M E T E R N A M E D E S C R I P T I O N

To initiate audio capture, first construct a PerformAudioPassThru request.

TTSChunk initialPrompt = new TTSChunk("Ask me What's the weather? or What's 1
plus 2?", SpeechCapabilities.TEXT);

PerformAudioPassThru audioPassThru = new PerformAudioPassThru()
 .setAudioPassThruDisplayText1("Ask me \"What's the weather?\"")
 .setAudioPassThruDisplayText2("or \"What's 1 + 2?\"")
 .setInitialPrompt(Arrays.asList(initialPrompt))
 .setSamplingRate(SamplingRate._22KHZ)
 .setMaxDuration(7000)
 .setBitsPerSample(BitsPerSample._16_BIT)
 .setAudioType(AudioType.PCM)
 .setMuteAudio(false);
audioPassThru.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse (int correlationId, RPCResponse response) {
 switch (response.getResultCode()) {
 case SUCCESS:
 // The audio pass thru ended successfully. Process the audio data
 case ABORTED:
 // The audio pass thru was aborted by the user. You should cancel any
usage of the audio data.
 default:
 // Some other error occurred. Handle the error.
 }
 }
});

sdlManager.sendRPC(audioPassThru);

Sampling Rate samplingRate The sampling rate

Bits Per Sample bitsPerSample The sample depth in bits

Audio Type audioType The audio type

Sending the Audio Capture Request

SDL provides audio data as fast as it can gather it and sends it to the developer in chunks.

In order to retrieve this audio data, the developer must observe the OnAudioPassThru

notification.

Gathering Audio Data

This audio data is only the current chunk of audio data, so the app is in

charge of saving previously retrieved audio data.

NOT E

sdlManager.addOnRPCNotificationListener(FunctionID.ON_AUDIO_PASS_THRU, new
OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnAudioPassThru onAudioPassThru = (OnAudioPassThru) notification;
 byte[] dataRcvd = onAudioPassThru.getAPTData();
 // Do something with current audio data
 }
});

The format of audio data is described as follows:

It does not include a header (such as a RIFF header) at the beginning.

The audio sample is in linear PCM format.

The audio data includes only one channel (i.e. monaural).

For bit rates of 8 bits, the audio samples are unsigned. For bit rates of 16 bits, the

audio samples are signed and are in little-endian.

PerformAudioPassThru is a request that works in a different way than other RPCs. For

most RPCs, a request is followed by an immediate response, with whether that RPC was

successful or not. This RPC, however, will only send out the response when the audio pass

thru has ended.

Audio capture can be ended four ways:

1. The audio pass thru has timed out.

If the audio pass thru surpasses the timeout duration, this request will be

ended with a resultCode of SUCCESS. You should handle the audio pass thru

as though it was successful.

FORMAT OF AU DIO DATA

Ending Audio Capture

2. The audio pass thru was closed due to user pressing "Cancel" (or other head-unit

provided cancellation button).

If the audio pass thru was displayed, and the user pressed the "Cancel" button,

you will receive a resultCode of ABORTED. You should ignore the audio pass

thru.

3. The audio pass thru was closed due to user pressing "Done" (or other head-unit

provided completion button).

If the audio pass thru was displayed and the user pressed the "Done" button,

you will receive a resultCode of SUCCESS. You should handle the audio pass

thru as though it was successful.

4. The audio pass thru was ended due to a request from the app for it to end.

If the audio pass thru was displayed, but you have established on your own

that you no longer need to capture audio data, you can send an EndAudioPass

Thru RPC. You will receive a resultCode of SUCCESS. Depending on the

reason that you sent the EndAudioPassThru RPC, you can choose whether or

not to handle the audio pass thru as though it were successful. See Manually

Stopping Audio Capture below for more details.

To force stop audio capture, simply send an EndAudioPassThru request. Your PerformA

udioPassThru request will receive response with a resultCode of SUCCESS when the

audio pass thru has ended.

Manually Stopping Audio Capture

EndAudioPassThru endAudioPassThru = new EndAudioPassThru();
endAudioPassThru.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse (int correlationId, RPCResponse response) {
 if (!response.getSuccess())) {
 // There was an error sending the end audio pass thru
 return;
 }

 // The end audio pass thru was sent successfully
 }
});

sdlManager.sendRPC(endAudioPassThru);

To process the response received from an ended audio capture, make sure that you are

listening to the PerformAudioPassThru response. If the response has a successful

result, all of the audio data for the audio pass thru has been received and is ready for

processing.

There are two ways to send multiple requests to the head unit: concurrently and

sequentially. Which method you should use depends on the type of RPCs being sent.

Concurrently sent requests might finish in a random order and should only be used when

none of the requests in the group depend on the response of another, such as when

subscribing to several hard buttons. Sequentially sent requests only send the next request

in the group when a response has been received for the previously sent RPC. Requests

should be sent sequentially when you need to know the result of a previous request before

sending the next, like when sending the several different requests needed to create a

menu.

Handling the Response

Batch Sending RPCs

Both methods have optional listener that is specific to them, the OnMultipleRequestListe

ner . This listener will provide more information than the normal OnRPCResponseListen

er .

When you send multiple RPCs concurrently, it will not wait for the response of the previous

RPC before sending the next one. Therefore, there is no guarantee that responses will be

returned in order, and you will not be able to use information sent in a previous RPC for a

later RPC.

SubscribeButton subscribeButtonLeft = new
SubscribeButton(ButtonName.SEEKLEFT);
SubscribeButton subscribeButtonRight = new
SubscribeButton(ButtonName.SEEKRIGHT);
sdlManager.sendRPCs(Arrays.asList(subscribeButtonLeft, subscribeButtonLeft), new
OnMultipleRequestListener() {
 @Override
 public void onUpdate(int remainingRequests) {

 }

 @Override
 public void onFinished() {

 }

 @Override
 public void onResponse(int correlationId, RPCResponse response) {

 }
});

Requests sent sequentially are sent in a set order. The next request is only sent when a

response has been received for the previously sent request.

Sending Concurrent Requests

Sending Sequential Requests

The code example below shows how to create a perform interaction choice set. When

creating a perform interaction choice set, the PerformInteraction RPC can only be sent

after the CreateInteractionChoiceSet RPC has been registered by Core, which is why the

requests must be sent sequentially.

int choiceId = 111, choiceSetId = 222;
Choice choice = new Choice(choiceId, "Choice title");
CreateInteractionChoiceSet createInteractionChoiceSet = new
CreateInteractionChoiceSet(choiceSetId, Collections.singletonList(choice));
PerformInteraction performInteraction = new PerformInteraction("Initial Text",
InteractionMode.MANUAL_ONLY, Collections.singletonList(choiceSetId));
sdlManager.sendSequentialRPCs(Arrays.asList(createInteractionChoiceSet,
performInteraction), new OnMultipleRequestListener() {
 @Override
 public void onUpdate(int i) {

 }

 @Override
 public void onFinished() {

 }

 @Override
 public void onResponse(int i, RPCResponse rpcResponse) {

 }
});

You can use the GetVehicleData and SubscribeVehicleData RPC requests to get

vehicle data. Each vehicle manufacturer decides which data it will expose and to whom

they will expose it. Please check the response from Core to find out which data you will

have permission to access. Additionally, be aware that the user may have the ability to

disable vehicle data access through the settings menu of their head unit. It may be

possible to access vehicle data when the hmiLevel is NONE (i.e. the user has not

Retrieving Vehicle Data

opened your SDL app) but you will have to request this permission from the vehicle

manufacturer.

You will only have access to vehicle data that is allowed to your appName

and appId combination. Permissions will be granted by each OEM

separately. See Understanding Permissions for more details.

NOT E

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/understanding-permissions/

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Acceleration

Pedal

Position

accPedalPositio

n

Accelerator

pedal position

(percentage

depressed)

Airbag Status airbagStatus

Status of each

of the airbags in

the vehicle: yes,

no, no event, not

supported, fault

Belt Status beltStatus

The status of

each of the seat

belts: no, yes,

not supported,

fault, or no event

Body

Information

bodyInformatio

n

Door ajar status

for each door.

Roof status.

Trunk & hood

Status. The

Ignition status.

The ignition

stable status.

The park brake

active status

Climate Data climateData

Information

about cabin

temperature,

atmospheric

pressure, and

external

temperature

RPC v7.1+

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Cloud App

Vehicle Id

cloudAppVehicl

eID

The id for the

vehicle when

connecting to

cloud

applications

RPC v5.1+

Cluster Mode

Status

clusterModeStat

us

Whether or not

the power mode

is active. The

power mode

qualification

status: power

mode undefined,

power mode

evaluation in

progress, not

defined, power

mode ok. The

car mode status:

normal, factory,

transport, or

crash. The

power mode

status: key out,

key recently out,

key approved,

post accessory,

accessory, post

ignition, ignition

on, running,

crank

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Device Status deviceStatus

Contains

information

about the

smartphone

device. Is voice

recognition on

or off, has a

bluetooth

connection been

established, is a

call active, is the

phone in

roaming mode,

is a text

message

available, the

battery level, the

status of the

mono and

stereo output

channels, the

signal level, the

primary audio

source, whether

or not an

emergency call

is currently

taking place

Driver

Braking
driverBraking

The status of the

brake pedal: yes,

no, no event,

fault, not

supported

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

E-Call

Information
eCallInfo

Information

about the status

of an emergency

call

Electronic

Parking

Brake Status

electronicParkin

gBrakeStatus

The status of the

electronic

parking brake.

Available states:

closed,

transition, open,

drive active, fault

RPC v5.0+

Emergency

event
emergencyEvent

The type of

emergency:

frontal, side, rear,

rollover, no

event, not

supported, fault.

Fuel cutoff

status: normal

operation, fuel is

cut off, fault. The

roll over status:

yes, no, no event,

not supported,

fault. The

maximum

change in

velocity. Whether

or not multiple

emergency

events have

occurred

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Engine Oil

Life
engineOilLife

The estimated

percentage (0% -

100%) of

remaining oil life

of the engine

RPC v5.0+

Engine

Torque
engineTorque

Torque value for

engine (in Nm)

on non-diesel

variants

External

Temperature

externalTempera

ture

The external

temperature in

degrees celsius

RPC v7.1

Fuel Level fuelLevel

The fuel level in

the tank

(percentage)

RPC v7.0

Fuel Level

State
fuelLevel_State

The fuel level

state: Unknown,

Normal, Low,

Fault, Alert, or

Not Supported

RPC v7.0

Fuel Range fuelRange

The estimate

range in KM the

vehicle can

travel based on

fuel level and

consumption.

As of RPC 7.0,

this also

contains Fuel

Level and Fuel

Level State

information.

RPC v5.0+

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Gear Status gearStatus

Includes

information

about the

transmission,

the user's

selected gear,

and the actual

gear of the

vehicle.

RPC v7.0+

GPS gps

Longitude and

latitude, current

time in UTC,

degree of

precision,

altitude,

heading, speed,

satellite data vs

dead reckoning,

and supported

dimensions of

the GPS

Hands Off

Steering

handsOffSteerin

g

Status of hands

on steering

wheels

capability

RPC v7.0+

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Head Lamp

Status

headLampStatu

s

Status of the

head lamps:

whether or not

the low and high

beams are on or

off. The ambient

light sensor

status: night,

twilight 1,

twilight 2,

twilight 3,

twilight 4, day,

unknown, invalid

Instant Fuel

Consumption

instantFuelCons

umption

The

instantaneous

fuel

consumption in

microlitres

My Key myKey

Information

about whether

or not the

emergency 911

override has

been activated

Odometer odometer
Odometer

reading in km

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

PRNDL prndl

The selected

gear the car is

in: park, reverse,

neutral, drive,

sport, low gear,

first, second,

third, fourth,

fifth, sixth,

seventh or

eighth gear,

unknown, or

fault

RPC v7.0

RPM rpm

The number of

revolutions per

minute of the

engine

Seat

Occupancy
seatOccupancy

The status of the

seats that show

whether each

seat is occupied

and belted or

not

RPC v7.1+

Speed speed Speed in KPH

Stability

Control

Status

stabilityControls

Status

Status of the

vehicle's stability

control and

trailer sway

control

RPC v7.0+

Steering

Wheel Angle

steeringWheelA

ngle

Current angle of

the steering

wheel (in

degrees)

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

Tire Pressure tirePressure

Tire status of

each wheel in

the vehicle:

normal, low,

fault, alert, or not

supported.

Warning light

status for the

tire pressure: off,

on, flash, or not

used

Turn Signal turnSignal

The status of the

turn signal.

Available states:

off, left, right,

both

RPC v5.0+

VIN vin

The Vehicle

Identification

Number

Window

Status
windowStatus

An array of

window

locations and

approximate

position

RPC v7.0+

V E H I C L E
D A TA

PA R A M E T E R
N A M E

D E S C R I P T I O
N

R P C
V E R S I O N

D E P R E C A T
E D

To get vehicle data a single time, use the GetVehicleData RPC.

GetVehicleData vdRequest = new GetVehicleData()
 .setPrndl(true);
vdRequest.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if(response.getSuccess()){
 PRNDL prndl = ((GetVehicleDataResponse) response).getPrndl();
 DebugTool.logInfo("SdlService", "PRNDL status: " + prndl.toString());
 }else{
 DebugTool.logInfo("SdlService", "GetVehicleData was rejected.");
 }
 }
});
sdlManager.sendRPC(vdRequest);

Wiper Status wiperStatus

The status of the

wipers: off,

automatic off,

off moving,

manual

interaction off,

manual

interaction on,

manual low,

manual high,

manual flick,

wash, automatic

low, automatic

high, courtesy

wipe, automatic

adjust, stalled,

no data exists

One-Time Vehicle Data Retrieval

Subscribing to vehicle data allows you to get notifications whenever new data is available.

You should not rely upon getting this data in a consistent manner. New vehicle data is

available roughly every second but notification timing can vary between modules.

First, you should add a notification listener for the OnVehicleData notification:

sdlManager.addOnRPCNotificationListener(FunctionID.ON_VEHICLE_DATA, new
OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnVehicleData onVehicleDataNotification = (OnVehicleData) notification;
 if (onVehicleDataNotification.getPrndl() != null) {
 DebugTool.logInfo("SdlService", "PRNDL status was updated to: " +
onVehicleDataNotification.getPrndl());
 }
 }
});

Second, send the SubscribeVehicleData request:

SubscribeVehicleData subscribeRequest = new SubscribeVehicleData()
 .setPrndl(true);
subscribeRequest.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if(response.getSuccess()){
 DebugTool.logInfo("SdlService", "Successfully subscribed to vehicle data.");
 }else{
 DebugTool.logInfo("SdlService", "Request to subscribe to vehicle data was
rejected.");
 }
 }
});
sdlManager.sendRPC(subscribeRequest);

Subscribing to Vehicle Data

Third, the onNotified method will be called when there is an update to the subscribed

vehicle data.

We suggest that you only subscribe to vehicle data as needed. To stop listening to

specific vehicle data use the UnsubscribeVehicleData RPC.

UnsubscribeVehicleData unsubscribeRequest = new UnsubscribeVehicleData()
 .setPrndl(true); // unsubscribe to PRNDL data
unsubscribeRequest.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if(response.getSuccess()){
 DebugTool.logInfo("SdlService", "Successfully unsubscribed to vehicle data.");
 }else{
 DebugTool.logInfo("SdlService", "Request to unsubscribe to vehicle data was
rejected.");
 }
 }
});
sdlManager.sendRPC(unsubscribeRequest);

OEM applications can access additional vehicle data published by their systems that is

not available via the SDL vehicle data APIs. This data is accessed using the same SDL

vehicle data RPCs, but instead of requesting a certain type of SDL-specified data, you must

request data using a custom vehicle data name. The type of object returned is up to the

OEM and must be parsed manually.

Unsubscribing from Vehicle Data

OEM-Specific Vehicle Data

Below is an example of requesting a custom piece of vehicle data with the name OEM-X-

Vehicle-Data . To adapt this for subscriptions instead, you must look at the section

Subscribing to Vehicle Data above and adapt the example for subscribing to custom

vehicle data based on what you see in the examples below.

GetVehicleData vdRequest = new GetVehicleData()
 .setOEMCustomVehicleData("OEM-X-Vehicle-Data", true);
vdRequest.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if(response.getSuccess()){
 Object CustomData = ((GetVehicleDataResponse)
response).getOEMCustomVehicleData("OEM-X-Vehicle-Data");
 }else{
 DebugTool.logInfo("SdlService", "GetVehicleData was rejected.");
 }
 }
});
sdlManager.sendRPC(vdRequest);

The remote control framework allows apps to control modules such as climate, radio,

seat, lights, etc., within a vehicle. Newer head units can support multi-zone modules that

This feature is only for OEM-created applications and is not permitted for

3rd-party use.

NOT E

Requesting One-Time OEM-Specific Vehicle Data

Remote Control Vehicle Features

allow customizations based on seat location.

Consider the following scenarios:

A radio application wants to use the in-vehicle radio tuner. It needs the functionality

to select the radio band (AM/FM/XM/HD/DAB), tune the radio frequency or change

the radio station, as well as obtain general radio information for decision making.

A climate control application needs to turn on the AC, control the air circulation

mode, change the fan speed and set the desired cabin temperature.

A user profile application wants to remember users' favorite settings and apply it

later automatically when the users get into the same/another vehicle.

Currently, the remote control feature supports these modules:

If you are using this feature in your app, you will most likely need to request

permission from the vehicle manufacturer. Not all head units support the

remote control framework and only the newest head units will support multi-

zone modules.

NOT E

Why Use Remote Control?

Supported Modules

R E M O T E C O N T R O L M O D U L E S R P C V E R S I O N

The following table lists which items are in each control module.

Climate v4.5+

Radio v4.5+

Seat v5.0+

Audio v5.0+

Light v5.0+

HMI Settings v5.0+

C L IMATE

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Climate

Enable

climateEnab

le
on, off

Get/Set/Noti

fication

Enabled to

turn on the

climate

system,

Disabled to

turn off the

climate

system. All

other climate

items need

climate

enabled to

work.

Since v6.0

Current

Cabin

Temperat

ure

currentTemp

erature
N/A

Get/Notificat

ion

Read only,

value range

depends on

OEM

Since v4.5

Desired

Cabin

Temperat

ure

desiredTemp

erature
N/A

Get/Set/Noti

fication

Value range

depends on

OEM

Since v4.5

AC

Setting
acEnable on, off

Get/Set/Noti

fication
Since v4.5

AC MAX

Setting

acMaxEnabl

e
on, off

Get/Set/Noti

fication
Since v4.5

Air

Recirculat

ion

Setting

circulateAirE

nable
on, off

Get/Set/Noti

fication
Since v4.5

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Auto AC

Mode

Setting

autoModeEn

able
on, off

Get/Set/Noti

fication
Since v4.5

Defrost

Zone

Setting

defrostZone
front, rear,

all, none

Get/Set/Noti

fication
Since v4.5

Dual

Mode

Setting

dualModeEn

able
on, off

Get/Set/Noti

fication
Since v4.5

Fan

Speed

Setting

fanSpeed 0%-100%
Get/Set/Noti

fication
Since v4.5

Ventilatio

n Mode

Setting

ventilationM

ode

upper, lower,

both, none

Get/Set/Noti

fication
Since v4.5

Heated

Steering

Wheel

Enabled

heatedSteeri

ngWheelEna

ble

on, off
Get/Set/Noti

fication
Since v5.0

Heated

Windshiel

d Enabled

heatedWind

shieldEnable
on, off

Get/Set/Noti

fication
Since v5.0

Heated

Rear

Window

Enabled

heatedRear

WindowEna

ble

on, off
Get/Set/Noti

fication
Since v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Heated

Mirrors

Enabled

heatedMirror

sEnable
on, off

Get/Set/Noti

fication
Since v5.0

RADIO

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Radio

Enabled
radioEnable true, false

Get/Set/Noti

fication

Read only, all

other radio

control items

need radio

enabled to

work

Since v4.5

Radio

Band
band AM, FM, XM

Get/Set/Noti

fication
Since v4.5

Radio

Frequenc

y

frequencyInt

eger /

frequencyFr

action

0-1710, 0-9
Get/Set/Noti

fication

Value range

depends on

band

Since v4.5

Radio

RDS Data
rdsData

RdsData

struct

Get/Notificat

ion
Read only Since v4.5

Available

HD

Channels

availableHd

Channels

Array size 0-

8, values 0-7

Get/Notificat

ion
Read only

Since

v6.0,

replaces

available

HDs

Available

HD

Channels

(DEPREC

ATED)

availableHD

s

1-7

(Deprecated

in v6.0) (1-3

before v5.0)

Get/Notificat

ion
Read only

Since

v4.5,

updated

in v5.0,

deprecate

d in v6.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Current

HD

Channel

hdChannel

0-7 (1-3

before v.5.0)

(1-7 between

v.5.0-6.0)

Get/Set/Noti

fication

Since

v4.5,

updated

in v5.0,

updated

in v6.0

Radio

Signal

Strength

signalStreng

th
0-100%

Get/Notificat

ion
Read only Since v4.5

Signal

Change

Threshold

signalStreng

thThreshold
0-100%

Get/Notificat

ion
Read only Since v4.5

Radio

State
state

Acquiring,

acquired,

multicast,

not_found

Get/Notificat

ion
Read only Since v4.5

SIS Data sisData
SisData

struct

Get/Notificat

ion
Read only Since v5.0

SEAT

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Seat

Heating

Enabled

heatingEnab

led
true, false

Get/Set/Noti

fication

Indicates

whether

heating is

enabled for a

seat

Since v5.0

Seat

Cooling

Enabled

coolingEnab

led
true, false

Get/Set/Noti

fication

Indicates

whether

cooling is

enabled for a

seat

Since v5.0

Seat

Heating

level

heatingLevel 0-100%
Get/Set/Noti

fication

Level of the

seat heating
Since v5.0

Seat

Cooling

level

coolingLevel 0-100%
Get/Set/Noti

fication

Level of the

seat cooling
Since v5.0

Seat

Horizonta

l Position

horizontalPo

sition
0-100%

Get/Set/Noti

fication

Adjust a seat

forward/bac

kward, 0

means the

nearest

position to

the steering

wheel, 100%

means the

furthest

position

from the

steering

wheel

Since v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Seat

Vertical

Position

verticalPositi

on
0-100%

Get/Set/Noti

fication

Adjust seat

height (up or

down) in

case there is

only one

actuator for

seat height,

0 means the

lowest

position,

100% means

the highest

position

Since v5.0

Seat-

Front

Vertical

Position

frontVertical

Position
0-100%

Get/Set/Noti

fication

Adjust seat

front height

(in case

there are two

actuators for

seat height),

0 means the

lowest

position,

100% means

the highest

position

Since v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Seat-Back

Vertical

Position

backVertical

Position
0-100%

Get/Set/Noti

fication

Adjust seat

back height

(in case

there are two

actuators for

seat height),

0 means the

lowest

position,

100% means

the highest

position

Since v5.0

Seat Back

Tilt Angle

backTiltAngl

e
0-100%

Get/Set/Noti

fication

Backrest

recline, 0

means the

angle that

back top is

nearest to

the steering

wheel, 100%

means the

angle that

back top is

furthest from

the steering

wheel

Since v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Head

Support

Horizonta

l Position

headSupport

HorizontalP

osition

0-100%
Get/Set/Noti

fication

Adjust head

support

forward/bac

kward, 0

means the

nearest

position to

the front,

100% means

the furthest

position

from the

front

Since v5.0

Head

Support

Vertical

Position

headSupport

VerticalPosit

ion

0-100%
Get/Set/Noti

fication

Adjust head

support

height (up or

down), 0

means the

lowest

position,

100% means

the highest

position

Since v5.0

Seat

Massagin

g Enabled

massageEn

abled
true, false

Get/Set/Noti

fication

Indicates

whether

massage is

enabled for a

seat

Since v5.0

Massage

Mode

massageMo

de

MassageMo

deData

struct

Get/Set/Noti

fication

List of

massage

mode of

each zone

Since v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Massage

Cushion

Firmness

massageCu

shionFirmne

ss

MassageCus

hionFirmnes

s struct

Get/Set/Noti

fication

List of

firmness of

each

massage

cushion

Since v5.0

Seat

memory
memory

SeatMemory

Action struct

Get/Set/Noti

fication

Seat

memory
Since v5.0

AU DIO

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

Audio

Volume
volume 0%-100%

Get/Set/Noti

fication

The audio

source

volume level

Since SDL

v5.0

Audio

Source
source

PrimaryAudi

oSource

enum

Get/Set/Noti

fication

Defines one

of the

available

audio

sources

Since SDL

v5.0

Keep

Context
keepContext true, false Set only

Controls

whether the

HMI will keep

the current

application

context or

switch to the

default

media

UI/APP

associated

with the

audio source

Since SDL

v5.0

Equalizer

Settings

equalizerSett

ings

EqualizerSet

tings struct

Get/Set/Noti

fication

Defines the

list of

supported

channels

(band) and

their

current/desir

ed settings

on HMI

Since SDL

v5.0

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

C O N T R
O L
I T E M

R P C
I T E M
N A M E

V A L U E
R A N G E T Y P E C O M M E N

T S

R P C
V E R S I O
N
C H A N G
E S

L IGHT

Light

State
lightState

Array of

LightState

struct

Get/Set/Noti

fication

Since SDL

v5.0

HMI SETTINGS

Display

Mode
displayMode

Day, Night,

Auto

Get/Set/Noti

fication

Current

display

mode of the

HMI display

Since SDL

v5.0

Distance

Unit
distanceUnit

Miles,

Kilometers

Get/Set/Noti

fication

Distance

Unit used in

the HMI (for

maps/tracki

ng

distances)

Since SDL

v5.0

Temperat

ure Unit

temperature

Unit

Fahrenheit,

Celsius

Get/Set/Noti

fication

Temperature

Unit used in

the HMI (for

temperature

measuring

systems)

Since SDL

v5.0

The remote control framework also allows mobile applications to send simulated button

press events for the following common buttons in the vehicle.

Remote Control Button Presses

R C M O D U L E C O N T R O L B U T T O N

Climate AC

AC MAX

RECIRCULATE

FAN UP

FAN DOWN

TEMPERATURE UP

TEMPERATURE DOWN

DEFROST

DEFROST REAR

DEFROST MAX

UPPER VENT

LOWER VENT

Radio VOLUME UP

VOLUME DOWN

EJECT

SOURCE

R C M O D U L E C O N T R O L B U T T O N

For remote control to work, the head unit must support SDL RPC v4.4+. In addition, your

app's appHMIType must include REMOTE_CONTROL .

Each module type can have multiple modules in RPC v6.0+. In previous versions, only one

module was available for each module type. A specific module is controlled using the

unique id assigned to the module. When sending remote control RPCs to a RPC v6.0+

head unit, the moduleInfo.moduleId must be stored and provided to control the desired

module. If no moduleId is set, the HMI will use the default module of that module type.

When connected to <6.0 systems, the moduleInfo struct will be null , and only the

default module will be available for control.

Prior to using any remote control RPCs, you must check that the head unit has the remote

control capability. As you will encounter head units that do not support remote control, or

head units that do not give your application permission to read and write remote control

data, this check is important.

When connected to head units supporting RPC v6.0+, you should save this information for

future use. The moduleId contained within the moduleInfo struct on each capability is

necessary to control that module.

SHUFFLE

REPEAT

Integration

Multiple Modules (RPC v6.0+)

Getting Remote Control Module Information

With the saved remote control capabilities struct you can build a UI to display modules to

the user by getting the location of the module and the area that it services. This will map

to the grid you receive in Setting the User's Seat below.

sdlManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SystemC
 new OnSystemCapabilityListener() {
 @Override
 public void onCapabilityRetrieved(Object capability) {
 RemoteControlCapabilities remoteControlCapabilities =
(RemoteControlCapabilities) capability;
 // Save the remote control capabilities
 }

 @Override
 public void onError(String info) {
 // Handle Error
 }
});

GETTING MODU L E DATA LOC ATION AND SERV IC E AREAS
(RP C V 6.0+)

This data is only available when connected to SDL RPC v6.0+ systems. On

previous systems, only one module per module type was available, so the

module's location didn't matter. You will not be able to build a custom UI for

those cases and should use a generic UI instead.

NOT E

// Get the first climate module's information
ClimateControlCapabilities firstClimateModule =
remoteControlCapabilities.getClimateControlCapabilities().get(0);

String climateModuleId = firstClimateModule.getModuleInfo().getModuleId();
Grid climateModuleLocation =
firstClimateModule.getModuleInfo().getModuleLocation();

Before you attempt to take control of any module, you should have your user select their

seat location as this affects which modules they have permission to control. You may

wish to show the user a map or list of all available seats in your app in order to ask them

where they are located. The following example is only meant to show you how to access

the available data and not how to build your UI/UX.

An array of seats can be found in the seatLocationCapability 's seat array. Each SeatLo

cation object within the seats array will have a grid parameter. The grid will tell you

the seat placement of that particular seat. This information is useful for creating a seat

location map from which users can select their seat.

sdlManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SystemC
 new OnSystemCapabilityListener() {
 @Override
 public void onCapabilityRetrieved(Object capability) {
 SeatLocationCapability seatLocationCapability = (SeatLocationCapability)
capability;
 if (seatLocationCapability.getSeats() != null &&
seatLocationCapability.getSeats().size() > 0){
 List<SeatLocation> seats = seatLocationCapability.getSeats();
 // Save seat location capabilities
 }
 }

 @Override
 public void onError(String info) {
 // Handle Error
 }
});

Setting The User's Seat (RPC v6.0+)

The grid system starts with the front left corner of the bottom level of the vehicle being

(col=0, row=0, level=0) . For example, assuming a vehicle manufactured for sale in the

United States with three seats in the backseat, (0, 0, 0) would be the drivers' seat. The

front passenger location would be at (2, 0, 0) and the rear middle seat would be at (1, 1,

0) . The colspan and rowspan properties tell you how many rows and columns that

module or seat takes up. The level property tells you how many decks the vehicle has

(i.e. a double-decker bus would have 2 levels).

C O L = 0 C O L = 1 C O L = 2

When the user selects their seat, you must send an SetGlobalProperties RPC with the

appropriate userLocation property in order to update that user's location within the

vehicle (The default seat location is Driver).

SetGlobalProperties seatLocation = new SetGlobalProperties()
 .setUserLocation(selectedSeat);
seatLocation.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 // Seat location updated
 }
});
sdlManager.sendRPC(seatLocation);

Seat location does not affect the ability to get data from a module. Once you know you

have permission to use the remote control feature and you have moduleId s (when

row=0

driver's seat: {col=0,

row=0, level=0,

colspan=1,

rowspan=1,

levelspan=1}

front passenger's

seat : {col=2,

row=0, level=0,

colspan=1,

rowspan=1,

levelspan=1}

row=1

rear-left seat : {col=0,

row=1, level=0,

colspan=1,

rowspan=1,

levelspan=1}

rear-middle seat :

{col=1, row=1, level=0,

colspan=1,

rowspan=1,

levelspan=1}

rear-right seat :

{col=2, row=1,

level=0, colspan=1,

rowspan=1,

levelspan=1}

U P DATING THE U SER'S SEAT LOC ATION

Getting Module Data

connected to RPC v6.0+ systems), you can retrieve the data for any module. The following

code is an example of how to subscribe to the data of a radio module.

When connected to head units that only support RPC versions older than v6.0, there can

only be one module for each module type (e.g. there can only be one climate module, light

module, radio module, etc.), so you will not need to pass a moduleId .

You can either subscribe to module data or receive it one time. If you choose to subscribe

to module data you will receive continuous updates on the vehicle data you have

subscribed to.

sdlManager.addOnRPCNotificationListener(FunctionID.ON_INTERIOR_VEHICLE_DATA
 new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnInteriorVehicleData onInteriorVehicleData = (OnInteriorVehicleData)
notification;
 if (onInteriorVehicleData != null){
 // NOTE: If you subscribe to multiple modules, all the data will be sent here.
You will have to
 // split it out based on
`onInteriorVehicleData.getModuleData().getModuleType()` yourself.
 // Code
 }
 }
});

SU BSC RIBING TO MODU L E DATA

Subscribing to the OnInteriorVehicleData notification must be done before

sending the GetInteriorVehicleData request.

NOT E

After you subscribe to the InteriorVehicleDataNotification you must also subscribe to

the module you wish to receive updates for. Subscribing to a module will send a

notification when that particular module is changed.

GetInteriorVehicleData getInteriorVehicleData = new
GetInteriorVehicleData(ModuleType.RADIO);
getInteriorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 // This can now be used to retrieve data
 <#Code#>
 }
});
sdlManager.sendRPC(getInteriorVehicleData);

GetInteriorVehicleData getInteriorVehicleData = new
GetInteriorVehicleData(ModuleType.RADIO)
 .setModuleId(moduleID);
getInteriorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 // This can now be used to retrieve data
 // Code
 }
});
sdlManager.sendRPC(getInteriorVehicleData);

After you subscribe to the InteriorVehicleDataNotification you must also subscribe to

the module you wish to receive updates for. Subscribing to a module will send a

notification when that particular module is changed.

R P C < v 6 . 0

R P C v 6 . 0 +

GETTING ONE-TIME DATA

To get data from a module without subscribing send a GetInteriorVehicleData request

with the subscribe flag set to false .

GetInteriorVehicleData interiorVehicleData = new
GetInteriorVehicleData(ModuleType.RADIO);
interiorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 // This can now be used to retrieve data
 // Code
 }
});
sdlManager.sendRPC(interiorVehicleData);

GetInteriorVehicleData interiorVehicleData = new
GetInteriorVehicleData(ModuleType.RADIO)
 .setModuleId("<#ModuleID#>");
interiorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 // This can now be used to retrieve data
 // Code
 }
});
sdlManager.sendRPC(interiorVehicleData);

Not only do you have the ability to get data from these modules, but, if you have the right

permissions, you can also set module data.

R P C < v 6 . 0

R P C 6 . 0 +

Setting Module Data

GETTING C ONSENT TO C ONTROL A MODU L E (RP C V 6.0+)

Some OEMs may wish to ask the driver for consent before a user can control a module.

The GetInteriorVehicleDataConsent RPC will alert the driver in some OEM head units if

the module is not free (another user has control) and allowMultipleAccess (multiple

users can access/set the data at the same time) is true . The allowMultipleAccess

property is part of the moduleInfo in the module object.

Check the allowed property in the GetInteriorVehicleDataConsentResponse to see

what modules can be controlled. Note that the order of the allowed array is 1-1 with the

moduleIds array you passed into the GetInteriorVehicleDataConsent RPC.

GetInteriorVehicleDataConsent getInteriorVehicleDataConsent = new
GetInteriorVehicleDataConsent(moduleType, moduleIDs);
getInteriorVehicleDataConsent.setOnRPCResponseListener(new
OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 GetInteriorVehicleDataConsentResponse
getInteriorVehicleDataConsentResponse =
(GetInteriorVehicleDataConsentResponse) response;
 List<Boolean> allowed =
getInteriorVehicleDataConsentResponse.getAllowances();
 // Allowed is an array of true or false values
 }
});
sdlManager.sendRPC(getInteriorVehicleDataConsent);

You should always try to get consent before setting any module data. If

consent is not granted you should not attempt to set any module's data.

NOT E

C ONTROL L ING A MODU L E

Below is an example of setting climate control data. It is likely that you will not need to

set all the data as in the code example below. When connected to RPC v6.0+ systems, you

must set the moduleId in SetInteriorVehicleData.setModuleData . When connected to <

v6.0 systems, there is only one module per module type, so you must only pass the type of

the module you wish to control.

When you received module information above in Getting Remote Control Module

Information on RPC v6.0+ systems, you received information on the location and servic

eArea of the module. The permission area of a module depends on that serviceArea .

The location of a module is like the seats array: it maps to the grid to tell you the

physical location of a particular module. The serviceArea maps to the grid to show how

far that module's scope reaches.

For example, a radio module usually serves all passengers in the vehicle, so its service

area will likely cover the entirety of the vehicle grid, while a climate module may only

cover a passenger area and not the driver or the back row. If a serviceArea is not

included, it is assumed that the serviceArea is the same as the module's location . If

neither is included, it is assumed that the serviceArea covers the whole area of the

vehicle. If a user is not sitting within the serviceArea 's grid , they will not receive

permission to control that module (attempting to set data will fail).
R P C < v 6 . 0

Temperature temp = new Temperature(TemperatureUnit.FAHRENHEIT, 74.1f);

ClimateControlData climateControlData = new ClimateControlData()
 .setAcEnable(true)
 .setAcMaxEnable(true)
 .setAutoModeEnable(false)
 .setCirculateAirEnable(true)
 .setCurrentTemperature(temp)
 .setDefrostZone(DefrostZone.FRONT)
 .setDualModeEnable(true)
 .setFanSpeed(2)
 .setVentilationMode(VentilationMode.BOTH)
 .setDesiredTemperature(temp);

ModuleData moduleData = new ModuleData(ModuleType.CLIMATE)
 .setClimateControlData(climateControlData);

SetInteriorVehicleData setInteriorVehicleData = new
SetInteriorVehicleData(moduleData);
setInteriorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 // Code
 }
});
sdlManager.sendRPC(setInteriorVehicleData);

R P C 6 . 0 +

Temperature temp = new Temperature(TemperatureUnit.FAHRENHEIT, 74.1f);

ClimateControlData climateControlData = new ClimateControlData()
 .setAcEnable(true)
 .setAcMaxEnable(true)
 .setAutoModeEnable(false)
 .setCirculateAirEnable(true)
 .setCurrentTemperature(temp)
 .setDefrostZone(DefrostZone.FRONT)
 .setDualModeEnable(true)
 .setFanSpeed(2)
 .setVentilationMode(VentilationMode.BOTH)
 .setDesiredTemperature(temp);

ModuleData moduleData = new ModuleData(ModuleType.CLIMATE)
 .setModuleId(moduleId)
 .setClimateControlData(climateControlData);

SetInteriorVehicleData setInteriorVehicleData = new
SetInteriorVehicleData(moduleData);
setInteriorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 // Code
 }
});
sdlManager.sendRPC(setInteriorVehicleData);

Another unique feature of remote control is the ability to send simulated button presses

to the associated modules, imitating a button press on the hardware itself. Simply specify

the module, the button, and the type of press you would like to simulate.

BU TTON P RESSES

R P C < 6 . 0

ButtonPress buttonPress = new ButtonPress(ModuleType.RADIO,
ButtonName.EJECT, ButtonPressMode.SHORT);
buttonPress.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 // Code
 }
});
sdlManager.sendRPC(buttonPress);

ButtonPress buttonPress = new ButtonPress(ModuleType.RADIO,
ButtonName.EJECT, ButtonPressMode.SHORT)
 .setModuleId("<#ModuleID#>");
buttonPress.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 // Code
 }
});
sdlManager.sendRPC(buttonPress);

When the user no longer needs control over a module, you should release the module so

other users can control it. If you do not release the module, other users who would

otherwise be able to control the module may be rejected from doing so.

R P C 6 . 0 +

REL EASING THE MODU L E (RP C V 6.0+)

ReleaseInteriorVehicleDataModule releaseInteriorVehicleDataModule = new
ReleaseInteriorVehicleDataModule(<#ModuleType#>)
 .setModuleId(moduleID);
releaseInteriorVehicleDataModule.setOnRPCResponseListener(new
OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 // Module Was Released
 }
});
sdlManager.sendRPC(releaseInteriorVehicleDataModule);

App services is a powerful feature enabling both a new kind of vehicle-to-app

communication and app-to-app communication via SDL.

App services are used to publish navigation, weather and media data (such as

temperature, navigation waypoints, or the current playlist name). This data can then be

used by both the vehicle head unit and, if the publisher of the app service desires, other

SDL apps.

Vehicle head units may use these services in various ways. One app service for each type

will be the "active" service to the module. For media, for example, this will be the media

app that the user is currently using or listening to. For navigation, it would be a navigation

app that the user is using to navigate. For weather, it may be the last used weather app, or

a user-selected default. The system may then use that service's data to perform various

actions (such as navigating to an address with the active service or to display the

temperature as provided from the active weather service).

An SDL app can also subscribe to a published app service. Once subscribed, the app will

be sent the new data when the app service publisher updates its data. To find out more

about how to subscribe to an app service check out the Using App Services guide.

Creating an App Service (RPC
v5.1+)

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/using-app-services/

Subscribed apps can also send certain RPCs and generic URI-based actions (see the

section Supporting Service RPCs and Actions below) to your service.

Currently, there is no high-level API support for publishing an app service, so you will have

to use raw RPCs for all app service related APIs.

Using an app service is covered in another guide.

Apps are able to declare that they provide an app service by publishing an app service

manifest. Three types of app services are currently available and more will be made

available over time. The currently available types are: Media, Navigation, and Weather. An

app may publish multiple services (one for each of the different service types) if desired.

Publishing a service is a multi-step process. First, you need to create your app service

manifest. Second, you will publish your app service to the module. Third, you will publish

the service data using OnAppServiceData . Fourth, you must listen for data requests and

respond accordingly. Fifth, if your app service supports handling of RPCs related to your

service you must listen for these RPC requests and handle them accordingly. Sixth,

optionally, you can support URI-based app actions. Finally, if necessary, you can you

update or delete your app service manifest.

The first step to publishing an app service is to create an AppServiceManifest object.

There is a set of generic parameters you will need to fill out as well as service type

specific parameters based on the app service type you are creating.

App Service Types

Publishing an App Service

1. Creating an App Service Manifest

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/using-app-services/

AppServiceManifest manifest = new
AppServiceManifest(AppServiceType.MEDIA.toString())
 .setServiceName("My Media App") // Must be unique across app services.
 .setServiceIcon(new Image("Service Icon Name", ImageType.DYNAMIC)) //
Previously uploaded service icon. This could be the same as your app icon.
 .setAllowAppConsumers(true) // Whether or not other apps can view your data in
addition to the head unit. If set to `false` only the head unit will have access to this
data.
 .setRpcSpecVersion(new SdlMsgVersion(5,0)) // An *optional* parameter that
limits the RPC spec versions you can understand to the provided version *or below*.
 .setHandledRpcs(List<FunctionID>) // If you add function ids to this *optional*
parameter, you can support newer RPCs on older head units (that don't support those
RPCs natively) when those RPCs are sent from other connected applications.
 .setMediaServiceManifest(mediaManifest); // Covered Below

Currently, there's no information you have to provide in your media service manifest! You'll

just have to create an empty media service manifest and set it into your general app

service manifest.

MediaServiceManifest mediaManifest = new MediaServiceManifest();
manifest.setMediaServiceManifest(mediaManifest);

You will need to create a navigation manifest if you want to publish a navigation service.

You will declare whether or not your navigation app will accept waypoints. That is, if your

app will support receiving multiple points of navigation (e.g. go to this McDonalds, then

this Walmart, then home).

C REATING A MEDIA SERV IC E MANIFEST

C REATING A NAV IGATION SERV IC E MANIFEST

NavigationServiceManifest navigationManifest = new NavigationServiceManifest();
navigationManifest.setAcceptsWayPoints(true);
manifest.setNavigationServiceManifest(navigationManifest);

You will need to create a weather service manifest if you want to publish a weather

service. You will declare the types of data your service provides in its WeatherServiceDat

a .

WeatherServiceManifest weatherManifest = new WeatherServiceManifest()
 .setCurrentForecastSupported(true)
 .setMaxMultidayForecastAmount(10)
 .setMaxHourlyForecastAmount(24)
 .setMaxMinutelyForecastAmount(60)
 .setWeatherForLocationSupported(true);
manifest.setWeatherServiceManifest(weatherManifest);

Once you have created your service manifest, publishing your app service is simple.

C REATING A WEATHER SERV IC E MANIFEST

2. Publish Your Service

PublishAppService publishServiceRequest = new PublishAppService()
 .setAppServiceManifest(manifest);
publishServiceRequest.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (response.getSuccess()) {
 // Use the response
 } else {
 // Error Handling
 }

 }
});
sdlManager.sendRPC(publishServiceRequest);

Once you have your publish app service response, you will need to store the information

provided in its appServiceRecord property. You will need the information later when you

want to update your service's data.

As noted in the introduction to this guide, one service for each type may become the

"active" service. If your service is the active service, your AppServiceRecord parameter

serviceActive will be updated to note that you are now the active service.

After the initial app record is passed to you in the PublishAppServiceResponse , you will

need to be notified of changes in order to observe whether or not you have become the

active service. To do so, you will have to observe the new SystemCapabilityType.APP_SE

RVICES using GetSystemCapability and OnSystemCapabilityUpdated .

For more information, see the Using App Services guide and go to the Getting and

Subscribing to Services section.

After your service is published, it's time to update your service data. First, you must send

an onAppServiceData RPC notification with your updated service data. RPC notifications

WATC HING FOR AP P REC ORD U P DATES

3. Update Your Service's Data

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/using-app-services/#getting-and-subscribing-to-services

are different than RPC requests in that they will not receive a response from the

connected head unit .

First, you will have to create an MediaServiceData , NavigationServiceData or

WeatherServiceData object with your service's data. Then, add that service-specific data

object to an AppServiceData object. Finally, create an OnAppServiceData notification,

append your AppServiceData object, and send it.

You should only update your service's data when you are the active service;

service consumers will only be able to see your data when you are the active

service.

NOT E

MEDIA SERV IC E DATA

MediaServiceData mediaData = new MediaServiceData()
 .setMediaTitle("Some media title")
 .setMediaArtist("Some media artist")
 .setMediaAlbum("Some album")
 .setMediaImage(new Image("Some image", ImageType.DYNAMIC))
 .setPlaylistName("Some playlist")
 .setIsExplicit(true)
 .setTrackPlaybackProgress(45)
 .setTrackPlaybackDuration(90)
 .setQueuePlaybackProgress(45)
 .setQueuePlaybackDuration(150)
 .setQueueCurrentTrackNumber(2)
 .setQueueTotalTrackCount(3);

AppServiceData appData = new AppServiceData()
 .setServiceID(myServiceId)
 .setServiceType(AppServiceType.MEDIA.toString())
 .setMediaServiceData(mediaData);

OnAppServiceData onAppData = new OnAppServiceData();
onAppData.setServiceData(appData);

sdlManager.sendRPC(onAppData);

NAV IGATION SERV IC E DATA

final SdlArtwork navInstructionArt = new SdlArtwork("turn", FileType.GRAPHIC_PNG,
image, true);

sdlManager.getFileManager().uploadFile(navInstructionArt, new CompletionListener()
{
 @Override
 public void onComplete(boolean success) {
 if (success){
 Coordinate coordinate = new Coordinate(42f,43f);

 LocationDetails locationDetails = new LocationDetails();
 locationDetails.setCoordinate(coordinate);

 // Make sure the image is uploaded to the system before publishing your data
 NavigationInstruction navigationInstruction = new
NavigationInstruction(locationDetails, NavigationAction.TURN);
 navigationInstruction.setImage(navInstructionArt.getImageRPC());

 DateTime dateTime = new DateTime()
 .setHour(2)
 .setMinute(3)
 .setSecond(4);

 NavigationServiceData navigationData = new
NavigationServiceData(dateTime);

navigationData.setInstructions(Collections.singletonList(navigationInstruction));

 AppServiceData appData = new AppServiceData()
 .setServiceID(myServiceId)
 .setServiceType(AppServiceType.NAVIGATION.toString())
 .setNavigationServiceData(navigationData);

 OnAppServiceData onAppData = new OnAppServiceData();
 onAppData.setServiceData(appData);

 sdlManager.sendRPC(onAppData);
 }
 }
});

WEATHER SERV IC E DATA

final SdlArtwork weatherImage = new SdlArtwork("sun", FileType.GRAPHIC_PNG,
image, true);

sdlManager.getFileManager().uploadFile(weatherImage, new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 // Make sure the image is uploaded to the system before publishing your data
 WeatherData weatherData = new WeatherData();
 weatherData.setWeatherIcon(weatherImage.getImageRPC());

 Coordinate coordinate = new Coordinate(42f, 43f);

 LocationDetails locationDetails = new LocationDetails();
 locationDetails.setCoordinate(coordinate);

 WeatherServiceData weatherServiceData = new
WeatherServiceData(locationDetails);

 AppServiceData appData = new AppServiceData()
 .setServiceID(myServiceId)
 .setServiceType(AppServiceType.WEATHER.toString())
 .setWeatherServiceData(weatherServiceData);

 OnAppServiceData onAppData = new OnAppServiceData();
 onAppData.setServiceData(appData);

 sdlManager.sendRPC(onAppData);
 }
 }
});

If you choose to make your app service available to other apps, you will have to handle

requests to get your app service data when a consumer requests it directly.

Handling app service subscribers is a two step process. First, you must setup listeners for

the subscriber. Then, when you get a request, you will either have to send a response to

the subscriber with the app service data or if you have no data to send, send a response

with a relevant failure result code.

4. Handling App Service Subscribers

First, you will need to setup a listener for GetAppServiceDataRequest . Then, when you

get the request, you will need to respond with your app service data. Therefore, you will

need to store your current service data after the most recent update using OnAppService

Data (see the section Update Your Service's Data).

sdlManager.addOnRPCRequestListener(FunctionID.GET_APP_SERVICE_DATA, new
OnRPCRequestListener() {
 @Override
 public void onRequest(RPCRequest request) {
 GetAppServiceData getAppServiceData = (GetAppServiceData) request;

 // Send a response
 GetAppServiceDataResponse response = new GetAppServiceDataResponse();
 response.setSuccess(true);
 response.setCorrelationID(getAppServiceData.getCorrelationID());
 response.setResultCode(Result.SUCCESS);
 response.setInfo("<#Use to provide more information about an error#>");
 response.setServiceData(appServiceData);
 sdlManager.sendRPC(response);
 }
});

Certain RPCs are related to certain services. The chart below shows the current

relationships:

L ISTENING FOR REQU ESTS

Supporting Service RPCs and Actions

5. Service RPCs

M E D I A N A V I G A T I O N W E A T H E R

When you are the active service for your service's type (e.g. media), and you have declared

that you support these RPCs in your manifest (see the section Creating an App Service

Manifest), then these RPCs will be automatically routed to your app. You will have to set

up listeners to be aware that they have arrived, and you will then need to respond to those

requests.

AppServiceManifest manifest = new
AppServiceManifest(AppServiceType.MEDIA.toString());
...
manifest.setHandledRpcs(Collections.singletonList(FunctionID.BUTTON_PRESS.getId

ButtonPress (OK) SendLocation

ButtonPress (SEEKLEFT) GetWayPoints

ButtonPress (SEEKRIGHT) SubscribeWayPoints

ButtonPress (TUNEUP) OnWayPointChange

ButtonPress (TUNEDOWN)

ButtonPress (SHUFFLE)

ButtonPress (REPEAT)

sdlManager.addOnRPCRequestListener(FunctionID.BUTTON_PRESS, new
OnRPCRequestListener() {
 @Override
 public void onRequest(RPCRequest request) {
 ButtonPress buttonPress = (ButtonPress) request;

 ButtonPressResponse response = new ButtonPressResponse();
 response.setSuccess(true);
 response.setResultCode(Result.SUCCESS);
 response.setCorrelationID(buttonPress.getCorrelationID());
 response.setInfo("<#Use to provide more information about an error#>");
 sdlManager.sendRPC(response);
 }
});

App actions are the ability for app consumers to use the SDL services system to send

URIs to app providers in order to activate actions on the provider. Service actions are

schema-less, i.e. there is no way to define the appropriate URIs through SDL. If you already

provide actions through your app and want to expose them to SDL, or if you wish to start

providing them, you will have to document your available actions elsewhere (such as your

website).

In order to support actions through SDL services, you will need to observe and respond to

the PerformAppServiceInteraction RPC request.

6. Service Actions

Once you have published your app service, you may decide to update its data. For example,

if you have a free and paid tier with different amounts of data, you may need to upgrade or

downgrade a user between these tiers and provide new data in your app service manifest.

If desired, you can also delete your app service by unpublishing the service.

// Perform App Services Interaction Request Listener
sdlManager.addOnRPCRequestListener(FunctionID.PERFORM_APP_SERVICES_INTER
 new OnRPCRequestListener() {
 @Override
 public void onRequest(RPCRequest request) {
 PerformAppServiceInteraction performAppServiceInteraction =
(PerformAppServiceInteraction) request;

 // If you have multiple services, this will let you know which of your services is
being addressed
 serviceID = performAppServiceInteraction.getServiceID();

 // The URI sent by the consumer. This must be something you understand
 String serviceURI = performAppServiceInteraction.getServiceUri();

 // A result you want to send to the consumer app.
 PerformAppServiceInteractionResponse response = new
PerformAppServiceInteractionResponse()
 .setServiceSpecificResult("Some Result");
 response.setCorrelationID(performAppServiceInteraction.getCorrelationID());
 response.setInfo("<#Use to provide more information about an error#>");
 response.setSuccess(true);
 response.setResultCode(Result.SUCCESS);
 sdlManager.sendRPC(response);
 }
});

Updating Your Published App Service

7. Updating a Published App Service Manifest (RPC
v6.0+)

AppServiceManifest manifest = new
AppServiceManifest(AppServiceType.WEATHER.toString());
manifest.setWeatherServiceManifest(weatherServiceManifest);

PublishAppService publishServiceRequest = new PublishAppService(manifest);
sdlManager.sendRPC(publishServiceRequest);

UnpublishAppService unpublishAppService = new UnpublishAppService("<#The
serviceID of the service to unpublish>");
sdlManager.sendRPC(unpublishAppService);

App services is a powerful feature enabling both a new kind of vehicle-to-app

communication and app-to-app communication via SDL.

App services are used to publish navigation, weather and media data (such as

temperature, navigation waypoints, or the current playlist name). This data can then be

used by both the vehicle head unit and, if the publisher of the app service desires, other

SDL apps. Creating an app service is covered in another guide.

Vehicle head units may use these services in various ways. One app service for each type

will be the "active" service to the module. For media, for example, this will be the media

app that the user is currently using or listening to. For navigation, it would be a navigation

app that the user is using to navigate. For weather, it may be the last used weather app, or

a user-selected default. The system may then use that service's data to perform various

actions (such as navigating to an address with the active service or to display the

temperature as provided from the active weather service).

8. Unpublishing a Published App Service Manifest (RPC
v6.0+)

Using App Services (RPC v5.1+)

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/creating-an-app-service/

An SDL app can also subscribe to a published app service. Once subscribed, the app will

be sent the new data when the app service publisher updates its data. This guide will cover

subscribing to a service. Subscribed apps can also send certain RPCs and generic URI-

based actions (see the section Sending an Action to a Service Provider, below) to your

service.

Currently, there is no high-level API support for using an app service, so you will have to

use raw RPCs for all app service related APIs.

Once your app has connected to the head unit, you will first want to be notified of all

available services and updates to the metadata of all services on the head unit. Second,

you will narrow down your app to subscribe to an individual app service and subscribe to

its data. Third, you may want to interact with that service through RPCs, or fourth, through

service actions.

To get information on all services published on the system, as well as on changes to

published services, you will use the SystemCapabilityManager .

Getting and Subscribing to Services

1. Getting and Subscribing to Available Services

J AVA

Once you've retrieved the initial list of app service capabilities or an updated list of app

service capabilities, you may want to inspect the data to find what you are looking for.

Below is example code with comments explaining what each part of the app service

capability is used for.

// Grab the capability once
sdlManager.getSystemCapabilityManager().getCapability(SystemCapabilityType.APP_
 new OnSystemCapabilityListener() {
 @Override
 public void onCapabilityRetrieved(Object capability) {
 AppServicesCapabilities servicesCapabilities = (AppServicesCapabilities)
capability;
 }

 @Override
 public void onError(String info) {
 // Handle Error
 }
}, false);
...

// Subscribe to app service capability updates
sdlManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SystemC
 new OnSystemCapabilityListener() {
 @Override
 public void onCapabilityRetrieved(Object capability) {
 AppServicesCapabilities servicesCapabilities = (AppServicesCapabilities)
capability;
 }

 @Override
 public void onError(String info) {
 // Handle Error
 }
});

C HEC KING THE AP P SERV IC E C APABIL ITY

J AVA

// This array contains all currently available app services on the system
List<AppServiceCapability> appServices = servicesCapabilities.getAppServices();

if (appServices!= null && appServices.size() > 0) {
 for (AppServiceCapability anAppServiceCapability : appServices) {
 // This will tell you why a service is in the list of updates
 ServiceUpdateReason updateReason =
anAppServiceCapability.getUpdateReason();

 // The app service record will give you access to a service's generated id, which
can be used to address the service directly (see below), it's manifest, used to see
what data it supports, whether or not the service is published (it always will be here),
and whether or not the service is the active service for its service type (only one
service can be active for each type)
 AppServiceRecord serviceRecord =
anAppServiceCapability.getUpdatedAppServiceRecord();
 }
}

Once you have information about all of the services available, you may want to view or

subscribe to a service type's data. To do so, you will use the GetAppServiceData RPC.

Note that you will currently only be able to get data for the active service of the service

type. You can attempt to make another service the active service by using the PerformAp

pServiceInteraction RPC, discussed below in Sending an Action to a Service Provider.

2. Getting and Subscribing to a Service Type's Data

J AVA

// Get service data once
GetAppServiceData getAppServiceData = new
GetAppServiceData(AppServiceType.MEDIA.toString())
 .setSubscribe(true); // Subscribe to future updates if you want them
getAppServiceData.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (response != null){
 GetAppServiceDataResponse serviceResponse =
(GetAppServiceDataResponse) response;
 MediaServiceData mediaServiceData =
serviceResponse.getServiceData().getMediaServiceData();
 }
 }
});
sdlManager.sendRPC(getAppServiceData);

...

// Unsubscribe from updates
GetAppServiceData unsubscribeServiceData = new
GetAppServiceData(AppServiceType.MEDIA.toString())
 .setSubscribe(false);
sdlManager.sendRPC(unsubscribeServiceData);

Once you have a service's data, you may want to interact with a service provider by

sending RPCs or actions.

Only certain RPCs are available to be passed to the service provider based on their service

type. See the Creating an App Service guide Supporting Service RPCs and Actions section

for a chart detailing which RPCs work with which service types. The RPC can only be sent

to the active service of a specific service type, not to any inactive service.

Sending an RPC works exactly the same as if you were sending the RPC to the head unit

system. The head unit will simply route your RPC to the appropriate app automatically.

Interacting with a Service Provider

3. Sending RPCs to a Service Provider

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/creating-an-app-service/#supporting-service-rpcs-and-actions

ButtonPress buttonPress = new ButtonPress()
 .setButtonPressMode(ButtonPressMode.SHORT)
 .setButtonName(ButtonName.OK)
 .setModuleType(ModuleType.AUDIO);
buttonPress.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 // Use the response
 }
});
sdlManager.sendRPC(buttonPress);

Actions are generic URI-based strings sent to any app service (active or not). You can also

use actions to request to the system that they make the service the active service for that

service type. Service actions are schema-less, i.e. there is no way to define the appropriate

URIs through SDL. The service provider must document their list of available actions

elsewhere (such as their website).

PerformAppServiceInteraction performAppServiceInteraction = new
PerformAppServiceInteraction("sdlexample://x-callback-url/showText?x-
source=MyApp&text=My%20Custom%20String", previousServiceId, appId);
performAppServiceInteraction.setOnRPCResponseListener(new
OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 // Use the response
 }
});
sdlManager.sendRPC(performAppServiceInteraction);

Your app may need special permissions to use the RPCs that route to app

service providers.

NOT E

4. Sending an Action to a Service Provider

In some cases, a service may upload an image that can then be retrieved from the module.

First, you will need to get the image name from the AppServiceData (see point 2 above).

Then you will use the image name to retrieve the image data.

WeatherServiceData weatherServiceData = appServiceData.getWeatherServiceData();
if (weatherServiceData == null || weatherServiceData.getCurrentForecast() == null ||
weatherServiceData.getCurrentForecast().getWeatherIcon() == null) {
 // The image doesn't exist, exit early
 return;
}
String currentForecastImageName =
weatherServiceData.getCurrentForecast().getWeatherIcon().getValue();

GetFile getFile = new GetFile(currentForecastImageName)
 .setAppServiceId(serviceId);
getFile.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 GetFileResponse getFileResponse = (GetFileResponse) response;
 byte[] fileData = getFileResponse.getBulkData();
 SdlArtwork sdlArtwork = new SdlArtwork(fileName, FileType.GRAPHIC_PNG,
fileData, false);
 // Use the sdlArtwork
 }
});
sdlManager.sendRPC(getFile);

The DialNumber RPC allows you make a phone call via the user's phone. In order to dial

a phone number you must be sure that the device is connected via Bluetooth (even if your

device is also connected using a USB cord) for this request to work. If the phone is not

connected via Bluetooth, you will receive a result of REJECTED from the module.

5. Getting a File from a Service Provider

Calling a Phone Number

DialNumber is an RPC that is usually restricted by OEMs. As a result, a module may

reject your request if your app does not have the correct permissions. Your SDL app may

also be restricted to only being allowed to making a phone call when your app is open (i.e.

the hmiLevel is non- NONE) or when it is the currently active app (i.e. the hmiLevel is

FULL).

UUID listenerId =
sdlManager.getPermissionManager().addListener(Arrays.asList(new
PermissionElement(FunctionID.DIAL_NUMBER, null)),
PermissionManager.PERMISSION_GROUP_TYPE_ANY, new
OnPermissionChangeListener() {
 @Override
 public void onPermissionsChange(@NonNull Map<FunctionID, PermissionStatus>
allowedPermissions, int permissionGroupStatus) {
 if (permissionGroupStatus !=
PermissionManager.PERMISSION_GROUP_TYPE_ALL_ALLOWED) {
 // Your app does not have permission to send the `DialNumber` request for
its current HMI level
 return;
 }

 // Your app has permission to send the `DialNumber` request for its current HMI
level
 }
});

Since making a phone call is a newer feature, there is a possibility that some legacy

modules will reject your request because the module does not support the DialNumber

request. Once you have successfully connected to the module, you can check the

module's capabilities via the sdlManager.getSystemCapabilityManager as shown in the

example below. Please note that you only need to check once if the module supports

Checking Your App's Permissions

Checking if the Module Supports
Calling a Phone Number

calling a phone number, however you must wait to perform this check until you know that

the SDL app has been opened (i.e. the hmiLevel is non- NONE).

If you discover that the module does not support calling a phone number or

that your app does not have the right permissions, you should disable any

buttons, voice commands, menu items, etc. in your app that would send the

DialNumber request.

NOT E

private void isDialNumberSupported(final OnCapabilitySupportedListener
capabilitySupportedListener) {
 // Check if the module has phone capabilities
 if
(!sdlManager.getSystemCapabilityManager().isCapabilitySupported(SystemCapabilityT
 {
 capabilitySupportedListener.onCapabilitySupported(false);
 return;
 }

 // Legacy modules (pre-RPC Spec v4.5) do not support system capabilities, so for
versions less than 4.5 we will assume `DialNumber` is supported if
`isCapabilitySupported()` returns true
 SdlMsgVersion sdlMsgVersion =
sdlManager.getRegisterAppInterfaceResponse().getSdlMsgVersion();
 if (sdlMsgVersion == null) {
 capabilitySupportedListener.onCapabilitySupported(true);
 return;
 }
 Version rpcSpecVersion = new Version(sdlMsgVersion);
 if (rpcSpecVersion.isNewerThan(new Version(4, 5, 0)) < 0) {
 capabilitySupportedListener.onCapabilitySupported(true);
 return;
 }

 // Retrieve the phone capability

sdlManager.getSystemCapabilityManager().getCapability(SystemCapabilityType.PHON
 new OnSystemCapabilityListener() {
 @Override
 public void onCapabilityRetrieved(Object capability) {
 PhoneCapability phoneCapability = (PhoneCapability) capability;
 capabilitySupportedListener.onCapabilitySupported(phoneCapability != null ?
phoneCapability.getDialNumberEnabled() : false);
 }

 @Override
 public void onError(String info) {
 capabilitySupportedListener.onError(info);
 }
 }, false);
}

public interface OnCapabilitySupportedListener {
 void onCapabilitySupported(Boolean supported);
 void onError(String info);
}

Once you know that the module supports dialing a phone number and that your SDL app

has permission to send the DialNumber request, you can create and send the request.

DialNumber dialNumber = new DialNumber()
 .setNumber("1238675309");
dialNumber.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 Result result = response.getResultCode();
 if(result.equals(Result.SUCCESS)){
 // `DialNumber` successfully sent
 }else if(result.equals(Result.REJECTED)){
 // `DialNumber` was rejected. Either the call was sent and cancelled or there
is no device connected
 }else if(result.equals(Result.DISALLOWED)){
 // Your app is not allowed to use `DialNumber`
 }
 }
});

sdlManager.sendRPC(dialNumber);

The DialNumber request has three possible responses that you should expect:

1. SUCCESS - The request was successfully sent, and a phone call was initiated by the

user.

2. REJECTED - This can mean either:

Sending a DialNumber Request

DialNumber strips all characters except for 0 - 9 , * , # , , , ; , and + .

NOT E

Dial Number Responses

The user rejected the request to make the phone call.

The phone is not connected to the module via Bluetooth.

3. DISALLOWED - Your app does not have permission to use the DialNumber

request.

The SendLocation RPC gives you the ability to send a GPS location to the active

navigation app on the module.

When using the SendLocation RPC, you will not have access to any information about

how the user interacted with this location, only if the request was successfully sent. The

request will be handled by the module from that point on using the active navigation

system.

The SendLocation RPC is restricted by most OEMs. As a result, a module may reject

your request if your app does not have the correct permissions. Your SDL app may also be

restricted to only being allowed to send a location when your app is open (i.e. the hmiLe

vel is non- NONE) or when it is the currently active app (i.e. the hmiLevel is FULL).

Setting the Navigation
Destination

Checking Your App's Permissions

UUID listenerId =
sdlManager.getPermissionManager().addListener(Arrays.asList(new
PermissionElement(FunctionID.SEND_LOCATION, null)),
PermissionManager.PERMISSION_GROUP_TYPE_ANY, new
OnPermissionChangeListener() {
 @Override
 public void onPermissionsChange(@NonNull Map<FunctionID, PermissionStatus>
allowedPermissions, @NonNull int permissionGroupStatus) {
 if (permissionGroupStatus !=
PermissionManager.PERMISSION_GROUP_TYPE_ALL_ALLOWED) {
 // Your app does not have permission to send the `SendLocation` request for
its current HMI level
 return;
 }

 // Your app has permission to send the `SendLocation` request for its current
HMI level
 }
});

Since some modules will not support sending a location, you should check if the module

supports this feature before trying to use it. Once you have successfully connected to the

module, you can check the module's capabilities via the sdlManager.getSystemCapability

Manager() as shown in the example below. Please note that you only need to check once

if the module supports sending a location, however you must wait to perform this check

until you know that the SDL app has been opened (i.e. the hmiLevel is non- NONE).

Checking if the Module Supports
Sending a Location

If you discover that the module does not support sending a location or that

your app does not have the right permissions, you should disable any

buttons, voice commands, menu items, etc. in your app that would send the

SendLocation request.

NOT E

private void isSendLocationSupported(final OnCapabilitySupportedListener
capabilitySupportedListener) {
 // Check if the module has navigation capabilities
 if
(!sdlManager.getSystemCapabilityManager().isCapabilitySupported(SystemCapabilityT
 {
 capabilitySupportedListener.onCapabilitySupported(false);
 return;
 }

 // Legacy modules (pre-RPC Spec v4.5) do not support system capabilities, so for
versions less than 4.5 we will assume `SendLocation` is supported if
`isCapabilitySupported()` returns true
 SdlMsgVersion sdlMsgVersion =
sdlManager.getRegisterAppInterfaceResponse().getSdlMsgVersion();
 if (sdlMsgVersion == null) {
 capabilitySupportedListener.onCapabilitySupported(true);
 return;
 }
 Version rpcSpecVersion = new Version(sdlMsgVersion);
 if (rpcSpecVersion.isNewerThan(new Version(4, 5, 0)) < 0) {
 capabilitySupportedListener.onCapabilitySupported(true);
 return;
 }

 // Retrieve the navigation capability

sdlManager.getSystemCapabilityManager().getCapability(SystemCapabilityType.NAVI
 new OnSystemCapabilityListener() {
 @Override
 public void onCapabilityRetrieved(Object capability) {
 NavigationCapability navigationCapability = (NavigationCapability) capability;
 capabilitySupportedListener.onCapabilitySupported(navigationCapability !=
null ? navigationCapability.getSendLocationEnabled() : false);
 }

 @Override
 public void onError(String info) {
 capabilitySupportedListener.onError(info);
 }
 }, false);
}

public interface OnCapabilitySupportedListener {
 void onCapabilitySupported(Boolean supported);
 void onError(String info);
}

To use the SendLocation request, you must at minimum include the longitude and

latitude of the location.

SendLocation sendLocation = new SendLocation()
 .setLatitudeDegrees(42.877737)
 .setLongitudeDegrees(-97.380967)
 .setLocationName("The Center")
 .setLocationDescription("Center of the United States");

OasisAddress address = new OasisAddress()
 .setSubThoroughfare("900")
 .setThoroughfare("Whiting Dr")
 .setLocality("Yankton")
 .setAdministrativeArea("SD")
 .setPostalCode("57078")
 .setCountryCode("US-SD")
 .setCountryName("United States");

sendLocation.setAddress(address);
sendLocation.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 Result result = response.getResultCode();
 if(result.equals(Result.SUCCESS)){
 // `SendLocation` successfully sent
 }else if(result.equals(Result.INVALID_DATA)){
 // `SendLocation` was rejected. The request contained invalid data
 }else if(result.equals(Result.DISALLOWED)){
 // Your app is not allowed to use `SendLocation`
 }
 }
});

sdlManager.sendRPC(sendLocation);

The SendLocation request has three possible responses that you should expect:

Using Send Location

Checking the Result of Send Location

1. SUCCESS - Successfully sent.

2. INVALID_DATA - The request contains invalid data and was rejected.

3. DISALLOWED - Your app does not have permission to use the SendLocation

request.

The GetWayPoints and SubscribeWayPoints RPCs are designed to allow you to get the

navigation destination(s) from the active navigation app when the user has activated in-car

navigation.

Both the GetWayPoints and SubscribeWayPoints RPCs are restricted by most OEMs.

As a result, a module may reject your request if your app does not have the correct

permissions. Your SDL app may also be restricted to only being allowed to get waypoints

when your app is open (i.e. the hmiLevel is non- NONE) or when it is the currently active

app (i.e. the hmiLevel is FULL).

Getting the Navigation
Destination (RPC v4.1+)

Checking Your App's Permissions

UUID listenerId =
sdlManager.getPermissionManager().addListener(Arrays.asList(new
PermissionElement(FunctionID.GET_WAY_POINTS, null), new
PermissionElement(FunctionID.SUBSCRIBE_WAY_POINTS, null)),
PermissionManager.PERMISSION_GROUP_TYPE_ANY, new
OnPermissionChangeListener() {
 @Override
 public void onPermissionsChange(@NonNull Map<FunctionID, PermissionStatus>
allowedPermissions, @NonNull int permissionGroupStatus) {
 PermissionStatus getWayPointPermissionStatus =
allowedPermissions.get(FunctionID.GET_WAY_POINTS);
 if (getWayPointPermissionStatus != null &&
getWayPointPermissionStatus.getIsRPCAllowed()) {
 // Your app has permission to send the `GetWayPoints` request for its current
HMI level
 } else {
 // Your app does not have permission to send the `GetWayPoints` request for
its current HMI level
 }

 PermissionStatus subscribeWayPointsPermissionStatus =
allowedPermissions.get(FunctionID.SUBSCRIBE_WAY_POINTS);
 if (subscribeWayPointsPermissionStatus != null &&
subscribeWayPointsPermissionStatus.getIsRPCAllowed()) {
 // Your app has permission to send the `SubscribeWayPoints` request for its
current HMI level
 } else {
 // Your app does not have permission to send the `SubscribeWayPoints`
request for its current HMI level
 }
 }
});

Since some modules will not support getting waypoints, you should check if the module

supports this feature before trying to use it. Once you have successfully connected to the

module, you can check the module's capabilities via the sdlManager.getSystemCapability

Manager() as shown in the example below. Please note that you only need to check once

if the module supports getting waypoints, however you must wait to perform this check

until you know that the SDL app has been opened (i.e. the hmiLevel is non- NONE).

Checking if the Module Supports
Waypoints

If you discover that the module does not support getting navigation

waypoints or that your app does not have the right permissions, you should

disable any buttons, voice commands, menu items, etc. in your app that

would send the GetWayPoints or SubscribeWayPoints requests.

NOT E

private void isGetWaypointsSupported(final OnCapabilitySupportedListener
capabilitySupportedListener) {
 // Check if the module has navigation capabilities
 if
(!sdlManager.getSystemCapabilityManager().isCapabilitySupported(SystemCapabilityT
 {
 capabilitySupportedListener.onCapabilitySupported(false);
 return;
 }

 // Legacy modules (pre-RPC Spec v4.5) do not support system capabilities, so for
versions less than 4.5 we will assume `GetWayPoints` and `SubscribeWayPoints` are
supported if `isCapabilitySupported()` returns true
 SdlMsgVersion sdlMsgVersion =
sdlManager.getRegisterAppInterfaceResponse().getSdlMsgVersion();
 if (sdlMsgVersion == null) {
 capabilitySupportedListener.onCapabilitySupported(true);
 return;
 }
 Version rpcSpecVersion = new Version(sdlMsgVersion);
 if (rpcSpecVersion.isNewerThan(new Version(4, 5, 0)) < 0) {
 capabilitySupportedListener.onCapabilitySupported(true);
 return;
 }

 // Retrieve the navigation capability

sdlManager.getSystemCapabilityManager().getCapability(SystemCapabilityType.NAVI
 new OnSystemCapabilityListener() {
 @Override
 public void onCapabilityRetrieved(Object capability) {
 NavigationCapability navigationCapability = (NavigationCapability) capability;
 capabilitySupportedListener.onCapabilitySupported(navigationCapability !=
null ? navigationCapability.getWayPointsEnabled() : false);
 }

 @Override
 public void onError(String info) {
 capabilitySupportedListener.onError(info);
 }
 }, false);
}

public interface OnCapabilitySupportedListener {
 void onCapabilitySupported(Boolean supported);
 void onError(String info);
}

To subscribe to the navigation waypoints, you will have to set up your callback for

whenever the waypoints are updated, then send the SubscribeWayPoints RPC.

// You can subscribe any time before SDL would send the notification (such as when
you call `sdlManager.start` or at initialization of your manager)
sdlManager.addOnRPCNotificationListener(FunctionID.ON_WAY_POINT_CHANGE,
new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnWayPointChange onWayPointChangeNotification = (OnWayPointChange)
notification;
 // Use the waypoint data
 }
});

// After SDL has started your connection, at whatever point you want to subscribe,
send the subscribe RPC
SubscribeWayPoints subscribeWayPoints = new SubscribeWayPoints();
subscribeWayPoints.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse rpcResponse) {
 if (rpcResponse.getSuccess()){
 // You are now subscribed
 } else {
 // Handle the errors
 }
 }
});

sdlManager.sendRPC(subscribeWayPoints);

To unsubscribe from waypoint data, you must send the UnsubscribeWayPoints RPC.

Subscribing to Waypoints

Unsubscribing from Waypoints

UnsubscribeWayPoints unsubscribeWayPoints = new UnsubscribeWayPoints();
unsubscribeWayPoints.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse rpcResponse) {
 if (rpcResponse.getSuccess()){
 // You are now unsubscribed
 } else {
 // Handle the errors
 }
 }
});

sdlManager.sendRPC(unsubscribeWayPoints);

If you only need waypoint data once without an ongoing subscription, you can use GetWa

yPoints instead of SubscribeWayPoints .

GetWayPoints getWayPoints = new GetWayPoints();
getWayPoints.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse rpcResponse) {
 if (rpcResponse.getSuccess()){
 GetWayPointsResponse getWayPointsResponse = (GetWayPointsResponse)
rpcResponse;
 // Use the waypoint data
 } else {
 // Handle the errors
 }
 }
});

sdlManager.sendRPC(getWayPoints);

One-Time Waypoints Request

In almost all cases, you will not need to handle uploading images because the screen

manager API will do that for you. There are some situations, such as VR help-lists and

turn-by-turn directions, that are not currently covered by the screen manager so you will

have manually upload the image yourself in those cases. For more information about

uploading images, see the Uploading Images guide.

The FileManager uploads files and keeps track of all the uploaded files names during a

session. To send data with the file manager you need to create either a SdlFile or SdlAr

twork object. Both SdlFile s and SdlArtwork s can be created with a Uri , byte[] , or re

sourceId .

SdlFile audioFile = new SdlFile("File Name", FileType.AUDIO_MP3, mp3Data, true);
sdlManager.getFileManager().uploadFile(audioFile, new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 // File upload successful
 }
 }
});

If you want to upload a group of files, you can use the FileManager batch upload

methods. Once all of the uploads have completed you will be notified if any of the uploads

failed.

Uploading Files

Uploading an MP3 Using the File
Manager

Batching File Uploads

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/uploading-images/

sdlManager.getFileManager().uploadFiles(sdlFileList, new
MultipleFileCompletionListener() {
 @Override
 public void onComplete(Map<String, String> errors) {

 }
});

SdlFile and its subclass SdlArtwork support uploading persistent files, i.e. files that are

not deleted when the car turns off. Persistence should be used for files that will be used

every time the user opens the app. If the file is only displayed for short time the file should

not be persistent because it will take up unnecessary space on the head unit. You can

check the persistence via:

Boolean isPersistent = file.isPersistent();

File Persistence

Be aware that persistence will not work if space on the head unit is limited.

The FileManager will always handle uploading images if they are non-

existent.

NOT E

Overwriting Stored Files

If a file being uploaded has the same name as an already uploaded file, the new file will be

ignored. To override this setting, set the SdlFile 's overwrite property to true .

file.setOverwrite(true);

To find the amount of file storage left for your app on the head unit, use the

FileManager ’s bytesAvailable property.

int bytesAvailable = sdlManager.getFileManager().getBytesAvailable();

You can check out if an image has already been uploaded to the head unit via the FileMa

nager 's remoteFileNames property.

Boolean fileIsOnHeadUnit =
sdlManager.getFileManager().getRemoteFileNames().contains("Name Uploaded As");

Checking the Amount of File Storage
Left

Checking if a File Has Already Been
Uploaded

Deleting Stored Files

Use the file manager’s delete request to delete a file associated with a file name.

sdlManager.getFileManager().deleteRemoteFileWithName("Name Uploaded As", new
CompletionListener() {
 @Override
 public void onComplete(boolean success) {

 }
});

sdlManager.getFileManager().deleteRemoteFilesWithNames(remoteFiles, new
MultipleFileCompletionListener() {
 @Override
 public void onComplete(Map<String, String> errors) {

 }
});

Batch Deleting Files

Uploading Images

You should be aware of these four things when using images in your SDL app:

1. You may be connected to a head unit that does not have the ability to display

images.

2. You must upload images from your mobile device to the head unit before using

them in a template.

3. Persistent images are stored on a head unit between sessions. Ephemeral images

are destroyed when a session ends (i.e. when the user turns off their vehicle).

4. Images can not be uploaded when the app's hmiLevel is NONE. For more

information about permissions, please review Understanding Permissions.

Before uploading images to a head unit you should first check if the head unit supports

graphics. If not, you should avoid uploading unnecessary image data. To check if graphics

are supported, check the getCapability() method of a valid SystemCapabilityManager

obtained from sdlManager.getSystemCapabilityManager() to find out the display

capabilities of the head unit.

List<ImageField> imageFields =
sdlManager.getSystemCapabilityManager().getDefaultMainWindowCapability().getIma

boolean imagesSuported = (imageFields.size() > 0);

If you use the ScreenManager , image uploading for template graphics, soft

buttons, and menu items is handled for you behind the scenes. However, you

will still need to manually upload your images if you need images in an alert,

VR help lists, turn-by-turn directions, or other features not currently covered

by the ScreenManager .

NOT E

Checking if Graphics are Supported

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/understanding-permissions/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/template-images/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/template-custom-buttons/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/main-menu/

The FileManager uploads files and keeps track of all the uploaded files names during a

session. To send data with the FileManager , you need to create either a SdlFile or Sdl

Artwork object. Both SdlFile s and SdlArtwork s can be created with a Uri , byte[] , or

resourceId .

SdlArtwork artwork = new SdlArtwork("image_name", FileType.GRAPHIC_PNG, image,
false);
sdlManager.getFileManager().uploadFile(artwork, new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success){
 // Image Upload Successful
 }
 }
});

Similar to other files, artworks can be persistent, batched, overwrite, etc. See Uploading

Files for more information.

SDL allows OEMs to offer an app store that lets users browse and install remote cloud

apps. If the cloud app requires users to login with their credentials, the app store can use

an authentication token to automatically login users after their first session.

Uploading an Image Using the File
Manager

Batch File Uploads, Persistence, etc.

Creating an OEM Cloud App Store
(RPC v5.1+)

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/uploading-files/

App stores can handle user authentication for the installed cloud apps. For example, users

can log in after installing a cloud app using the app store. After that, the app store will

save an authentication token for the cloud app in the local policy table. Then, the cloud

app can retrieve the authentication token from the local policy table and use it to

authenticate a user with the application. If desired, an optional parameter, CloudAppVehi

cleID , can be used to identify the head unit.

An OEM's app store can manage the properties of a specific cloud app by setting and

getting its CloudAppProperties . This table summarizes the properties that are included

in CloudAppProperties :

An OEM app store can be a mobile app or a cloud app.

NOT E

User Authentication

Setting and Getting Cloud App
Properties

PA R A M E T E R N A M E D E S C R I P T I O N

appID appID for the cloud app

nicknames

List of possible names for the cloud app. The

cloud app will not be allowed to connect if its

name is not contained in this list

enabled If true, cloud app will be displayed on HMI

authToken
Used to authenticate the user, if the app

requires user authentication

cloudTransportType

Specifies the connection type Core should use.

Currently Core supports WS and WSS , but an

OEM can implement their own transport

adapter to handle different values

hybridAppPreference

Specifies the user preference to use the cloud

app version, mobile app version, or whichever

connects first when both are available

endpoint Remote endpoint for websocket connections

Only trusted app stores are allowed to set or get CloudAppProperties for

other cloud apps.

NOT E

Setting Cloud App Properties

App stores can set properties for a cloud app by sending a SetCloudAppProperties

request to Core to store them in the local policy table. For example, in this piece of code,

the app store can set the authToken to associate a user with a cloud app after the user

logs in to the app by using the app store:

CloudAppProperties cloudAppProperties = new CloudAppProperties("<appId>");
cloudAppProperties.setAuthToken("<auth token>");
SetCloudAppProperties setCloudAppProperties = new
SetCloudAppProperties(cloudAppProperties);
setCloudAppProperties.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (response.getSuccess()) {
 DebugTool.logInfo("SdlService", "Request was successful.");
 } else {
 DebugTool.logInfo("SdlService", "Request was rejected.");
 }
 }
});
sdlManager.sendRPC(setCloudAppProperties);

To retrieve cloud properties for a specific cloud app from local policy table, app stores can

send GetCloudAppProperties and specify the appId for that cloud app as in this

example:

Getting Cloud App Properties

GetCloudAppProperties getCloudAppProperties = new GetCloudAppProperties("
<appId>");
getCloudAppProperties.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (response.getSuccess()) {
 DebugTool.logInfo("SdlService", "Request was successful.");
 GetCloudAppPropertiesResponse getCloudAppPropertiesResponse =
(GetCloudAppPropertiesResponse) response;
 CloudAppProperties cloudAppProperties =
getCloudAppPropertiesResponse.getCloudAppProperties();
 // Use cloudAppProperties
 } else {
 DebugTool.logInfo("SdlService", "Request was rejected.");
 }
 }
});
sdlManager.sendRPC(getCloudAppProperties);

Cloud app developers don't need to add any code to download the app icon. The cloud app

icon will be automatically downloaded from the url provided by the policy table and sent to

Core to be later displayed on the HMI.

When users install cloud apps from an OEM's app store, they may be asked to login to that

cloud app using the app store. After logging in, app store can save the authToken in the

local policy table to be used later by the cloud app for user authentication.

A cloud app can retrieve its authToken from local policy table after starting the RPC

service. The authToken can be used later by the app to authenticate the user:

String authToken = sdlManager.getAuthToken();

GETTING THE C LOU D AP P IC ON

Getting the Authentication Token

The CloudAppVehicleID is an optional parameter used by cloud apps to identify a head

unit. The content of CloudAppVehicleID is up to the OEM's implementation. Possible

values could be the VIN or a hashed VIN.

The CloudAppVehicleID value can be retrieved as part of the GetVehicleData RPC. To

find out more about how to retrieve CloudAppVehicleID , check out the Retrieving Vehicle

Data section.

Some OEMs may want to encrypt messages passed between your SDL app and the head

unit. If this is the case, when you submit your app to the OEM for review, they will ask you

to add a security library to your SDL app. It is also possible to encrypt messages even if

the OEM does not require encryption. In this case, you will have to work with the OEM to

get a security library. This section will show you how to add the security library to your

SDL app and configure optional encryption.

OEMs may want to encrypt all or some of the RPCs being transmitted between your SDL

app and SDL Core. The library will handle encrypting and decrypting RPCs that are required

to be encrypted.

OEMs may want to encrypt video and audio streaming. Information on how to set up

encrypted video and audio streaming can be found in Video Streaming for Navigation Apps

Getting CloudAppVehicleID (Optional)

Encryption

When Encryption is Needed

OEM Required Encrypted RPCs

OEM Required Encrypted Video and Audio

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/retrieving-vehicle-data/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/video-streaming-for-navigation-apps/introduction/

> Introduction. The library will handle encrypting the video and audio data sent to the head

unit.

You may want to encrypt some or all of the RPCs you send to the head unit even if the

OEM does not require that they be protected. In that case you will have to manually

configure the payload protection status of every RPC that you send. Please note that if you

require that an RPC be encrypted but there is no security manager configured for the

connected head unit, then the RPC will not be sent by the library.

Each OEM that supports SDL will have their own proprietary security library. You must add

all required security libraries in the encryption configuration when you are configuring the

SDL app.

List<Class<? extends SdlSecurityBase>> secList = new ArrayList<>();
secList.add(OEMSdlSecurity.class);
builder.setSdlSecurity(secList, serviceEncryptionListener);

Optional Encryption

For optional encryption to work, you must work with each OEM to obtain

their proprietary security library.

NOT E

Creating the Encryption Configuration

Getting the Encryption Status

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/video-streaming-for-navigation-apps/introduction/

Since it can take a few moments to set up the encryption manager, you must wait until you

know that setup has completed before sending encrypted RPCs. If your RPC is sent before

setup has completed, your RPC will not be sent. You can implement the ServiceEncryptio

nListener , which is set in Builder.setSdlSecurity , to get updates to the encryption

manager state.

ServiceEncryptionListener serviceEncryptionListener = new
ServiceEncryptionListener() {
 @Override
 public void onEncryptionServiceUpdated(@NonNull SessionType serviceType,
boolean isServiceEncrypted, @Nullable String error) {
 if (isServiceEncrypted) {
 // Encryption manager can encrypt
 }
 }
};

If you want to encrypt a specific RPC, you must configure the payload protected status of

the RPC before you send it to the head unit. In order to send RPCs with optional encryption

you must call startRPCEncryption on the sdlManager to make sure the encryption

manager gets started correctly. The best place to put startRPCEncryption is in the

successful callback of the SdlManagerListener 's onStart method.

sdlManager.startRPCEncryption();

Then, once you know the encryption manager has started successfully via encryption

manager state updates to your ServiceEncryptionListener object, you can start to send

encrypted RPCs by setting setPayloadProtected to true .

Setting Optional Encryption

GetVehicleData getVehicleData = new GetVehicleData()
 .setGps(true);
getVehicleData.setPayloadProtected(true);

sdlManager.sendRPC(getVehicleData);

Mobile navigation allows map partners to easily display their maps as well as present

visual and audio turn-by-turn prompts on the head unit.

Navigation apps have different behavior on the head unit than normal applications. The

main differences are:

Navigation apps don't use base screen templates. Their main view is the video

stream sent from the device.

Navigation apps can send audio via a binary stream. This will attenuate the current

audio source and should be used for navigation commands.

Navigation apps can receive touch events from the video stream.

Introduction

In order to use SDL's Mobile Navigation feature, the app must have a

minimum requirement of Android 4.4 (SDK 19). This is due to using

Android's provided video encoder.

NOT E

Configuring a Navigation App

The basic connection setup is similar for all apps. Please follow the Integration Basics

guide for more information.

In order to create a navigation app an appHMIType of NAVIGATION must be set in the

SdlManager 's Builder .

The second difference is the ability to call the setSdlSecurity(List<Class<? extends SdlSe

curityBase>> secList) method from the SdlManager.Builder if connecting to an

implementation of Core that requires secure video and audio streaming. This method

requires an array of security libraries, which will extend the SdlSecurityBase class. These

security libraries are provided by the OEMs themselves, and will only work for that OEM.

There is no general catch-all security library.

SdlManager.Builder builder = new SdlManager.Builder(this, APP_ID, APP_NAME,
listener);

Vector<AppHMIType> hmiTypes = new Vector<AppHMIType>();
hmiTypes.add(AppHMIType.NAVIGATION);
builder.setAppTypes(hmiTypes);

// Add security managers if Core requires secure video & audio streaming
List<Class<? extends SdlSecurityBase>> secList = new ArrayList<>();
secList.add(OEMSdlSecurity.class);
builder.setSdlSecurity(secList, serviceEncryptionListener);

MultiplexTransportConfig mtc = new MultiplexTransportConfig(this, APP_ID,
MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);
mtc.setRequiresHighBandwidth(true);
builder.setTransportType(mtc);

sdlManager = builder.build();
sdlManager.start();

When compiling your app for production, make sure to include all possible

OEM security managers that you wish to support.

MUS T

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/integration-basics-java/

To present a keyboard (such as for searching for navigation destinations), you should use

the ScreenManager 's keyboard presentation feature. For more information, see the

Popup Keyboards guide.

Head units supporting RPC v6.0+ may support navigation-specific subscription buttons for

the navigation template. These subscription buttons allow your user to manipulate the

map using hard buttons located on car's center console or steering wheel. It is important

to support these subscription buttons in order to provide your user with the expected in-

car navigation user experience. This is especially true on head units that don't support

touch input as there will be no other way for your user to manipulate the map. See

Template Subscription Buttons for a list of these navigation buttons.

Between your navigation app, other navigation apps, and embedded navigation, only one

route should be in progress at a time. To know when the embedded navigation or another

navigation app has started a route, create a navigation service and when your service

becomes inactive, your app should cancel any active route.

Keyboard Input

Navigation Subscription Buttons

When to Cancel Your Route

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/popup-keyboards/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/template-subscription-buttons/
https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/other-sdl-features/creating-an-app-service/

In order to stream video from an SDL app, we only need to manage a few things. For the

most part, the library will handle the majority of logic needed to perform video streaming.

sdlManager.getSystemCapabilityManager().addOnSystemCapabilityListener(SystemC
 new OnSystemCapabilityListener() {
 @Override
 public void onCapabilityRetrieved(Object capability) {
 AppServicesCapabilities appServicesCapabilities = (AppServicesCapabilities)
capability;
 if (appServicesCapabilities.getAppServices() != null &&
appServicesCapabilities.getAppServices().size() > 0) {
 for (AppServiceCapability appServiceCapability :
appServicesCapabilities.getAppServices()) {
 if
(appServiceCapability.getUpdatedAppServiceRecord().getServiceManifest().getService
 {
 boolean serviceActive =
appServiceCapability.getUpdatedAppServiceRecord().getServiceActive();
 if (!serviceActive) {
 //Cancel your active route
 }
 }
 }
 }
 }

 @Override
 public void onError(String info) {
 // Handle Error
 }
});

Video Streaming (RPC v4.5+)

SDL Remote Display

The SdlRemoteDisplay base class provides the easiest way to start streaming using

SDL. The SdlRemoteDisplay is extended from Android's Presentation class with

modifications to work with other aspects of the SDL Android library.

Extending this class gives developers a familiar, native experience to handling layouts and

events on screen.

public static class MyDisplay extends SdlRemoteDisplay{
 public MyDisplay(Context context, Display display) {
 super(context, display);
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.stream);

 Button button = findViewById(R.id.button);

 button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 DebugTool.logInfo(TAG, "Button Clicked");
 }
 });
 }

 //onViewResized is added in SDL v5.1+
 @Override
 public void onViewResized(int width, int height) {
 DebugTool.logInfo(TAG, "Remote view new width and height ("+ width + ", " +
height + ")");
 }
}

It is recommended that you extend this as a local class within the service

that has the SdlManager instance.

NOT E

The VideoStreamManager can be used to start streaming video after the SdlManager

has successfully been started. This is performed by calling the method startRemoteDispl

ayStream(Context context, final Class<? extends SdlRemoteDisplay> remoteDisplay, final

VideoStreamingParameters parameters, final boolean encrypted, VideoStreamingRange su

pportedLandscapeStreamingRange, VideoStreamingRange supportedPortraitStreamingRa

nge) .

If you are obfuscating the code in your app, make sure to exclude your class

that extends SdlRemoteDisplay . For more information on how to do that,

you can check Proguard Guidelines.

NOT E

Managing the Stream

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/proguard-guidelines/

When the HMIStatus is back to HMI_NONE it is time to stop the stream. This is

accomplished through a method stopStreaming() .

public static class MyDisplay extends SdlRemoteDisplay {

 public MyDisplay(Context context, Display display) {
 super(context, display);
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.stream);

 String videoUri = "android.resource://" + context.getPackageName() + "/" +
R.raw.sdl;
 VideoView videoView = findViewById(R.id.videoView);
 videoView.setVideoURI(Uri.parse(videoUri));
 videoView.start();
 }

 //onViewResized is added in SDL v5.1+
 @Override
 public void onViewResized(int width, int height) {
 DebugTool.logInfo(TAG, "Remote view new width and height ("+ width + ", " +
height + ")");
 }
}

//...

if (sdlManager.getVideoStreamManager() != null) {
 sdlManager.getVideoStreamManager().start(new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {

sdlManager.getVideoStreamManager().startRemoteDisplayStream(getApplicationCon
 MyDisplay.class, null, false, null, null);
 } else {
 DebugTool.logError(TAG, "Failed to start video streaming manager");
 }
 }
 });
}

Ending the Stream

Map<FunctionID, OnRPCNotificationListener> onRPCNotificationListenerMap = new
HashMap<>();
onRPCNotificationListenerMap.put(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnHMIStatus status = (OnHMIStatus) notification;
 if (status != null && status.getHmiLevel() == HMILevel.HMI_NONE) {

 //Stop the stream
 if (sdlManager.getVideoStreamManager() != null &&
sdlManager.getVideoStreamManager().isStreaming()) {
 sdlManager.getVideoStreamManager().stopStreaming();
 }

 }
 }
});
builder.setRPCNotificationListeners(onRPCNotificationListenerMap);

If the HMI scales the video stream, you will have to handle scaling the projected view,

touches and haptic rectangles yourself (this is all handled for you behind the scenes in the

VideoStreamManager API). To find out if the HMI scales the video stream, you must for

query and check the VideoStreamingCapability for the scale property. Please check the

Adaptive Interface Capabilities section for more information on how to query for this

property using the system capability manager.

Starting with SDL version 5.1+ the VideoStreamingParameters you provide will

automatically be aligned with the VideoStreamingCapabilities provided by the HMI.

If the HMI provides the scale or resolution in the VideoStreamingCapabilities the video

stream will use that scale or resolution. Otherwise, the scale or resolution you defined in

the VideoStreamingParameters will be used.

If the HMI provides the bitrate or preferred frame rate in the VideoStreamingCapabilities

and they are also defined in the VideoStreamingParamerters you provided, the smaller

bitrate or preferred frame rate will be used.

Handling HMI Scaling (RPC v6.0+)

Video Streaming Parameters (SDL v5.1+)

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/adaptive-interface-capabilities/

Starting with SDL v5.1, the video stream manager works behind the scene to create a

consistent video stream that matches the framerate set in VideoStreamingParameters .

This is the now the default behavior but you have the option to revert to the old behavior

by setting the stableFrameRate flag to false in the VideoStreamingParameters .

VideoStreamingParameters params = new VideoStreamingParameters();
//Turn on use of stable frame rate
params.setStableFrameRate(true);
//Set the frame rate that you would wish to stream at
params.setFrameRate(30);

Some HMIs support multiple view sizes and may resize your SDL app's view during video

streaming (i.e. to a collapsed view, split screen, preview mode or picture-in-picture). By

default, your app will support all the view sizes and the VideoStreamManager will resize

the video stream when the HMI notifies the app of the updated screen size.

If you you wish to support only some screen sizes, you can configure the two VideoStrea

mingRange parameters when starting your video stream using the startRemoteDisplay

method. One range is for landscape orientations and one range is for portrait orientations.

In these VideoStreamingRange parameters you can define different view sizes that you

wish to support in the event that the HMI resizes the view during the stream.

In the VideoStreamingRange you will define a minimum and maximum resolution,

minimum diagonal, and a minimum and maximum aspect ratio. Any values you do not

wish to use should be set to null .

If you want to support all possible landscape or portrait sizes you can simply pass null

for supportedLandscapeStreamingRange , supportedPortraitStreamingRange , or both.

If you wish to only support landscape orientation or only support portrait orientation you

"disable" the range by passing a VideoStreamingRange with all 0 values set.

Video Framerate

Supporting Different Video Streaming Window Sizes
(RPC v7.1+)

If the HMI resizes the view during the stream, the video stream will automatically restart

with the new size and the onViewResized method you defined in your presentation class

will be notified of the new screen size.

//This VideoStreamingRange represents a disabled Range and can be passed if you
do not wish to support landscape orientation or portrait orientation
final VideoStreamingRange disabledRange = new VideoStreamingRange(new
Resolution(0, 0), new Resolution(0, 0), 0.0, 0.0, 0.0);

//This VideoStreamingRange represents that we will support any resolution between
500x200 and 800x400 no matter the diagonal size or aspect ratio
final VideoStreamingRange landscapeRange = new VideoStreamingRange(new
Resolution(500, 200), new Resolution(800, 400), null, null, null);

//This VideoStreamingRange represents that we will support any aspect ratio
between 1.0 and 2.5 no matter the resolution or diagonal size
final VideoStreamingRange portraitRange = new VideoStreamingRange(null, null, null,
1.0, 2.5);

if (sdlManager.getVideoStreamManager() != null) {
 sdlManager.getVideoStreamManager().start(new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {

sdlManager.getVideoStreamManager().startRemoteDisplayStream(getApplicationCon
 MyDisplay.class, null, false, landscapeRange, portraitRange);
 } else {
 DebugTool.logError(TAG, "Failed to start video streaming manager");
 }
 }
 });
}

If you disable both the supportedLandscapeStreamingRange and supporte

dPortraitStreamingRange , video will not stream.

NOT E

public static class MyDisplay extends SdlRemoteDisplay{
 public MyDisplay(Context context, Display display) {
 super(context, display);
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 //...
 }

 //onViewResized is added in SDL v5.1+
 @Override
 public void onViewResized(int width, int height) {
 DebugTool.logInfo(TAG, "Remote view new width and height ("+ width + ", " +
height + ")");
 //Update presentation based on new resolution
 }
}

A navigation app can stream raw audio to the head unit. This audio data is played

immediately. If audio is already playing, the current audio source will be attenuated and

your audio will play. Raw audio must be played with the following parameters:

Format: PCM

Sample Rate: 16k

Number of Channels: 1

Bits Per Second (BPS): 16 bits per sample / 2 bytes per sample

To stream audio from a SDL app, use the AudioStreamingManager class. A reference to

this class is available from the SdlManager s audioStreamManager property.

The AudioStreamManager will help you to do on-the-fly transcoding and streaming of

your files in mp3 or other formats, or prepare raw PCM data to be queued and played.

Audio Streaming

Audio Stream Manager

To stream audio, we call sdlManager.getAudioStreamManager().start() which will start

the manager. When that callback returns with a success, call sdlManager.getAudioStream

Manager().startAudioStream() . Once this callback returns successfully you can send and

play audio.

if (sdlManager.getAudioStreamManager() == null) {
 // Handle the failure
 return;
}

sdlManager.getAudioStreamManager().start(new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (!success) {
 // Failed to start audio streaming manager
 return;
 }
 sdlManager.getAudioStreamManager().startAudioStream(false, new
CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (!success) {
 // Failed to start audio stream
 return;
 }
 // Push Audio Source
 }
 });
 }
});

Starting the Audio Manager

P L AYING FROM FIL E

//Push from Uri Audio Source
sdlManager.getAudioStreamManager().pushAudioSource(audioSourceUri, new
CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 DebugTool.logInfo(TAG, "Audio Uri played successfully!");
 } else {
 DebugTool.logInfo(TAG, "Audio Uri failed to play!");
 }
 }
});

//Push from Raw Audio Source
sdlManager.getAudioStreamManager().pushResource(R.raw.exampleMp3, new
CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 DebugTool.logInfo(TAG, "Audio file played successfully!");
 } else {
 DebugTool.logInfo(TAG, "Audio file failed to play!");
 }
 }
});

//Push from ByteBuffer Audio Source
sdlManager.getAudioStreamManager().pushBuffer(byteBuffer, new
CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 DebugTool.logInfo(TAG, "Buffer played successfully!");
 } else {
 DebugTool.logInfo(TAG, "Buffer failed to play!");
 }
 }
});

P L AYING FROM DATA

When the stream is complete, or you receive HMI_NONE , you should stop the stream by

calling:

sdlManager.getAudioStreamManager().stopAudioStream(new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 // do something once the stream is stopped
 }
});

SDL now supports "haptic" input: input from something other than a touch screen. This

could include trackpads, click-wheels, etc. These kinds of inputs work by knowing which

views on the screen are touchable and focusing / highlighting on those areas when the

user moves the trackpad or click wheel. When the user selects within a view, the center of

that area will be "touched".

STOP P ING THE AU DIO STREAM

Supporting Haptic Input (RPC
v4.5+)

Currently, there are no RPCs for knowing which view is highlighted, so your

UI will have to remain static (i.e. you should not create a scrolling menu in

your SDL app).

NOT E

SDL has support for automatically detecting focusable views within your UI and sending

that data to the head unit. You will still need to tell SDL when your UI changes so that it

can re-scan and detect the views to be sent.

The easiest way to use this is by taking advantage of SDL's Presentation class. This will

automatically check if the capability is available and instantiate the manager for you. All

you have to do is set your layout:

public static class MyPresentation extends SdlRemoteDisplay {

 public MyPresentation(Context context, Display display) {
 super(context, display);
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.haptic_layout);
 LinearLayout videoView = (LinearLayout) findViewById(R.id.cat_view);
 videoView.setOnTouchListener(new View.OnTouchListener() {
 @Override
 public boolean onTouch(View view, MotionEvent motionEvent) {
 // ...Update something on the ui

 MyPresentation.this.invalidate();

 return false;
 }
 });
 }
}

This will go through your view that was passed in and then find and send the rects to the

head unit for use. When your UI changes, call invalidate() from your class that extends S

dlRemoteDisplay .

Automatic Focusable Rectangles

Manual Focusable Rects

It is also possible that you may want to create your own rects instead of using the

automated methods in the Presentation class. It is important that if sending this data

yourself that you also use the SystemCapabilityManager to check if you are on a head

unit that supports this feature. If the capability is available, it is easy to build the area you

want to become selectable:

public void sendHapticData() {
 Rectangle rectangle = new Rectangle()
 .setX((float) 1.0)
 .setY((float) 1.0)
 .setWidth((float) 1.0)
 .setHeight((float) 1.0);

 HapticRect hapticRect = new HapticRect()
 .setId(123)
 .setRect(rectangle);

 ArrayList<HapticRect> hapticArray = new ArrayList<HapticRect>();
 hapticArray.add(0, hapticRect);

 SendHapticData sendHapticData = new SendHapticData();
 sendHapticData.setHapticRectData(hapticArray);

 sdlManager.sendRPC(sendHapticData);
}

Each SendHapticData RPC should contain the entirety of all clickable areas to be

accessed via haptic controls.

While your app is navigating the user, you will also want to send turn by turn directions.

This is useful for if your app is in the background or if the user is in the middle of a phone

call, and gives the system additional information about the next maneuver the user must

make.

When your navigation app is guiding the user to a specific destination, you can provide the

user with visual and audio turn-by-turn prompts. These prompts will be presented even

Displaying Turn Directions

when your SDL app is backgrounded or a phone call is ongoing.

While your app is navigating the user, you will also want to send turn by turn directions.

This is useful if your app is in the background or if the user is in the middle of a phone call,

and gives the system additional information about the next maneuver the user must make.

To create a turn-by-turn direction that provides both a visual and audio cues, a

combination of the ShowConstantTBT and AlertManeuver RPCs must should be sent

to the head unit.

The visual data is sent using the ShowConstantTBT RPC. The main properties that

should be set are navigationText1 , navigationText2 , and turnIcon . A best practice for

navigation apps is to use the navigationText1 as the direction to give (i.e. turn right) and

navigationText2 to provide the distance to that direction (i.e. 3 mi.).

The audio data is sent using the AlertManeuver RPC. When sent, the head unit will speak

the text you provide (e.g. In 3 miles turn right).

If the connected device has received a phone call in the vehicle, the AlertMa

neuver is the only way for your app to inform the user of the next turn.

NOT E

Visual Turn Directions

Audio Turn Directions

Sending Audio and Visual Turn
Directions

ShowConstantTbt turnByTurn = new ShowConstantTbt()
 .setNavigationText1("Turn Right")
 .setNavigationText2("3 mi")
 .setTurnIcon(turnIcon);
turnByTurn.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (!response.getSuccess()){
 DebugTool.logError(TAG, "onResponse: Error sending TBT");
 return;
 }

 AlertManeuver alertManeuver = new AlertManeuver()
 .setTtsChunks(Collections.singletonList(new TTSChunk("In 3 miles turn
right", SpeechCapabilities.TEXT)));
 alertManeuver.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (!response.getSuccess()){
 DebugTool.logError(TAG, "onResponse: Error sending AlertManeuver");
 }
 }
 });
 sdlManager.sendRPC(alertManeuver);
 }
 });
sdlManager.sendRPC(turnByTurn);

Remember when sending a Image , that the image must first be uploaded to the head unit

with the FileManager .

To clear a navigation direction from the screen, send a ShowConstantTbt with the mane

uverComplete property set to true. This will also clear the accompanying

AlertManeuver .

Clearing the Turn Directions

ShowConstantTbt turnByTurn = new ShowConstantTbt()
 .setManeuverComplete(true);
turnByTurn.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (!response.getSuccess()){
 DebugTool.logError(TAG, "onResponse: Error sending TBT");
 }
 }
});
sdlManager.sendRPC(turnByTurn);

When building a video-streaming navigation application, you can choose to create a

custom menu using your own UI or use the built-in SDL menu system. The SDL menu

allows you to display a menu structure so users can select menu options or submenus.

For more information about the SDL menu system, see menus. It's recommended to use

the built-in SDL menu system to have better performance, automatic driver distraction

support - such as list limitations and text sizing, and more.

To open the SDL built-in menu from your video streaming UI, see 'Opening the Built-In

Menu' below.

The Show Menu RPC allows you to open the menu programmatically. That way, you can

open the menu from your own UI.

To show the top level menu use sdlManager.screenManager.openMenu .

Video Streaming Menu

Opening the Built-In Menu

Show Top Level Menu

https://smartdevicelink.com/en/guides/android/displaying-a-user-interface/main-menu/

sdlManager.getScreenManager().openMenu();

You can also open the menu directly to a sub-menu. This is further down the tree than the

top-level menu. To open a sub-menu, pass a cell that contains sub-cells. If the cell has no

sub-cells the method call will fail.

sdlManager.getScreenManager().openSubMenu(cellWithSubCells);

If you choose to not use the built-in SDL menu system and instead want to use your own

menu UI, you need to have a way for users to close your application. This should be done

through a menu option in your UI that sends the CloseApplication RPC.

Show Sub-Menu

The sub-cell you use in openSubMenu must be included in sdlManager.scr

eenManager.menu array. If it is not included in the array, the method call will

fail.

NOT E

Close Application

CloseApplication closeApplication = new CloseApplication();
sdlManager.sendRPC(closeApplication);

SDL Java Suite has a built-in logging framework that is designed to make debugging

easier. It provides many of the features common to other 3rd party logging frameworks for

java and can be used by your own app as well. We recommend that your app's integration

with SDL provide logging using this framework rather than any other 3rd party framework

your app may be using or System.out.print . This will consolidate all SDL related logs into

a common format and to a common destination.

To make sure that log messages are displayed, you should enable the SDL Debug Tool:

DebugTool.enableDebugTool();

This RPC is unnecessary if you are using OpenMenu because OEMs will

take care of providing a close button into your menu themselves.

NOT E

Configuring SDL Logging

Enabling the DebugTool

If you don't want the messages to be logged, you can disable the Debug Tool anytime:

DebugTool.disableDebugTool();

The SDL debug tool can be used to log messages with different log levels. The log level

defines how serious the log message is. This table summarizes when to use each log

level:

L O G L E V E L W H E N T O U S E

To log an info message:

If you use SDL Debug Tool to log messages without enabling the DebugTool

nothing wrong will happen. It will simply not display the log messages. This

gives the develop control on whether the logs should be displayed or not.

NOT E

Logging messages

Info Use this to post useful information to the log

Warning
Use this when you suspect something shady is

going on

Error Use this when bad stuff happens

DebugTool.logInfo(TAG, "info message goes here");

To log a warning message:

DebugTool.logWarning(TAG, "warning message goes here");

To log an error message:

DebugTool.logError(TAG, "error message goes here");

If you want to log error message with exception, you can add the exception as a second

parameter to the logError method:

DebugTool.logError(TAG, "error message goes here", new SdlException("Sdl
connection failed", SdlExceptionCause.SDL_CONNECTION_FAILED));

The log level defines which logs will be logged to the target outputs. For example, if you

set the log level filter in Logcat to Warning , all error, and warning logs will be logged,

but info level logs will not be logged.

Filtering logs

L O G L E V E L V I S I B L E L O G S

This guide is to help developers get setup with the SDL Android library 4.4. Upgrading apps

to utilize the multiplexing transport flow will require us to do a few steps. This guide will

assume the SDL library is already integrated into the app.

We will make changes to:

SdlService

SdlRouterService (new)

SdlBroadcastReceiver

MainActivity

The SmartDeviceLink proxy object instantiation needs to change to the new constructor.

We also need to check for a boolean extra supplied through the intent that started the

service.

The old instantiation should look similar to this:

Error error

Warning error and warning

Info error, warning, and info

Updating to 4.4 (Upgrading To
Multiplexing)

SmartDeviceLink Service

 proxy = new SdlProxyALM(this, APP_NAME, true, APP_ID);

The new constructor should look like this

public class SdlService extends Service implements IProxyListenerALM {

 //...

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 boolean forceConnect = intent !=null &&
intent.getBooleanExtra(TransportConstants.FORCE_TRANSPORT_CONNECTED,
false);
 if (proxy == null) {
 try {
 //Create a new proxy using Bluetooth transport
 //The listener, app name,
 //whether or not it is a media app and the applicationId are supplied.
 proxy = new SdlProxyALM(this.getBaseContext(),this, APP_NAME, true,
APP_ID);
 } catch (SdlException e) {
 //There was an error creating the proxy
 if (proxy == null) {
 //Stop the SdlService
 stopSelf();
 }
 }
 }else if(forceConnect){
 proxy.forceOnConnected();
 }

 //use START_STICKY because we want the SDLService to be explicitly started
and stopped as needed.
 return START_STICKY;
 }

Notice we now gather the extra boolean from the intent and add to our if-else statement. If

the proxy is not null, we need to check if the supplied boolean extra is true and if so, take

action.

 if (proxy == null) {
 //...
 }else if(forceConnect){
 proxy.forceOnConnected();
 }

The SdlRouterService will listen for a bluetooth connection with an SDL enabled module.

When a connection happens, it will alert all SDL enabled apps that a connection has been

established and they should start their SDL services.

We must implement a local copy of the SdlRouterService into our project. The class

doesn't need any modification, it's just important that we include it. We will extend the co

m.smartdevicelink.transport.SdlRouterService in our class named SdlRouterService :

public class SdlRouterService extends
com.smartdevicelink.transport.SdlRouterService {
//Nothing to do here
}

SmartDeviceLink Router Service
(New)

Do not include an import for com.smartdevicelink.transport.SdlRouterServi

ce . Otherwise, we will get an error for 'SdlRouterService' is already defined i

n this compilation unit .

NOT E

If you created the service using the Android Studio template then the service should have

been added to your AndroidManifest.xml otherwise the service needs to be added in the

manifest. Because we want our service to be seen by other SDL enabled apps, we need to

set android:exported="true" . The system may issue a lint warning because of this, so we

can suppress that using tools:ignore="ExportedService" . Once added, it should be

defined like below:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.company.mySdlApplication">

 <application>

 ...

 <service
 android:name="com.company.mySdlApplication.SdlRouterService"
 android:exported="true"
 android:process="com.smartdevicelink.router"
 tools:ignore="ExportedService">
 </service>

 </application>

 ...

</manifest>

The local extension of the com.smartdevicelink.transport.SdlRouterService

must be named SdlRouterService .

MUS T

Make sure this local class (SdlRouterService.java) is in the same package of

SdlReceiver.java (described below)

MUS T

The SmartDeviceLink Android Library now includes a base BroadcastReceiver that needs

to be used. It's called SdlBroadcastReceiver . Our old BroadcastReceiver will just need to

extend this class instead of the Android BroadcastReceiver. Two abstract methods will be

automatically populate the class, we will fill them out soon.

public class SdlReceiver extends SdlBroadcastReceiver {

 @Override
 public void onSdlEnabled(Context context, Intent intent) {...}

 @Override
 public Class<? extends SdlRouterService> defineLocalSdlRouterClass() {...}

}

Next, we want to make sure we supply our instance of the SdlBroadcastService with our

local copy of the SdlRouterService. We do this by simply returning the class object in the

method defineLocalSdlRouterClass:

The SdlRouterService must be placed in a separate process with the name

com.smartdevicelink.router . If it is not in that process during its start up it

will stop itself.

MUS T

SmartDeviceLink Broadcast Receiver

 public Class<? extends SdlRouterService> defineLocalSdlRouterClass() {
 //Return a local copy of the SdlRouterService located in your project
 return com.company.mySdlApplication.SdlRouterService.class;
 }

We want to start the SDL Proxy when an SDL connection is made via the SdlRouterServic

e . This is likely code included on the onReceive method call previously. We do this by

taking action in the onSdlEnabled method:

public class SdlReceiver extends SdlBroadcastReceiver {

 @Override
 public void onSdlEnabled(Context context, Intent intent) {
 //Use the provided intent but set the class to the SdlService
 intent.setClass(context, SdlService.class);
 context.startService(intent);

 }

 @Override
 public Class<? extends SdlRouterService> defineLocalSdlRouterClass() {
 //Return a local copy of the SdlRouterService located in your project.
 return com.company.mySdlApplication.SdlRouterService.class;
 }
}

The actual package definition for the SdlRouterService might be different.

Just make sure to return your local copy and not the class object from the

library itself.

NOT E

 @Override
 public void onReceive(Context context, Intent intent) {
 super.onReceive(context, intent);
 //your code here
 }

Now we need to add two extra intent actions to or our intent filter for the

SdlBroadcastReceiver:

android.bluetooth.adapter.action.STATE_CHANGED

sdl.router.startservice

The onSdlEnabled method will be the main start point for our SDL

connection session. We define exactly what we want to happen when we find

out we are connected to SDL enabled hardware.

NOT E

SdlBroadcastReceiver must call super if onReceive is overridden

MUS T

https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#ACTION_CONNECTION_STATE_CHANGED

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.company.mySdlApplication">

 <application>

 ...

 <receiver
 android:name=".SdlReceiver"
 android:exported="true"
 android:enabled="true">

 <intent-filter>
 <action android:name="android.bluetooth.device.action.ACL_CONNECTED"
/>
 <action
android:name="android.bluetooth.device.action.ACL_DISCONNECTED"/>
 <action
android:name="android.bluetooth.adapter.action.STATE_CHANGED"/>
 <action android:name="android.media.AUDIO_BECOMING_NOISY" />
 <action android:name="sdl.router.startservice" />
 </intent-filter>

 </receiver>

 </application>

...

</manifest>

Our previous MainActivity class probably looked similar to this:

SdlBroadcastReceiver has to be exported, or it will not work correctly

MUS T

Main Activity

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Start the SDLService
 Intent sdlServiceIntent = new Intent(this, SdlService.class);
 startService(sdlServiceIntent);
 }
}

However now instead of starting the service every time we launch the application we can

do a query that will let us know if we are connected to SDL enabled hardware or not. If we

are, the onSdlEnabled method in our SdlBroadcastReceiver will be called and the proper

flow should start. We do this by removing the intent creation and startService call and

instead replace them with a single call to SdlReceiver.queryForConnectedService(Contex

t) .

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 //If we are connected to a module we want to start our SdlService
 SdlReceiver.queryForConnectedService(this);
 }
}

This guide is to help developers get setup with the SDL Android library 4.5. It is assumed

that the developer is already updated to 4.4 of the library. There are a few very important

Updating from 4.4 to 4.5

changes that we need to make to the integration to keep things working well. The first is a

few new additions to the AndroidManifest.xml and the SdlRouterService entry. Next, we

have to prepare for Android Oreo's push towards foreground services.

We will make changes to:

AndroidManifest.xml

SdlService

SdlBroadcastReceiver

Assuming the manifest was up to date with version 4.4 requirements we need to add an

intent-filter and a meta-data item. The entire entry should look as follows:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.company.mySdlApplication">

 <application>

 ...

 <service
 android:name="com.company.mySdlApplication.SdlRouterService"
 android:exported="true"
 android:process="com.smartdevicelink.router"
 tools:ignore="ExportedService">
 <intent-filter>
 <action android:name="com.smartdevicelink.router.service"/>
 </intent-filter>
 <meta-data android:name="sdl_router_version"
android:value="@integer/sdl_router_service_version_value" />
 </service>

 </application>

 ...

</manifest>

AndroidManifest.xml Updates

<intent-filter>
 <action android:name="com.smartdevicelink.router.service"/>
</intent-filter>

The new versions of the SDL Android library rely on the com.smartdevicelink.router.servi

ce action to query SDL enabled apps that host router services. This allows the library to

determine which router service to start.

<meta-data android:name="sdl_router_version"
android:value="@integer/sdl_router_service_version_value" />

Adding the sdl_router_version metadata allows the library to know the version of the

router service that the app is using. This makes it simpler for the library to choose the

newest router service when multiple router services are available.

Intent Filter

This intent-filter MUST be included.

MUS T

Metadata

ROU TER SERV IC E V ERSION

<meta-data android:name="sdl_custom_router" android:value="false" />

Some OEMs choose to implement custom router services. Setting the sdl_custom_rout

er metadata value to true means that the app is using something custom over the

default router service that is included in the SDL Android library. Do not include this meta-

data entry unless you know what you are doing.

Previous versions of Android allowed our SDL app partners to start their SDL services in

the background and attach themselves to the foregrounded SDL router service. Android

Oreo (API 26) has changed that. Due to new OS limitations, apps must start their SDL

service in the foreground.

There are a few changes to make, one in the SdlBroadcastReceiver and the other in the

SdlService (or which service the proxy is implemented).

C U STOM ROU TER SERV IC E

This is only for specific OEM applications, therefore normal developers do

not need to worry about this.

NOT E

Android Oreo's Push To Foreground
Services

What do I need to do?

 @Override
 public void onSdlEnabled(Context context, Intent intent) {
 Log.d(TAG, "SDL Enabled");
 intent.setClass(context, SdlService.class);
 context.startService(intent);
 }

 @Override
 public void onSdlEnabled(Context context, Intent intent) {
 Log.d(TAG, "SDL Enabled");
 intent.setClass(context, SdlService.class);
 if(Build.VERSION.SDK_INT < Build.VERSION_CODES.O) {
 context.startService(intent);
 }else{
 context.startForegroundService(intent);
 }

 }

This means the app will start the SDL service in the background if we are on a device that

uses Android N or earlier. If the app is running on Android Oreo or newer, the service will

make a promise to the OS that the service will move into the foreground. If the service

doesn't explicitly move into the foreground an exception will be thrown.

Within the SdlService class or similar you will need to add a call to start the service in

the foreground. This will include creating a notification to sit in the status bar tray. This

information and icons should be relevant for what the service is doing/going to do. If you

already start your service in the foreground, you can ignore this section.

SDL BROADC ASTREC EIV ER

PR EVI OUS VER S I ON

S A MPL E UPDAT E

SDL SERV IC E (OR S IMIL AR)

public void onCreate() {
 super.onCreate();
 ...

 NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
 notificationManager.createNotificationChannel(...);
 Notification serviceNotification = new Notification.Builder(this, *Notification
Channel*)
 .setContentTitle(...)
 .setSmallIcon(....)
 .setLargeIcon(...)
 .setContentText(...)
 .setChannelId(channel.getId())
 .build();
 startForeground(id, serviceNotification);
}

It's important that you don't leave you notification in the notification tray as it is very

confusing to users. So in the onDestroy method in your service, simply call the stopFor

eground method.

@Override
public void onDestroy(){
 //...
 if(Build.VERSION.SDK_INT>=Build.VERSION_CODES.O){
 NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
 if(notificationManager!=null){ //If this is the only notification on your channel
 notificationManager.deleteNotificationChannel(* Notification Channel*);
 }
 stopForeground(true);
 }
}

EXITING THE FOREGROU ND

Notification Suggestions

We realize that pushing a notification to the notification tray is not ideal for any apps, but

with Android's push for more transparency to users it's important that we don't try to

workaround that. Android is getting stricter with their guidelines and could potentially

prevent apps from being released if they are found to be not adhering to these rules.

The right way to handle the new foreground service requirement is to simply push a full-

fledged notification to the notification tray.

 @Override
 public void onCreate() {
 super.onCreate();
 ...
 if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
 NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
 NotificationChannel channel = new NotificationChannel("MyApp", "SdlService",
NotificationManager.IMPORTANCE_DEFAULT);
 notificationManager.createNotificationChannel(channel);
 Notification serviceNotification = new Notification.Builder(this,
channel.getId())
 .setContentTitle("MyApp is connected through SDL")
 .setSmallIcon(R.drawable.ic_launcher_foreground)
 .build();
 startForeground(id, serviceNotification);
 }
 }

Currently Android Oreo allows a notification to be used that has not declared a notification

channel. This results in the notification icon not actually appearing on its own. Instead it is

grouped together into the notification channel that reads "# apps are using battery" from

the Android System. This is likely to prevent breaking changes from apps that have not

THE C ORREC T WAY

H o w t o d o i t

THE NOT SO C ORREC T WAY

updated their integration to Android Oreo, however, we fully anticipate this to be changed

in the future so it is not recommended.

 @Override
 public void onCreate() {
 super.onCreate();
 ...
 if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
 Notification serviceNotification = new Notification.Builder(this, "NoChannel")
 .setContentTitle("MyApp is connected through SDL")
 .setSmallIcon(R.drawable.ic_launcher_foreground)
 .build();
 startForeground(id, serviceNotification);
 }
 }

H o w t o d o i t

H o w i t lo o k s

It is possible to create a somewhat invisible notification. This will appear to just be blank

space in the notification tray. With adding minimal content to the notification when the

user pulls down the tray it will have a very small footprint on the screen. However, this is

completely disingenuous to the user and should not be considered a solution. Android will

most likely see this as bad behavior and could prevent you from releasing your app or

even remove your app from the play store with a ban included. Don't do this.

THE ABSOL U TELY NOT C ORREC T WAY

H o w t o d o i t

 @Override
 public void onCreate() {
 super.onCreate();
 ...
 if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
 NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
 NotificationChannel channel = new NotificationChannel("MyApp", "SdlService",
NotificationManager.IMPORTANCE_DEFAULT);
 notificationManager.createNotificationChannel(channel);
 Notification serviceNotification = new Notification.Builder(this,
channel.getId())
 .setSmallIcon(R.drawable.sdl_tray_invis)
 .build();
 startForeground(id, serviceNotification);
 }
 }

H o w i t lo o k s

This guide is to help developers get setup with the SDL Android library 4.6. It is assumed

that the developer is already updated to 4.5 of the library. There are a few important

changes that we need to make to the integration to keep things working well. The first is

removing some of the BroadcastReceiver's intent filters in AndroidManifest.xml that are

now unnecessary. Secondly, the gradle integration of our library should now use impleme

Updating from 4.5 to 4.6

ntation instead of compile . Lastly, the RPCRequestFactory class has been deprecated

and constructors with mandatory parameters have been added for each RPC class.

We will make changes to:

AndroidManifest.xml

build.gradle

any usage of RPCRequestFactory

Assuming the manifest was up to date with version 4.5, we can now remove some of the

intent-filters (ACL_DISCONNECTED , STATE_CHANGED , AUDIO_BECOMING_NOISY)

for your app's BroadcastReceiver. The BroadcastReceiver section of the manifest should

look as follows:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.company.mySdlApplication">

 <application>

 ...

 <receiver
 android:name=".SdlReceiver"
 android:exported="true"
 android:enabled="true">

 <intent-filter>
 <action android:name="android.bluetooth.device.action.ACL_CONNECTED"
/>
 <action android:name="sdl.router.startservice" />
 </intent-filter>

 </receiver>

 </application>

...

</manifest>

AndroidManifest.xml Updates

The previous way of including the library via compile should now use implementation .

The dependencies section of your app's build.gradle file should now appear as:

dependencies {
 implementation 'com.smartdevicelink:sdl_android:4.+'
}

The RPCRequestFactory has been deprecated in 4.6. To build RPC requests, developers

should use the constructors in the desired RPC request class. For example, instead of

using RPCRequestFactory.buildAddCommand(...) to build an AddCommand request, try

the following:

AddCommand addCommand = new AddCommand(100);
addCommand.setMenuParams(new MenuParams("Skip"));
proxy.sendRPCRequest(addCommand);

Gradle Update

Deprecation of RPCRequestFactory

Updating from 4.6 to 4.7

Overview

This guide is to help developers get setup with the SDL Android library version 4.7. It is

assumed that the developer is already updated to 4.6 of the library. This version includes

the addition of the SdlManagers and a re-working of the transports which greatly enhances

the use of the SdlRouterService , along with adding the functionality for secondary

transports on supporting versions of SDL Core.

In this guide we will be focusing on the transitioning from the proxy, which implemented S

dlProxyALM into using the SdlManager system, which includes specialized sub-

managers that you can interact with through the SdlManager . We will follow the naming

convention of the guides, highlighting the previous way of implementing SDL and showing

the new ways of implementing it.

The SdlService class will contain a great deal of changes as it acts as the main bridge to

SDL functionality. There are going to be two main differences with how this class was set

up in 4.6 versus 4.7.

Previously, your SdlService had to implement the IProxyListenerALM interface. This

often added many unnecessary lines of code to the class due to the need to override all of

its functions. The need to do this has been removed in 4.7 with the inclusion of the SdlMa

nager APIs. Developers now only have to add the listeners they need.

Moving from the SdlProxyALM implementation to the SdlManager API

will require you to manually subscribe to the notifications and responses

that you wish to receive instead of all of the notifications and responses

being passed through the IProxyListenerALM interface.

NOT E

Integration Basics

Removal of IProxyListenerALM

public class SdlService extends Service implements IProxyListenerALM {

 // The proxy handles communication between the application and SDL
 private SdlProxyALM proxy = null;

 //...

 @Override
 public void someListener(){}
 //...
}

public class SdlService extends Service {

 // The SdlManager exposes the APIs needed to communicate between the
application and SDL
 private SdlManager sdlManager = null;

 //...
}

After removing IProxyListenerALM from the SdlService , all of its previously overridden

functions will need to be removed. If your app used any of these callback methods, it will

help to document which ones they were, as you will need to add in the listeners that you

need using the SdlManager 's addOnRPCNotificationListener .

4.6 :

4 .7 : T HE R EQUI R EMENT T O I MPL EMENT I PROXY L I S T E N E RA L M I S
R EMOVED:

As we no longer want to directly instantiate SdlProxyALM , we need to instantiate the Sd

lManager instead. This is best done using the SdlManager.Builder class using your

application's details and configurations. In order to receive life cycle events from the Sdl

Manager , an SdlManagerListener must be provided. The new code should resemble the

following:

When you start using the managers, you have to make sure that your app

subscribes to notifications before sending the corresponding RPC requests

and subscriptions or else some notifications may be missed.

NOT E

Creation of SdlManager

public class SdlService extends Service {

 //The manager handles communication between the application and SDL
 private SdlManager sdlManager = null;

 //...

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {

 if (sdlManager == null) {
 MultiplexTransportConfig transport = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);

 // The app type to be used
 Vector<AppHMIType> appType = new Vector<>();
 appType.add(AppHMIType.MEDIA);

 // The manager listener helps you know when certain events that pertain to
the SDL Manager happen
 SdlManagerListener listener = new SdlManagerListener() {

 @Override
 public void onStart() {
 // RPC listeners and other functionality can be called once this callback
is triggered.
 }

 @Override
 public void onDestroy() {
 SdlService.this.stopSelf();
 }

 @Override
 public void onError(String info, Exception e) {
 }
 };

 // Create App Icon, this is set in the SdlManager builder
 SdlArtwork appIcon = new SdlArtwork(ICON_FILENAME,
FileType.GRAPHIC_PNG, R.mipmap.ic_launcher, true);

 // The manager builder sets options for your session
 SdlManager.Builder builder = new SdlManager.Builder(this, APP_ID,
APP_NAME, listener);
 builder.setAppTypes(appType);
 builder.setTransportType(transport);
 builder.setAppIcon(appIcon);
 sdlManager = builder.build();
 sdlManager.start();
 }

 //...

}

Once you receive the onStart callback from SdlManager , you can add in your listeners

and start adding UI elements. There will be more about adding the UI elements later. The

last example in this section will be about adding specific listeners. Because we removed

the IProxyListenerALM implementation, you will have to set listeners for the needs of

your app.

We can listen for specific events using SdlManager 's addOnRPCNotificationListener .

These listeners can be added either in the onStart() callback of the SdlManagerListene

r or after it has been triggered. The following example shows how to listen for HMI Status

notifications. Additional listeners can be added for specific RPCs by using their

corresponding FunctionID in place of the ON_HMI_STATUS in the following example

and casting the RPCNotification object to the correct type.

sdlManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS, new
OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnHMIStatus status = (OnHMIStatus) notification;
 if (status.getHmiLevel() == HMILevel.HMI_FULL && ((OnHMIStatus)
notification).getFirstRun()) {
 // first time in HMI Full
 }
 }
 });

There are new method names and locations that mimic previous functionality for sending

RPCs. These methods are located in the SdlManager and have the new names of send

Listening for RPC notifications and events

EXA MPL E OF A L I S T ENER F OR HMI S TAT US :

Sending RPCs

RPC , sendRPCs , and sendSequentialRPCs .

// single RPC
proxy.sendRPCRequest(request);

// multiple RPCs, non-sequential
proxy.sendRequests(rpcs, new OnMultipleRequestListener() {
 //...
});

// multiple RPCs, sequential
proxy.sendSequentialRequests(rpcs, new OnMultipleRequestListener() {
 //...
});

In 4.7, we use the SdlManager to send the requests.

// single RPC
sdlManager.sendRPC(request);

// multiple RPCs, non-sequential
sdlManager.sendRPCs(rpcs, new OnMultipleRequestListener() {
 //...
});

// multiple RPCs, sequential
sdlManager.sendSequentialRPCs(rpcs, new OnMultipleRequestListener() {
 //...
});

If your app uses USB to connect to SDL, this update provides a very useful enhancement.

AOA connections now work with the SdlRouterService . This means that multiple USB

apps can be connected to the head unit at once.

4.6 :

4 .7 :

Using AOA Protocol

Since the AOA transport will now use the multiplexing feature, it is important that your app

correctly adds functionality for the SdlRouterService . This starts in the SdlBroadcastRe

ciever .

public class SdlReceiver extends com.smartdevicelink.SdlBroadcastReceiver {

 @Override
 public void onSdlEnabled(Context context, Intent intent) {
 //Use the provided intent but set the class to your SdlService
 intent.setClass(context, SdlService.class);
 context.startService(intent);
 }

 @Override
 public Class<? extends SdlRouterService> defineLocalSdlRouterClass() {
 return null;
 }

}

public class SdlReceiver extends com.smartdevicelink.SdlBroadcastReceiver {

 @Override
 public void onSdlEnabled(Context context, Intent intent) {
 //Use the provided intent but set the class to your SdlService
 intent.setClass(context, SdlService.class);
 context.startService(intent);
 }

 @Override
 public Class<? extends SdlRouterService> defineLocalSdlRouterClass() {
 // define your local router service. For example:
 return com.sdl.hellosdlandroid.SdlRouterService.class;
 }

}

SDL BROADC ASTREC EIV ER

4.6 :

4 .7 :

The SdlRouterService will listen for a connection with an SDL enabled module. When a

connection happens, it will alert all SDL enabled apps that a connection has been

established and they should start their SDL services.

(No implementation required).

We must implement a local copy of the SdlRouterService into our project. The class

doesn't need any modification, it's just important that we include it. We will extend the co

m.smartdevicelink.transport.SdlRouterService in our class named SdlRouterService :

public class SdlRouterService extends
com.smartdevicelink.transport.SdlRouterService {
//Nothing to do here
}

SDL ROU TERSERV IC E

4.6 :

4 .7 :

Do not include an import for com.smartdevicelink.transport.SdlRouterServi

ce . Otherwise, we will get an error for 'SdlRouterService' is already defined i

n this compilation unit .

NOT E

MUS T

transport = new USBTransportConfig(getBaseContext(), (UsbAccessory)
intent.getParcelableExtra(UsbManager.EXTRA_ACCESSORY), false, false);

MultiplexTransportConfig transport = new MultiplexTransportConfig(this, APP_ID,
MultiplexTransportConfig.FLAG_MULTI_SECURITY_MED);

If your app requires high bandwidth transport, you can now specify that:

transport.setRequiresHighBandwidth(true);

The local extension of the com.smartdevicelink.transport.SdlRouterService

must be named SdlRouterService .

Make sure this local class (SdlRouterService.java) is in the same package of

SdlReceiver.java

MUS T

SDL SERV IC E

4.6 :

4 .7 :

A DDI T I ONA L CONF I G UR AT I ONS :

Since the SdlRouterService now works with multiple transports, you can set your own

configuration, for example:

static final List<TransportType> multiplexPrimaryTransports =
Arrays.asList(TransportType.USB, TransportType.BLUETOOTH);
static final List<TransportType> multiplexSecondaryTransports =
Arrays.asList(TransportType.TCP, TransportType.USB, TransportType.BLUETOOTH);

//...

transport.setPrimaryTransports(multiplexPrimaryTransports);
transport.setSecondaryTransports(multiplexSecondaryTransports);

If your app only works when a high bandwidth transport is available, you

should set setRequiresHighBandwidth to true . You cannot be certain that

all core implementations support multiple transports. You could also set Tr

ansportType.USB as your only supported primary transport

NOT E

Multiple transports only work on supported versions of SDL Core.

NOT E

ANDROIDMANIFEST

4.6

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"
/>

 <uses-feature android:name="android.hardware.usb.accessory"/>

 <service
 android:name=".SdlService"
 android:enabled="true"/>

 <receiver
 android:name=".SdlReceiver"
 android:enabled="true"
 android:exported="true"
 tools:ignore="ExportedReceiver">
 <intent-filter>
 <action android:name="com.smartdevicelink.USB_ACCESSORY_ATTACHED"/>
<!--For AOA -->
 <action android:name="sdl.router.startservice" />
 </intent-filter>
 </receiver>

 <activity
android:name="com.smartdevicelink.transport.USBAccessoryAttachmentActivity"
 android:launchMode="singleTop">
 <intent-filter>
 <action
android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED" />
 </intent-filter>

 <meta-data
 android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED"
 android:resource="@xml/accessory_filter" />
 </activity>

4.7

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.BLUETOOTH"/>
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"
/>
 <uses-permission android:name="android.permission.FOREGROUND_SERVICE" />

 <uses-feature android:name="android.hardware.usb.accessory"/>

 <service
 android:name=".SdlService"
 android:enabled="true"/>

 <service
 android:name="com.company.mySdlApplication.SdlRouterService"
 android:exported="true"
 android:process="com.smartdevicelink.router"
 tools:ignore="ExportedService">
 <intent-filter>
 <action android:name="com.smartdevicelink.router.service"/>
 </intent-filter>
 <meta-data android:name="sdl_router_version"
android:value="@integer/sdl_router_service_version_value" />
 </service>
 <receiver
 android:name=".SdlReceiver"
 android:enabled="true"
 android:exported="true"
 tools:ignore="ExportedReceiver">
 <intent-filter>
 <action android:name="com.smartdevicelink.USB_ACCESSORY_ATTACHED"/>
<!--For AOA -->
 <action android:name="android.bluetooth.device.action.ACL_CONNECTED" />
 <action android:name="sdl.router.startservice" />
 </intent-filter>
 </receiver>

 <activity
android:name="com.smartdevicelink.transport.USBAccessoryAttachmentActivity"
 android:launchMode="singleTop">
 <intent-filter>
 <action
android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED" />
 </intent-filter>

 <meta-data
 android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED"
 android:resource="@xml/accessory_filter" />
 </activity>

There has been a major overhaul for lock screens in 4.7. Complicated lock screen setups

are no longer required due to the addition of the LockScreenManager . Instead of going

over the previous lock screen tutorial and then writing another one I will give brief

instructions on how to either continue using your lock screen implementation, or

upgrading to the new managed system. This review is brief, it is recommended that you

look at the full lock screen guide

If you would like to keep your current lock screen implementation, but would like to use

the SdlManager for its other functionalities, you must disable the LockScreenManager .

(This is not recommended as the new LockScreenManager takes care of a lot of boiler

plate code and reduces possible errors)

To disable, create a LockScreenConfig object and set it in the SdlManager.Builder in

your SdlService.java class.

lockScreenConfig.setEnabled(false);
//...
builder.setLockScreenConfig(lockScreenConfig);

If you want SDL to handle the lock screen logic for you, it is simple. You will remove the

classes that currently handle your lock screen, and set the variables you want for your new

lock screen as defined in the lock screen guide. This simple addition is handled during the

instantiation of the SdlManager within SdlService.java .

Lock Screen

U SING YOU R C U RRENT IMP L EMENTATION

DI S A BL I NG T HE L OCK S CR EEN MA NA G ER :

U SING THE NEW LOC KSC REENMANAGER

https://smartdevicelink.com/en/guides/android/adding-the-lock-screen/
https://smartdevicelink.com/en/guides/android/getting-started/adding-the-lock-screen

You must declare the SDLLockScreenActivity in your manifest. To do so, simply add the

following to your app's AndroidManifest.xml if you have not already done so:

<activity
android:name="com.smartdevicelink.managers.lockscreen.SDLLockScreenActivity"
 android:launchMode="singleTop"/>

The default configurations should work for most app developers and is simple to get up

and running. However, it is easy to perform deeper configurations to the lock screen for

your app. Below are the options that are available to customize your lock screen which

builds on top of the logic already implemented in the LockScreenManager .

There is a setter in the SdlManager.Builder that allows you to set a LockScreenConfig

by calling builder.setLockScreenConfig(lockScreenConfig) . The following options are

available to be configured with the LockScreenConfig .

In order to to use these features, create a LockScreenConfig object and set it using Sdl

Manager.Builder before you build SdlManager .

In your LockScreenConfig object, you can set the background color to a color resource

that you have defined in your Colors.xml file:

lockScreenConfig.setBackgroundColor(resourceColor); // For example, R.color.black

L OCK S CR EEN A CT I VI T Y

This manifest entry must be added for the lock screen feature to work.

MUS T

CONF I G UR AT I ONS

C u s t o m B a ck g r o u n d C o lo r

In your LockScreenConfig object, you can set the resource location of the drawable icon

you would like displayed:

lockScreenConfig.setAppIcon(appIconInt); // For example,
R.drawable.lockscreen_icon

This sets whether or not to show the connected device's logo on the default lock screen.

The logo will come from the connected hardware if set by the manufacturer. When using a

Custom View, the custom layout will have to handle the logic to display the device logo or

not. The default setting is false, but some OEM partners may require it.

In your LockScreenConfig object, you can set the boolean of whether or not you want the

device logo shown, if available:

lockScreenConfig.showDeviceLogo(true);

If you'd rather provide your own layout, it is easy to set. In your LockScreenConfig object,

you can set the reference to the custom layout to be used for the lock screen. If this is

set, the other customizations described above will be ignored:

lockScreenConfig.setCustomView(customViewInt);

C u s t o m A p p I co n

Sh o w in g Th e D ev ice L o g o

Set t in g A C u s t o m L o ck Scr een V iew

Displaying Information

Setting text:

Previously, to set text fields, the developer had to create a Show RPC, set the text fields,

and then send the PRC. It was also the developer's responsibility to make sure that they

set only the lines of text that are supported by the template. In 4.7, the ScreenManager

can be used and handles such logic internally. If a specific text field is not supported, it will

be automatically hyphenated with other texts to make sure that everything is displayed

correctly.

Show show = new Show();
show.setMainField1("Hello, this is MainField1.");
show.setMainField2("Hello, this is MainField2.");
show.setMainField3("Hello, this is MainField3.");
show.setMainField4("Hello, this is MainField4.");
show.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (((ShowResponse) response).getSuccess()) {
 Log.i("SdlService", "Successfully showed.");
 } else {
 Log.i("SdlService", "Show request was rejected.");
 }
 }
});
proxy.sendRPCRequest(show);

sdlManager.getScreenManager().beginTransaction();
sdlManager.getScreenManager().setTextField1("Hello, this is MainField1.");
sdlManager.getScreenManager().setTextField2("Hello, this is MainField2.");
sdlManager.getScreenManager().setTextField3("Hello, this is MainField3.");
sdlManager.getScreenManager().setTextField4("Hello, this is MainField4.");
sdlManager.getScreenManager().commit(new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 Log.i(TAG, "ScreenManager update complete: " + success);

 }
});

4.6 :

4 .7 :

Previously, to set an image, the developer had to upload the image using the PutFile RPC.

When it is uploaded, a Show RPC was then created and sent to display the image. In 4.7,

the ScreenManager handles uploading the image and sending the RPCs internally.

Image image = new Image();
image.setImageType(ImageType.DYNAMIC);
image.setValue("appImage.jpeg"); // a previously uploaded filename using PutFile
RPC

Show show = new Show();
show.setGraphic(image);
show.setCorrelationID(CorrelationIdGenerator.generateId());
show.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (((ShowResponse) response).getSuccess()) {
 Log.i("SdlService", "Successfully showed.");
 } else {
 Log.i("SdlService", "Show request was rejected.");
 }
 }
});
proxy.sendRPCRequest(show);

SdlArtwork sdlArtwork = new SdlArtwork("appImage.jpeg", FileType.GRAPHIC_JPEG,
R.drawable.appImage, true);
sdlManager.getScreenManager().setPrimaryGraphic(sdlArtwork);

Previously, to add a soft button with an image the developer had to upload the image by

sending a PutFile RPC, and after the image is uploaded, creating a SoftButton object,

Setting images:

4.6 :

4 .7 :

Using soft buttons:

then creating a Show RPC. They would then need to set the button in the RPC, and then

send the request. In 4.7, the ScreenManager takes care of sending the RPCs. The

developer just has to create softButtonObject , add a state to it, then use the ScreenMa

nager to set soft button objects.

Image cancelImage = new Image();
cancelImage.setImageType(ImageType.DYNAMIC);
cancelImage.setValue("cancel.jpeg"); // a previously uploaded filename using PutFile
RPC

List<SoftButton> softButtons = new ArrayList<>();

SoftButton cancelButton = new SoftButton();
cancelButton.setType(SoftButtonType.SBT_IMAGE);
cancelButton.setImage(cancelImage);
cancelButton.setSoftButtonID(1);

softButtons.add(cancelButton);

Show show = new Show();
show.setSoftButtons(softButtons);
proxy.sendRPCRequest(show);

Receiving button events on previous versions of SDL had to be done using onOnButtonE

vent and onOnButtonPress callbacks from the IProxyListenerALM interface. The id

had to be checked to know the exact button that received the event. In 4.7, it is much

cleaner: a listener can be added to the SoftButtonObject , so the developer can easily tell

when and which soft button received the event.

SoftButtonState softButtonState = new SoftButtonState("state1", "cancel", new
SdlArtwork("cancel.jpeg", FileType.GRAPHIC_JPEG, R.drawable.cancel, true));
SoftButtonObject softButtonObject = new SoftButtonObject("object",
Collections.singletonList(softButtonState), softButtonState.getName(), null);
sdlManager.getScreenManager().setSoftButtonObjects(Collections.singletonList(soft

4.6 :

4 .7 :

@Override
public void onOnButtonEvent(OnButtonEvent notification) {
 Log.i(TAG, "onOnButtonEvent: ");

 if (notification.getButtonName() == CUSTOM_BUTTON){
 int ID = notification.getCustomButtonName();
 Log.i(TAG, "Button event received for button " + ID);
 }
}

@Override
public void onOnButtonPress(OnButtonPress notification) {
 Log.i(TAG, "onOnButtonPress: ");

 if (notification.getButtonName() == CUSTOM_BUTTON){
 int ID = notification.getCustomButtonName();
 Log.i(TAG, "Button press received for button " + ID);
 }
}

softButtonObject.setOnEventListener(new SoftButtonObject.OnEventListener() {
 @Override
 public void onPress(SoftButtonObject softButtonObject, OnButtonPress
onButtonPress) {
 Log.i(TAG, "OnButtonPress: ");
 }

 @Override
 public void onEvent(SoftButtonObject softButtonObject, OnButtonEvent
onButtonEvent) {
 Log.i(TAG, "OnButtonEvent: ");
 }
});

Previously, your SdlService had to implement IProxyListenerALM interface which

means your SdlService class had to override all of the IProxyListenerALM callback

4.6 :

4 .7 :

Receiving Subscribe Buttons Events

methods including OnButtonEvent and OnButtonPress .

@Override
public void onOnHMIStatus(OnHMIStatus notification) {
 if(notification.getHmiLevel() == HMILevel.HMI_FULL && notification.getFirstRun())
{
 SubscribeButton subscribeButtonRequest = new SubscribeButton();
 subscribeButtonRequest.setButtonName(ButtonName.SEEKRIGHT);
 proxy.sendRPCRequest(subscribeButtonRequest);
 }
}

@@Override
public void onOnButtonEvent(OnButtonEvent notification) {
 switch(notification.getButtonName()){
 case OK:
 break;
 case SEEKLEFT:
 break;
 case SEEKRIGHT:
 break;
 case TUNEUP:
 break;
 case TUNEDOWN:
 break;
 }
}

@Override
public void onOnButtonPress(OnButtonPress notification) {
 switch(notification.getButtonName()){
 case OK:
 break;
 case SEEKLEFT:
 break;
 case SEEKRIGHT:
 break;
 case TUNEUP:
 break;
 case TUNEDOWN:
 break;
 }
}

4.6

In 4.7 and the new manager APIs, in order to receive the OnButtonEvent and OnButtonP

ress notifications, your app must add a OnRPCNotificationListener using the SdlMana

ger 's method addOnRPCNotificationListener . This will subscribe the app to any

notifications of the provided type, in this case ON_BUTTON_EVENT and ON_BUTTON_

PRESS . The listener should be added before sending the corresponding RPC

request/subscription or else some notifications may be missed.

sdlManager.addOnRPCNotificationListener(FunctionID.ON_BUTTON_EVENT, new
OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnButtonPress onButtonPressNotification = (OnButtonPress) notification;
 switch (onButtonPressNotification.getButtonName()) {
 case OK:
 break;
 case SEEKLEFT:
 break;
 case SEEKRIGHT:
 break;
 case TUNEUP:
 break;
 case TUNEDOWN:
 break;
 }
 }
});

sdlManager.addOnRPCNotificationListener(FunctionID.ON_BUTTON_PRESS, new
OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnButtonPress onButtonPressNotification = (OnButtonPress) notification;
 switch (onButtonPressNotification.getButtonName()) {
 case OK:
 break;
 case SEEKLEFT:
 break;
 case SEEKRIGHT:
 break;
 case TUNEUP:
 break;
 case TUNEDOWN:
 break;
 }
 }
});

SubscribeButton subscribeButtonRequest = new SubscribeButton();
subscribeButtonRequest.setButtonName(ButtonName.SEEKRIGHT);
sdlManager.sendRPC(subscribeButtonRequest);

Changing The Template:

Previously, developers had to pass a string that represents the name of the template to S

etDisplayLayout . In 4.7, a new PredefinedLayout enum is introduced to hold all possible

values for the templates.

SetDisplayLayout setDisplayLayoutRequest = new SetDisplayLayout();
setDisplayLayoutRequest.setDisplayLayout("GRAPHIC_WITH_TEXT");
try{
 proxy.sendRPCRequest(setDisplayLayoutRequest);
}catch (SdlException e){
 e.printStackTrace();
}

SDL Android 4.7 introduces the FileManager , which is accessible through the SdlMana

ger . Previous methods of uploading files and performing their functions still work, but

now there are a set of convenience methods that do a lot of the boilerplate work for you.

Check out the Uploading Files and Uploading Images for code examples and detailed

explanations.

SetDisplayLayout setDisplayLayoutRequest = new SetDisplayLayout();
setDisplayLayoutRequest.setDisplayLayout(PredefinedLayout.GRAPHIC_WITH_TEXT.t

sdlManager.sendRPC(setDisplayLayoutRequest);

4.6 :

4 .7 :

Uploading Files and Graphics

SDL File and SDL Artwork

https://smartdevicelink.com/en/guides/android/other-sdl-features/uploading-files/
https://smartdevicelink.com/en/guides/android/other-sdl-features/uploading-images/

New to version 4.7 of the SDL Android library are SdlFile and SdlArtwork objects.

These have been created in parallel with the FileManager to help streamline SDL

workflow. SdlArtwork is an extension of SdlFile that pertains only to graphic specific

file types, and its use case is similar. For the rest of this document, SdlFile will be

described, but everything also applies to SdlArtwork .

One of the hardest parts about getting a file into SDL was the boilerplate code needed to

convert the file into a byte array that was used by the head unit. Now, you can instantiate a

SdlFile with:

new SdlFile(@NonNull String fileName, @NonNull FileType fileType, int id, boolean
persistentFile)

new SdlFile(@NonNull String fileName, @NonNull FileType fileType, Uri uri, boolean
persistentFile)

And last but not least

new SdlFile(@NonNull String fileName, @NonNull FileType fileType, byte[] data,
boolean persistentFile)

C REATION

A R ES OUR CE I D

A UR I

A BY T E A R R AY

without the need to implement the methods needed to do the conversion of data yourself.

Uploading a file with the FileManager is a simple process. With an instantiated SdlMan

ager ,

you can simply call:

sdlManager.getFileManager().uploadFile(sdlFile, new CompletionListener() {
 @Override
 public void onComplete(boolean success) {

 }
});

Previously, your SdlService had to implement IProxyListenerALM interface which

means your SdlService class had to override all of the IProxyListenerALM callback

methods including onOnVehicleData .

Uploading a File

Getting Vehicle Data and Subscribing
to Notifications

4.6 :

@Override
public void onOnHMIStatus(OnHMIStatus notification) {
 if(notification.getHmiLevel() == HMILevel.HMI_FULL && notification.getFirstRun())
{
 SubscribeVehicleData subscribeRequest = new SubscribeVehicleData();
 subscribeRequest.setPrndl(true);
 subscribeRequest.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if(response.getSuccess()){
 Log.i("SdlService", "Successfully subscribed to vehicle data.");
 }else{
 Log.i("SdlService", "Request to subscribe to vehicle data was rejected.");
 }
 }
 });
 try {
 proxy.sendRPCRequest(subscribeRequest);
 } catch (SdlException e) {
 e.printStackTrace();
 }
 }
}

@Override
public void onOnVehicleData(OnVehicleData notification) {
 PRNDL prndl = notification.getPrndl();
 Log.i("SdlService", "PRNDL status was updated to: " prndl.toString());
}

In 4.7 and the new manager APIs, in order to receive the OnVehicleData notifications,

your app must add a OnRPCNotificationListener using the SdlManager 's method addO

nRPCNotificationListener . This will subscribe the app to any notifications of the provided

type, in this case ON_VEHICLE_DATA . The listener should be added before sending the

corresponding RPC request/subscription or else some notifications may be missed.

4.7 :

sdlManager.addOnRPCNotificationListener(FunctionID.ON_VEHICLE_DATA, new
OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnVehicleData onVehicleDataNotification = (OnVehicleData) notification;
 if (onVehicleDataNotification.getPrndl() != null) {
 Log.i("SdlService", "PRNDL status was updated to: " +
onVehicleDataNotification.getPrndl());
 }
 }
});

SubscribeVehicleData subscribeRequest = new SubscribeVehicleData();
subscribeRequest.setPrndl(true);
subscribeRequest.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if(response.getSuccess()){
 Log.i("SdlService", "Successfully subscribed to vehicle data.");
 }else{
 Log.i("SdlService", "Request to subscribe to vehicle data was rejected.");
 }
 }
});
sdlManager.sendRPC(subscribeRequest);

Previously, your SdlService had to implement IProxyListenerALM interface which

means your SdlService class had to override all of the IProxyListenerALM callback

methods including onOnAudioPassThru .

Getting In-Car Audio

Subscribing to AudioPassThru Notifications

4.6 :

@Override
public void onOnHMIStatus(OnHMIStatus notification) {
 if(notification.getHmiLevel() == HMILevel.HMI_FULL && notification.getFirstRun())
{
 PerformAudioPassThru performAPT = new PerformAudioPassThru();
 performAPT.setAudioPassThruDisplayText1("Ask me \"What's the weather?\"");
 performAPT.setAudioPassThruDisplayText2("or \"What's 1 + 2?\"");
 performAPT.setInitialPrompt(TTSChunkFactory.createSimpleTTSChunks("Ask
me What's the weather? or What's 1 plus 2?"));
 performAPT.setSamplingRate(SamplingRate._22KHZ);
 performAPT.setMaxDuration(7000);
 performAPT.setBitsPerSample(BitsPerSample._16_BIT);
 performAPT.setAudioType(AudioType.PCM);
 performAPT.setMuteAudio(false);
 proxy.sendRPCRequest(performAPT);
 }
}

@Override
public void onOnAudioPassThru(OnAudioPassThru notification) {
 byte[] dataRcvd = notification.getAPTData();
 processAPTData(dataRcvd); // Do something with audio data
}

In 4.7 and the new manager APIs, in order to receive the OnAudioPassThru notifications,

your app must add a OnRPCNotificationListener using the SdlManager 's method addO

nRPCNotificationListener . This will subscribe the app to any notifications of the provided

type, in this case ON_AUDIO_PASS_THRU . The listener should be added before sending

the corresponding RPC request/subscription or else some notifications may be missed.

4.7 :

sdlManager.addOnRPCNotificationListener(FunctionID.ON_AUDIO_PASS_THRU, new
OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnAudioPassThru onAudioPassThru = (OnAudioPassThru) notification;
 byte[] dataRcvd = onAudioPassThru.getAPTData();
 processAPTData(dataRcvd); // Do something with audio data
 }
});

PerformAudioPassThru performAPT = new PerformAudioPassThru();
performAPT.setAudioPassThruDisplayText1("Ask me \"What's the weather?\"");
performAPT.setAudioPassThruDisplayText2("or \"What's 1 + 2?\"");
performAPT.setInitialPrompt(TTSChunkFactory.createSimpleTTSChunks("Ask me
What's the weather? or What's 1 plus 2?"));
performAPT.setSamplingRate(SamplingRate._22KHZ);
performAPT.setMaxDuration(7000);
performAPT.setBitsPerSample(BitsPerSample._16_BIT);
performAPT.setAudioType(AudioType.PCM);
performAPT.setMuteAudio(false);
sdlManager.sendRPC(performAPT);

Previously, developers had to make sure that the app was in HMI_FULL before starting the

video stream, In 4.7, after the SdlManager has called its onStart method, the developer

can start video streaming in VideoStreamingManager.start() 's CompletionListener . The

VideoStreamingManager will take care of starting the video when the app becomes

ready.

Mobile Navigation

Video Streaming:

4.6 :

 if(notification.getHmiLevel().equals(HMILevel.HMI_FULL)){
 if (notification.getFirstRun()) {
 proxy.startRemoteDisplayStream(getApplicationContext(), MyDisplay.class,
null, false);
 }
 }

}

With the addition of the AudioStreamingManager , which is accessed through SdlManag

er , you can now use mp3 files in addition to raw . The AudioStreamingManager also

handles AudioStreamingCapabilities for you, so your stream will use the correct

capabilities for the connected head unit. We suggest that for any audio streaming that this

is now used. Below is the difference in streaming from 4.6 to 4.7

sdlManager.getVideoStreamManager().start(new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {

sdlManager.getVideoStreamManager().startRemoteDisplayStream(getApplicationCon
 MyDisplay.class, null, false);
 }
 }
});

4.7 :

Audio Streaming

4.6

 private void startAudioStream(){

 final InputStream is = getResources().openRawResource(R.raw.audio_file);

 AudioStreamingParams audioParams = new AudioStreamingParams(44100, 1);
 listener = proxy.startAudioStream(false, AudioStreamingCodec.LPCM,
audioParams);
 if (listener != null){
 try {
 listener.sendAudio(readToByteBuffer(is), -1);

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

 private void stopAudioStream(){
 proxy.endAudioStream();
 }

 static ByteBuffer readToByteBuffer(InputStream inStream) throws IOException {
 byte[] buffer = new byte[8000];
 ByteArrayOutputStream outStream = new ByteArrayOutputStream(8000);
 int read;
 while (true) {
 read = inStream.read(buffer);
 if (read == -1)
 break;
 outStream.write(buffer, 0, read);
 }
 ByteBuffer byteData = ByteBuffer.wrap(outStream.toByteArray());
 return byteData;
 }

4.7

if (sdlManager.getAudioStreamManager() != null) {
 Log.i(TAG, "Trying to start audio streaming");
 sdlManager.getAudioStreamManager().start(new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 sdlManager.getAudioStreamManager().startAudioStream(false, new
CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 Resources resources = getApplicationContext().getResources();
 int resourceId = R.raw.audio_file;
 Uri uri = new Uri.Builder()
 .scheme(ContentResolver.SCHEME_ANDROID_RESOURCE)
 .authority(resources.getResourcePackageName(resourceId))
 .appendPath(resources.getResourceTypeName(resourceId))
 .appendPath(resources.getResourceEntryName(resourceId))
 .build();
 sdlManager.getAudioStreamManager().pushAudioSource(uri, new
CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 Log.i(TAG, "Audio file played successfully!");
 } else {
 Log.i(TAG, "Audio file failed to play!");
 }
 }
 });
 } else {
 Log.d(TAG, "Audio stream failed to start!");
 }
 }
 });
 } else {
 Log.i(TAG, "Failed to start audio streaming manager");
 }
 }
 });
}

Checking Permissions:

Previously, it was not easy to check if specific permission had changed. Developers had to

keep checking onOnHMIStatus and onOnPermissionsChange callbacks and manually

check the responses to see if the permission is allowed. In 4.7, the PermissionManager

implements all of this logic internally. It keeps a cached copy of the callback responses

whenever an update is received. So developer can call isRPCAllowed() any time to know

if a permission is allowed. It also makes it very simple to add a listener.

@Override
public void onOnHMIStatus(OnHMIStatus notification) {
 hmiLevel = notification.getHmiLevel();
 if (checkShowPermission(FunctionID.SHOW.toString(), hmiLevel,
permissionItems)){
 // Show RPC is allowed
 }
}

@Override
public void onOnPermissionsChange(OnPermissionsChange notification) {
 permissionItems = notification.getPermissionItem();
 if (checkShowPermission(FunctionID.SHOW.toString(), hmiLevel,
permissionItems)){
 // Show RPC is allowed
 }
}

private boolean checkShowPermission(String rpcName, HMILevel hmiLevel,
List<PermissionItem> permissionItems){
 PermissionItem permissionItem = null;
 for (PermissionItem item : permissionItems) {
 if (rpcName.equals(item.getRpcName())){
 permissionItem = item;
 break;
 }
 }
 if (hmiLevel == null || permissionItem == null ||
permissionItem.getHMIPermissions() == null ||
permissionItem.getHMIPermissions().getAllowed() == null){
 return false;
 } else if (permissionItem.getHMIPermissions().getUserDisallowed() != null){
 return permissionItem.getHMIPermissions().getAllowed().contains(hmiLevel)
&& !permissionItem.getHMIPermissions().getUserDisallowed().contains(hmiLevel);
 } else {
 return permissionItem.getHMIPermissions().getAllowed().contains(hmiLevel);
 }
}

4.6 :

To check if a permission is allowed:

boolean allowed =
sdlManager.getPermissionManager().isRPCAllowed(FunctionID.SHOW);

To setup a permission listener:

List<PermissionElement> permissionElements = Collections.singletonList(new
PermissionElement(FunctionID.SHOW, null));
UUID listenerId =
sdlManager.getPermissionManager().addListener(permissionElements,
PermissionManager.PERMISSION_GROUP_TYPE_ANY, new
OnPermissionChangeListener() {
 @Override
 public void onPermissionsChange(@NonNull Map<FunctionID, PermissionStatus>
allowedPermissions, @NonNull int permissionGroupStatus) {
 if (allowedPermissions.get(FunctionID.SHOW).getIsRPCAllowed()) {
 // Show RPC is allowed
 }
 }
});

For more information about PermissionManager , you can check this page.

Previously, to let your app reconnect after the user changes the head unit language, your

app had to send an intent in the onProxyClosed callback. That intent should be received

by SdlReceiver to start the SdlService . The SdlReceiver part did not change so we will

only cover the changes in sending the intent which was done in previous versions as the

following:

4.7 :

Handling a Language Change

https://smartdevicelink.com/en/docs/android/master/com/smartdevicelink/managers/permission/PermissionManager/

@Override
public void onProxyClosed(String info, Exception e, SdlDisconnectedReason reason)
{
 stopSelf();
 if(reason.equals(SdlDisconnectedReason.LANGUAGE_CHANGE)){
 Intent intent = new
Intent(TransportConstants.START_ROUTER_SERVICE_ACTION);
 intent.putExtra(SdlReceiver.RECONNECT_LANG_CHANGE, true);
 sendBroadcast(intent);
 }
}

In 4.7, the app has to send the intent in a ON_LANGUAGE_CHANGE notification listener

as the following:

sdlManager.addOnRPCNotificationListener(FunctionID.ON_LANGUAGE_CHANGE,
new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 SdlService.this.stopSelf();
 Intent intent = new
Intent(TransportConstants.START_ROUTER_SERVICE_ACTION);
 intent.putExtra(SdlReceiver.RECONNECT_LANG_CHANGE, true);
 AndroidTools.sendExplicitBroadcast(context, intent, null);
 }
});

For more information about handling language changes please visit this page.

Previously, your SdlService had to implement IProxyListenerALM interface which

means your SdlService class had to override all of the IProxyListenerALM callback

methods including onOnInteriorVehicleData .

Remote Control

Subscribing to OnInteriorVehicleData Notifications

https://smartdevicelink.com/en/guides/android/getting-started/adapting-to-the-head-unit-language/

@Override
public void onOnHMIStatus(OnHMIStatus notification) {
 if(notification.getHmiLevel() == HMILevel.HMI_FULL && notification.getFirstRun())
{
 GetInteriorVehicleData interiorVehicleData = new GetInteriorVehicleData();
 interiorVehicleData.setModuleType(ModuleType.RADIO);
 interiorVehicleData.setSubscribe(true);
 interiorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener()
{
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 GetInteriorVehicleData getResponse = (GetInteriorVehicleData)
response;
 //This can now be used to retrieve data
 }
 });
 proxy.sendRPCRequest(interiorVehicleData);
 }
}

@Override
public void onOnInteriorVehicleData(OnInteriorVehicleData response) {
 //Perform action based on notification
}

In 4.7 and the new manager APIs, in order to receive the OnInteriorVehicleData

notifications, your app must add a OnRPCNotificationListener using the SdlManager 's

method addOnRPCNotificationListener . This will subscribe the app to any notifications

of the provided type, in this case ON_INTERIOR_VEHICLE_DATA . The listener should be

added before sending the corresponding RPC request/subscription or else some

notifications may be missed.

4.6 :

4.7:

This guide is to help developers get setup with the SDL Java library version 4.9. It is

assumed that the developer is already updated to at least version 4.7 or 4.8 of the library.

The full release notes are published here.

The main differences between the previous release and this are mainly additive, including

3 new managers which we will describe briefly. Additionally, we have fixed an issue where

symlinks were not working on Windows machines by creating a gradle task that builds

them for you. Additionally, we have added the ability to pass a buffer to the

AudioStreamManager to play raw data.

sdlManager.addOnRPCNotificationListener(FunctionID.ON_INTERIOR_VEHICLE_DATA
 new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnInteriorVehicleData onInteriorVehicleData = (OnInteriorVehicleData)
notification;
 //Perform action based on notification
 }
});

GetInteriorVehicleData interiorVehicleData = new GetInteriorVehicleData();
interiorVehicleData.setModuleType(ModuleType.RADIO);
interiorVehicleData.setSubscribe(true);
interiorVehicleData.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 GetInteriorVehicleData getResponse = (GetInteriorVehicleData) response;
 //This can now be used to retrieve data
 }
});
sdlManager.sendRPC(interiorVehicleData);

Upgrading to 4.9

Overview

https://github.com/smartdevicelink/sdl_java_suite/releases

The voice command manager is accessed via the ScreenManager . It allows for an easy

way to create global voice commands for your application. These are not supposed to be

a replacement for menu voice commands, but rather an easy way to trigger main events in

your application, similar to something you might use a SoftButton for. These commands,

once sent, will be available on the system as voice commands for the duration of the

session.

An example is as follows:

Menus have now become simpler with the MenuManager , which is accessed via the Scr

eenManager . The cells, called MenuCell 's contain 2 constructors. One is for a cell itself,

List<String> list1 = Collections.singletonList("Command One");
List<String> list2 = Collections.singletonList("Command two");

VoiceCommand voiceCommand1 = new VoiceCommand(list1, new
VoiceCommandSelectionListener() {
 @Override
 public void onVoiceCommandSelected() {
 Log.i(TAG, "Voice Command 1 triggered");
 }
});

VoiceCommand voiceCommand2 = new VoiceCommand(list2, new
VoiceCommandSelectionListener() {
 @Override
 public void onVoiceCommandSelected() {
 Log.i(TAG, "Voice Command 2 triggered");
 }
});

sdlManager.getScreenManager().setVoiceCommands(Arrays.asList(voiceCommand1

Voice Command Manager

Menu Manager

and the other is a cell that contains a sub-menu. Note that currently SmartDeviceLink

(SDL) only supports sub-menus to the depth of 1.

MenuCell s contain a MenuSelectionListener which informs you that the cell has been

triggered, so that you might perform an action based on the cell selected. Note that you

can add images and voice commands to menu cells.

Example use:

When submitting a list of Menu cells, or adding a list of sub cells to a menu

cell, the order in which the cells will appear from top to bottom will be the

order in which they are in the list.

NOT E

// SUB MENU CELLS FOR MAIN MENU CELL 2

// Sub cells are just normal cells
MenuCell subCell1 = new MenuCell("SubCell 1",null, null, new
MenuSelectionListener() {
 @Override
 public void onTriggered(TriggerSource trigger) {
 Log.i(TAG, "Sub cell 1 triggered. Source: "+ trigger.toString());
 }
});

MenuCell subCell2 = new MenuCell("SubCell 2",null, null, new
MenuSelectionListener() {
 @Override
 public void onTriggered(TriggerSource trigger) {
 Log.i(TAG, "Sub cell 2 triggered. Source: "+ trigger.toString());
 }
});

// THE MAIN MENU CELLS

// normal cell
MenuCell mainCell1 = new MenuCell("Test Cell 1 (speak)", null, null, new
MenuSelectionListener() {
 @Override
 public void onTriggered(TriggerSource trigger) {
 Log.i(TAG, "Test cell 1 triggered. Source: "+ trigger.toString());
 }
});

// sub menu parent cell
MenuCell mainCell2 = new MenuCell("Test Cell 3 (sub menu)", null,
Arrays.asList(subCell1,subCell2));

// Send the entire menu off to be created
sdlManager.getScreenManager().setMenu(Arrays.asList(mainCell1, mainCell2));

Previously it required a lot of code to use PerformInteraction s with SDL. To alleviate

some of this pain, we have introduced the Choice Set Manager which is accessible via the

ScreenManager . Because the Choice Set Manager covers so many items, we will do a

brief overview here. You may continue to the Popup Menus section for more detailed

information.

Choice Set Manager

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/popup-menus/

There are 2 main use cases for using this manager, one is to display a choice set, and the

other is to display a keyboard.

Displaying a choice set is achieved by creating some ChoiceCell s. If you know what your

choices will be, we recommend using the preloadChoices method. This will ensure your

ChoiceSet is ready to be displayed when you want to display it, and your user is not kept

waiting. You can preload cells as follows:

// create some choice cells
ChoiceCell cell1 = new ChoiceCell("Item 1");
ChoiceCell cell2 = new ChoiceCell("Item 2");
ChoiceCell cell3 = new ChoiceCell("Item 3");

// create the array of choice cells
choiceCellList = Arrays.asList(cell1,cell2,cell3);

// pre-load the cells on the head unit
sdlManager.getScreenManager().preloadChoices(choiceCellList, null);

Once you are ready to present the Choice Set, you can do so by:

Choice Set

You will want to reference this array of cells when presenting your choice

set later (even if you add more cells). This is why we are setting this list to a

variable for now.

NOT E

ChoiceSet choiceSet = new ChoiceSet("Choose an Item from the list",
choiceCellList, new ChoiceSetSelectionListener() {
 @Override
 public void onChoiceSelected(ChoiceCell choiceCell, TriggerSource triggerSource,
int rowIndex) {
 // do something with the selection
 }

 @Override
 public void onError(String error) {
 Log.e(TAG, "There was an error showing the perform interaction: "+ error);
 }
});
sdlManager.getScreenManager().presentChoiceSet(choiceSet,
InteractionMode.MANUAL_ONLY);

There is now also an easy way to display a keyboard, and listen for key events. You simply

need a KeyboardListener object.

Displaying A Keyboard

KeyboardListener keyboardListener = new KeyboardListener() {
 @Override
 public void onUserDidSubmitInput(String inputText, KeyboardEvent event) {

 }

 @Override
 public void onKeyboardDidAbortWithReason(KeyboardEvent event) {

 }

 @Override
 public void updateAutocompleteWithInput(String currentInputText,
KeyboardAutocompleteCompletionListener
keyboardAutocompleteCompletionListener) {

 }

 @Override
 public void updateCharacterSetWithInput(String currentInputText,
KeyboardCharacterSetCompletionListener
keyboardCharacterSetCompletionListener) {

 }

 @Override
 public void onKeyboardDidSendEvent(KeyboardEvent event, String
currentInputText) {

 }
};

You can note that two of the methods contain a KeyboardAutocompleteCompletionListe

ner and a KeyboardCharacterSetCompletionListener . These listeners allow you to show

auto completion text and to modify the available keys, respectively, on supported head

units.

To actually display the keyboard, call:

sdlManager.getScreenManager().presentKeyboard("initialText", null,
keyboardListener);

The null parameter in this example is a KeyboardProperties object that you can

optionally pass in to modify the keyboard for this request.

We now have the option to send ByteBuffer s to the AudioStreamManager to be played.

sdlManager.getAudioStreamManager().pushBuffer(byteBuffer, new
CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 // do something once the buffer is played
 }
});

With the creation of the Java Suite, we had the need to share base files between the

Android and the JavaSE and JavaEE projects. To allow the Android project to read these

base files, we created symlinks to allow the files to be seen from within the project.

However, symlinks work differently on Mac / Linux machines than they do on Windows.

To fix this, we created a gradle task to create the Windows symlinks. Simply call:

gradle buildWindowSymLinks

from Android Studio's terminal.

Audio Stream Buffer

Symlinks in Windows

This guide is to help developers get setup with the SDL Java library version 5.0. It is

assumed that the developer is already updated to at least version 4.11 or 4.12 of the

library.

The full release notes are published here.

SDL now has a new minimum required SDK version of 16. You can change the minimum

SDK version in the apps build.gradle file by changing minSdkVersion to 16. An example:

defaultConfig {
 applicationId "com.sdl.mobileweather"
 minSdkVersion 16
 targetSdkVersion 26
 versionCode 27
 versionName "1.7.15"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
}

You will need administrator privileges and Python installed to execute this

task.

NOT E

Upgrading to 5.0

Overview

New minimum SDK

https://github.com/smartdevicelink/sdl_java_suite/releases

SDL now uses AndroidX. To migrate your app to use AndroidX, In Android Studio or IntelliJ,

click on Refactor, then Migrate to AndroidX.

AndroidX

Some classes have moved packages, and imports may need to be changed.

OnSystemCapabilityListener has moved packages from:

import com.smartdevicelink.proxy.interfaces.OnSystemCapabilityListener;

to

import com.smartdevicelink.managers.lifecycle.OnSystemCapabilityListener;

To migrate to AndroidX you must set the compileSdkVersion to 28 in the

apps build.gradle file

NOT E

Import changes

Example:

In 4.12 a new managerShouldUpdateLifecycle method was added and the old

managerShouldUpdateLifecycle method was deprecated. In 5.0 the deprecated method

was removed. More detail can be found here.

Before:

SdlManagerListener listener = new SdlManagerListener() {
 @Override
 public void onStart() {
 }

 @Override
 public void onDestroy() {
 }

 @Override
 public void onError(String info, Exception e) {
 }

 @Override
 public LifecycleConfigurationUpdate managerShouldUpdateLifecycle(Language
language, Language hmiLanguage) {
 return null;
 }

 @Override
 public LifecycleConfigurationUpdate managerShouldUpdateLifecycle(Language
language) {
 return null;
 }
};

Now:

SdlManagerListener changes

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/adapting-to-the-head-unit-language/

SdlManagerListener listener = new SdlManagerListener() {
 @Override
 public void onStart() {
 }

 @Override
 public void onDestroy() {
 }

 @Override
 public void onError(String info, Exception e) {
 }

 @Override
 public LifecycleConfigurationUpdate managerShouldUpdateLifecycle(Language
language, Language hmiLanguage) {
 return null;
 }
};

When sending RPC's with a listener, onError has been removed from OnMultipleRequestLi

stener.java and OnRPCResponseListener.java . Instead of onError getting called,

onResponse will be called whether its a success or not.

OnRPCResponseListener Before:

subscribeButtonLeft.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {

 }

 @Override
 public void onError(int correlationId, Result resultCode, String info) {
 // Handle Error
 }
});

Sending RPC's listener updates

OnRPCResponseListener Now:

subscribeButtonLeft.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if(response.getSuccess()){
 // Add if statement to check success
 }
 }
});

OnMultipleRequestListener Before:

sdlManager.sendRPCs(Arrays.asList(subscribeButtonLeft, subscribeButtonRight),
new OnMultipleRequestListener() {
 @Override
 public void onUpdate(int remainingRequests) {

 }

 @Override
 public void onFinished() {

 }

 @Override
 public void onError(int correlationId, Result resultCode, String info) {

 }

 @Override
 public void onResponse(int correlationId, RPCResponse response) {

 }
});

OnMultipleRequestListener Now:

sdlManager.sendRPCs(Arrays.asList(subscribeButtonLeft, subscribeButtonRight),
new OnMultipleRequestListener() {
 @Override
 public void onUpdate(int remainingRequests) {

 }

 @Override
 public void onFinished() {

 }

 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if(response.getSuccess()){
 // Add if statement to check success
 }

 }
});

BTTransportConfig.java and USBTransportConfig have been removed from the library.

You should use MultiplexBluetoothTransport.java and MultiplexUsbTransport.java

instead.

You can now use the ScreenManager to change screen templates and day/night color

schemes. See Main Screen Templates for more detail.

Example:

Use Multiplex instead of legacy BT &
USB

ScreenManager Template
Management

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/main-screen-templates/

Rpc setters are now chainable. Before you had to either use a constructor that took all

parameters or set everyone individually. Now you can chain them together.

Before:

Alert alert = new Alert();
alert.setAlertText1("text1");
alert.setDuration(5000);
alert.setPlayTone(true);

Now:

Alert alert = new Alert().setAlertText1("text1").setDuration(5000).setPlayTone(true);

TemplateConfiguration configuration = new
TemplateConfiguration().setTemplate(Template).setDayColorScheme(DayColorSchem

sdlManager.getScreenManager().changeLayout(configuration, new
CompletionListener() {
 @Override
 public void onComplete(boolean success) {

 }
});

Chainable RPC setters

New DebugTool methods

There is a new way of logging information in debug mode. Before for example, we would

use Log.e to log errors, now we use the DebugTool.logError.

Log.i to DebugTool.logInfo

Log.w to DebugTool.logWarning

Log.e to DebugTool.logError

Before:

Log.e(TAG, "There is an error");

Now:

DebugTool.logError(TAG, "There is an error");

TTSChunkFactory.java was removed. To create a voice command you should now use T

TSChunk An example of creating and sending a voice command:

Before:

In JavaSE you must use the DebugTool, the old log methods will not work.

NOT E

TTSChunkFactory removal

Speak msg = new Speak(TTSChunkFactory.createSimpleTTSChunks("Voice
Message to speak"));
sdlManager.sendRPC(msg);

Now:

Speak msg = new Speak(Collections.singletonList(new TTSChunk("Voice Message
to speak", SpeechCapabilities.TEXT)));
sdlManager.sendRPC(msg);

Existing CharacterSet sets were not standards-compliant and are deprecated. New

character sets have been added and will be used in future head units to describe text

fields.

This guide is to help developers get setup with the SDL Java library version 5.1. It is

assumed that the developer is already updated to at least version 5.0 of the library.

The full release notes are published here.

CharacterSets

Upgrading to 5.1

Overview

Maven Central

https://github.com/smartdevicelink/sdl_java_suite/releases

Starting with SDL Java library version 5.1 the release will be published to Maven Central

instead of JCenter.

To gain access to the Maven Central repository, make sure your app's build.gradle file

includes the following:

repositories {
 mavenCentral()
}

In 5.1 a new onSystemInfoReceived method was added to the SdlManagerListener. More

detail can be found here

SdlManagerListener changes

SdlManagerListener method: onSystemInfoReceived auto generates in

Android Studio to returns false. This will cause your app to not connect. You

must change it to true or implement logic to check system info to see if you

wish for your app to connect to that system.

MUS T

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/getting-started/integration-basics-java/

SdlManagerListener listener = new SdlManagerListener() {
 @Override
 public void onStart() {
 }

 @Override
 public void onDestroy() {
 }

 @Override
 public void onError(String info, Exception e) {
 }

 @Override
 public LifecycleConfigurationUpdate managerShouldUpdateLifecycle(Language
language, Language hmiLanguage) {
 return null;
 }

 @Override
 public boolean onSystemInfoReceived(SystemInfo systemInfo) {
 //Check the SystemInfo object to ensure that the connection to the device
should continue
 return true;
 }
};

In 5.1 rather than sending an Alert RPC we now recommend sending an AlertView through

the ScreenManagers presentAlert method. More detail can be found here

Before:

 private void showAlert(String text) {
 Alert alert = new Alert();
 alert.setAlertText1(text);
 alert.setDuration(5000);
 sdlManager.sendRPC(alert);
}

Alert View

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/displaying-a-user-interface/alerts-and-subtle-alerts/

Now:

 private void showAlert(String text) {
 AlertView.Builder builder = new AlertView.Builder();
 builder.setText(text);
 builder.setTimeout(5);
 AlertView alertView = builder.build();
 sdlManager.getScreenManager().presentAlert(alertView, new
AlertCompletionListener() {
 @Override
 public void onComplete(boolean success, Integer tryAgainTime) {
 Log.i(TAG, "Alert presented: "+ success);
 }
 });
}

In 5.1 a new onViewResized method was added to the SDLRemoteDisplay class that

you will need to implement in your presentation class. More detail can be found here.

Before:

public static class MyDisplay extends SdlRemoteDisplay{
 public MyDisplay(Context context, Display display) {
 super(context, display);
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 //...
 }
}

Now:

SDLRemoteDisplay

https://sdl-devportal-media-production.s3.amazonaws.com/guides/android/video-streaming-for-navigation-apps/video-streaming-java/

public static class MyDisplay extends SdlRemoteDisplay{
 public MyDisplay(Context context, Display display) {
 super(context, display);
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 //...
 }

 @Override
 public void onViewResized(int width, int height) {
 DebugTool.logInfo(TAG, "Remote view new width and height ("+ width + ", " +
height + ")");
 //Update presentation based on new resolution
 }
}

The library has not been fully tested when being referenced from a Kotlin environment.

Everything should work as expected, but if you find errors please report them to the github.

Even though Kotlin is compatible with Java, Kotlin has more strict rules for access

modifiers than Java. For that reason, you may see this warning when using SdlManager 's

Builder class:

Does the SDL Java Suite library
work with Kotlin?

Are there any currently known issues
with Kotlin?

Type BaseSdlManager.Builder! is inaccessible in this context due to: public open
class Builder defined in com.smartdevicelink.managers.BaseSdlManager

While the warning is present, the functionality should continue to work in Kotlin. However,

as a workaround, developers can create a Java class SdlManagerFactory that can be

accessed from Kotlin code with a static method to create an SdlManager instance and

handle all the builder code there. This will prevent the warning from the Kotlin side.

public class SdlManagerFactory {

 public static SdlManager createSdlManager(Context context, String appID, String
appName, SdlManagerListener listener, Vector<AppHMIType> appTypes, SdlArtwork
appIcon) {
 SdlManager.Builder builder = new SdlManager.Builder(context, appID, appName,
listener);
 builder.setAppTypes(appTypes);
 builder.setTransportType(new MultiplexTransportConfig(context, appID));
 builder.setAppIcon(appIcon);
 return builder.build();
 }
}

Then from the Kotlin side:

sdlManager = SdlManagerFactory.createSdlManager(this, APP_ID, APP_NAME,
listener, appTypes, appIcon);

What is SDL?

SmartDeviceLink (SDL) connects in-vehicle infotainment systems to smartphone apps.

SDL allows automakers to provide highly integrated connected experiences and allows

users to operate smartphone apps through the in-vehicle infotainment screen and, if

equipped, voice recognition system.

If you see a notification similar to the one in the screenshot below, that means you are

using an app that has an SDL integration that allows it to push content to cars that

support SDL. However, if your car doesn’t support SDL, you can simply hide the

notification.

Why do you see SDL notifications?

If you would like to hide the notification, you can simply long click on the notification and

disable it as shown in the following screenshot.

How do you hide the notifications?

What is the Android Router
Service?

The Android OS has limitations around the availability of certain transports (Bluetooth

RFCOMM channels, single app AOA/USB permissions). Therefore, SmartDeviceLink (SDL)

introduced a service that operates as a router, using a single transport pipe and extending

it to many different bound apps. The router service is part of the required integration to

become SDL enabled and can be hosted by any of the SDL enabled apps on a phone. Some

OEMs might choose to have their own companion app that always hosts a router service

for their specific hardware.

Since information is being shared through the Android router service it is important that

the app hosting the router service can be trusted. This is done through a certification

process and a back-end server that maintains a database of apps that can act as a Trusted

Router Service. The SmartDeviceLink Consortium (SDLC) will verify the integration of SDL

apps to ensure there is no malicious activity. If the app is certified, it will be added to the

Trusted Router Service database and be able to act as a Trusted Router Service.

For an Android application to be added to the Trusted Router Service database, the

application will need to be registered on the SDL Developer Portal and certified by the

SDLC. For more information on registration, please see this guide. Any Android

application that is certified by the SDLC will be added to the Trusted Router Service

database; there are no additional steps required as it is part of the certification process.

What is a Trusted Router Service?

How do I add my app to the SDL
Trusted Router Service database?

How do I know if an app is
hosting a Trusted Router Service?

https://d83tozu1c8tt6.cloudfront.net/media/resources/SDL_Developer_Portal_Registration_Guide.pdf

Each app will retrieve and cache a list of Trusted Router Services from the back-end

server. Based on that app's security levels, they will perform checks against the currently

running router service, and if trusted it will bind to the Trusted Router Service. If not, the

app will attempt to use its own local transport.

The SmartDeviceLink Android library uses multiple processes and there are some items

that should be understood about why that is necessary and precautions to take while

handling that situation.

The router service is designed to live outside the normal lifecycle of the app integrating

the SDL framework. The different process allows a level of security to cut off access to

the hosting application's data because Android allocates a different memory space for the

router service process to run. It also allows the router service to not interfere with the

hosting application's runtime; this means if the router service unexpectedly stops or

crashes, it will not take down the hosting app. This relationship also works in the opposite

direction, which is important to maintain a good user experience when apps are connected

through a router service.

Android content providers have a unique lifecycle that does not work in the expected flow.

Content providers are actually started before the Application class and following Activi

ties , Services , etc. Some libraries use this to know when their code/module can

Multiple Processes

Why does the router service run in its
own process?

Content providers and multiple
processes

initialize and always be ready for the entire lifecycle of the application. This is found with

many Google libraries (Firebase, Jetpack, etc).

The issue is that, by default, content providers are only attached to and initialized for the

main process. This means, when the main process starts the content provider will be

started, but if a different process other than the main process is started the content

provider will not be started. So if the app has its first start from a component that is

designed to run in a different process, the content provider won't be ready by the time

those components start up; this includes the Application instance for that process.

The issue occurs when there is code in a developer's custom Application class that

assumes the content provider or module using the content provider lifecycle has already

been initialized, but an instance of that child Application class is created for a process

outside of the main process.

For example:

public class MyApplication extends Application {

 @Override
 public void onCreate() {
 super.onCreate();

 ModuleUsingContentProviderForInit.doSomething();

 }
}

If an instance of this extended Application class is created outside the main process

before the main process has started, this application will crash with a runtime exception.

This can happen when components that use a different process are started directly

instead of the app itself being launched by the user directly. The SDL library does this to

provide a seamless connection for apps to head units without the requirement of user

interaction.

Why is this a problem?

Depending on the module that uses a content provider for initialization, it could be

possible to start/initialize it from the onCreate method of the extended Application

class. It should be noted that the module would then need to be set up for a multiple

process environment, which is not always the case.

If the module can't be initialized in this way, then the Application child class will need to

keep a flag that prevents code from executing that would cause errors.

For SDL the solution can be as follows:

Workaround

public class MyApplication extends Application {

 private static final String ROUTER_SERVICE_PROCESS =
"com.smartdevicelink.router";

 boolean isSdlProcessFlag = false;

 @Override
 public void onCreate() {
 super.onCreate();

 isSdlProcessFlag = isSdlProcess();
 if (isSdlProcessFlag) {
 //This application instance is running in the SDL process
 return;
 }

 ModuleUsingContentProviderForInit.doSomething();

 }

 /**
 *
 * @return if this process is the SDL router service process
 */
 private boolean isSdlProcess(){
 int myPid = android.os.Process.myPid();
 ActivityManager am =
(ActivityManager)this.getSystemService(ACTIVITY_SERVICE);
 if (am == null || am.getRunningAppProcesses() == null) {
 return false;
 }

 for (ActivityManager.RunningAppProcessInfo processInfo :
am.getRunningAppProcesses()) {
 if (processInfo != null && processInfo.pid == myPid) {
 return ROUTER_SERVICE_PROCESS.equals(processInfo.processName);
 }
 }
 return false;
 }
}

The use of this flag can help prevent errors when extending the Application class that

assume it always has the main process started first. This solution could be modified to

change the flag to monitor if this is the main process or not very easily.

While the documentation on this is a little scarce, the Android OS creates a new instance

of the supplied Application class for each process that is started in your app. This

means your custom Application class needs to be ready to run on different processes.

The previous example is a good sample that can prevent code from executing in your

custom class that is only intended to run on the main process.

If other callback methods in your Application class are used, they must

also check this flag to prevent unintended behavior.

NOT E

Custom Application classes instance for each process

