SKE!

Guides Android Documentation

Document current as of 11/02/2018 09:34 AM.

Installation

Introduction

Each SDL Android library release is published to JCenter. By adding a few lines
in their app's gradle script, developers can compile with the latest SDL Android
release.

To gain access to the JCenter repository, make sure your app's build.gradle file
includes the following:

repositories {

jcenter()

}

Gradle Build

To compile with the a release of SDL Android, include the following line in your
app's build.gradle file,

https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://github.com/smartdevicelink/sdl_android

dependencies {

implementation '‘com.smartdevicelink:sdl_android:{version}'

}

and replace {version} with the desired release version in format of x.x.x .
The list of releases can be found here.

Examples

To compile release 4.7.1, use the following line:

dependencies {
implementation ‘com.smartdevicelink:sdl_android:4.7.1"

}

To compile the latest minor release of major version 4, use:

dependencies {
implementation ‘com.smartdevicelink:sdl_android:4.+'

}

https://github.com/smartdevicelink/sdl_android/releases

Integration Basics

Getting Started on Android

In this guide, we exclusively use Android Studio. We are going to set-up a bare-

bones application so you get started using SDL.

NOTE

The SDL Mobile library for supports Android 2.2.x (APl Level 8) or
higher.

Required System Permissions

In the AndroidManifest for our sample project we need to ensure we have the

following system permissions:

* Internet - Used by the mobile library to communicate with a SDL Server
* Bluetooth - Primary transport for SDL communication between the device

and the vehicle's head-unit
* Access Network State - Required to check if WiFi is enabled on the device

https://developer.android.com/about/versions/android-2.2.html
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_NETWORK_STATE

<manifest xmlins:android=

package=

<uses-permission android:name=

<uses-permission android:name=
>
<uses-permission android:name=

</manifest>

NOTE

If the app is targeting Android P (API Level 28) or higher, the
Android Manifest file should also have the following permission to

allow the app to start a foreground service:

<uses-permission android:name=

SmartDeviceLink Service

A SmartDevicelLink Android Service should be created to manage the lifecycle
of the SDL session. The SdlIService should build and start an instance of the S
dIManager which will automatically connect with a headunit when available.

This SdIManager will handle sending and receiving messages to and from SDL
after connected.

Create a new service and name it appropriately, for this guide we are going to
call it SdIService .

SdIService Service {

If you created the service using the Android Studio template then the service
should have been added to your AndroidManifest.xml otherwise the service
needs to be defined in the manifest:

<manifest xmlns:android=
package=
<application>
<service

android:name=
android:enabled= />

</application>

</manifest>

Entering the Foreground

Because of Android Oreo's requirements, it is mandatory that services enter the
foreground for long running tasks. The first bit of integration is ensuring that
happens in the onCreate method of the SdIService or similar. Within the
service that implements the SDL lifecycle you will need to add a call to start the
service in the foreground. This will include creating a notification to sit in the

status bar tray. This information and icons should be relevant for what the
service is doing/going to do. If you already start your service in the foreground,
you can ignore this section.

void 0 A1
.onCreate();
/...
if(Build.VERSION.SDK_INT >= Build.VERSION CODES.O) {
NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
notificationManager.createNotificationChannel(...);
Notification serviceNotification = new Notification.Builder(this, *
Notification Channel*)
.setContentTitle(...)
.setSmalllcon(....)
.setLargelcon(...)
.setContentText(...)
.setChannelld(channel.getld())
build();
startForeground(id, serviceNotification);
}
}

NOTE

The sample code checks if the OS is of Android Oreo or newer to
start a foreground service. It is up to the app developer if they wish
to start the notification in previous versions.

Exiting the Foreground

It's important that you don't leave you notification in the notification tray as it
is very confusing to users. So in the onDestroy method in your service, simply
call the stopForeground method.

@Override
void 01
/l...
if(Build.VERSION.SDK INT>=Build.VERSION_CODES.O){
NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
if(notificationManager!=null){ //If this is the only notification on

your channel
notificationManager.deleteNotificationChannel(* Notification
Channel*);
}
stopForeground(true);
}
}

Implementing SDL Manager

In order to correctly connect to an SDL enabled head unit developers need to
implement methods for the proper creation and disposing of an SdIManager in
our SdlService .

NOTE

An instance of SdIManager cannot be reused after it is closed and
properly disposed of. Instead, a new instance must be created.
Only one instance of SdIManager should be in use at any given
time.

SdIService Service {

//The manager handles communication between the application and
SDL

SdIManager sdIManager = null;

/...

@Override
int (Intent intent, int flags, int startld) {
if (sdIManager == null) {
MultiplexTransportConfig transport = new

MultiplexTransportConfig(this, APP_ID, MultiplexTransportConfig.
FLAG_MULTI_SECURITY_OFF);

// The app type to be used

Vector<AppHMIType> appType = new Vector<>();
appType.add(AppHMIType.MEDIA);

/l The manager listener helps you know when certain events
that pertain to the SDL Manager happen

SdIManagerListener listener = new SdIManagerListener() {

@Override
void 0O A1

/] After this callback is triggered the SdIManager can be

used to interact with the connected SDL session (updating the display,
sending RPCs, etc)

}

@Override
void 01

SdlService.this.stopSelf();
}

@Override
void (String info, Exception e) {
}

Y

// Create App Icon, this is set in the SdIManager builder

SdIArtwork applcon = new SdIArtwork(ICON_FILENAME, FileType.
GRAPHIC_PNG, R.mipmap.ic_launcher, true);

// The manager builder sets options for your session

SdIManager.Builder builder = new SdIManager.Builder(this,
APP_ID, APP_NAME, listener);

builder.setAppTypes(appType);

builder.setTransportType(transport);
builder.setApplcon(applcon);
sdIManager = builder.build();
sdIManager.start();

The onDestroy() method from the SdIManagerListener is called whenever
the manager detects some disconnect in the connection, whether initiated by
the app, by SDL, or by the device’s connection.

NOTE

The sdlIManager must be shutdown properly in the SdlService.on
Destroy() callback using the method sdlIManager.dispose() .

Listening for RPC notifications and events

We can listen for specific events using SdIManager 's addOnRPCNotificationLis
tener . These listeners can be added either in the onStart() callback of the Sd
IManagerListener or after it has been triggered. The following example shows
how to listen for HMI Status notifications. Additional listeners can be added for
specific RPCs by using their corresponding FunctionID in place of the ON_HMI
_STATUS in the following example and casting the RPCNotification object to
the correct type.

EXAMPLE OF A LISTENER FOR HMI STATUS:

sdIManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS,
new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnHMIStatus status = (OnHMIStatus) notification;

if (status.getHmiLevel() == HMILevel.HMI_FULL && ((
OnHMIStatus) notification).getFirstRun()) {
// first time in HMI Full

SmartDevicelLink Router Service

The SdIRouterService will listen for a connection with an SDL enabled module.
When a connection happens, it will alert all SDL enabled apps that a connection
has been established and they should start their SDL services.

We must implement a local copy of the SdIRouterService into our project. The
class doesn't need any modification, it's just important that we include it. We
will extend the com.smartdevicelink.transport.SdIRouterService in our class
named SdlRouterService :

NOTE

Do not include an import for com.smartdevicelink.transport.SdIRou
terService . Otherwise, we will get an error for 'SdIRouterService'
is already defined in this compilation unit .

SdIRouterService com.smartdevicelink.transport.
SdIRouterService {

//Nothing to do here
}

MUST

The local extension of the com.smartdevicelink.transport.SdIRouter
Service must be named SdlRouterService .

MUST

Make sure this local class SdIRouterService.java is in the same
package of SdlReceiver.java (described below)

If you created the service using the Android Studio template then the service
should have been added to your AndroidManifest.xml otherwise the service
needs to be added in the manifest. Because we want our service to be seen by
other SDL enabled apps, we need to set android:exported="true" . The system

may issue a lint warning because of this, so we can suppress that using tools:i

gnore="ExportedService" .

Lock Screen Activity

An Activity entry must also be added to the manifest for the SDL lock
screen. For more information about lock screens, please see the Adding the

Lock Screen section.

NOTE
When using SdIManager , the lock screen is enabled by default via

the LockScreenManager . Please see the link above for more

information

Once added, your AndroidManifest.xml should be defined like below:

https://smartdevicelink.com/en/guides/android/adding-the-lock-screen/
https://smartdevicelink.com/en/guides/android/adding-the-lock-screen/

<manifest xmlins:android=
package=
<application>

<service
android:name=

android:exported=
android:process=
tools:ignore=
<intent-filter>

<action android:name=

</intent-filter>
<meta-data android:name=
android:value=
/>
</service>

<!-- Required to use the lock screen -->
<activity android:name=

android:launchMode= />
</application>

</manifest>

MUST

The SdIRouterService must be placed in a separate process with
the name com.smartdevicelink.router . If it is not in that process
during it's start up it will stop itself.

NOTE

Setting android:name to @string/
sdl_router_service_version_name for the router service metadata
may cause issues with some app packaging and analyzing tools like
aapt. You can avoid that by hardcoding the string value instead of
using a string reference.

<meta-data android:name= android:value=

/>

Intent Filter

<intent-filter>

<action android:name=
</intent-filter>

The new versions of the SDL Android library rely on the com.smartdevicelink.ro
uter.service action to query SDL enabled apps that host router services. This
allows the library to determine which router service to start.

MUST

This intent-filter MUST be included.

Metadata

ROUTER SERVICE VERSION

<meta-data android:name=

android:value=

Adding the sdl_router_service_version metadata allows the library to know the
version of the router service that the app is using. This makes it simpler for the
library to choose the newest router service when multiple router services are
available.

CUSTOM ROUTER SERVICE

<meta-data android:name=

android:value=

NOTE

This is only for specific OEM applications, therefore normal
developers do not need to worry about this.

Some OEMs choose to implement custom router services. Setting the sdl_route
r service_is_custom_name metadata value to true means that the app is
using something custom over the default router service that is included in the
SDL Android library. Do not include this meta-data entry unless you know
what you are doing.

SmartDeviceLink Broadcast
Receiver

The Android implementation of the SdIManager relies heavily on the OS's
bluetooth and USB intents. When the phone is connected to SDL and the router
service has sent a connection intent, the app needs to create an SdIManager,
which will bind to the already connected router service. As mentioned
previously, the SdIManager cannot be re-used. When a disconnect between the
app and SDL occurs, the current SdIManager must be disposed of and a new
one created.

The SDL Android library has a custom broadcast receiver named SdIBroadcast
Receiver that should be used as the base for your BroadcastReceiver. It is a
child class of Android's BroadcastReceiver so all normal flow and attributes will
be available. Two abstract methods will be automatically populate the class, we
will fill them out soon.

Create a new SdIBroadcastReceiver and name it appropriately, for this guide we
are going to call it SdIReceiver :

SdIReceiver SdIBroadcastReceiver {

@Override
void (Context context, Intent intent) {

/...

}

@Override
Class<? SdIRouterService>
() {

MUST

SdIBroadcastReceiver must call super if onReceive is overridden

@Override
void (Context context, Intent intent) {

.onReceive(context, intent);
/lyour code here

}

If you created the BroadcastReceiver using the Android Studio template then
the service should have been added to your AndroidManifest.xml otherwise
the receiver needs to be defined in the manifest. Regardless, the manifest

needs to be edited so that the SdIBroadcastReceiver needs to respond to the

following intents:

* android.bluetooth.device.action.ACL_CONNECTED

* sdl.router.startservice

<manifest xmins:android=
package=
<application>
<receiver
android:name=
android:exported=

android:enabled=

<intent-filter>
<action android:name=

<action android:name=
</intent-filter>

</receiver>

</application>

<!-- Required to use the lock screen -->
<activity android:name=

android:launchMode=

</manifest>

NOTE

The intent sdl.router.startservice is a custom intent that will come
from the SdlRouterService to tell us that we have just connected to
an SDL enabled piece of hardware.

https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html#ACTION_ACL_CONNECTED

MUST

SdIBroadcastReceiver has to be exported, or it will not work
correctly

Next, we want to make sure we supply our instance of the SdIBroadcastService
with our local copy of the SdIRouterService. We do this by simply returning the
class object in the method defineLocalSdIRouterClass:

SdIReceiver SdIBroadcastReceiver {
@Override
void (Context context, Intent intent) {

}

@Override
Class<? SdIRouterService>
() {

//Return a local copy of the SdIRouterService located in your
project

return com.company.mySdlApplication.SdIRouterService.class;

}
}

We want to start the SdIManager when an SDL connection is made via the SdIR
outerService . We do this by taking action in the onSdIEnabled method:

MUST

Apps must start their service in the foreground as of Android Oreo
(API 26).

SdIReceiver SdIBroadcastReceiver {

@Override
void (Context context, Intent intent) {
//Use the provided intent but set the class to the SdIService
intent.setClass(context, SdlService.class);
if(Build.VERSION.SDK_INT < Build.VERSION_CODES.O) {
context.startService(intent);
}else{
context.startForegroundService(intent);
}
}

@Override
Class<? SdIRouterService>
() {

//Return a local copy of the SdIRouterService located in your
project

return com.company.mySdlApplication.SdIRouterService.class;

}
}

NOTE

The onSdlEnabled method will be the main start point for our SDL
connection session. We define exactly what we want to happen
when we find out we are connected to SDL enabled hardware.

Main Activity

Now that the basic connection infrastructure is in place, we should add
methods to start the SdlService when our application starts. In onCreate() in
your main activity, you need to call a method that will check to see if there is
currently an SDL connection made. If there is one, the onSdlEnabled method

will be called and we will follow the flow we already set up. In our MainActivity.j
ava we need to check for an SDL connection:

MainActivity Activity {

@Override
void (Bundle savedinstanceState) {
.onCreate(savedinstanceState);

setContentView(R.layout.activity_main);

//If we are connected to a module we want to start our SdIService
SdIReceiver.queryForConnectedService(this);

}

Using Android Open
Accessory Protocol

Incorporating AOA into an SDL enabled app allows it to create and register an
SDL session over USB. This guide will assume the app has already integrated
the SDL library as laid out in the previous guides. AOA connections are sent
through the SDLRouterService to bypass an Android limitation of only one app
being able to be used through the AOA intent.

Prerequisites:

* Installation guide
* Integration Basics guide

We will add or make changes to:

* Android Manifest (of your app)
* SdlService (optional)

https://d83tozu1c8tt6.cloudfront.net/guides/android/getting-started/installation/
https://d83tozu1c8tt6.cloudfront.net/guides/android/getting-started/integration-basics/

Prerequisites

The Installation and Integration Basics guides must be completed before
enabling the use of the AOA USB transport. The remainder of the guide will
assume all steps of those two guides will be followed.

Android Manifest

To use the AOA protocol, you must specify so in your app's Manifest with:

<uses-feature android:name=

MUST

This feature will not work without including this line!

The SDL Android library houses a USBAccessoryAttachmentActivity that you
need to add between your Manifest's <application>...</application> tags:

<activity android:name=

android:launchMode=
<intent-filter>
<action android:name=

</intent-filter>

<meta-data
android:name=

android:resource=
</activity>

NOTE

The accessory filter.xml file is included with the SDL Android
Library

SmartDeviceLink Service

As long as the app doesn't require high bandwidth, it shouldn't matter which
transport is being connected, and will be transport to the developer. If the
integration guides were followed, a multiplex transport configuration was
already created and provided to the SdIManager like the one that follows:

@Override
int (Intent intent, int flags, int startld) {

if (sdIManager == null) {
MultiplexTransportConfig transport = new
MultiplexTransportConfig(this, APP_ID, MultiplexTransportConfig.
FLAG_MULTI_SECURITY_OFF);

SdIManagerListener listener = new SdIManagerListener() {
/...
V5

/...
builder.setTransportType(transport);

sdIManager = builder.build();
sdIManager.start();

Using only USB / AOA

The new MultiplexingConfig allows for apps to be able to connect via
Bluetooth and USB as primary transports. If you want your app to only use USB
/ AOA, then you should specifically only set that as the only allowed primary
transport.

When defining your transport, also pass in a custom list that only contains the
USB:

List<TransportType> multiplexPrimaryTransports = Arrays.asList(
TransportType.USB);

MultiplexTransportConfig transport = new MultiplexTransportConfig(this,
appld, MultiplexTransportConfig.FLAG_MULTI_SECURITY_MED);

transport.setPrimaryTransports(multiplexPrimaryTransports);

Multiple Transports

Since the SdIRouterService now handles both bluetooth and AOA/USB
connections, an app will be connected to the transport that connects first if the
app includes it in their transport config. If a module supports secondary
transports, the second transport to be connected of bluetooth or USB will be
available as well as potentially TCP. This means even though the app might
register over bluetooth, if USB or TCP are available those transports will be
available for high bandwidth services. For more information please see the
Multiple Transport Guide.

Multiple Transports

As of Protocol Version 5.1.0, which is supported from SDL Android 4.7 and SDL
Core 5.0, a new feature was introduced called Multiple Transports. This feature
allows apps to carry their SDL session over multiple transports. The first
transport that the app connects to is referred to as the primary transport, and a
later connected transport being a secondary. For example, apps can register
over bluetooth as a primary transport, then connect over WiFi when necessary
(video/audio streaming) as a secondary transport.

SDL Android

PRIMARY TRANSPORTS

This feature coincides with our newly redesigned multiplexing transport. In SDL
Android 4.7 and newer, you can connect and register apps via a multiplexed
bluetooth and/or USB connection. On head units that support multiple
transports, the primary transport will be used for RPC communication while the
secondary will be used for high bandwidth services. Otherwise, the primary
transport will be used for all applicable services for that transport type.

https://d83tozu1c8tt6.cloudfront.net/guides/android/getting-started/multiple-transports/

SUPPORTING SPECIFIC PRIMARY TRANSPORTS

Whether your app supports both bluetooth and/or USB connections are
determined by what you set as acceptable primary transports. By default, both
USB and bluetooth are supported and should be kept unless there is a specific
reason otherwise. If you list multiple primary transports and one disconnects, if
another included transport is available the app will automatically attempt to
connect and register.

List<TransportType> multiplexPrimaryTransports = Arrays.asList(
TransportType.USB, TransportType.BLUETOOTH);

MultiplexTransportConfig mtc = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI SECURITY_OFF);
mtc.setPrimaryTransports(multiplexPrimaryTransports);

If you only want to use bluetooth or USB, simply pass in a list with the one you
want.

NOTE

For the best compatibility we suggest supporting both primary
transports.

REQUIRES HIGH BANDWIDTH

Certain app types will require a high bandwidth transport to be available, which
could be either primary or secondary transports. If this is the case, an app will
only be registered if a high bandwidth transport is either connected or available
to connect.

If this is the case for your app you can set the setRequiresHighBandwidth flag
to true :

MultiplexTransportConfig mtc = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI SECURITY_OFF);

mtc.setRequiresHighBandwidth(true);

HIGH BANDWIDTH APP WITH LOW BANDWIDTH SUPPORT

While some app's main integration requires high bandwidth, it is possible to
support a low bandwidth integration for better visibility. As an example, a
navigation app might require high bandwidth transport to stream their map
view but could provide a low bandwidth integration that displays turn-by-turn
directions. Another simple low bandwidth integration could simply be displaying
a message that instructs the user to connect USB or WiFi to enable the app. In
this case the app should set the requires high bandwidth flag to false, as it is by
default.

MultiplexTransportConfig mtc = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);

mtc.setRequiresHighBandwidth(false);

SECONDARY TRANSPORTS

Secondary transports are supported as of Protocol Version 5.1.0 , and must be
enabled by the module the app is connecting. In addition to supporting
bluetooth and USB, TCP is also a supported as a secondary transport.

Setting secondary transports that your app supports is similar to setting the
primary transports:

List<TransportType> multiplexPrimaryTransports = Arrays.asList(
TransportType.USB, TransportType.BLUETOOTH);
List<TransportType> multiplexSecondaryTransports = Arrays.asList(
TransportType.TCP, TransportType.USB, TransportType.BLUETOOTH);

MultiplexTransportConfig mtc = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI SECURITY_OFF);
mtc.setPrimaryTransports(multiplexPrimaryTransports);
mtc.setSecondaryTransports(multiplexSecondaryTransports);

By default, all three transports are set as supported secondary transports. As
mentioned above, secondary transports will often be used for high bandwidth
services.

Sending Multiple RPCs

Batch Sending RPCs

There are two ways to send multiple requests to the head unit: concurrently
and sequentially. Which method you should use depends on the type of RPCs
being sent. Concurrently sent requests might finish in a random order and
should only be used when none of the requests in the group depend on the
response of another, such as when uploading a group of artworks. Sequentially
sent requests only send the next request in the group when a response has
been received for the previously sent RPC. Requests should be sent
sequentially when you need to know the result of a previous request before
sending the next, like when sending the several different requests needed to
Create a menu.

Both methods have optional listeners that are specific to them, the OnMultiple
RequestListener . This listener will provide additional information than the
normal OnRPCResponselListener . Its use is shown below.

Send Requests

sendRPCs allows you to easily send an ArrayList of RPCRequests easily to
the head unit. When you send multiple RPCs concurrently there is no guarantee
of the order in which the RPCs will be sent or in which order Core will return
responses. The method also comes with its own listener, OnMultipleRequestLis
tener that will provide you with updates as the sending progresses, errors that
may arise, and let you know when the sending is finished. Below is a sample
call:

List<RPCRequest> rpcs = new ArrayList<>();

/l rpc 1

SubscribeButton subscribeButtonRequestlLeft = new SubscribeButton();
subscribeButtonRequestLeft.setButtonName(ButtonName.SEEKLEFT);
rpcs.add(subscribeButtonRequestLeft);

/] rpc 2
SubscribeButton subscribeButtonRequestRight = new SubscribeButton

();
subscribeButtonRequestRight.setButtonName(ButtonName.SEEKRIGHT

);
rpcs.add(subscribeButtonRequestRight);

sdIManager.sendRPCs(rpcs, new OnMultipleRequestListener() {
@Override
void (int remainingRequests) {

}

@Override
void

}

@Override
void (int correlationld, RPCResponse response) {

}

@Override
void (int correlationld, RPCResponse response) {

Send Sequential Requests

As you may have guessed, this method is called similarly to sendRPCs but
sends the requests synchronously, guaranteeing order. It is important to note
that you want to build your array with the items that you want to send first,

first. This is particularly useful for RPCs that are dependent upon other ones,
such as a performinteraction needing a createlnteractionChoiceSet 's id.

This method call is exactly the same as above, except for the method name
being sendSequentialRPCs . For your convenience, the listener is also the
same and performs similarly.

List<RPCRequest> rpcs = new ArrayList<>();

//rpc 1

SubscribeButton subscribeButtonRequestLeft = new SubscribeButton();
subscribeButtonRequestLeft.setButtonName(ButtonName.SEEKLEFT);
rpcs.add(subscribeButtonRequestLeft);

/] rpc 2
SubscribeButton subscribeButtonRequestRight = new SubscribeButton

();
subscribeButtonRequestRight.setButtonName(ButtonName.SEEKRIGHT

)7
rpcs.add(subscribeButtonRequestRight);

sdIManager.sendSequentialRPCs(rpcs, new OnMultipleRequestListener()

{
@Override

void (int remainingRequests) {

}

@Override
void

}

@Override
void (int correlationld, RPCResponse response) {

}

@Override
void (int correlationld, Result resultCode, String info) {

Hello SDL Android

Introduction

In this guide we take you through the steps to get our sample project, Hello Sdl
Android, running and connected to Sdl Core as well as showing up on the
generic HMI.

First, make sure you download or clone the latest release from GitHub. It is a
package within the SDL Android library.

Open the project in Android Studio. We will exclusively use Android Studio as it
is the current supported platform for Android development.

Getting Started

If you are not using a Ford TDK for development, we will assume that you have
SDL Core (We recommend Ubuntu 16.04) and an HMI set up prior to this point.
Most people getting started with this tutorial will not have a Ford TDK, so
sample outputs will be using Sdl Core and our Generic HMI.

If you don't want to set up a virtual machine for testing, we offer Manticore,
which is a free service that allows you to test your apps via TCP/IP in the cloud.

NOTE

Sdl Core and an HMI or Manticore are needed to run Hello Sdl
Android and to ensure that it connects

https://github.com/smartdevicelink/sdl_android
https://developer.android.com/studio/index.html
https://github.com/smartdevicelink/sdl_core
https://github.com/smartdevicelink/generic_hmi
https://smartdevicelink.com/resources/manticore/

BUILD FLAVORS
Hello SdI Android has been built with different build flavors.

To access the Build Variant menu to choose your flavor, click on the menu Buil
d then Select Build Variant . A small window will appear on the bottom left of
your IDE window that allows you to choose a flavor.

There are many flavors to choose from and for now we will only be concerned
with the debug versions.

Versions Include:

multi - Multiplexing (Bluetooth, USB, TCP (as secondary transport))
* multi_high_bandwidth - Multiplexing for apps that require a high
bandwidth transport

tcp - Transmission Control Protocol - used only for debugging purposes

We will mainly be dealing with multi (if using a TDK) or tcp (if connecting to
SDL Core via a virtual machine or your localhost, or to Manticore)

Transports

CONFIGURE FOR TCP

If you aren't using a TDK or head unit, you can connect to SDL core via a virtual
machine or to your localhost. To do this we will use the flavor tcpDebug .

For TCP to work, you will have to know the IP address of your machine that is
running Sdl Core. If you don't know what it is, running ifconfig in a linux
terminal will usually let you see it for the interface you are connected with to
your network. We have to modify the IP address in Hello Sdl Android to let it
know where your instance of Sdl Core is running.

In the main Java folder of Hello Sdl Android, open up SdlService.java

In the top of this file, locate the variable declaration for DEV_MACHINE_IP_ADD
RESS . Change it to your Sdl Core's IP. Leave the TCP_PORT setto 12345 .

// TCP/IP transport config
int TCP_PORT = 12345; // if using manticore,

change to assigned port
String DEV_MACHINE_IP_ADDRESS =
; // change to your IP

NOTE

if you do not change the target IP address, the application will not
connect to Sdl Core or show up on the HMI

CONFIGURE FOR BLUETOOTH

Right out of the box, all you need to do to run bluetooth is to select the multi_s
ec_offDebug (Multiplexing) build flavor.

CONFIGURE FOR USB (AOA)

To connect to an SDL Core instance or TDK via USB transport, select the multi_
sec_offDebug (Multiplexing) build flavor. There is more information for USB
transport under Getting Started - Using AOA Protocol.

https://d83tozu1c8tt6.cloudfront.net/guides/android/getting-started/using-aoa-protocol/

Building the Project

For TCP, you may use the built-in Android emulator or an Android phone on the
same network as Sdl Core. For Bluetooth, you will need an Android phone that

is paired to a TDK or head unit via Bluetooth.

MUST

Make sure Sdl Core and the HMI are running prior to running Hello
Sdl Android

Run the project in Android Studio, targeting the device you want Hello Sdl
Android installed on.

Hello SdI Android should compile and launch on your device of choosing:

~ -2

Hello Sdi Androld i

Following this, you should see an application appear on the TDK or HMI. In the
case of the Generic HMI (using TCP), you will see the following:

S

Hello Sdl

Click on the Hello Sdl icon in the HMI.

Hello Sdl

Hello Sdl

This is the main screen of the Hello SdI App. If you get to this point, the project
is working.

On the device you are running the app on, a lock screen should now appear
once the app is opened on the HMI if distracted driver notifications are setto D

D On:

NOTE

Lock Screens are an important part of Sdl enabled applications. The
goal is to keep the driver's eyes forward and off of the device

At this point Hello SdI Android has been compiled and is running properly!
Continue reading through our guides to learn about all of the
RPCs (Remote Procedure Calls) that can be made with the library.

Troubleshooting

Sometimes things don't always go as planned, and so this section exists. If your
app compiles and does NOT show up on the HMI, there are a few things to
check out.

TCP

1. Make sure that you have changed the IP in SdIService.java to match the
machine running Sdl Core. Being on the same network is also important.

2. |f you are sure that the IP is correct and it is still not showing up, make
sure the Build Flavor that is running is tcpDebug.

3. If the two above dont work, make sure there is no firewall blocking the
incoming port 12345 on the machine or VM running SDL Core. In the
same breath, make sure your firewall allows that outgoing port.

4. There are different network configurations needed for different
virtualization software (virtualbox, vmware, etc). Make sure yours is set up
correctly. Or use Manticore.

BLUETOOTH

Make sure the build flavor multi_sec_offDebug is selected.
Ensure your phone is properly paired with the TDK
Make sure Bluetooth is turned on - on Both the TDK and your phone

B whNhe

Make sure apps are enabled on the TDK (in settings)

https://smartdevicelink.com/resources/manticore/

Adding the Lock Screen

In order for your SDL application to be certified with most OEMs you will be
required to implement a lock screen on the mobile device. The lock screen will
disable user interactions with the application on the mobile device while they
are using the head-unit to control application functionality. OEMs may choose to
send their logo for your app's lock screen to use; the LockScreenManager
takes care of this automatically using the default layout.

NOTE

This guide assumes that you have an SDL Service implemented as
defined in the Getting Started guide.

There is a manager called the LockScreenManager that is accessed through
the SdIManager that handles much of the logic for you. If you have
implemented the SdIManager and have defined the SDLLockScreenActivity
in your manifest but have not defined any lock screen configuration, you are
already have a working default configuration. This guide will go over specific
configurations you are able to implement using the LockScreenManager
functionality.

Lock Screen Activity

You must declare the SDLLockScreenActivity in your manifest. To do so, simply
add the following to your app's AndroidManifest.xml if you have not already
done so:

https://d83tozu1c8tt6.cloudfront.net/guides/android/getting-started/integration-basics/

<activity android:name=

android:launchMode=

MUST

This manifest entry must be added for the lock screen feature to
work.

Configurations

The default configurations should work for most app developers and is simple
to get up and and running. However, it is easy to perform deeper configurations
to the lock screen for your app. Below are the options that are available to
customize your lock screen which builds on top of the logic already
implemented in the LockScreenManager .

There is a setter in the SdIManager.Builder that allows you to set a LockScree
nConfig by calling builder.setLockScreenConfig(lockScreenConfig) . The
following options are available to be configured with the LockScreenConfig .

In order to to use these features, create a LockScreenConfig object and set it
using SdlManager.Builder before you build SdIManager .

CUSTOM BACKGROUND COLOR

In your LockScreenConfig object, you can set the background color to a color
resource that you have defined in your Colors.xml file:

lockScreenConfig.setBackgroundColor(resourceColor); // For example,

R.color.black

CUSTOM APP ICON

In your LockScreenConfig object, you can set the resource location of the
drawable icon you would like displayed:

lockScreenConfig.setApplcon(applconint); // For example,

R.drawable.lockscreen_icon

SHOWING THE DEVICE LOGO

This sets whether or not to show the connected device's logo on the default
lock screen. The logo will come from the connected hardware if set by the
manufacturer. When using a Custom View, the custom layout will have to
handle the logic to display the device logo or not. The default setting is false,
but some OEM partners may require it.

In your LockScreenConfig object, you can set the boolean of whether or not
you want the device logo shown, if available:

lockScreenConfig.showDevicelLogo(true);

SETTING A CUSTOM LOCK SCREEN VIEW

If you'd rather provide your own layout, it is easy to set. In your LockScreenCo
nfig object, you can set the reference to the custom layout to be used for the
lock screen. If this is set, the other customizations described above will be
ignored:

lockScreenConfig.setCustomView(customViewlnt);

DISABLING THE LOCK SCREEN MANAGER:

Please note that a lock screen will likely be required by OEMs. You can disable
the LockScreenManager , but you will then be required to create your own
implementation. This is not recommended as the LockScreenConfig should
enable all possible settings while still adhering to most OEM requirements.
However, if it is unavoidable to create one from scratch the LockScreenManage
r can be disabled via the LockScreenConfig as follows.

lockScreenConfig.setEnabled(false);

NOTE

When the enabled flag is set to false all other config options will
be ignored.

Designing a User Interface

Designing for Different User Interfaces

Each car manufacturer may have different user interface style guidelines and
slight variations in their templates(number of lines of text, buttons, and images
supported). After the SdIManager has been started and is able to connect to
and register on a module, the SystemCapabilityManager will have this
capability information. The information stored in the

SystemCapabilityManager can be used to aid in the layout and flow of your
user interface.

Dynamic User Interface Capabilities

After the SdIManager has been successfully started the module will have sent
any user interface information it has back to your app. This information
includes the display type, the type of images supported, the number of text
fields supported, the HMI display language, and a lot of other useful properties.
This information can be accessed using the SystemCapabilityManager . The
table below has a list of all possible properties available. Each property is
optional, so you may not get information for all the parameters in the table.

sdiLanguage

hmiDisplayLanguage

displayCapabilities

buttonCapabilities

softButtonCapabilities

presetBankCapabilities

speechCapabilities

The currently active voice-
recognition and text-to-
speech language on the
head unit.

The currently active
display language on the
head unit.

Information about the
head unit display. This
includes information
about available templates,
whether or not graphics
are supported, and a list
of all text fields and the
max number of characters
allowed in each text field.
A list of available buttons
and whether the buttons
support long, short and
up-down presses.

A list of available soft
buttons and whether the
button support images.
Also information about
whether the button
supports long, short and
up-down presses.

If returned, the platform
supports custom on-
screen presets.

Contains information
about TTS capabilities on
the SDL platform.
Platforms may support
text, SAPI phonemes, LH
PLUS phonemes, pre-
recorded speech, and

silence.

Check Language.java for

more information

Check Language.java for

more information

Check
DisplayCapabilities.java

for more information

Check
ButtonCapabilities.java

for more information

Check
SoftButtonCapabilities.ja

va for more information

Check
PresetBankCapabilities.j

ava for more information

Check
SpeechCapabilities.java

for more information

prerecordedSpeech

vrCapabilities

audioPassThruCapabiliti

€S}

supportedDiagModes

hmiCapabilities

Templates

Each car manufacturer supports a set of templates for the user interface. These
templates determine the position and size of the text, images, and buttons on

A list of pre-recorded
sounds you can use in
your app. Sounds may
include a help, initial,
listen, positive, or a
negative jingle.

The voice-recognition
capabilities of the
connected SDL platform.
The platform may be able
to recognize spoken text

in the current language.

Describes the sampling
rate, bits per sample, and

audio types available.

Specifies the white-list of
supported diagnostic
modes (0x00-0xFF)
capable for
DiagnosticMessage
requests. If a mode
outside this list is
requested, it will be
rejected.

Returns whether or not
the app can support built-
in navigation and phone

calls.

Check
PrerecordedSpeech.java

for more information

Check
VrCapabilities.java for

more information

Check
AudioPassThruCapabiliti
es.java for more

information

List

Check
HMICapabilities.java for

more information

the screen. A list of supported templates is sent with RegisterAppinterface

response and can be accessed using the SystemCapabilityManager .

To change a template at any time, send a SetDisplayLayout RPC to the SDL
Core. If you want to ensure that the new template is used, wait for a response
from the SDL Core before sending any more user interface RPCs.

SetDisplayLayout setDisplayLayoutRequest = new SetDisplayLayout();
setDisplayLayoutRequest.setDisplayLayout(PredefinedLayout.
GRAPHIC_WITH_TEXT.toString());
setDisplayLayoutRequest.setOnRPCResponselListener(new
OnRPCResponselListener() {
@Override
void (int correlationld, RPCResponse response) {
if(((SetDisplayLayoutResponse) response).getSuccess()){
Log.i(.);
/| Proceed with more user interface RPCs
}else{
Log.i(

sdIManager.sendRPC(setDisplayLayoutRequest);

Available Templates

There are fifteen standard templates to choose from, however some head units
may only support a subset of these templates. Please check the DisplayCapabi
lities object returned by SystemCapabilityManager for the supported
templates. The following examples show how templates will appear on the
generic head unit.

NOTE

You will automatically be assigned the media template if you set
your configuration app type as MEDIA .

1. MEDIA - WITH AND WITHOUT PROGRESS BAR
FORD HMI

- Change Source

B change Source

|
- -
o ° < 7

Presets SoftKey1" I¥Sof_tKey2 ‘ SoftKey3 BELILCGEYZ

2. NON-MEDIA - WITH AND WITHOUT SOFT BUTTONS

FORD HMI

SoftKey | Softkey: SoftK

3. GRAPHIC_WITH_TEXT

FORD HMI

4. TEXT _WITH_GRAPHIC
FORD HMI

5. TILES_ONLY

FORD HMI

Softbutton4

6. GRAPHIC_WITH_TILES
FORD HMI

7. TILES_WITH_GRAPHIC

FORD HMI

8. GRAPHIC_WITH TEXT_AND_SOFTBUTTONS
FORD HMI

9. TEXT_AND_SOFTBUTTONS _WITH_GRAPHIC

FORD HMI

10. GRAPHIC WITH TEXTBUTTONS
FORD HMI

Softbutton3

11. DOUBLE_GRAPHIC_SOFTBUTTONS

FORD HMI

=M

i

12. TEXTBUTTONS WITH_GRAPHIC
FORD HMI

13. TEXTBUTTONS_ ONLY

FORD HMI

softButton1 softButton5

softButton2 softButton6
softButton3 softButton7

softButton4 softButton8

14. LARGE_GRAPHIC_WITH_SOFTBUTTONS
FORD HMI

S

= Mer | SoftBut! | Softbutt ’Softbutt

15. LARGE_GRAPHIC_ONLY

FORD HMI

Text, Images, and Buttons

All text, images, and soft buttons on the HMI screen must be sent as part of a
Show RPC. The ScreenManager will take care of creating and sending the S
how request for text, images, and soft buttons so developers don't have to
worry about that. Subscribe buttons need to be sent as part of a SubscribeButt
on RPC.

Text

A maximum of four lines of text can be sent to the module, however, some
templates may only support 1, 2, or 3 lines of text. The ScreenManager well
automatically handle the combining of lines based on how many lines are
available and which fields the developer has set. For example, if all four lines of
text are set in the ScreenManager , but the template only supports three lines
of text, then the ScreenManager will hyphenate the third and fourth line and
display them in one line.

//Start the Ul updates
sdIManager.getScreenManager().beginTransaction();

sdIManager.getScreenManager().setTextField1(
sdIManager.z_g;etScreenManager().setTextFieIdZ(
sdIManager.)g'etScreenManager().setTextFieIdB(
sdIManager.g_g;etScreenManager().setTextFieId4(

//Commit the Ul updates
sdIManager.getScreenManager().commit(new CompletionListener() {
@Override
void (boolean success) {
Log.i(TAG, + success);

NOTE

If you don't use beginTransaction() and commit() , ScreenManag
er will still update the text fields correctly, however, it will send a
Show request every time a text field is set. It is always
recommended to use transactions if you have a batch of ScreenMa
nager updates. Transactions will let the ScreenManager queue
the updates and send them all at once in one Show RPC when co
mmit() is called resulting in better performance and Ul stability.

Images

The position and size of images on the screen is determined by the currently
set template. ScreenManager will handle uploading images and sending the
Show RPC to display the images when they are ready.

NOTE

Some head units may only support certain images or possibly none
at all. Please consult the getGraphicSupported() method in the Di
splayCapabilities using the SystemCapabilityManager .

SHOW THE IMAGE ON A HEAD UNIT

To display an image in the head unit, you have to create an SdIlArtwork object
and set it using the ScreenManager . The fileName property should be set to
the name that you want to use to save the file in the head unit. The FileType
should be set to the correct type of image that is being sent, in the example it
is set to FileType.GRAPHIC JPEG because the image has JPEG format. The id
is set to the Android resource id of the image that you want to use. The persist
entFile is a boolean that represents whether you want the file to persist
between sessions.

SdIArtwork sdlArtwork = new SdlArtwork(, FileType.

GRAPHIC_JPEG, R.drawable.applmage, true);
sdIManager.getScreenManager().setPrimaryGraphic(sdlArtwork);

Soft & Subscribe Buttons

Buttons pushed by an app to the module's HMI screen are referred to as soft
buttons to distinguish them from hard or preloaded buttons, which are either
physical buttons on the head unit or buttons that exist on the module at all
times. Don’t confuse soft buttons with subscribe buttons, which are buttons
that can detect user selection on hard buttons (or built-in soft buttons).

SOFT BUTTONS

Soft buttons can be created with text, images or both text and images. The
location, size, and number of soft buttons visible on the screen depends on the
template. A SoftButtonObject can have multiple SoftButtonState objects;
each state can have text, image, or both. Buttons can be transitioned from one
state to another at runtime.

SoftButtonState softButtonStatel = new SoftButtonState(,
, hew SdlArtwork(, FileType.GRAPHIC _PNG, R.
drawable.statel, true));

SoftButtonState softButtonState2 = new SoftButtonState(,
, hew SdlArtwork(, FileType.GRAPHIC_PNG, R.
drawable.state?2, true));

List<SoftButtonState> softButtonStates = Arrays.asList(
softButtonStatel, softButtonState2);

SoftButtonObject softButtonObject = new SoftButtonObject(
softButtonStates, softButtonStatel.getName(), null);

//We will add a listener for events in the next example here

sdIManager.getScreenManager().setSoftButtonObjects(Collections.
singletonList(softButtonObject));

RECEIVING SOFT BUTTONS EVENTS

Once you have created soft buttons, you will likely want to know when events
happen to those buttons. These events come through two callbacks onEvent
and onPress . Depending which type of event you're looking for you can use
that type of callback.

softButtonObject.setOnEventListener(new SoftButtonObject.
OnEventListener() {
@Override
void (SoftButtonObject softButtonObject,
OnButtonPress onButtonPress) {
softButtonObject.transitionToNextState();

}

@Override
void (SoftButtonObject softButtonObject,
OnButtonEvent onButtonEvent) {

});

SUBSCRIBE BUTTONS

Subscribe buttons are used to detect changes to hard or preloaded buttons. You
can subscribe to the following hard buttons:

soft button and hard

Ok (play/pause) media template only
button
soft button and hard
Seek left media template only
button
. . soft button and hard
Seek right media template only
button
Tune up media template only hard button
Tune down media template only hard button
Preset 0-9 any template hard button
Search any template hard button
Custom any template hard button

Audio buttons like the OK (i.e. the play/pause button), seek left, seek right,
tune up, and tune down buttons can only be used with a media template. The
OK, seek left, and seek right buttons will also show up on the screenin a
predefined location dictated by the media template on touchscreens. The app
will be notified when the user selects the subscribe button on the screen or
when the user manipulates the corresponding hard button.

You can subscribe to buttons using the SubscribeButton RPC.

SubscribeButton subscribeButtonRequest = new SubscribeButton();

subscribeButtonRequest.setButtonName(ButtonName.SEEKRIGHT);
sdIManager.sendRPC(subscribeButtonRequest);

NOTE

It is not required to manually subscribe to soft buttons. When soft
buttons are added, your app will automatically be subscribed for
their events.

RECEIVING SUBSCRIBE BUTTONS EVENTS

When you want to subscribe to buttons, you will be subscribing to events that
happen to those buttons. These events come through two callbacks OnButtonE
vent and OnButtonPress . Depending which type of event you're looking for
you can use that type of callback. The ButtonName enum refers to which

button the event happened to.

NOTE

Some templates will not show a preloaded button until an app
subscribes to it. After an app subscribes to the events of that

button, it will appear.

sdIManager.addOnRPCNotificationListener(FunctionlID.
ON_BUTTON_EVENT, new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnButtonPress onButtonPressNotification = (OnButtonPress)
notification;
switch (onButtonPressNotification.getButtonName()) {
case OK:
break;
case SEEKLEFT:
break;
case SEEKRIGHT:
break;
case TUNEUP:
break;
case TUNEDOWN:
break;
default:
break;

sdIManager.addOnRPCNotificationListener(FunctionlID.
ON_BUTTON_PRESS, new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnButtonPress onButtonPressNotification = (OnButtonPress)
notification;
switch (onButtonPressNotification.getButtonName()) {
case OK:
break;
case SEEKLEFT:
break;
case SEEKRIGHT:
break;
case TUNEUP:
break;
case TUNEDOWN:
break;
default:
break;

NOTE
The app should subscribe to button events before sending the Sub

scribeButton request to make sure that it doesn't miss any button

events.

Menus

You have two different options when creating menus. One is to simply add
items to the default menu available in every template. The other is to create a
custom menu that pops up when needed.

Default Menu

FORD HMI

3 MenuName1

¥ MenuName2

3 MenuName3

XML Test

Evit SunecPravuTactar

Every template has a default menu button. The position of this button varies
between templates, and can not be removed from the template. The default
menu is initially empty except for an "Exit Your App Name" button. Items can be

added to the menu at the root level or to a submenu. It is important to note

that a submenu can only be one level deep.

Menu Structure

Menu Structure

AddSubMenu will
add an item to the
root level menu

AddSubMenu can
only be added to
the root level
menu

ADD MENU ITEMS

Root Level Menu

A ubMen

IDzi_

\

AddCommands will be
..................................... added to the correc'
... menu using their
parent id.
Menu 1
ID: 6 :
AddCommand | b T
ID: 7
AddCommand Parent ID: 1
ID: 8
AddCommand Parent ID: 1
Menu 2
ID:9
AddCommand Parent ID: 2
ID: 10
AddCommend Parent ID: 2
ID: 11
AddCommand Parent ID: 2

Text: Menu 1
AddSubMenu Text: Melr?u: g
AddCommand Parent :8 (1)
AddCommand Parent :g (2)
AddCommand Parent :g g
AddCommand Parent :g g
AddCommand Parent :8 g

The AddCommand RPC can be used to add items to the root menu or to a

submenu. Each AddCommand RPC must be sent with a unique id, a voice-

recognition command, and a set of menu parameters. The menu parameters

include the menu name, the position of the item in the menu, and the id of the

menu item’s parent. If the menu item is being added to the root menu, then the

parent id is 0. If it is being added to a submenu, then the parent id is the
submenu’s id.

// Create the menu parameters

// The parent id is O if adding to the root menu

// If adding to a submenu, the parent id is the submenu's id
MenuParams menuParams = new MenuParams();
menuParams.setParentID(0);

menuParams.setPosition(0);

menuParams.setMenuName();

AddCommand addCommand = new AddCommand();
addCommand.setCmdID(0); // Ensure this is unique
addCommand.setMenuParams(menuParams); // Set the menu
parameters

sdIManager.sendRPC(addCommand);

ADD A SUBMENU

To create a submenu, first send an AddSubMenu RPC. When a response is
received from the SDL Core, check if the submenu was added successfully. If it
was, send an AddCommand RPC for each item in the submenu.

int unique_id = 313;

AddSubMenu addSubMenu = new AddSubMenu();
addSubMenu.setPosition(0);
addSubMenu.setMenulD(unique_id);
addSubMenu.setMenuName();
addSubMenu.setOnRPCResponseListener(new OnRPCResponseListener
01
@Override
void (int correlationld, RPCResponse response) {
if(((AddSubMenuResponse) response).getSuccess()){
/I The submenu was created successfully, start adding the
submenu items
// Use unique _id
}else{
Log.i(

DELETE MENU ITEMS

Use the cmdID of the menu item to tell the SDL Core which item to delete using
the DeleteCommand RPC.

int cmdID_to_delete = 1;

DeleteCommand deleteCommand = new DeleteCommand();

deleteCommand.setCmdID(cmdID_to_delete);

sdIManager.sendRPC(deleteCommand);

DELETE SUBMENUS

Use the menulD to tell the SDLCore which item to delete using the DeleteSubM
enu RPC.

DeleteSubMenu deleteSubMenu = new DeleteSubMenu();

deleteSubMenu.setMenulD(submenulD_to delete); // Replace with
submenu ID to delete

Custom Menus

Choice4

Custom menus, called perform interactions, are one level deep, however,
you can create submenus by triggering another perform interaction when the
user selects a row in a menu. Perform interactions can be set up to recognize
speech, so a user can select an item in the menu by speaking their preference
rather than physically selecting the item.

Perform interactions are created by sending two different RPCs. First a Createln
teractionChoiceSet RPC must be sent. This RPC sends a list of items that will
show up in the menu. When the request has been registered successfully, then
a Performinteraction RPC is sent. The Performlnteraction RPC sends the
formatting requirements, the voice-recognition commands, and a timeout
command.

CREATE A SET OF CUSTOM MENU ITEMS

Each menu item choice defined in Choice should be assigned a unique id. The
choice set in CreatelnteractionChoiceSet should also have its own unique id.

CreatelnteractionChoiceSet choiceSet = new
CreatelnteractionChoiceSet();

Choice choice = new Choice();
choice.setChoicelD(unigueChoicelD);
choice.setMenuName();
choice.setVrCommands(Arrays.asList();

List<Choice> choicelList = new ArrayList<>();
choicelList.add(choice);

choiceSet.setChoiceSet(choiceList);
choiceSet.setinteractionChoiceSetID(uniquelntChoiceSetID);
choiceSet.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if(((CreatelnteractionChoiceSetResponse) response).getSuccess()){
// The request was successful, now send the
SDLPerformInteraction RPC
}else{
// The request was unsuccessful

}

sdIManager.sendRPC(choiceSet);

FORMAT THE SET OF CUSTOM MENU ITEMS

Once the set of menu items has been sent to SDL Core, send a Performlnteract
ion RPC to get the items to show up on the HMI screen.

List<Integer> interactionChoiceSetIDList = new ArrayList<>();
interactionChoiceSetIDList.add(uniqguelntChoiceSetID);

Performlinteraction performlnteraction = new Performinteraction();
performinteraction.setlnitialText()
performlinteraction.setinteractionChoiceSetIDList(
interactionChoiceSetlIDList);

INTERACTION MODE

The interaction mode specifies the way the user is prompted to make a section
and the way in which the user’s selection is recorded.

Interactions occur only through the
Manual only

display

Interactions occur only through text-to-
VR only) .

speech and voice recognition

Interactions can occur both manually or
Both

through VR

performinteraction.setinteractionMode(InteractionMode.MANUAL_ONLY

);

VR INTERACTION MODE
FORD HMI

19 Pick number:

ChoiceVR1
ChoiceVR2
ChoiceVR3
ChoiceVR4

Help Cancel

MANUAL INTERACTION MODE

FORD HMI

Choice1

Choice2

Choice3

INTERACTION LAYOUT

The items in the perform interaction can be shown as a grid of buttons (with
optional images) or as a list of choices.

Icon only A grid of buttons with images

A grid of buttons with images along with
a search field in the HMI

Icon with search

List only A vertical list of text

A vertical list of text with a search field in
the HMI

List with search

A keyboard shows up immediately in the

Keyboard
HMI

NOTE

Keyboard is currently only supported for the navigation app type.

ICON ONLY INTERACTION LAYOUT
FORD HMI

LIST ONLY INTERACTION LAYOUT

FORD HMI

Choice1

Choice2

LIST WITH SEARCH INTERACTION LAYOUT
FORD HMI

© N Pick number:_

TEXT-TO-SPEECH (TTS)

A text-to-speech chunk is a text phrase or prerecorded sound that will be
spoken by the head unit. The text parameter specifies the text to be spoken or
the name of the pre-recorded sound. Use the type parameter to define the type
of information in the text parameter. The Performlnteraction request can have
a initial, timeout, and a help prompt.

performinteraction.setinitialPrompt(

TTSChunkFactory.createSimpleTTSChunks(

TIMEOUT

The timeout parameter defines the amount of time the menu will appear on the
screen before the menu is dismissed automatically by the HMI.

performinteraction.setTimeout(30000); // 30 seconds

SEND THE REQUEST

performinteraction.setOnRPCResponselListener(new
OnRPCResponselListener() {
@Override
void (int correlationld, RPCResponse response) {
PerforminteractionResponse piResponse = (
PerforminteractionResponse) response;
if(piResponse.getSuccess()){
/] Successful request
if(piResponse.getResultCode().equals(Result. TIMED OUT)){
// Interaction timed out without user input

}else if(piResponse.getResultCode().equals(Result.SUCCESS)){
Integer userChoice = piResponse.getChoicelD();

}
}else{
// Unsuccessful request

sdIManager.sendRPC(performlinteraction);

DELETE THE CUSTOM MENU

If the information in the menu is dynamic, then the old interaction choice set
needs to be deleted with a DeletelnteractionChoiceSet RPC before the new
information can be added to the menu. Use the interaction choice set id to
delete the menu.

DeletelnteractionChoiceSet deletelnteractionChoiceSet = new
DeletelnteractionChoiceSet();
deletelnteractionChoiceSet.setinteractionChoiceSetID(

interactionChoiceSetID_to_delete); // Replace with interaction choice
set to delete

sdIManager.sendRPC(deletelnteractionChoiceSet);

Alerts

An alert is a pop-up window with some lines of text and optional soft buttons.
When an alert is activated, it will abort any SDL operation that is in-progress,
except the already-in-progress alert. If an alert is issued while another alert is
still in progress, the newest alert will simply be ignored.

Alert Ul

Depending the platform, an alert can have up to three lines of text, a progress
indicator (e.g. a spinning wheel or hourglass), and up to four soft buttons.

ALERT WITHOUT SOFT BUTTONS

FORD HMI

RPC Builder

Alert Text 1
Alert Text 2
Alert Text 3

Close

ALERT WITH SOFT BUTTONS
FORD HMI

RPC Builder

Alert Text 1
Alert Text 2

Alert Text 3

SoftKe: Ei:ﬂ &)

Alert TTS

The alert can also be formatted to speak a prompt when the alert appears on
the screen. Do this by setting the ttsChunks parameter. To play the alert tone
before the text-to-speech is spoken, set playTone to true .

Example

Alert alert = new Alert();
alert.setAlertText1(
alert.setAlertText2(
alert.setAlertText3(

// Maximum time alert appears before being dismissed

// Timeouts are must be between 3-10 seconds

// Timeouts may not work when soft buttons are also used in the alert
alert.setDuration(5000);

// A progress indicator (e.g. spinning wheel or hourglass)
// Not all head units support the progress indicator
alert.setProgressindicator(true);

//Text to speech
alert.setTtsChunks(TTS_list); // TTS_list populated elsewhere

// Special tone played before the tts is spoken
alert.setPlayTone(true);

// Soft buttons
alert.setSoftButtons(softButtons); // softButtons populated elsewhere

// Send alert
sdIManager.sendRPC(alert);

Dismissing the Alert

The alert will persist on the screen until the timeout has elapsed, or the user
dismisses the alert by selecting a button. There is no way to dismiss the alert
programmatically other than to set the timeout length.

Uploading Files and Graphics

Graphics allow you to better customize what you would like to have your users
see and provide a better User Interface.

When developing an application using SmartDeviceLink, two things must
always be remembered when using graphics:

1. You may be connected to a head unit that does not display graphics.
2. You must upload them from your mobile device to Core before using them.

NOTE

Many of these features will be handled for you automatically by the
ScreenManager and other managers. This guide will be for using
the FileManager directly through SdlIManager

Detecting if Graphics are Supported

Being able to know if graphics are supported is a very important feature of your
application, as this avoids you uploading unnecessary images to the head unit.
In order to see if graphics are supported, use the getCapability() method of a
valid SystemCapabilityManager obtained from sdlIManager.getSystemCapabili
tyManager() to find out the display capabilities of the head unit.

sdIManager.getSystemCapabilityManager().getCapability(
SystemCapabilityType.DISPLAY, new OnSystemCapabilityListener(){

@Override
void (Object capability){
DisplayCapabilities dispCapability = (DisplayCapabilities) capability;
}

@Override

void (String info){
Log.i(TAG,

1);

SDL File and SDL Artwork

SDL files and artwork are uploaded through the FileManager . This is
accomplished with SdIFile and SdlArtwork objects. The FileManager helps
streamline the file management workflow within SDL. SdIArtwork is an
extension of SdlFile that pertains only to graphic specific file types, and its use
case is similar. For the rest of this document, SdlIFile will be described, but
everything also applies to SdlArtwork .

CREATION

The first step in uploading files to the connected module is creating an instance
of SdlIFile . There are a few different constructors that can be used based on
the source of the file. The following can be used to instantiate SdlFile :

A RESOURCE ID

new SdIFile(@NonNull String fileName, @NonNull FileType fileType, int id

, boolean persistentFile)

A URI

new SdIFile(@NonNull String fileName, @NonNull FileType fileType, Uri

uri, boolean persistentFile)

A BYTE ARRAY

new SdIFile(@NonNull String fileName, @NonNull FileType fileType, byte
[] data, boolean persistentFile)

Uploading a File

Uploading a file with the FileManager is a simple process. With an instantiated
SdIManager ,
you can simply call:

sdIManager.getFileManager().uploadFile(sdlIFile, new
CompletionListener() {
@Override

void (boolean success) {

UPLOADING MULTIPLE FILES

Sometimes you need to upload more than one file. We've got you covered.
Simply create a List<SdIFile> object, add your files, and then call:

sdIManager.getFileManager().uploadFiles(sdlFileList, new
MultipleFileCompletionListener() {
@Override

void (Map<String, String> errors) {

UPLOADING ARTWORK

As mentioned before, the behavior of SdIFile and SdlArtwork are the same.
But to help separate code, we have also included uploadArtwork and uploadA
rtworks methods to the FileManager that work the same as their SdlFile
counterparts shown above.

File Naming

The file name can only consist of letters (a-Z) and numbers (0-9), otherwise the
SDL Core may fail to find the uploaded file (even if it was uploaded
successfully).

File Persistance

SdIFile supports uploading persistent images, i.e. images that do not become
deleted when your application disconnects. Persistence should be used for
images relating to your Ul like your app icon, and not for dynamic aspects, such
as Album Artwork.

NOTE

Be aware that persistence will not work if space on the head unit is
limited. Persistence is also not guaranteed.

Overwrite Stored Files

If a file being uploaded has the same name as an already uploaded file, the
new file will overwrite the previous file.

Check if a File Has Already Been Uploaded

FileManager provides two methods that allow you to check if a file has been
uploaded.

GETTING REMOTE FILES

getRemoteFileNames() returns a List<String> of the names of files that are
uploaded to the head unit.

List<String> files = sdIManager.getFileManager().getRemoteFileNames

OF

SEE IF A FILE IS UPLOADED

hasUploadedFile takes an SdlFile and returns a boolean of whether itis
uploaded or not.

boolean isUploaded = sdIManager.getFileManager().hasUploadedFile(

sdlFile);

Check the Amount of File Storage

To find the amount of file storage left on the head unit, use the ListFiles RPC.

ListFiles listFiles = new ListFiles();
listFiles.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if(response.getSuccess()){

Integer spaceAvailable = ((ListFilesResponse) response).
getSpaceAvailable();

Log.i(+

spaceAvailable);
}else{
Log.i(

sdIManager.sendRPC(listFiles);

Delete Stored Files

As with uploading, there are two methods that allow you to delete remote files.

FOR A SINGLE FILE

To delete a single file, call deleteRemoteFileWithName() and pass in the file
name as a string. You can optionally pass in a CompletionListener .

sdIManager.getFileManager().deleteRemoteFileWithName(
new CompletionListener() {
@Override

void (boolean success) {

MULTIPLE FILES

To delete multiple files, call deleteRemoteFilesWithNames() and pass in a list
with the names of the files you want to delete. You can optionally pass in a Mul
tipleFileCompletionListener .

sdIManager.getFileManager().deleteRemoteFilesWithNames(remoteFiles
, hew MultipleFileCompletionListener() {
@Override

void (Map<String, String> errors) {

Image Specifics

Image File Type

Images may be formatted as PNG, JPEG, or BMP. Check the DisplayCapabilities
object provided by sdIManager.getSystemCapabilityManager().getCapability()
to find out what image formats the head unit supports.

Image Sizes

If an image is uploaded that is larger than the supported size, that image will
be scaled down to accommodate.

IMAGE SPECIFICATIONS

Will be
shown on
softButt png,
softbutto
onlmag Show 70px 70px ipg,
ns on the
e bmp
base
screen
Will be
shown in
the
manual
part of an
Createlnt performin png,
choicel
eractionC teraction 70px 70px ipg,
mage .))
hoiceSet either big bmp
(ICON_ON
LY) or
small
(LIST_ONL
Y)
Will be
shown on
the right
choiceS Createlnt side of an png,
econdar eractionC entry in 35px 35px ipg,
ylmage hoiceSet (LIST_ONL bmp
Y)
performin
teraction
Will be
shown
SetGlobal png,
vrHelplt during
Propertie) 35px 35px ipg,
em voice
s bmp
interactio
n
Will be
SetGlobal shown on png,
menulc
Propertie the 35px 35px ipg,
on
s “More..."” bmp

button

Will be

shown for
png,
cmdlco AddCom command
35px 35px jpg,
n mand s in the
bmp
"More..."
menu
Will be
shown as
Icon in png,
SetApplc .
applcon the 70px 70px jpg,
on
"Mobile bmp
Appsll
menu
Will be
shown on
png,
. the .
graphic Show 185px 185px ipg,
basescre
bmp
en as
cover art

Get Vehicle Data

Use the GetVehicleData RPC request to get vehicle data. The HMI level must be
FULL, LIMITED, or BACKGROUND in order to get data.

Each vehicle manufacturer decides which data it will expose. Please check the
PermissionManager to find out which data types your app currently has access
to for the connected head unit.

https://d83tozu1c8tt6.cloudfront.net/guides/android/permission-manager/

NOTE

You may only ask for vehicle data that is available to your
appName & appld combination. These will be specified by each
OEM separately.

GPS

Speed

RPM

Fuel level

Fuel level state

Fuel range

Instant fuel consumption

External temperature

VIN

PRNDL

gps

speed

rom

fuelLevel

fuelLevel_State

fuelRange

instantFuelConsumption

externalTemperature

vin

prndl

Longitude and latitude,
current time in UTC,
degree of precision,
altitude, heading, speed,
satellite data vs dead
reckoning, and
supported dimensions of
the GPS

Speed in KPH

The number of
revolutions per minute
of the engine

The fuel level in the tank

(percentage)

The fuel level state:
unknown, normal, low,
fault, alert, or not
supported

The estimate range in
KM the vehicle can
travel based on fuel
level and consumption
The instantaneous fuel
consumption in
microlitres

The external
temperature in degrees
celsius

The Vehicle

Identification Number

The selected gear the
car is in: park, reverse,
neutral, drive, sport, low
gear, first, second, third,
fourth, fifth, sixth,
seventh or eighth gear,

unknown, or fault

Tire pressure

Odometer

Belt status

Body information

Device status

Driver braking

tirePressure

odometer

beltStatus

bodylnformation

deviceStatus

driverBraking

Tire status of each
wheel in the vehicle:
normal, low, fault, alert,
or not supported.
Warning light status for
the tire pressure: off, on,

flash, or not used

Odometer reading in km

The status of each of the
seat belts: no, yes, not
supported, fault, or no
event

Door ajar status for each
door. The Ignition status.
The ignition stable
status. The park brake
active status.

Contains information
about the smartphone
device. Is voice
recognition on or off,
has a bluetooth
connection been
established, is a call
active, is the phone in
roaming mode, is a text
message available, the
battery level, the status
of the mono and stereo
output channels, the
signal level, the primary
audio source, whether or
not an emergency call is
currently taking place
The status of the brake
pedal: yes, no, no event,

fault, not supported

Wiper status

Head lamp status

Engine torque

Engine oil life

Acceleration pedal

position

Steering wheel angle

E-Call information

Airbag status

wiperStatus

headLampStatus

engineTorque

engineOilLife

accPedalPosition

steeringWheelAngle

eCallinfo

airbagStatus

The status of the wipers:
off, automatic off, off
moving, manual
interaction off, manual
interaction on, manual
low, manual high,
manual flick, wash,
automatic low,
automatic high, courtesy
wipe, automatic adjust,
stalled, no data exists
Status of the head
lamps: whether or not
the low and high beams
are on or off. The
ambient light sensor
status: night, twilight 1,
twilight 2, twilight 3,
twilight 4, day,
unknown, invalid
Torque value for engine
(in Nm) on non-diesel
variants

The estimated
percentage of remaining
oil life of the engine
Accelerator pedal
position (percentage
depressed)

Current angle of the
steering wheel (in
degrees)

Information about the
status of an emergency
call

Status of each of the
airbags in the vehicle:
yes, no, no event, not

supported, fault

Emergency event

Cluster mode status

My key

Turn signal

emergencyEvent

clusterModeStatus

myKey

turnSignal

The type of emergency:
frontal, side, rear,
rollover, no event, not
supported, fault. Fuel
cutoff status: normal
operation, fuel is cut off,
fault. The roll over
status: yes, no, no
event, not supported,
fault. The maximum
change in velocity.
Whether or not multiple
emergency events have
occurred

Whether or not the
power mode is active.
The power mode
qualification status:
power mode undefined,
power mode evaluation
in progress, not defined,
power mode ok. The car
mode status: normal,
factory, transport, or
crash. The power mode
status: key out, key
recently out, key
approved, post
accessory, accessory,
post ignition, ignition on,
running, crank
Information about
whether or not the
emergency 911 override
has been activated

The status of the turn

light indicator

The status of the park

Electronic park brake brake as provided by
electronicParkBrakeStatus]
status Electric Park Brake (EPB)
system

Single Time Vehicle Data Retrieval

Using GetVehicleData , we can ask for vehicle data a single time, if needed.

GetVehicleData vdRequest = new GetVehicleData();
vdRequest.setPrndl(true);
vdRequest.setOnRPCResponselListener(new OnRPCResponselListener() {
@Override
void (int correlationld, RPCResponse response) {
if(response.getSuccess()){
PRNDL prndl = ((GetVehicleDataResponse) response).getPrndli();

Log. ’ + prndl.toString());
}else{

Log.i()
}

}
});
sdIManager.sendRPC(vdRequest);

Subscribing to Vehicle Data

Subscribing to vehicle data allows you to get notified whenever we have new
data available. This data should not be relied upon being received in a
consistent manner. New vehicle data is available roughly every second.

First, you should add a notification listener for OnVehicleData notification:

sdIManager.addOnRPCNotificationListener(FunctionlID.
ON_VEHICLE_DATA, new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnVehicleData onVehicleDataNotification = (OnVehicleData)
notification;

if (onVehicleDataNotification.getPrndI() '= null) {
Log.i(;
onVehicleDataNotification.getPrndI());

Then, send the Subscribe Vehicle Data Request:

SubscribeVehicleData subscribeRequest = new SubscribeVehicleData();
subscribeRequest.setPrndl(true);
subscribeRequest.setOnRPCResponseListener(new
OnRPCResponselListener() {
@Override
void (int correlationld, RPCResponse response) {
if(response.getSuccess()){
Log.i(,);
}else{
Log.i(
I

sdIManager.sendRPC(subscribeRequest);

After that, the onNotified method should be called when there is an update
to the subscribed vehicle data.

Unsubscribing from Vehicle Data

Sometimes you may not always need all of the vehicle data you are listening
to. We suggest that you only are subscribing when the vehicle data is needed.
To stop listening to specific vehicle data items, utilize UnsubscribeVehicleData

UnsubscribeVehicleData unsubscribeRequest = new
UnsubscribeVehicleData();
unsubscribeRequest.setPrndl(true); // unsubscribe to PRNDL data
unsubscribeRequest.setOnRPCResponseListener(new
OnRPCResponselListener() {
@Override
void (int correlationld, RPCResponse response) {
if(response.getSuccess()){

Log.i(;

}else{
Log.i(
);
}
}
1

sdIManager.sendRPC(unsubscribeRequest);

Knowing the In-Car Ul Status

Once your app is connected to Core, most of the interaction you will be doing
requires knowledge of the current In-Car Ul, or HMI, Status. The HMI Status
informs you of where the user is within the head unit in a general sense.

Refer to the table below of all possible HMI States:

The user has not been opened your app,
NONE or it has been Exited via the "Menu"

button.

The user has opened your app, but is

currently in another part of the Head
BACKGROUND Unit. If you have a Media app, this means

that another Media app has been

selected.

For Media apps, this means that a user
LIMITED has opened your app, but is in another

part of the Head Unit.

Your app is currently in focus on the
FULL
screen.

Monitoring HMI Status

Monitoring HMI Status is possible through an OnHMIStatus notification that
you can subscribe to via the SdIManager 's addOnRPCNotificationListener .

sdIManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS,
new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnHMIStatus status = (OnHMIStatus) notification;
if (status.getHmiLevel() == HMILevel.HM|_FULL && ((OnHMIStatus)

notification).getFirstRun()) {
/[first time in HMI Full

More Detailed HMI Information

When an interaction occurs relating to your application, there is some
additional pieces of information that can be observed that help figure out a
more descriptive picture of what is going on with the Head Unit.

AUDIO STREAMING STATE

From the documentation, Audio Streaming State informs your app whether any
currently streaming audio is audible to user (AUDIBLE) or not (NOT_AUDIBLE). A
value of NOT_AUDIBLE means that either the application's audio will not be
audible to the user, or that the application's audio should not be audible to the
user (i.e. some other application on the mobile device may be streaming audio
and the application's audio would be blended with that other audio).

You will see this come in for things such as Alert, PerformAudioPassThru,
Speaks, etc.

Any audio you are streaming will be

AUDIBLE audible to the user.
Some kind of audio mixing is occuring
between what you are streaming, if
ATTENUATED anything, and some system level sound.

This can be visible is displaying an Alert

with playTone set to true.

Your streaming audio is not audible. This
NOT_AUDIBLE could occur during a VRSESSSION

System Context.

SYSTEM CONTEXT

System Context informs your app if there is potentially a blocking HMI
component while your app is still visible. An example of this would be if your
application is open, and you display an Alert. Your app will receive a System
Context of ALERT while it is presented on the screen, followed by MAIN when it

is dismissed.

No user interaction is in progress that
MAIN . o

could be blocking your app's visibility.

Voice Recognition is currently in
VRSESSION

progress.

A menu interaction is currently in-
MENU

progress.

The app's display HMI is being blocked
HMI_OBSCURED by either a system or other app's overlay

(another app's Alert, for instance).

An alert that you have sent is currently
ALERT

visible (Other apps will not receive this).

Monitoring Audio Streaming State and
System Context

Monitoring these two properties is quite easy using the OnHMIStatus
notification.

@Override
void (RPCNotification notification) {
OnHMIStatus status = (OnHMIStatus) notification;

AudioStreamingState streamingState = notification.
getAudioStreamingState();
SystemContext systemContext = notification.getSystemContext();

}

Setting the Navigation
Destination

Setting a Navigation Destination allows you to send a GPS location that you
would like to prompt that user to navigate to using their embedded navigation.
When using the SendLocation RPC, you will not receive a callback about how
the user interacted with this location, only if it was successfully sent to Core
and received. It will be handled by Core from that point on using the embedded
navigation system.

NOTE

This currently is only supported for Embedded Navigation. This
does not work with Mobile Navigation Apps at this time.

NOTE

SendLocation is an RPC that is usually restricted by OEMs. As a
result, the OEM you are connecting to may limit app functionality if
not approved for usage.

Determining the Result of SendLocation

SendLocation has 3 possible results that you should expect:

1. SUCCESS - SendLocation was successfully sent.

2. INVALID_DATA - The request you sent contains invalid data and was
rejected.

3. DISALLOWED - Your app does not have permission to use SendLocation.

Detecting if SendLocation is Available

SendLocation is a newer RPC, so there is a possibility that not all head units
will support it, especially if you are connected to a head unit that does not have
an embedded navigation. To see if SendLocation is supported, you may look
at HmiCapabilities that can be retrieved using SystemCapabilityManager .

HMICapabilities hmiCapabilities = (HMICapabilities) sdIManager.
getSystemCapabilityManager().getCapability(SystemCapabilityType.HMI
)k

if (hmiCapabilities.isNavigationAvailable()){

/! SendLocation supported
}else{
// SendLocation is not supported

}

Using SendLocation

To use SendLocation , you must at least include the Longitude and Latitude of
the location. You can also include an address, name, description, phone

number, and image.

SendLocation sendLocation = new SendLocation();
sendLocation.setLatitudeDegrees(42.877737);
sendLocation.setLongitudeDegrees(-97.380967);
sendLocation.setLocationName();
sendLocation.setLocationDescription(

/| Create Address

OasisAddress address = new OasisAddress();
address.setSubThoroughfare();
address.setThoroughfare();
address.setlLocality();
address.setAdministrativeArea(
address.setPostalCode();
address.setCountryCode();
address.setCountryName(

sendLocation.setAddress(address);

// Monitor response
sendLocation.setOnRPCResponseListener(new OnRPCResponseListener
01
@Override
void (int correlationld, RPCResponse response) {
Result result = response.getResultCode();
if(result.equals(Result.SUCCESS)){
/I SendLocation was successfully sent.
}else if(result.equals(Result.INVALID_DATA)){
/l The request you sent contains invalid data and was rejected.
}else if(result.equals(Result.DISALLOWED)){
// Your app does not have permission to use SendLocation.

sdIManager.sendRPC(sendLocation);

Calling a Phone Number

Dialing a Phone Number allows you to send a phone number to dial on the
user's phone. Regardless of platform, you must be sure that a device is
connected via Bluetooth for this RPC to work. If it is not connected, you will
receive a REJECTED Result .

NOTE

DialNumber is an RPC that is usually restricted by OEMs. As a
result, the OEM you are connecting to may limit app functionality if
not approved for usage.

Determining the Result of DialNumber

DialNumber has 3 possible results that you should expect:

1. SUCCESS - DialNumber was successfully sent, and a phone call was
initiated by the user.

2. REJECTED - DialNumber was sent, and a phone call was cancelled by the
user. Also, this could mean that there is no phone connected via
Bluetooth.

3. DISALLOWED - Your app does not have permission to use DialNumber.

Detecting if DialNumber is Available

DialNumber is a newer RPC, so there is a possibility that not all head units will
support it. To see if DialNumber is supported, you may look at the HMICapabil
ities that can be retrieved using SystemCapabilityManager .

HMICapabilities hmiCapabilities = (HMICapabilities) sdIManager.
getSystemCapabilityManager().getCapability(SystemCapability Type.HMI
)7

if(hmiCapabilities.isPhoneCallAvailable()){

// DialNumber supported
}else{
// DialNumber is not supported

}

How to Use

NOTE

For DialNumber, all characters are stripped except for 0 -9, *,
#,,,,;,and +

DialNumber dialNumber = new DialNumber();
dialNumber.setNumber();
diaINumber.setOnRPCResponseListener(new OnRPCResponseListener()
{
@Override
void (int correlationld, RPCResponse response) {
Result result = response.getResultCode();
if(result.equals(Result.SUCCESS)){
// “DialNumber™ was successfully sent, and a phone call was

initiated by the user.

}else if(result.equals(Result.REJECTED)){

// “DialNumber™ was sent, and a phone call was cancelled by
the user. Also, this could mean that there is no phone connected via
Bluetooth.

}else if(result.equals(Result.DISALLOWED)){
/] Your app does not have permission to use DialNumber.

sdIManager.sendRPC(dialNumber);

Getting In-Car Audio

Capturing in-car audio allows developers to interact with users via raw audio
data provided to them from the car's microphones. In order to gather the raw
audio from the vehicle, we must leverage the PerformAudioPassThru RPC.

NOTE

PerformAudioPassThru does not support automatic speech
cancellation detection, so if this feature is desired, it is up to the
developer to implement.

Subscribing to AudioPassThru Notifications

Before starting audio capture, the app has to subscribe to AudioPassThru
notification. SDL provides audio data as fast as it can gather it, and sends it to
the developer in chunks. In order to retrieve this audio data, observe the OnAu
dioPassThru notification:

sdIManager.addOnRPCNotificationListener(FunctionlID.
ON_AUDIO_PASS THRU, new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnAudioPassThru onAudioPassThru = (OnAudioPassThru)

notification;
byte[] dataRcvd = onAudioPassThru.getAPTData();
processAPTData(dataRcvd); // Do something with audio data

NOTE

This audio data is only the current audio data, so the developer
must be in charge of managing previously retrieved audio data.

Starting Audio Capture

To initiate audio capture, we must construct a PerformAudioPassThru object.
The properties we will set in this object's constructor relate to how we wish to
gather the audio data from the vehicle we are connected to.

PerformAudioPassThru performAPT = new PerformAudioPassThru();
performAPT.setAudioPassThruDisplayText1(

)i
performAPT.setAudioPassThruDisplayText2();

performAPT.setlnitialPrompt(TTSChunkFactory.createSimpleTTSChunks(

),
performAPT.setSamplingRate(SamplingRate. 22KHZ);
performAPT.setMaxDuration(7000);
performAPT.setBitsPerSample(BitsPerSample. 16_BIT);
performAPT.setAudioType(AudioType.PCM);
performAPT.setMuteAudio(false);

sdIManager.sendRPC(performAPT);

NOTE

AudioPassThru notification listener should be added before
sending PerformAudioPassThru request or else some audio data
may be missed.

FORD HMI

RPC Builder

Ask me "What's the weather?"
or "What's 1 + 2?"

Cancel

In order to know the currently supported audio capture capabilities of the
connected head unit, please refer to the SystemCapabilityManager . It can
retrieve the AudioPassThruCapabilities that the head unit supports.

NOTE

Currently, Ford's SYNC 3 vehicles only support a sampling rates of
16 khz and a bit rate of 16.

Ending Audio Capture

AudioPassThru is a request that works in a different way when compared to
other RPCs. For most RPCs a request is followed by an immediate response that
informs the developer whether or not that RPC was successful. This RPC,

however, will only send out the response when the Perform Audio Pass Thru is
ended.

Audio Capture can be ended in 4 ways:

1. AudioPassThru has timed out.

If the audio passthrough has proceeded longer than the requested timeout
duration, Core will end this request and send a PerformAudioPassThruRes
ponse with a Result of SUCCESS . You should expect to handle this
audio passthrough as though it was successful.

2. AudioPassThru was closed due to user pressing "Cancel".

If the audio passthrough was displayed, and the user pressed the "Cancel"
button, you will receive a PerformAudioPassThruResponse with a Result
of ABORTED . You should expect to ignore this audio pass through.

3. AudioPassThru was closed due to user pressing "Done".

If the audio passthrough was displayed, and the user pressed the "Done"
button, you will receive a PerformAudioPassThruResponse with a Result
of SUCCESS . You should expect to handle this audio passthrough as
though it was successful.

4. AudioPassThru was ended due to the developer ending the request.

If the audio passthrough was displayed, but you have established on your
own that you no longer need to capture audio data, you can send an End
AudioPassThru RPC.

EndAudioPassThru endAPT = new EndAudioPassThru();

sdIManager.sendRPC(endAPT);

You will receive an EndAudioPassThruResponse and a PerformAudioPassThruR
esponse with a Result of SUCCESS , and should expect to handle this audio
passthrough as though it was successful.

Handling the Response

To process the response that we received from an ended audio capture, we

monitor the PerformAudioPassThruResponse by adding a listener to the Perfo
rmAudioPassThru RPC before sending it. If the response has a successful Resu
It , all of the audio data for the passthrough has been received and is ready for

processing.

performAPT.setOnRPCResponseListener(new OnRPCResponselListener()

{
@Override
void (int correlationld, RPCResponse response) {

Result result = response.getResultCode();

if(result.equals(Result.SUCCESS)){
// We can use the data

}else{
// Cancel any usage of the data
Log.e(;

Mobile Navigation

Mobile Navigation allows map partners to bring their applications into the car
and display their maps and turn by turn easily for the user. This feature has a
different behavior on the head unit than normal applications. The main

differences are:

* Navigation Apps don't use base screen templates. Their main view is the

video stream sent from the device

* Navigation Apps can send audio via a binary stream. This will attenuate
the current audio source and should be used for navigation commands
* Navigation Apps can receive touch events from the video stream

NOTE

In order to use SDL's Mobile Navigation feature, the app must have
a minimum requirement of Android 4.4 (SDK 19). This is due to
using Android's provided video encoder.

Connecting an app

The basic connection is the similar for all apps. Please follow Getting Started >
Integration Basics for more information.

The first difference for a navigation app is the appHMIType of NAVIGATION
that has to be set in the creation of the SdlIManager . Navigation apps are also
non-media apps.

The second difference is the requirement to call the setSdISecurity
(List<Class<? extends SdISecurityBase>> secList) method from the SdIMana
ger.Builder if connecting to an implementation of Core that requires secure
video & audio streaming. This method requires an array of Security Managers,
which will extend the SdlSecurityBase class. These security libraries are
provided by the OEMs themselves, and will only work for that OEM. There is not
a general catch-all security library.

https://d83tozu1c8tt6.cloudfront.net/guides/android/getting-started/integration-basics/
https://d83tozu1c8tt6.cloudfront.net/guides/android/getting-started/integration-basics/

SdIManager.Builder builder = new SdIManager.Builder(this, APP_ID,
APP_NAME, listener);

Vector<AppHMIType> hmiTypes = new Vector<AppHMIType>();
hmiTypes.add(AppHMIType.NAVIGATION);
builder.setAppTypes(hmiTypes);

List<? SdISecurityBase> securityManagers = new ArrayList();
securityManagers.add(OEMSecurityManagerl.class);

securityManagers.add(OEMSecurityManagerl.class);
builder.setSdISecurity(securityManagers);

MultiplexTransportConfig mtc = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI SECURITY_OFF);
mtc.setRequiresHighBandwidth(true);
builder.setTransportType(transport);

sdIManager = builder.build();
sdIManager.start();

NOTE

When compiling, you must make sure to include all possible OEM's
security managers that you wish to support.

After being registered, the app will start receiving callbacks. One important
notification is ON_HMI_STATUS , which informs the app about the currently
visible application on the head unit. Right after registering, the hmiLevel will
be NONE or BACKGROUND . Streaming should commence once the
hmiLevel has been setto FULL by the head unit.

Video Streaming

In order to stream video from an SDL app, we only need to manage a few
things. For the most part, the library will handle the majority of logic needed to
perform video streaming.

SDL Remote Display

The SdIRemoteDisplay base class provides the easiest way to start streaming
using SDL. The SdIRemoteDisplay is extended from Android's Presentation
class with modifications to work with other aspects of the SDL Android library.

NOTE

It is recommended that you extend this as a local class within the
service that has the SdlIManager instance.

Extending this class gives developers a familiar, native experience to handling
layouts and events on screen.

MyDisplay SdIRemoteDisplay{
(Context context, Display display) {
(context, display);
}

@Override
void (Bundle savedinstanceState) {
.onCreate(savedlnstanceState);

setContentView(R.layout.sdl);

Button buttonl = (Button) findViewByld(R.id.button_1);

buttonl.setOnTouchListener(new View.OnTouchListener() {
@Override
boolean (View v, MotionEvent event) {
Log.d(TAG,);

NOTE

If you are obfuscating the code in your app, make sure to exclude
your class that extends SdIRemoteDisplay . For more information
on how to do that, you can check Proguard Guidelines.

Managing the Stream

The VideoStreamingManager can be used to start streaming video after the S
dIManager has successfully been started. This is performed by calling the
method startRemoteDisplayStream(Context context, final Class<? extends

https://d83tozu1c8tt6.cloudfront.net/guides/android/proguard-guidelines/

SdIRemoteDisplay> remoteDisplay, final VideoStreamingParameters
parameters, final boolean encrypted) .

if (sdIManager.getVideoStreamManager() != null) {
sdIManager.getVideoStreamManager().start(new CompletionListener
01
@Override
void (boolean success) {
if (success) {
sdIManager.getVideoStreamManagery().
startRemoteDisplayStream(getApplicationContext(), MyDisplay.class,
null, false);
} else {
Log.e(TAG,

Ending the Stream

When the HMIStatus is back to HMI_NONE it is time to stop the stream. This
is accomplished through a method stopStreaming() .

sdIManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS,
new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnHMIStatus status = (OnHMIStatus) notification;
if (status != null && status.getHmiLevel() == HMILevel.HMI_NONE)

//Stop the stream
if (sdIManager.getVideoStreamManager() !'= null && sdIManager
.getVideoStreamManager().isStreaming()) {
sdIManager.getVideoStreamManager().stopStreaming();

Audio Streaming

Navigation apps are allowed to stream raw audio to be played by the head unit.
The audio received this way is played immediately, and the current audio
source will be attenuated. The raw audio has to be played with the following
parameters:

* Format: PCM

* Sample Rate: 16k

* Number of Channels: 1

* Bits Per Second (BPS): 16 bits per sample / 2 bytes per sample

You can now also push mp3 files using the AudioStreamingManager , which is
accessed through the SdlIManager .

NOTE

For streaming consistent audio, such as music, use a normal A2DP
stream and not this method.

STREAMING AUDIO

To stream audio, we call sdIManager.getAudioStreamManager().start() which
will start the manager. When that callback returns successful, you call sdIMana
ger.getAudioStreamManager().startAudioStream() . When the callback for that
is successful, you can push the audio source using sdIManager.getAudioStream
Manager().pushAudioSource() . Below is an example of playing an mp3 file
that we have in our resource directory:

if (sdIManager.getAudioStreamManager() != null) {
Log.i(TAG,);
sdIManager.getAudioStreamManager().start(new CompletionListener
01
@Override
void (boolean success) {
if (success) {
sdIManager.getAudioStreamManager().startAudioStream(
false, new CompletionListener() {
@Override
void (boolean success) {
if (success) {
Resources resources = getApplicationContext().
getResources();
int resourceld = R.raw.exampleMp3;
Uri uri = new Uri.Builder()
.scheme(ContentResolver.
SCHEME_ANDROID RESOURCE)
.authority(resources.getResourcePackageName(
resourceld))
.appendPath(resources.getResourceTypeName(
resourceld))
.appendPath(resources.getResourceEntryName(
resourceld))
Jouild();
sdIManager.getAudioStreamManager().
pushAudioSource(uri, new CompletionListener() {
@Override
void (boolean success) {
if (success) {
Log.i(TAG,
} else {
Log.i(TAG,
}
}
};
} else {
Log.d(TAG,
}
}
});
} else {
Log.i(TAG,

STOPPING THE AUDIO STREAM

When the stream is complete, or you receive HMI_NONE, you should stop the
stream by calling:

sdIManager.getAudioStreamManager().stopAudioStream(new
CompletionListener() {
@Override

void (boolean success) {

Supporting Haptic Input

SDL now supports "haptic" input, input from something other than a touch
screen. This could include trackpads, click-wheels, etc. These kinds of inputs
work by knowing which areas on the screen are touchable and focusing on
those areas when the user moves the trackpad or click wheel. When the user
selects a rect, the center of that area will be "touched".

NOTE

Currently, there are no RPCs for knowing which rect is highlighted,
so your Ul will have to remain static, without scrolling.

You will also need to implement touch input support (Mobile Navigation/Touch
Input) in order to receive touches of the rects.

Using SDL Presentation

SDL has support for automatically detecting focusable rects within your Ul and
sending that data to the head unit. You will still need to tell SDL when your Ul
changes so that it can re-scan and detect the rects to be sent. The easiest way
to use this is by taking advantage of SDL's Presentation class. This will
automatically check if the capability is available and instantiate the manager
for you. All you have to do is set your layout:

MyPresentation SdIRemoteDisplay {

(Context context, Display display) {
(context, display);
¥

@Override
void (Bundle savedlnstanceState) {
.onCreate(savedlnstanceState);
setContentView(R.layout.haptic_layout);
LinearLayout videoView = (LinearLayout) findViewByld(R.id.

cat_view);
videoView.setOnTouchListener(new View.OnTouchListener() {
@Override
boolean (View view, MotionEvent motionEvent) {
/I ...Update something on the ui

MyPresentation.this.invalidate();

This will go through your view that was passed in and then find and send the
rects to the head unit for use. When your Ul changes, call invalidate() from
your class that extends SdIRemoteDisplay .

Sending your own Rects

It is also possible that you may want to create your own rects instead of using
the automated methods in the Presentation class. It is important that if sending
this data yourself that you also use the SystemCapabilityManager to check if
you are on a head unit that supports this feature. If the capability is available, it
is easy to build the area you want to become selectable:

void 01

Rectangle rectangle = new Rectangle();
rectangle.setX((float) 1.0);
rectangle.setY((float) 1.0);
rectangle.setWidth((float) 1.0);
rectangle.setHeight((float) 1.0);

HapticRect hapticRect = new HapticRect();
hapticRect.setld(123);
hapticRect.setRect(rec);

ArrayList<HapticRect> hapticArray = new ArrayList<HapticRect>();
hapticArray.add(0, hr);

SendHapticData sendHapticData = new SendHapticData();
sendHapticData.setHapticRectData(hapticArray);

sdIManager.sendRPC(sendHapticData);

Each SendHapticData rpc should contain the entirety of all clickable areas to be
accessed via haptic controls.

Setting Security Level for
Multiplexing

When connecting to Core via Multiplex Bluetooth transport, your SDL app will
use a Router Service housed within your app or another SDL enabled app.

To help ensure the validility of the Router Service, you can select the security
level explicity when you create your Multiplex Bluetooth transport in your app's

SdIService:

int securityLevel = FLAG_MULTI_SECURITY_MED;

BaseTransport transport = MultiplexTransportConfig(context, appld,
securitylLevel);

If you create the transport without specifying the security level, it will be set to
FLAG_MULTI _SECURITY_MED by default.

Security Levels

FLAG_MULTI_SECURITY_OFF

FLAG_MULTI_SECURITY_LOW

FLAG_MULTI_SECURITY_MED

FLAG_MULTI_SECURITY_HIGH

Multiplexing security turned off. All router
services are trusted.

Multiplexing security will be minimal.
Only trusted router services will be used.
Trusted router list will be obtained from
server. List will be refreshed every 20
days or during next connection session if
an SDL enabled app has been installed or
uninstalled.

Multiplexing security will be on at a
normal level. Only trusted router services
will be used. Trusted router list will be
obtained from server. List will be
refreshed every 7 days or during next
connection session if an SDL enabled app
has been installed or uninstalled.
Multiplexing security will be very strict.
Only trusted router services installed
from trusted app stores will be used.
Trusted router list will be obtained from
server. List will be refreshed every 7 days
or during next connection session if an
SDL enabled app has been installed or

uninstalled.

Applying to the Trusted Router

Service Database

For an Android application to be added to the Trusted Router Service database,

the application will need to be registered on the SDL Developer Portal and

certified by the SDLC. For more information on registration, please see this
guide.

Any Android application that is certified by the SDLC will be added to the
Trusted Router Service database; there are no additional steps required as it is
part of the certification process.

Please consult the Trusted Router Service FAQs if you have any additional
questions.

Handling a Language Change

When a user changes the language on a head unit, an OnLanguageChange
notification will be sent from Core. Then your app will disconnect. In order for
your app to automatically reconnect to the head unit, there are a few changes
to make in the following files:

* Local SDL Broadcast Receiver
* Local SDL Service

SDL Broadcast Receiver

When the SDL Service's connection to core is closed, we want to tell our local
SDL Broadcast Receiver to restart the SDL Service. To do this, first add a public
String in your app's local SDL Broadcast Receiver class that can be included as
an extra in a broadcast intent.

public static final String RECONNECT_LANG_CHANGE =
"RECONNECT_LANG_CHANGE";

Then, override the onReceive() method of the local SDL Broadcast Receiver to
call onSdIEnabled() when receiving that action:

https://d83tozu1c8tt6.cloudfront.net/media/resources/SDL_Developer_Portal_Registration_Guide.pdf
https://d83tozu1c8tt6.cloudfront.net/media/resources/SDL_Developer_Portal_Registration_Guide.pdf
https://smartdevicelink.com/en/guides/android/frequently-asked-questions/trusted-router-service/

@Override
void (Context context, Intent intent) {
.onReceive(context, intent); // Required if overriding this
method

if (intent '= null) {
String action = intent.getAction();
if (action '= null){
if(action.equalslignoreCase(TransportConstants.

START _ROUTER_SERVICE_ACTION)) {

if (intent.getBooleanExtra(RECONNECT LANG_CHANGE, false
) A

onSdlEnabled(context, intent);

MUST

Be sure to call super.onReceive(context, intent); at the start of the
method!

NOTE

This guide also assumes your local SDL Broadcast Receiver
implements the onSdlEnabled() method as follows:

@Override
void (Context context, Intent intent) {

intent.setClass(context, SdlService.class);
context.startService(intent);

}

SDL Service

We want to tell our local SDL Broadcast Receiver to restart the service when an

OnLanguageChange notification is received from Core . To do so, add a
notification listener as follows:

sdIManager.addOnRPCNotificationListener(FunctionlID.
ON_LANGUAGE_CHANGE, new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
SdIService.this.stopSelf();

Intent intent = new Intent(TransportConstants.
START _ROUTER_SERVICE_ACTION);

intent.putExtra(SdIReceiver.RECONNECT LANG_CHANGE, true);
AndroidTools.sendExplicitBroadcast(context, intent, null);

System Capability Manager

The System Capability Manager is a central location to obtain capabilities about
the currently connected module. Specific capabilities will be returned for a
number of given keys (e.g. NAVIGATION , VIDEO STREAMING). It also
alleviates the need to individually cache results that come from the RegisterAp
plnterface response or from the new SystemCapabilityQuery .

There are multiple capabilities that can be retrieved:

NAVIGATION
PHONE_CALL
VIDEO_STREAMING
REMOTE_CONTROL
HMI

DISPLAY
AUDIO_PASSTHROUGH
BUTTON
HMI_ZONE
PRESET_BANK
SOFTBUTTON
SPEECH

VOICE_RECOGNITION

Querying Capabilities

Any point after receiving the first OnHMIStatus notification from the
connected module, you can access the SystemCapability manager and its
data. Your instance of SdIManager will provide access to the SystemCapabilit
yManager .

NOTE

It is important to query capabilities before you use them. Your app
may be used on a variety of head units across different
manufacturers and software versions. Never assume that a
capability exists.

For example (obtaining the head unit's DISPLAY capability):

sdIManager.getSystemCapabilityManager().getCapability(
SystemCapabilityType.DISPLAY, new OnSystemCapabilityListener(){

@Override
void (Object capability){
DisplayCapabilities dispCapability = (DisplayCapabilities)
capability;
}

@Override
void (String info){
Log.i(TAG,

The returned capability needs to be cast into the capability type you requested.
From there you can determine whether or not the head unit that the app is
connected to can utilize a feature or not.

Capability Lists

These are the current responses that come back as Lists:
- AUDIO_PASSTHROUGH

- BUTTON

- SOFTBUTTON

- SPEECH

- HMI_ZONE

- VOICE_RECOGNITION

We've created a method in the SystemCapabilityManager to help cast these
lists. Below is an example of its usage:

sdIManager.getSystemCapabilityManager().getCapability(
SystemCapabilityType.BUTTON, new OnSystemCapabilityListener(){

@Override
void (Object capability){
List<ButtonCapabilities> buttonCapabilityList =
SystemCapabilityManager.convertToList(capability, ButtonCapabilities.
class);

}

@Override
void (String info){
Log.i(TAG,

This method prevents the developer from having to suppress a warning as well
as creates a safe way to cast the object to a list.

Asynchronous vs Synchronous
Queries

Some capabilities will be instantly available after the first OnHMIStatus
notification. These are parsed from the RegisterAppinterface response.
However, some capabilities MUST be obtained asynchronously and therefore
require a callback to be obtained. If a capability can be retrieved synchronously
another method can be used via the SystemCapbilityManager object obtained

from the SdIManager , sdIManager.getSystemCapabilityManager
().getCapability(SystemCapabilityType) .

NAVIGATION Yes
PHONE_CALL Yes
VIDEO_STREAMING Yes
REMOTE_CONTROL Yes
HMI No
DISPLAY No
AUDIO_PASSTHROUGH No
BUTTON No
HMI_ZONE No
PRESET_BANK No
SOFTBUTTON No
SPEECH No

VOICE_RECOGNITION No

Permission Manager

The PermissionManager allows developers to easily query whether specific
RPCs are allowed or not. It also allows a listener to be added for a list of RPCs
so that if there are changes in their permissions, the app will be notified.

Querying Permission

Using the PermissionManager , you can easily know if a specific RPC is allowed
or not. For example, if you want to check if the Show RPC is allowed you can
use the isRPCAllowed method:

boolean allowed = sdIManager.getPermissionManager().isRPCAllowed(

FunctionID.SHOW);

NOTE

Some RPCs are allowed in specific hmi levels but not allowed in
others.

Querying Permission Parameters

Some RPCs have parameters. For example, GetVehicleData has parameters
like speed , rpm , and airbagStatus . The developer may need to know not

only whether GetVehicleData is allowed but also if a specific parameter in that
RPC is allowed. For that case the isPermissionParameterAllowed method can
be used to tell if the RPC and the parameter are both allowed:

boolean allowed = sdIManager.getPermissionManager().

isPermissionParameterAllowed(FunctionID.GET_VEHICLE_DATA,
GetVehicleData.KEY_RPM);

Querying Multiple Permissions at
Once

In some cases, developers may need to know whether multiple permissions (or
permission parameters) are allowed and perform a specific action based on the
result. The PermissionManager has a convenience method that does that. For
example, if the developers need to know whether Show and GetVehicleData
RPCs are allowed and also make sure that speed and rpm parametersin Ge
tVehicleData are allowed, they can use getGroupStatusOfPermissions method
to do that. First, a list of PermissionElement s should be created. Each Permiss
ionElement in the list holds the RPC that we want to check the permission for
and a list of optional parameters for that permission:

List<PermissionElement> permissionElements = new ArrayList<>();
permissionElements.add(new PermissionElement(FunctionID.SHOW,
null));

permissionElements.add(new PermissionElement(FunctionlID.
GET_VEHICLE_DATA, Arrays.asList(GetVehicleData.KEY_RPM,
GetVehicleData.KEY_SPEED)));

int groupStatus = sdIManager.getPermissionManager().
getGroupStatusOfPermissions(permissionElements);

switch (groupStatus) {
case PermissionManager.PERMISSION_GROUP_STATUS ALLOWED:

// Every permission in the group is currently allowed
break;
case PermissionManager.PERMISSION_GROUP_STATUS DISALLOWED:
/I Every permission in the group is currently disallowed
break;
case PermissionManager.PERMISSION_GROUP_STATUS MIXED:
// Some permissions in the group are allowed and some disallowed
break;
case PermissionManager.PERMISSION_GROUP_STATUS UNKNOWN:
// The current status of the group is unknown
break;

The previous snippet will give a quick generic status for all permissions
together. However, if developers want to get a more detailed result about the
status of every permission or parameter in the group, they can use getStatusO
fPermissions method:

List<PermissionElement> permissionElements = new ArrayList<>();
permissionElements.add(new PermissionElement(FunctionID.SHOW,
null));

permissionElements.add(new PermissionElement(FunctionlID.
GET_VEHICLE_DATA, Arrays.asList(GetVehicleData.KEY_RPM,
GetVehicleData.KEY_AIRBAG_STATUS)));

Map<FunctionID, PermissionStatus> status = sdIManager.
getPermissionManager().getStatusOfPermissions(permissionElements);

if (status.get(FunctionID.GET_VEHICLE_DATA).getIsRPCAllowed()){
// GetVehicleData RPC is allowed
}

if (status.get(FunctionID.GET_VEHICLE_DATA).getAllowedParameters().
get(GetVehicleData.KEY_RPM)){
// rom parameter in GetVehicleData RPC is allowed

}

Adding Permissions Change
Listener

In some cases, the app may need to be notified when there is a change in some
permissions. Developers can use the PermissionManager to add a listener that
will be called when the specified permissions change. The listener can be called
either when there is any change or only when all permissions become allowed.
That can be determined by the PermissionGroupType value that is passed to
the AddListener method:

Be notified when all of the permissions in

the group are allowed, or when they all
PERMISSION_GROUP_TYPE_ALL ALLOWE

D

stop being allowed in some sense, that
is, when they were all allowed, and now
they are not.

Be notified when any change in
PERMISSION_GROUP_TYPE_ANY o
availability occurs among the group.

For example, to setup a listener that will be called when there is any update to
Show or GetVehicleData permissions or rpm , airbagStatus parameter
permissions in the GetVehicleData RPC, you can use the following code
snippet:

List<PermissionElement> permissionElements = new ArrayList<>();
permissionElements.add(new PermissionElement(FunctionID.SHOW,
null));

permissionElements.add(new PermissionElement(FunctionlID.
GET_VEHICLE_DATA, Arrays.asList(GetVehicleData.KEY_RPM,
GetVehicleData.KEY_AIRBAG_STATUS)));

UUID listenerld = sdIManager.getPermissionManager().addListener(
permissionElements, PermissionManager.
PERMISSION_GROUP_TYPE_ANY, new OnPermissionChangeListener() {
@Override
void (@NonNull Map<FunctionID,

PermissionStatus> allowedPermissions, @NonNull int
permissionGroupStatus) {

if (allowedPermissions.get(FunctionID.GET_VEHICLE_DATA).
getlsRPCAllowed()) {

/| GetVehicleData RPC is allowed

}

if (allowedPermissions.get(FunctionID.GET _VEHICLE_DATA).
getAllowedParameters().get(GetVehicleData.KEY _RPM)){
/l rom parameter in GetVehicleData RPC is allowed

NOTE

Don't forget to remove the listener using the removelListener
method when you are done with it.

Remote Control

Remote Control provides a framework to allow apps to control certain safe
modules within a vehicle.

NOTE

Not all vehicles have this functionality. Even if they support remote
control, you will likely need to request permission from the vehicle
manufacturer to use it.

WHY IS THIS HELPFUL?

Consider the following scenarios:

* A radio application wants to use the in-vehicle radio tuner. It needs the
functionality to select the radio band (AM/FM/XM/HD/DAB), tune the radio

frequency or change the radio station, as well as obtain general radio
information for decision making.

A climate control application needs to turn on the AC, control the air
circulation mode, change the fan speed and set the desired cabin
temperature.

A user profile application wants to remember users' favorite settings and
apply it later automatically when the users get into the same/another
vehicle.

Currently, the Remote Control feature supports these modules:

Climate

Radio

Seat

Audio

Light

HMI Settings

The following table lists what control items are in each control module.

Climate

Radio

Current
Cabin

Temperature

Desired
Cabin

Temperature

AC Setting

AC MAX
Setting

Air
Recirculation
Setting

Auto AC
Mode Setting
Defrost Zone

Setting

Dual Mode
Setting

Fan Speed
Setting

Ventilation
Mode Setting

Radio
Enabled

Radio Band

on, off

on, off

on, off

on, off

front, rear,

all, none

on, off

0%-100%

upper, lower,

both, none

true,false

AM,FM, XM

Get/

Notification

Get/Set/

Notification

Get/Set/

Notification

Get/Set/

Notification

Get/Set/

Notification

Get/Set/

Notification
Get/Set/

Notification

Get/Set/

Notification
Get/Set/

Notification

Get/Set/

Notification

Get/Set/

Notification

Get/Set/

Notification

read only,
value
range
depends
on OEM
value
range
depends
on OEM

read only,
all other
radio
control
items need
radio
enabled to

work

Seat

Radio

Frequency

Radio RDS
Data

Available HD

Channel

Current HD

Channel
Radio Signal
Strength
Signal
Change
Threshold

Radio State

Seat Heating
Enabled

Seat Cooling
Enabled

Seat Heating

level

Seat Cooling

level

1-3

Acquiring,
acquired,
multicast,

not_found

true, false

true, false

0-100%

0-100%

Get/Set/

Notification

Get/

Notification
Get/
Notification
Get/Set/

Notification

Get/

Notification

Get/

Notification

Get/

Notification

Get/Set/

Notification

Get/Set/

Notification

Get/Set/

Notification

Get/Set/

Notification

value
range
depends

on band

read only

read only

read only

read only

read only

Indicates
whether
heating is
enabled for
a seat
Indicates
whether
cooling is
enabled for
a seat
Level of
the seat
heating
Level of
the seat

cooling

Seat
Horizontal

Positon

Seat Vertical

Position

0-100%

0-100%

Get/Set/

Notification

Get/Set/

Notification

Adjust a
seat
forward/
backward,
0 means
the nearest
position to
the
steering
wheel,
100%
means the
furthest
position
from the
steering
wheel
Adjust seat
height (up
or down) in
case there
is only one
actuator
for seat
height, 0
means the
lowest
position,
100%
means the
highest

position

Seat-Front
Vertical

Position

Seat-Back
Vertical

Position

0-100%

0-100%

Get/Set/

Notification

Get/Set/

Notification

Adjust seat
front
height (in
case there
are two
actuators
for seat
height), 0
means the
lowest
position,
100%
means the
highest
position
Adjust seat
back
height (in
case there
are two
actuators
for seat
height), 0
means the
lowest
position,
100%
means the
highest

position

Seat Back
Tilt Angle

0-100%

Head
Support

0-100%
Horizontal

Positon

Get/Set/

Notification

Get/Set/

Notification

Backrest
recline, 0
means the
angle that
back top is
nearest to
the
steering
wheel,
100%
means the
angle that
back top is
furthest
from the
steering
wheel
Adjust
head
support
forward/
backward,
0 means
the nearest
position to
the front,
100%
means the
furthest
position
from the

front

Audio

Head
Support
Vertical

Position

Seat
Massaging
Enabled

Massage
Mode

Massage
Cushion

Firmness

Seat

memory

Audio

volume

0-100%

true, false

List of Struct
{MassageZo
ne,
MassageMod
e}

List of Struct
{Cushion,
0-100%}

Struct{ id,
label, action
(SAVE/
RESTORE/
NONE)}

0%-100%

Get/Set/

Notification

Get/Set/

Notification

Get/Set/

Notification

Get/Set/

Notification

Get/Set/

Notification

Get/Set/

Notification

Adjust
head
support
height (up
or down), 0
means the
lowest
position,
100%
means the
highest
position
Indicates
whether
massage is
enabled for

a seat

list of
massage
mode of

each zone

list of
firmness of
each
massage

cushion

seat

memory

The audio
source
volume

level

Light

Audio Source

keep Context

Equilizer

Settings

Light Status

MOBILE_APP,
RADIO_TUNE
R, CD,

BLUETOOTH,
USB, etc. see
PrimaryAudio

Source

true, false

Struct
{Channel ID
as integer,
Channel
setting as
0%-100%}

ON, OFF

Get/Set/

Notification

Set only

Get/Set/

Notification

Get/Set/

Notification

defines one
of the
available
audio

sources

control
whether
HMI shall
keep
current
application
context or
switch to
default
media Ul/
APP
associated
with the
audio
source
Defines the
list of
supported
channels
(band) and
their
current/
desired
settings on
HMI

turn on/off
a single
light or all
lights in a
group

HMI
Settings

Light Density

Light Color

Display
Mode

Distance
Unit

Temperature
Unit

float 0.0-1.0

RGB color

DAY, NIGHT,
AUTO

MILES,
KILOMETERS

FAHRENHEIT,

CELSIUS

Get/Set/

Notification

Get/Set/

Notification

Get/Set/

Notification

Get/Set/

Notification

Get/Set/

Notification

change the
density/
dim a
single light
or all lights
in a group
change the
color
scheme of
a single
light or all
lights in a
group
Current
display
mode of
the HMI
display
Distance
Unit used
in the HMI
(for maps/
tracking
distances)
Temperatur
e Unit used
in the HMI
(for
temperatur
e
measuring

systems)

Remote Control can also allow mobile applications to send simulated button

press events for the following common buttons in the vehicle.

The system shall list all available buttons for Remote Control in the RemoteCon
trolCapabilities . The capability object will have a List of ButtonCapabilities
that can be obtained using getButtonCapabilities() .

Climate

Radio

AC

AC MAX

RECIRCULATE

FAN UP

FAN DOWN

TEMPERATURE UP

TEMPERATURE DOWN

DEFROST

DEFROST REAR

DEFROST MAX

UPPER VENT

LOWER VENT

VOLUME UP

VOLUME DOWN

EJECT

SOURCE

SHUFFLE

REPEAT

Integration

NOTE

For Remote Control to work, the head unit must support SDL Core
Version 4.4 or newer. Also your app's appHMIType should be set to
REMOTE_CONTROL .

SYSTEM CAPABILITY

MUST

Prior to using any Remote Control RPCs, you must check that the
head unit has the Remote Control capability. As you may encounter
head units that do not support it, this check is important.

To check for this capability, use the following call:

// First you can check to see if the capability is supported on the module
if (sdIManager.getSystemCapabilityManager().isCapabilitySupported(
SystemCapabilityType.REMOTE_CONTROL)){

// Since the module does support this capability we can query it for
more information

sdIManager.getSystemCapabilityManager().getCapability(
SystemCapabilityType.REMOTE_CONTROL, new
OnSystemCapabilityListener(){

@Override
void (Object capability){

RemoteControlCapabilities remoteControlCapabilities = (
RemoteControlCapabilities) capability;

// Now it is possible to get details on how this capability

// is supported using the remoteControlCapabilities object

}

@Override
void (String info){
Log.i(TAG,

GETTING DATA

It is possible to retrieve current data relating to these Remote Control modules.
The data could be used to store the settings prior to setting them, saving user
preferences, etc. Following the check on the system's capability to support
Remote Control, we can actually retrieve the data. The following is an example
of getting data about the RADIO module. It also subscribes to updates to radio
data, which will be discussed later on in this guide.

GetlInteriorVehicleData interiorVehicleData = new
GetInteriorVehicleData();
interiorVehicleData.setModuleType(ModuleType.RADIO);
interiorVehicleData.setSubscribe(true);
interiorVehicleData.setOnRPCResponselListener(new
OnRPCResponseListener() {

@Override

void (int correlationld, RPCResponse response) {
GetlnteriorVehicleData getResponse = (GetinteriorVehicleData)
response;
/[This can now be used to retrieve data

});

sdIManager.sendRPC(interiorVehicleData);

SETTING DATA

Of course, the ability to set these modules is the point of Remote Control.
Setting data is similar to getting it. Below is an example of setting ClimateCont
rolData .

Temperature temp = new Temperature();
temp.setUnit(TemperatureUnit. FAHRENHEIT);
temp.setValue((float) 74.1);

ClimateControlData climateControlData = new ClimateControlData();
climateControlData.setAcEnable(true);
climateControlData.setAcMaxEnable(true);
climateControlData.setAutoModeEnable(false);
climateControlData.setCirculateAirEnable(true);
climateControlData.setCurrentTemperature(temp);
climateControlData.setDefrostZone(DefrostZone.FRONT);
climateControlData.setDualModeEnable(true);

climateControlData.setFanSpeed(2);
climateControlData.setVentilationMode(VentilationMode.BOTH);
climateControlData.setDesiredTemperature(temp);

ModuleData moduleData = new ModuleData();
moduleData.setModuleType(ModuleType.CLIMATE);
moduleData.setClimateControlData(climateControlData);

SetinteriorVehicleData setinteriorVehicleData = new
SetlnteriorVehicleData();
setinteriorVehicleData.setModuleData(moduleData);

sdIManager.sendRPC(setInteriorVehicleData);

It is likely that you will not need to set all the data as it is in the example, so if
there are settings you don't wish to modify, then you don't have to.

BUTTON PRESSES

Another unique feature of Remote Control is the ability to send simulated
button presses to the associated modules, imitating a button press on the
hardware itself.

Simply specify the module, the button, and the type of press you would like:

ButtonPress buttonPress = new ButtonPress();
buttonPress.setModuleType(ModuleType.RADIO);
buttonPress.setButtonName(ButtonName.EJECT);

buttonPress.setButtonPressMode(ButtonPressMode.SHORT);

sdIManager.sendRPC(buttonPress);

SUBSCRIBING TO CHANGES

It is also possible to subscribe to changes in data associated with supported
modules.

To do so, during your GET request for data, simply add in setSubscribe
(Boolean) . To unsubscribe, send the request again with the boolean set to Fals
e . A code sample for setting the subscription is in the GET example above.

The response to a subscription will come in a form of a notification. You can

receive this notification by adding a notification listener for OnlinteriorVehicleD
ata .

sdIManager.addOnRPCNotificationListener(FunctionlID.
ON_INTERIOR_VEHICLE_DATA, new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnlinteriorVehicleData onlinteriorVehicleData = (
OnInteriorVehicleData) notification;
//Perform action based on notification

});

/[Then send the GetlinteriorVehicleData with subscription set to true
GetlnteriorVehicleData interiorVehicleData = new
GetlInteriorVehicleData();
interiorVehicleData.setModuleType(ModuleType.RADIO);
interiorVehicleData.setSubscribe(true);

sdIManager.sendRPC(interiorVehicleData);

NOTE

The notification listener should be added before sending the Getint
eriorVehicleData request.

Proguard Guidelines

SmartDevicelLink and its dependent libraries are open source and not intended
to be obfuscated. When using Proguard in an app that integrates
SmartDevicelink, it is necessary to follow these guidelines.

Required Proguard Rules

Apps that are code shrinking a release build with Proguard typically have a
section resembling this snippet in their build.gradle :

android {
buildTypes {
release {
minifyEnabled true
proguardFiles (‘proguard-android.txt'),

‘proguard-rules.pro'

Developers using Proguard in this manner should be sure to include the
following lines in their proguard-rules.pro file:

-keep com.smartdevicelink.** { *; }
-keep com.livio.** { *; }

Video streaming apps must add the following line
-keep ** extends com.smartdevicelink.streaming.video.
SdIRemoteDisplay { *; }

NOTE

Failure to include these Proguard rules may result in a failed build
or cause issues during runtime.

Updating to 4.4 (Upgrading To
Multiplexing)

This guide is to help developers get setup with the SDL Android library 4.4.
Upgrading apps to utilize the multiplexing transport flow will require us to do a
few steps. This guide will assume the SDL library is already integrated into the

app.
We will make changes to:

* SdlIService

* SdIRouterService (new)
* SdIBroadcastReceiver

* MainActivity

SmartDeviceLink Service

The SmartDevicelLink proxy object instantiation needs to change to the new
constructor. We also need to check for a boolean extra supplied through the
intent that started the service.

The old instantiation should look similar to this:

proxy = new SdIProxyALM(this, APP_NAME, true, APP_ID);

The new constructor should look like this

SdlService Service IProxyListenerALM

/...

@Override
int (Intent intent, int flags, int startld) {
boolean forceConnect = intent '=null && intent.getBooleanExtra(
TransportConstants.FORCE_TRANSPORT CONNECTED, false);
if (proxy == null) {
try {
//Create a new proxy using Bluetooth transport
/[The listener, app name,
//whether or not it is a media app and the applicationld are
supplied.
proxy = new SdIProxyALM(this.getBaseContext(),this,
APP_NAME, true, APP_ID);
} catch (SdIException e) {
/[There was an error creating the proxy
if (proxy == null) {
//Stop the SdlService
stopSelf();
}
}

}else if(forceConnect){
proxy.forceOnConnected();

}

/luse START _STICKY because we want the SDLService to be
explicitly started and stopped as needed.
return START_STICKY;

}

Notice we now gather the extra boolean from the intent and add to our if-else
statement. If the proxy is not null, we need to check if the supplied boolean
extra is true and if so, take action.

if (proxy == null) {
/...

}else if(forceConnect){
proxy.forceOnConnected();

}

SmartDeviceLink Router Service
(New)

The SdIRouterService will listen for a bluetooth connection with an SDL enabled
module. When a connection happens, it will alert all SDL enabled apps that a
connection has been established and they should start their SDL services.

We must implement a local copy of the SdIRouterService into our project. The
class doesn't need any modification, it's just important that we include it. We
will extend the com.smartdevicelink.transport.SdIRouterService in our class
named SdlRouterService :

NOTE

Do not include an import for com.smartdevicelink.transport.SdIRou
terService . Otherwise, we will get an error for 'SdIRouterService'
is already defined in this compilation unit .

SdIRouterService com.smartdevicelink.transport.
SdIRouterService {

//Nothing to do here
}

MUST

The local extension of the com.smartdevicelink.transport.SdIRouter
Service must be named SdIRouterService .

MUST

Make sure this local class (SdIRouterService.java) is in the same
package of SdIReceiver.java (described below)

If you created the service using the Android Studio template then the service
should have been added to your AndroidManifest.xml otherwise the service
needs to be added in the manifest. Because we want our service to be seen by
other SDL enabled apps, we need to set android:exported="true" . The system
may issue a lint warning because of this, so we can suppress that using tools:i
gnore="ExportedService" . Once added, it should be defined like below:

<manifest xmlins:android=
package=

<application>

<service
android:name=

android:exported=

android:process=

tools:ignore=
</service>

</application>

</manifest>

MUST

The SdIRouterService must be placed in a separate process with
the name com.smartdevicelink.router . If it is not in that process
during it's start up it will stop itself.

SmartDeviceLink Broadcast
Receiver

The SmartDevicelLink Android Library now includes a base BroadcastReceiver
that needs to be used. It's called SdIBroadcastReceiver . Our old

BroadcastReceiver will just need to extend this class instead of the Android
BroadcastReceiver. Two abstract methods will be automatically populate the
class, we will fill them out soon.

SdIReceiver SdIBroadcastReceiver {

@Override
void (Context context, Intent intent) {...}

@Override
Class<? SdIRouterService>

0{.}
}

Next, we want to make sure we supply our instance of the SdIBroadcastService
with our local copy of the SdIRouterService. We do this by simply returning the
class object in the method defineLocalSdIRouterClass:

Class<? SdIRouterService>

(0 {

//[Return a local copy of the SdIRouterService located in your

project

return com.company.mySdlApplication.SdIRouterService.class;

}

We want to start the SDL Proxy when an SDL connection is made via the SdIRo
uterService . This is likely code included on the onReceive method call
previously. We do this by taking action in the onSdIEnabled method:

NOTE

The actual package definition for the SdIRouterService might be
different. Just make sure to return your local copy and not the class
object from the library itself.

SdIReceiver SdIBroadcastReceiver {

@Override
void (Context context, Intent intent) {

//Use the provided intent but set the class to the SdlService
intent.setClass(context, SdlService.class);
context.startService(intent);

@Override
Class<? SdIRouterService>

(0 {

//[Return a local copy of the SdIRouterService located in your

project.
return com.company.mySdlApplication.SdIRouterService.class;

}

}

NOTE

The onSdlEnabled method will be the main start point for our SDL
connection session. We define exactly what we want to happen
when we find out we are connected to SDL enabled hardware.

MUST

SdIBroadcastReceiver must call super if onReceive is overridden

@Override
void (Context context, Intent intent) {

.onReceive(context, intent);
/lyour code here

}

Now we need to add two extra intent actions to or our intent filter for the
SdIBroadcastReceiver:

* android.bluetooth.adapter.action.STATE_ CHANGED

sdl.router.startservice

https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#ACTION_CONNECTION_STATE_CHANGED

<manifest xmlins:android=

package=

<application>

<receiver
android:name=
android:exported=
android:enabled=

<intent-filter>
<action android:name=

<action android:name=
<action android:name=
<action android:name=

<action android:name=
</intent-filter>

</receiver>

</application>

</manifest>

MUST

SdIBroadcastReceiver has to be exported, or it will not work
correctly

Main Activity

Our previous MainActivity class probably looked similar to this:

MainActivity Activity {

@Override
void (Bundle savedlnstanceState) {
.onCreate(savedinstanceState);
setContentView(R.layout.activity_main);

// Start the SDLService
Intent sdlServicelntent = new Intent(this, SdIService.class);
startService(sdlServicelntent);

However now instead of starting the service every time we launch the
application we can do a query that will let us know if we are connected to SDL
enabled hardware or not. If we are, the onSdIEnabled method in our
SdIBroadcastReceiver will be called and the proper flow should start. We do this
by removing the intent creation and startService call and instead replace them
with a single call to SdIReceiver.queryForConnectedService(Context) .

MainActivity Activity {

@Override
void (Bundle savedlnstanceState) {
.onCreate(savedlnstanceState);
setContentView(R.layout.activity_main);

//If we are connected to a module we want to start our SdIService
SdIReceiver.queryForConnectedService(this);

}

Updating from 4.4 to 4.5

This guide is to help developers get setup with the SDL Android library 4.5. It is
assumed that the developer is already updated to 4.4 of the library. There are a
few very important changes that we need to make to the integration to keep
things working well. The first is a few new additions to the AndroidManifest.xml
and the SdIlRouterService entry. Next, we have to prepare for Android Oreo's
push towards foreground services.

We will make changes to:

* AndroidManifest.xml
* SdlService
* SdIBroadcastReceiver

AndroidManifest.xml Updates

Assuming the manifest was up to date with version 4.4 requirements we need
to add an intent-filter and a meta-data item. The entire entry should look as
follows:

<manifest xmlins:android=
package=

<application>

<service
android:name=

android:exported=
android:process=
tools:ignore=
<intent-filter>

<action android:name=

</intent-filter>
<meta-data android:name=
android:value=
/>
</service>

</application>

</manifest>

Intent Filter

<intent-filter>
<action android:name=
</intent-filter>

The new versions of the SDL Android library rely on the com.smartdevicelink.ro
uter.service action to query SDL enabled apps that host router services. This
allows the library to determine which router service to start.

MUST

This intent-filter MUST be included.

Metadata

ROUTER SERVICE VERSION

<meta-data android:name=

android:value=

Adding the sdl _router _service_version metadata allows the library to know the
version of the router service that the app is using. This makes it simpler for the
library to choose the newest router service when multiple router services are

available.

CUSTOM ROUTER SERVICE

<meta-data android:name=

android:value=

NOTE

This is only for specific OEM applications, therefore normal
developers do not need to worry about this.

Some OEMs choose to implement custom router services. Setting the sdl_route
r service_is_custom_name metadata value to true means that the app is
using something custom over the default router service that is included in the
SDL Android library. Do not include this meta-data entry unless you know
what you are doing.

Android Oreo's Push To
Foreground Services

Previous versions of Android allowed our SDL app partners to start their SDL
services in the background and attach themselves to the foregrounded SDL
router service. Android Oreo (APl 26) has changed that. Due to new OS
limitations, apps must start their SDL service in the foreground.

What do | need to do?

There are a few changes to make, one in the SdIBroadcastReceiver and the
other in the SdIService (or which service the proxy is implemented).

SDLBROADCASTRECEIVER

PREVIOUS VERSION

@Override
void (Context context, Intent intent) {
Log.d(TAG,);

intent.setClass(context, SdlService.class);
context.startService(intent);

}

SAMPLE UPDATE

@Override
void (Context context, Intent intent) {
Log.d(TAG,);
intent.setClass(context, SdlService.class);
if(Build.VERSION.SDK_INT < Build.VERSION_CODES.O) {
context.startService(intent);

}else{
context.startForegroundService(intent);

}

This means the app will start the SDL service in the background if we are on a
device that uses Android N or earlier. If the app is running on Android Oreo or
newer, the service will make a promise to the OS that the service will move into
the foreground. If the service doesn't explicitly move into the foreground an
exception will be thrown.

SDLSERVICE (OR SIMILAR)

Within the SdIService class or similar you will need to add a call to start the
service in the foreground. This will include creating a notification to sit in the

status bar tray. This information and icons should be relevant for what the
service is doing/going to do. If you already start your service in the foreground,
you can ignore this section.

void 0 A1
.onCreate();

NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
notificationManager.createNotificationChannel(...);
Notification serviceNotification = new Notification.Builder(this, *
Notification Channel*)
.setContentTitle(...)
.setSmalllcon(....)
.setLargelcon(...)
.setContentText(...)
.setChannelld(channel.getld())
Dbuild();
startForeground(id, serviceNotification);

}

EXITING THE FOREGROUND

It's important that you don't leave you notification in the notification tray as it
is very confusing to users. So in the onDestroy method in your service, simply
call the stopForeground method.

@Override
void 01
/l...
if(Build.VERSION.SDK INT>=Build.VERSION_CODES.O){
NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
if(notificationManager!=null){ //If this is the only notification on

your channel
notificationManager.deleteNotificationChannel(* Notification
Channel*);
}
stopForeground(true);
}
}

Notification Suggestions

We realize that pushing a notification to the notification tray is not ideal for any
apps, but with Android's push for more transparency to users it's important that
we don't try to workaround that. Android is getting stricter with their guidelines
and could potentially prevent apps from being released if they are found to be
not adhering to these rules.

THE CORRECT WAY

The right way to handle the new foreground service requirement is to simply
push a full fledged notification to the notification tray.

How to do it

@Override
void 01
.onCreate();

if(Build.VERSION.SDK_INT >= Build.VERSION CODES.O) {
NotificationManager notificationManager = (NotificationManager

) getSystemService(Context.NOTIFICATION_SERVICE);

NotificationChannel channel = new NotificationChannel(

, , NotificationManager.IMPORTANCE_DEFAULT);

notificationManager.createNotificationChannel(channel);
Notification serviceNotification = new Notification.Builder(this,
channel.getld())

.setContentTitle()
.setSmalllcon(R.drawable.ic_launcher_foreground)
build();

startForeground(id, serviceNotification);

}
}

THE NOT SO CORRECT WAY

Currently Android Oreo allows a notification to be used that has not declared a
notification channel. This results in the notification icon not actually appearing
on its own. Instead it is grouped together into the notification channel that
reads "# apps are using battery" from the Android System. This is likely to
prevent breaking changes from apps that have not updated their integration to
Android Oreo, however, we fully anticipate this to be changed in the future so it
is not recommended.

How to do it

@Override
void 01
.onCreate();
if(Build.VERSION.SDK_INT >= Build.VERSION CODES.O) {
Notification serviceNotification = new Notification.Builder(this,
)
.setContentTitle()
.setSmalllcon(R.drawable.ic_launcher_foreground)
Jouild();
startForeground(id, serviceNotification);

}

}

How it looks

S ” O W I @439 EEENvRe Emergency calls only 70% @ 4:39

v % @ 1 O +
Tuesday, Mar 27 | @ 41°F

> . Tue, Mar 27 v
B iy Aﬁ\ ’ =

3 App Three
SDL: com.livio.appthree @
Connected to

Android System * now
3 apps are using battery
SdiPlay , App Three, Sdl App

J Android System
USB debugging connected

Tap to disable USB debugging.
o Android System « USB charging this device v

CLEARALL

THE ABSOLUTELY NOT CORRECT WAY

It is possible to create a somewhat invisible notification. This will appear to just
be blank space in the notification tray. With adding minimal content to the
notification when the user pulls down the tray it will have a very small footprint
on the screen. However, this is completely disingenuous to the user and should
not be considered a solution. Android will most likely see this as bad behavior

and could prevent you from releasing your app or even remove your app from

the play store with a ban included. Don't do this.
How to do it

@Override
void 01
.onCreate();

if(Build.VERSION.SDK INT >= Build.VERSION_CODES.O) {
NotificationManager notificationManager = (NotificationManager
) getSystemService(Context.NOTIFICATION_SERVICE);
NotificationChannel channel = new NotificationChannel(
, NotificationManager.IMPORTANCE_DEFAULT);

not|ﬁcat|onManager createNotificationChannel(channel);
Notification serviceNotification = new Notification.Builder(this,
channel.getld())
.setSmalllcon(R.drawable.sd| tray invis)
build();
startForeground(id, serviceNotification);

}

}

How it looks

SoF No SIM card — Emergency calls only 67% i 4:20

s ¢ 3 o v O ¢
Tuesday, Mar 27 | ‘41;5 > W Tue, Mar27 o A
""" Sdl App
SdiPlay
App Three
&3 App Three

SDL: com.livio.appthree @
Connected to

2 Android System

USB debugging connected
Tap to disable USB debugging

B> Geogle Play Store + now

2 apps updated

Google Photos and Google Docs
o Android Sy

stem + USB charging this device

CLEAR ALL

Updating from 4.5 to 4.6

This guide is to help developers get setup with the SDL Android library 4.6. It is
assumed that the developer is already updated to 4.5 of the library. There are a
few important changes that we need to make to the integration to keep things
working well. The first is removing some of the BroadcastReceiver's intent

filters in AndroidManifest.xml that are now unneccessary. Secondly, the gradle
integration of our library should now use implementation instead of compile .
Lastly, the RPCRequestFactory class has been deprecated and constructors
with mandatory parameters have been added for each RPC class.

We will make changes to:

* AndroidManifest.xml
* build.gradle

any usage of RPCRequestFactory

AndroidManifest.xml Updates

Assuming the manifest was up to date with version 4.5, we can now remove
some of the intent-filters (ACL_DISCONNECTED , STATE_ CHANGED , AUDIO B
ECOMING_NOISY) for your app's BroadcastReceiver. The BroadcastReceiver
section of the manifest should look as follows:

<manifest xmlins:android=

package=

<application>

<receiver
android:name=
android:exported=
android:enabled=

<intent-filter>
<action android:name=

<action android:name=
</intent-filter>

</receiver>

</application>

</manifest>

Gradle Update

The previous way of including the libary via compile should now use impleme
ntation . The dependencies section of your app's build.gradle file should now
appear as:

dependencies {
implementation ‘com.smartdevicelink:sdl_android:4.+'

}

Deprecation of
RPCRequestFactory

The RPCRequestFactory has been deprecated in 4.6. To build RPC requests,
developers should use the constructors in the desired RPC request class. For
example, instead of using RPCRequestFactory.buildAddCommand(...) to build
an AddCommand request, try the following:

AddCommand addCommand = new AddCommand(100);

addCommand.setMenuParams(new MenuParams());
proxy.sendRPCRequest(addCommand);

Updating from 4.6 to 4.7

Overview

This guide is to help developers get setup with the SDL Android library version
4.7. It is assumed that the developer is already updated to 4.6 of the library.
This version includes the addition of the SdIManagers and a re-working of the
transports which greatly enhances the use of the SdlRouterService , along with
adding the functionality for secondary transports on supporting versions of SDL
Core.

In this guide we will be focusing on the transitioning from the proxy, which
implemented SdIProxyALM into using the SdlIManager system, which

includes specialized sub-managers that you can interact with through the SdIM
anager . We will follow the naming convention of the guides, highlighting the
previous way of implementing SDL and showing the new ways of implementing
it.

NOTE

Moving from the SdIProxyALM implementation to the

SdIManager API will require you to manually subscribe to the
notifications and responses that you wish to receive instead of all
of the notifications and responses being passed through the IProxy
ListenerALM interface.

Integration Basics

The SdlService class will contain a great deal of changes as it acts as the main
bridge to SDL functionality. There are going to be two main differences with
how this class was set up in 4.6 versus 4.7.

Removal of IProxyListenerALM

Previously, your SdlService had to implement the IProxyListenerALM
interface. This often added many unnecessary lines of code to the class due to
the need to override all of its functions. The need to do this has been removed
in 4.7 with the inclusion of the SdIManager APIs. Developers now only have to
add the listeners they need.

4.6:

SdIService Service IProxyListenerALM

/l The proxy handles communication between the application and
SDL

SdIProxyALM proxy = null;

/...

@Override
void
/...
}

4.7: THE REQUIREMENT TO IMPLEMENT IPROXYLISTENERALM
IS REMOVED:

SdIService Service {

// The SdIManager exposes the APIs needed to communicate
between the application and SDL

SdIManager sdIManager = null;

/...
}

After removing IProxyListenerALM from the SdIService , all of its previously
overridden functions will need to be removed. If your app used any of these
callback methods, it will help to document which ones they were, as you will
need to add in the listeners that you need using the SdIManager 's addOnRPC
NotificationListener .

NOTE

When you start using the managers, you have to make sure that
your app subscribes to notifications before sending the
corresponding RPC requests and subscriptions or else some
notifications may be missed.

Creation of SdiIManager

As we no longer want to directly instantiate SdIProxyALM , we need to
instantiate the SdIManager instead. This is best done using the SdIManager.B
uilder class using your application's details and configurations. In order to
receive life cycle events from the SdlManager , an SdlIManagerListener must
be provided. The new code should resemble the following:

SdIService Service {

//The manager handles communication between the application and
SDL

SdIManager sdIManager = null;

/...

@Override
int (Intent intent, int flags, int startld) {
if (sdIManager == null) {
MultiplexTransportConfig transport = new

MultiplexTransportConfig(this, APP_ID, MultiplexTransportConfig.
FLAG_MULTI_SECURITY_OFF);

// The app type to be used

Vector<AppHMIType> appType = new Vector<>();
appType.add(AppHMIType.MEDIA);

/l The manager listener helps you know when certain events
that pertain to the SDL Manager happen

SdIManagerListener listener = new SdIManagerListener() {

@Override
void 0O A1

// RPC listeners and other functionality can be called once
this callback is triggered.

}

@Override
void 01

SdlService.this.stopSelf();
}

@Override
void (String info, Exception e) {
}

+

// Create App Icon, this is set in the SdIManager builder

SdIArtwork applcon = new SdIArtwork(ICON_FILENAME, FileType.
GRAPHIC_PNG, R.mipmap.ic_launcher, true);

// The manager builder sets options for your session

SdIManager.Builder builder = new SdIManager.Builder(this,
APP_ID, APP_NAME, listener);

builder.setAppTypes(appType);
builder.setTransportType(transport);

builder.setApplcon(applcon);
sdIManager = builder.build();
sdIManager.start();

}

Once you receive the onStart callback from SdlIManager , you can add in your
listeners and start adding Ul elements. There will be more about adding the Ul
elements later. The last example in this section will be about adding specific
listeners. Because we removed the IProxyListenerALM implementation, you
will have to set listeners for the needs of your app.

Listening for RPC notifications and events

We can listen for specific events using SdIManager 's addOnRPCNotificationLis
tener . These listeners can be added either in the onStart() callback of the Sd
IManagerListener or after it has been triggered. The following example shows
how to listen for HMI Status notifications. Additional listeners can be added for
specific RPCs by using their corresponding FunctionID in place of the ON_HMI
_STATUS in the following example and casting the RPCNotification object to
the correct type.

EXAMPLE OF A LISTENER FOR HMI STATUS:

sdIManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS,
new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnHMIStatus status = (OnHMIStatus) notification;
if (status.getHmiLevel() == HMILevel.HMI FULL && ((

OnHMIStatus) notification).getFirstRun()) {
// first time in HMI Full

Sending RPCs

There are new method names and locations that mimic previous functionality
for sending RPCs. These methods are located in the SdIManager and have the
new names of sendRPC , sendRPCs , and sendSequentialRPCs .

4.6:

// single RPC
proxy.sendRPCRequest(request);

// muliple RPCs, non-sequential

proxy.sendRequests(rpcs, new OnMultipleRequestListener() {
/...

});

// multiple RPCs, sequential

proxy.sendSequentialRequests(rpcs, new OnMultipleRequestListener() {
/...

});

In 4.7, we use the SdlIManager to send the requests.

4.7:

// single RPC
sdIManager.sendRPC(request);

// muliple RPCs, non-sequential

sdIManager.sendRPCs(rpcs, new OnMultipleRequestListener() {
/...

35

// multiple RPCs, sequential
sdIManager.sendSequentialRPCs(rpcs, new OnMultipleRequestListener()
{
/...
});

Using AOA Protocol

If your app uses USB to connect to SDL, this update provides a very useful
enhancement. AOA connections now work with the SdIlRouterService . This
means that multiple USB apps can be connected to the head unit at once.

SDLBROADCASTRECEIVER

Since the AOA transport will now use the multiplexing feature, it is important
that your app correctly adds funcitonality for the SdIRouterService . This starts
in the SdIBroadcastReciever .

4.6:

SdIReceiver com.smartdevicelink.
SdIBroadcastReceiver {

@Override
void (Context context, Intent intent) {
//Use the provided intent but set the class to your SdlIService
intent.setClass(context, SdlService.class);
context.startService(intent);

}

@Override
Class<? SdIRouterService>

0 {
}

return null;

4.7:

SdIReceiver com.smartdevicelink.
SdIBroadcastReceiver {

@Override
void (Context context, Intent intent) {
//Use the provided intent but set the class to your SdlIService
intent.setClass(context, SdlService.class);
context.startService(intent);

}

@Override
Class<? SdIRouterService>
() {

// define your local router service. For example:
return com.sdl.hellosdlandroid.SdIRouterService.class;

}

SDLROUTERSERVICE

The SdIRouterService will listen for a connection with an SDL enabled module.
When a connection happens, it will alert all SDL enabled apps that a connection
has been established and they should start their SDL services.

4.6:

(No implementation required).

4.7:

We must implement a local copy of the SdIRouterService into our project. The
class doesn't need any modification, it's just important that we include it. We
will extend the com.smartdevicelink.transport.SdIRouterService in our class
named SdlRouterService :

NOTE

Do not include an import for com.smartdevicelink.transport.SdIRou
terService . Otherwise, we will get an error for 'SdIRouterService'
is already defined in this compilation unit .

SdIRouterService com.smartdevicelink.transport.
SdIRouterService {

//Nothing to do here
}

MUST

The local extension of the com.smartdevicelink.transport.SdIRouter
Service must be named SdlRouterService .

MUST

Make sure this local class (SdIRouterService.java) is in the same
package of SdIReceiver.java

SDLSERVICE
4.6:

transport = new USBTransportConfig(getBaseContext(), (UsbAccessory)
intent.getParcelableExtra(UsbManager.EXTRA ACCESSORY), false, false
)

MultiplexTransportConfig transport = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI_SECURITY_MED);

ADDITIONAL CONFIGURATIONS:

If your app requires high bandwidth transport, you can now specify that:

transport.setRequiresHighBandwidth(true);

NOTE

If your app only works when a high bandwidth transport is
available, you should set setRequiresHighBandwidth to true . You
cannot be certain that all core implementations support multiple
transports. You could also set TransportType.USB as your only
supported primary transport

Since the SdIRouterService now works with multiple transports, you can set

your own configuration, for example:

List<TransportType> multiplexPrimaryTransports = Arrays.
asList(TransportType.USB, TransportType.BLUETOOTH);

List<TransportType> multiplexSecondaryTransports = Arrays
.asList(TransportType.TCP, TransportType.USB, TransportType.
BLUETOOTH);

/...

transport.setPrimaryTransports(multiplexPrimaryTransports);
transport.setSecondaryTransports(multiplexSecondaryTransports);

NOTE

Multiple transports only work on supported versions of SDL Core.

ANDROIDMANIFEST
4.6

<uses-permission android:name=
<uses-permission android:name=

<uses-feature android:name=

<service
android:name=
android:enabled= />

<receiver
android:name=
android:enabled=
android:exported=
tools:ignore=
<intent-filter>
<action android:name=
/> <!--For AOA -->
<action android:name= />
</intent-filter>
</receiver>

<activity android:name=

android:launchMode=
<intent-filter>
<action android:name=

</intent-filter>

<meta-data
android:name=

android:resource=
</activity>

4.7

<uses-permission android:name=

<uses-permission android:name=
>

<uses-permission android:name=

<uses-permission android:name=

<uses-feature android:name=

<service
android:name=
android:enabled= />

<service
android:name=
android:exported=
android:process=
tools:ignore=
<intent-filter>
<action android:name=
</intent-filter>
<meta-data android:name=
android:value=
/>
</service>
<receiver
android:name=
android:enabled=
android:exported=
tools:ignore=
<intent-filter>
<action android:name=
/> <!--For AOA -->
<action android:name=
/>
<action android:name= />
</intent-filter>
</receiver>

<activity android:name=

android:launchMode=
<intent-filter>
<action android:name=

</intent-filter>

<meta-data
android:name=

android:resource=

</activity>

Lock Screen

There has been a major overhaul for lock screens in 4.7. Complicated lock
screen setups are no longer required due to the addition of the LockScreenMan
ager . Instead of going over the previous lock screen tutorial and then writing
another one | will give brief instructions on how to either continue using your
lock screen implementation, or upgrading to the new managed system. This
review is brief, it is recommended that you look at the full lock screen guide

USING YOUR CURRENT IMPLEMENTATION

If you would like to keep your current lock screen implementation, but would
like to use the SdIManager for its other functionalities, you must disable the L
ockScreenManager . (This is not recommended as the new LockScreenManage
r takes care of a lot of boiler plate code and reduces possible errors)

DISABLING THE LOCK SCREEN MANAGER:

To disable, create a LockScreenConfig object and set it in the SdIManager.Buil
der in your SdlService.java class.

lockScreenConfig.setEnabled(false);
/...

builder.setLockScreenConfig(lockScreenConfig);

https://smartdevicelink.com/en/guides/android/adding-the-lock-screen/

USING THE NEW LOCKSCREENMANAGER

If you want SDL to handle the lock screen logic for you, it is simple. You will
remove the classes that currently handle your lock screen, and set the
variables you want for your new lock screen as defined in the lock screen guide.
This simple addition is handled during the instantiation of the the SdIManager
within SdlService.java .

LOCK SCREEN ACTIVITY

You must declare the SDLLockScreenActivity in your manifest. To do so, simply
add the following to your app's AndroidManifest.xml if you have not already
done so:

<activity android:name=

android:launchMode=

MUST

This manifest entry must be added for the lock screen feature to
work.

CONFIGURATIONS

The default configurations should work for most app developers and is simple
to get up and and running. However, it is easy to perform deeper configurations
to the lock screen for your app. Below are the options that are available to
customize your lock screen which builds on top of the logic already
implemented in the LockScreenManager .

https://smartdevicelink.com/en/guides/android/adding-the-lock-screen/

There is a setter in the SdIManager.Builder that allows you to set a LockScree
nConfig by calling builder.setLockScreenConfig(lockScreenConfig) . The
following options are available to be configured with the LockScreenConfig .

In order to to use these features, create a LockScreenConfig object and set it

using SdlIManager.Builder before you build SdIManager .
Custom Background Color
In your LockScreenConfig object, you can set the background color to a color

resource that you have defined in your Colors.xml file:

lockScreenConfig.setBackgroundColor(resourceColor); // For example,

R.color.black

Custom App lcon
In your LockScreenConfig object, you can set the resource location of the

drawable icon you would like displayed:

lockScreenConfig.setApplcon(applconint); // For example,

R.drawable.lockscreen_icon

Showing The Device Logo
This sets whether or not to show the connected device's logo on the default

lock screen. The logo will come from the connected hardware if set by the
manufacturer. When using a Custom View, the custom layout will have to
handle the logic to display the device logo or not. The default setting is false,
but some OEM partners may require it.

In your LockScreenConfig object, you can set the boolean of whether or not
you want the device logo shown, if available:

lockScreenConfig.showDevicelLogo(true);

Setting A Custom Lock Screen View
If you'd rather provide your own layout, it is easy to set. In your LockScreenCo

nfig object, you can set the reference to the custom layout to be used for the
lock screen. If this is set, the other customizations described above will be
ignored:

lockScreenConfig.setCustomView(customViewInt);

Displaying Information

Setting text:

Previously, to set text fields, the developer had to create a Show RPC, set the
text fields, and then send the PRC. It was also the developer's responsibility to
make sure that they set only the lines of text that are supported by the
template. In 4.7, the ScreenManager can be used and handles such logic
internally. If a specific text field is not supported, it will be automatically
hyphenated with other texts to make sure that everything is displayed
correctly.

4.6:

Show show = new Show();
show.setMainField1(
show.setMainField2(
show.setMainField3(
show.setMainField4(
show.setOnRPCResponseListener(new OnRPCResponselListener() {
@Override
void (int correlationld, RPCResponse response) {
if (((ShowResponse) response).getSuccess()) {
Log.i(,);
} else {
Log.i(
}
}

});
proxy.sendRPCRequest(show);

sdIManager.getScreenManager().beginTransaction();
sdIManager.getScreenManager().setTextField1(
i
sdIManager.getScreenManager().setTextField2(
);
sdIManager.getScreenManager().setTextField3(
)
sdIManager.getScreenManager().setTextField4(
);
sdIManager.getScreenManager().commit(new CompletionListener() {
@Override
void (boolean success) {
Log.i(TAG, + success);

Setting images:

Previously, to set an image, the developer had to upload the image using the P
utFile RPC. When it is uploaded, a Show RPC was then created and sent to
display the image. In 4.7, the ScreenManager handles uploading the image
and sending the RPCs internally.

4.6:

Image image = new Image();
image.setimageType(lmageType.DYNAMIC);

image.setValue(); // a previously uploaded filename
using PutFile RPC

Show show = new Show();
show.setGraphic(image);
show.setCorrelationID(CorrelationldGenerator.generateld());
show.setOnRPCResponselListener(new OnRPCResponselListener() {
@Override
void (int correlationld, RPCResponse response) {
if (((ShowResponse) response).getSuccess()) {
Log.i(,);
} else {
Log.i(
}
}

});
proxy.sendRPCRequest(show);

SdIArtwork sdlArtwork = new SdlArtwork(, FileType.
GRAPHIC JPEG, R.drawable.applmage, true);
sdIManager.getScreenManager().setPrimaryGraphic(sdlArtwork);

Using soft buttons:

Previously, to add a soft button with an image the developer had to upload the
image by sending a PutFile RPC, and after the image is uploaded, creating a
SoftButton object, then creating a Show RPC. They would then need to set
the button in the RPC, and then send the request. In 4.7, the ScreenManager
takes care of sending the RPCs. The developer just has to create softButtonObj
ect , add a state to it, then use the ScreenManager to set soft button objects.

4.6:

Image cancellmage = new Image();
cancellmage.setimageType(ImageType.DYNAMIC);
cancellmage.setValue(); // a previously uploaded filename
using PutFile RPC

List<SoftButton> softButtons = new ArrayList<>();

SoftButton cancelButton = new SoftButton();

cancelButton.setType(SoftButtonType.SBT _IMAGE);
cancelButton.setlmage(cancellmage);
cancelButton.setSoftButtonID(1);

softButtons.add(cancelButton);

Show show = new Show();
show.setSoftButtons(softButtons);
proxy.sendRPCRequest(show);

4.7:

SoftButtonState softButtonState = new SoftButtonState(,

, hew SdIlArtwork(, FileType.GRAPHIC JPEG, R.
drawable.cancel, true));
SoftButtonObject softButtonObject = new SoftButtonObject(,

Collections.singletonList(softButtonState), softButtonState.getName(),
null);
sdIManager.getScreenManager().setSoftButtonObjects(Collections.
singletonList(softButtonObject));

Receiving button events on previous versions of SDL had to be done using onO
nButtonEvent and onOnButtonPress callbacks from the IProxyListenerALM
interface. The id had to be checked to know the exact button that received the
event. In 4.7, it is much cleaner: a listener can be added to the SoftButtonObje
ct , so the developer can easily tell when and which soft button received the
event.

4.6:

@Override
void (OnButtonEvent notification) {
Log.i(TAG,);

if (notification.getButtonName() == CUSTOM_BUTTON){
int ID = notification.getCustomButtonName();
Log.i(TAG, + ID);
}
}

@Override
void (OnButtonPress notification) {
Log.i(TAG,);

if (notification.getButtonName() == CUSTOM BUTTON){
int ID = notification.getCustomButtonName();
Log.i(TAG, + ID);
}
}

4.7:

softButtonObject.setOnEventListener(new SoftButtonObject.
OnEventListener() {
@Override
void (SoftButtonObject softButtonObject,
OnButtonPress onButtonPress) {
Log.i(TAG,);

}

@Override
void (SoftButtonObject softButtonObject,
OnButtonEvent onButtonEvent) {
Log.i(TAG,);

});

Receiving Subscribe Buttons Events

Previously, your SdlService had to implement IProxyListenerALM interface
which means your SdlService class had to override all of the IProxyListenerAL
M callback methods including OnButtonEvent and OnButtonPress .

@Override
void (OnHMIStatus notification) {
if(notification.getHmiLevel() == HMILevel.HMI_FULL && notification.
getFirstRun()) {
SubscribeButton subscribeButtonRequest = new SubscribeButton

(0;
subscribeButtonRequest.setButtonName(ButtonName.SEEKRIGHT
)
proxy.sendRPCRequest(subscribeButtonRequest);
}
}

@@Override
void (OnButtonEvent notification) {
switch(notification.getButtonName()){
case OK:
break;
case SEEKLEFT:
break;
case SEEKRIGHT:
break;
case TUNEUP:
break;
case TUNEDOWN:
break;

}

@Override
void (OnButtonPress notification) {
switch(notification.getButtonName()){
case OK:
break;
case SEEKLEFT:
break;
case SEEKRIGHT:
break;
case TUNEUP:
break;
case TUNEDOWN:
break;

In 4.7 and the new manager APIs, in order to receive the OnButtonEvent and
OnButtonPress notifications, your app must add a OnRPCNotificationListener
using the SdIManager 's method addOnRPCNotificationListener . This will
subscribe the app to any notifications of the provided type, in this case ON_BU
TTON_EVENT and ON_BUTTON_PRESS . The listener should be added before
sending the corresponding RPC request/subscription or else some notifications
may be missed.

sdIManager.addOnRPCNotificationListener(FunctionlID.
ON_BUTTON_EVENT, new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnButtonPress onButtonPressNotification = (OnButtonPress)
notification;
switch (onButtonPressNotification.getButtonName()) {
case OK:
break;
case SEEKLEFT:
break;
case SEEKRIGHT:
break;
case TUNEUP:
break;
case TUNEDOWN:
break;

sdIManager.addOnRPCNotificationListener(FunctionlID.
ON_BUTTON_PRESS, new OnRPCNotificationListener() {

@Override
void (RPCNotification notification) {
OnButtonPress onButtonPressNotification = (OnButtonPress)
notification;
switch (onButtonPressNotification.getButtonName()) {
case OK:
break;
case SEEKLEFT:
break;
case SEEKRIGHT:
break;
case TUNEUP:
break;
case TUNEDOWN:
break;

SubscribeButton subscribeButtonRequest = new SubscribeButton();
subscribeButtonRequest.setButtonName(ButtonName.SEEKRIGHT);
sdIManager.sendRPC(subscribeButtonRequest);

Changing The Template:

Previously, developers had to pass a string that represents the name of the
template to SetDisplayLayout . In 4.7, a new PredefinedLayout enum is
introduced to hold all possible values for the templates.

4.6:

SetDisplayLayout setDisplayLayoutRequest = new SetDisplayLayout();
setDisplayLayoutRequest.setDisplayLayout();
try{

proxy.sendRPCRequest(setDisplayLayoutRequest);
}catch (SdIException e){

e.printStackTrace();

}

SetDisplayLayout setDisplayLayoutRequest = new SetDisplayLayout();
setDisplayLayoutRequest.setDisplayLayout(PredefinedLayout.
GRAPHIC_WITH_TEXT.toString());

sdIManager.sendRPC(setDisplayLayoutRequest);

Uploading Files and Graphics

SDL Android 4.7 introduces the FileManager , which is accessible through the
SdIManager . Previous methods of uploading files and performing their
functions still work, but now there are a set of convenience methods that do a
lot of the boilerplate work for you.

Check out the Uploading Files and Graphics guide for code examples and
detailed explanations.

SDL File and SDL Artwork

New to version 4.7 of the SDL Android library are SdlFile and SdlArtwork
objects. These have been created in parallel with the FileManager to help
streamline SDL workflow. SdlArtwork is an extension of SdlIFile that pertains
only to graphic specific file types, and its use case is similar. For the rest of this
document, SdlFile will be described, but everything also applies to
SdlArtwork .

CREATION

One of the hardest parts about getting a file into SDL was the boilerplate code
needed to convert the file into a byte array that was used by the head unit.
Now, you can instantiate a SdlIFile with:

A RESOURCE ID

new SdIFile(@NonNull String fileName, @NonNull FileType fileType, int id

, boolean persistentFile)

A URI

new SdIFile(@NonNull String fileName, @NonNull FileType fileType, Uri

uri, boolean persistentFile)

https://smartdevicelink.com/en/guides/android/uploading-files-and-graphics/

And last but not least

A BYTE ARRAY

new SdIFile(@NonNull String fileName, @NonNull FileType fileType, byte

[] data, boolean persistentFile)

without the need to implement the methods needed to do the conversion of
data yourself.

Uploading a File

Uploading a file with the FileManager is a simple process. With an instantiated
SdIManager ,
you can simply call:

sdIManager.getFileManager().uploadFile(sdIFile, new
CompletionListener() {
@Override

void (boolean success) {

Getting Vehicle Data and
Subscribing to Notifications

Previously, your SdlService had to implement IProxyListenerALM interface
which means your SdlService class had to override all of the IProxyListenerAL
M callback methods including onOnVehicleData .

4.6:

@Override
void (OnHMIStatus notification) {
if(notification.getHmiLevel() == HMILevel.HMI_FULL && notification.
getFirstRun()) {
SubscribeVehicleData subscribeRequest = new
SubscribeVehicleData();
subscribeRequest.setPrndl(true);
subscribeRequest.setOnRPCResponseListener(new
OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response
) {
if(response.getSuccess()){
Log.i(;

}else{
Log.i(

);
}

}
};
try {

proxy.sendRPCRequest(subscribeRequest);
} catch (SdIException e) {

e.printStackTrace();

@Override
void (OnVehicleData notification) {
PRNDL prndl = notification.getPrndI();
Log.i(, prndl.toString());

}

In 4.7 and the new manager APIs, in order to receive the OnVehicleData
notifications, your app must add a OnRPCNotificationListener using the SdIMa
nager 's method addOnRPCNotificationListener . This will subscribe the app to
any notifications of the provided type, in this case ON_VEHICLE DATA . The
listener should be added before sending the corresponding RPC request/
subscription or else some notifications may be missed.

4.7:

sdIManager.addOnRPCNotificationListener(FunctionlID.
ON_VEHICLE_DATA, new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {

OnVehicleData onVehicleDataNotification = (OnVehicleData)
notification;

if (onVehicleDataNotification.getPrndI() '= null) {

Log.i(,

onVehicleDataNotification.getPrndI());

SubscribeVehicleData subscribeRequest = new SubscribeVehicleData();
subscribeRequest.setPrndl(true);
subscribeRequest.setOnRPCResponseListener(new
OnRPCResponseListener() {
@Override
void (int correlationld, RPCResponse response) {
if(response.getSuccess()){
Log.i(,);
}else{
Log.i(
I
}
}

});
sdIManager.sendRPC(subscribeRequest);

Getting In-Car Audio

Subscribing to AudioPassThru Notifications

Previously, your SdlService had to implement IProxyListenerALM interface
which means your SdlService class had to override all of the IProxyListenerAL
M callback methods including onOnAudioPassThru .

4.6:

@Override
void (OnHMIStatus notification) {
if(notification.getHmiLevel() == HMILevel.HMI_FULL && notification.
getFirstRun()) {
PerformAudioPassThru performAPT = new PerformAudioPassThru

OF

performAPT.setAudioPassThruDisplayText1(
);
performAPT.setAudioPassThruDisplayText2(
performAPT.setlnitialPrompt(TTSChunkFactory.
createSimpleTTSChunks(
);
performAPT.setSamplingRate(SamplingRate. 22KHZ);

performAPT.setMaxDuration(7000);
performAPT.setBitsPerSample(BitsPerSample. 16 BIT);
performAPT.setAudioType(AudioType.PCM);
performAPT.setMuteAudio(false);
proxy.sendRPCRequest(performAPT);
}
}

@Override
void (OnAudioPassThru notification) {
byte[] dataRcvd = notification.getAPTData();
processAPTData(dataRcvd); // Do something with audio data
}

In 4.7 and the new manager APIs, in order to receive the OnAudioPassThru
notifications, your app must add a OnRPCNotificationListener using the SdIMa
nager 's method addOnRPCNotificationListener . This will subscribe the app to
any notifications of the provided type, in this case ON_AUDIO_PASS THRU .
The listener should be added before sending the corresponding RPC request/
subscription or else some notifications may be missed.

4.7:

sdIManager.addOnRPCNotificationListener(FunctionlID.
ON_AUDIO_PASS THRU, new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {

OnAudioPassThru onAudioPassThru = (OnAudioPassThru)
notification;

byte[] dataRcvd = onAudioPassThru.getAPTData();

processAPTData(dataRcvd); // Do something with audio data

});

PerformAudioPassThru performAPT = new PerformAudioPassThru();
performAPT.setAudioPassThruDisplayText1(

);
performAPT.setAudioPassThruDisplayText2();
performAPT.setlInitialPrompt(TTSChunkFactory.createSimpleTTSChunks(

));

performAPT.setSamplingRate(SamplingRate. 22KHZ);
performAPT.setMaxDuration(7000);
performAPT.setBitsPerSample(BitsPerSample. 16_BIT);
performAPT.setAudioType(AudioType.PCM);
performAPT.setMuteAudio(false);
sdIManager.sendRPC(performAPT);

Mobile Navigation

Video Streaming:

Previously, developers had to make sure that the app was in HMI_FULL before
starting the video stream, In 4.7, after the SdIManager has called its onStart
method, the developer can start video streaming in VideoStreamingManager.st
art() 's CompletionListener . The VideoStreamingManager will take care of
starting the video when the app becomes ready.

4.6:

if(notification.getHmiLevel().equals(HMILevel.HMI_FULL)){
if (notification.getFirstRun()) {
proxy.startRemoteDisplayStream(getApplicationContext(),
MyDisplay.class, null, false);
}
}

sdIManager.getVideoStreamManager().start(new CompletionListener()
{
@Override
void (boolean success) {
if (success) {

sdIManager.getVideoStreamManager().
startRemoteDisplayStream(getApplicationContext(), MyDisplay.class,
null, false);

Audio Streaming

With the addition of the AudioStreamingManager , which is accessed through
SdIManager , you can now use mp3 files in addition to raw . The AudioStrea
mingManager also handles AudioStreamingCapabilities for you, so your
stream will use the correct capabilities for the connected head unit. We suggest
that for any audio streaming that this is now used. Below is the difference in
streaming from 4.6 to 4.7

void 04

InputStream is = getResources().openRawResource(R.raw.
audio_file);

AudioStreamingParams audioParams = new
AudioStreamingParams(44100, 1);

listener = proxy.startAudioStream(false, AudioStreamingCodec.
LPCM, audioParams);

if (listener = null){

try {
listener.sendAudio(readToByteBuffer(is), -1);

} catch (IOException e) {
e.printStackTrace();
}
}
}

void 0«
proxy.endAudioStream();

}

ByteBuffer (InputStream inStream)
IOException {
byte[] buffer = new byte[8000];
ByteArrayOutputStream outStream = new ByteArrayOutputStream
(8000);
int read;
while (true) {
read = inStream.read(buffer);
if (read == -1)
break;
outStream.write(buffer, 0, read);
}
ByteBuffer byteData = ByteBuffer.wrap(outStream.toByteArray());
return byteData;

}

if (sdIManager.getAudioStreamManager() != null) {
Log.i(TAG,);
sdIManager.getAudioStreamManager().start(new CompletionListener
0 {
@Override
void (boolean success) {
if (success) {
sdIManager.getAudioStreamManager().startAudioStream(
false, new CompletionListener() {
@Override
void (boolean success) {
if (success) {

Resources resources = getApplicationContext().
getResources();

int resourceld = R.raw.audio _file;

Uri uri = new Uri.Builder()

.scheme(ContentResolver.
SCHEME_ANDROID_RESOURCE)

.authority(resources.getResourcePackageName(
resourceld))

.appendPath(resources.getResourceTypeName(
resourceld))

.appendPath(resources.getResourceEntryName(

resourceld))
build();
sdIManager.getAudioStreamManager().
pushAudioSource(uri, new CompletionListener() {
@Override
void (boolean success) {
if (success) {
Log.i(TAG,
} else {
Log.i(TAG,
}
}
};
} else {
Log.d(TAG,
}
}
};

} else {
Log.i(TAG,

Checking Permissions:

Previously, it was not easy to check if specific permission had changed.
Developers had to keep checking onOnHMIStatus and onOnPermissionsChan
ge callbacks and manually check the responses to see if the permission is
allowed. In 4.7, the PermissionManager implements all of this logic internally.
It keeps a cached copy of the callback responses whenever an update is
received. So developer can call isRPCAllowed() any time to know if a
permission is allowed. It also makes it very simple to add a listener.

@Override
void (OnHMIStatus notification) {

hmilLevel = notification.getHmilLevel();

if (checkShowPermission(FunctionID.SHOW.toString(), hmiLevel,
permissionltems)){

// Show RPC is allowed

}

}

@Override
void (OnPermissionsChange notification)

{

permissionltems = notification.getPermissionltem();

if (checkShowPermission(FunctionID.SHOW.toString(), hmiLevel,
permissionltems)){

// Show RPC is allowed

}

}

boolean (String rpcName, HMILevel
hmilLevel, List<Permissionltem> permissionltems){
Permissionltem permissionltem = null;

for (Permissionltem item : permissionltems) {
if (rpocName.equals(item.getRpcName())){
permissionltem = item;
break;

}

}

if (hmiLevel == null || permissionltem == null || permissionltem.
getHMIPermissions() == null || permissionltem.getHMIPermissions().
getAllowed() == null){
return false;
} else if (permissionltem.getHMIPermissions().getUserDisallowed() !=
null){
return permissionltem.getHMIPermissions().getAllowed().contains(
hmilLevel) && !permissionltem.getHMIPermissions().getUserDisallowed
().contains(hmilLevel);
} else {
return permissionltem.getHMIPermissions().getAllowed().contains(
hmilLevel);
}
}

4.7:

To check if a permission is allowed:

boolean allowed = sdIManager.getPermissionManager().isRPCAllowed(

FunctionID.SHOW);

To setup a permission listener:

List<PermissionElement> permissionElements = Collections.
singletonList(new PermissionElement(FunctionID.SHOW, null));
UUID listenerld = sdIManager.getPermissionManager().addListener(
permissionElements, PermissionManager.
PERMISSION_GROUP_TYPE_ANY, new OnPermissionChangeListener() {
@Override
void (@NonNull Map<FunctionID,

PermissionStatus> allowedPermissions, @NonNull int
permissionGroupStatus) {
if (allowedPermissions.get(FunctionID.SHOW).getIsRPCAllowed()) {
/| Show RPC is allowed

For more information about PermissionManager , you can check this page.

Handling a Language Change

Previously, to let your app reconnect after the user changes the head unit
language, your app had to send an intent in the onProxyClosed callback. That
intent should be received by SdIlReceiver to start the SdIService . The SdIRec
eiver part did not change so we will only cover the changes in sending the
intent which was done in previous versions as the following:

https://d83tozu1c8tt6.cloudfront.net/guides/android/permission-manager/

@Override
void (String info, Exception e,
SdIDisconnectedReason reason) {
stopSelf();
if(reason.equals(SdIDisconnectedReason.LANGUAGE_CHANGE)){

Intent intent = new Intent(TransportConstants.

START _ROUTER_SERVICE_ACTION);
intent.putExtra(SdIReceiver. RECONNECT LANG_CHANGE, true);
sendBroadcast(intent);

¥
}

In 4.7, the app has to send the intent in a ON_LANGUAGE_CHANGE
notification listener as the following:

sdIManager.addOnRPCNotificationListener(FunctionlID.
ON_LANGUAGE_CHANGE, new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
SdlService.this.stopSelf();

Intent intent = new Intent(TransportConstants.

START ROUTER_SERVICE_ACTION);
intent.putExtra(SdIReceiver.RECONNECT LANG_CHANGE, true);
AndroidTools.sendExplicitBroadcast(context, intent, null);

Fore more information about handling language changes please visit this page

https://d83tozu1c8tt6.cloudfront.net/guides/android/handling-language-change/

Remote Control

Subscribing to OninteriorVehicleData
Notifications

Previously, your SdlService had to implement IProxyListenerALM interface
which means your SdlService class had to override all of the IProxyListenerAL
M callback methods including onOnlinteriorVehicleData .

4.6:

@Override
void (OnHMIStatus notification) {
if(notification.getHmiLevel() == HMILevel.HMI FULL && notification.

getFirstRun()) {

GetlInteriorVehicleData interiorVehicleData = new
GetlnteriorVehicleData();

interiorVehicleData.setModuleType(ModuleType.RADIO);

interiorVehicleData.setSubscribe(true);

interiorVehicleData.setOnRPCResponselListener(new
OnRPCResponselListener() {

@Override
void (int correlationld, RPCResponse

response) {

GetlInteriorVehicleData getResponse = (
GetlInteriorVehicleData) response;

//This can now be used to retrieve data

}
B
proxy.sendRPCRequest(interiorVehicleData);
}
}

@Override
void (OnlInteriorVehicleData response) {
//Perform action based on notification

}

In 4.7 and the new manager APIs, in order to receive the

OninteriorVehicleData notifications, your app must add a OnRPCNotificationLi
stener using the SdIManager 's method addOnRPCNotificationListener . This
will subscribe the app to any notifications of the provided type, in this case ON
_INTERIOR_VEHICLE_DATA . The listener should be added before sending the
corresponding RPC request/subscription or else some notifications may be
missed.

4.7:

sdIManager.addOnRPCNotificationListener(FunctionlID.
ON_INTERIOR_VEHICLE_DATA, new OnRPCNotificationListener() {
@Override
void (RPCNotification notification) {
OnlinteriorVehicleData oninteriorVehicleData = (
OnlinteriorVehicleData) notification;
//Perform action based on notification

});

GetlnteriorVehicleData interiorVehicleData = new
GetlnteriorVehicleData();
interiorVehicleData.setModuleType(ModuleType.RADIO);
interiorVehicleData.setSubscribe(true);
interiorVehicleData.setOnRPCResponseListener(new
OnRPCResponselListener() {
@Override
void (int correlationld, RPCResponse response) {
GetlnteriorVehicleData getResponse = (GetinteriorVehicleData)
response;
//This can now be used to retrieve data
}

});
sdIManager.sendRPC(interiorVehicleData);

What is SDL?

SmartDevicelLink (SDL) connects in-vehicle infotainment systems to
smartphone apps. SDL allows automakers to provide highly integrated
connected experiences and allows users to operate smartphone apps through
the in-vehicle infotainment screen and, if equipped, voice recognition system.

Why do you see SDL
notifications?

If you see a notification similar to the one in the screenshot below, that means
you are using an app that has an SDL integration that allows it to push content
to cars that support SDL. However, if your car doesn’t support SDL, you can
simply hide the notification.

cricket 74% B 2:50
¢ » © X ¢© ¢

Tue,JunS5 © & v

SDL: io.livio.SdlApp

How do you hide the
notifications?

If you would like to hide the notification, you can simply long click on the
notification and disable it as shown in the following screenshot.

cricket 74% B 2:51
¢ » © X ¢© =&

Tue,Jun5 © e v

SmartDeviceLink

MORE SETTINGS DONE

What is the Android Router
Service?

The Android OS has limitations around the availability of certain transports
(Bluetooth RFCOMM channels, single app AOA/USB permissions). Therefore,
SmartDevicelLink introduced a service that operates as a router, using a single
transport pipe and extending it to many different bound apps. The router
service is part of the required integration to become SDL enabled and can be
hosted by any of the SDL enabled apps on a phone. Some OEMs might choose
to have their own companion app that always hosts a router service for their
specific hardware.

What is a Trusted Router
Service?

Since information is being shared through the Android router service it is
important that the app hosting the router service can be trusted. This is done
through a certification process and a back-end server that maintains a
database of apps that can act as a Trusted Router Service. The SDLC will verify
the integration of SDL apps to ensure there is no malicious activity. If the app is

certified, it will be added to the Trusted Router Service database and be able to
act as a Trusted Router Service.

How do | add my app to the SDL
Trusted Router Service
database?

For an Android application to be added to the Trusted Router Service database,
the application will need to be registered on the SDL Developer Portal and
certified by the SDLC. For more information on registration, please see this
guide. Any Android application that is certified by the SDLC will be added to the
Trusted Router Service database; there are no additional steps required as it is
part of the certification process.

How do | know if an app is
hosting a Trusted Router
Service?

Each app will retrieve and cache a list of Trusted Router Services from the back-
end server. Based on that app's security levels, they will perform checks
against the currently running router service, and if trusted it will bind to the
Trusted Router Service. If not, the app will attempt to use its own local
transport.

https://d83tozu1c8tt6.cloudfront.net/media/resources/SDL_Developer_Portal_Registration_Guide.pdf
https://d83tozu1c8tt6.cloudfront.net/media/resources/SDL_Developer_Portal_Registration_Guide.pdf

	Installation
	Introduction
	Gradle Build
	Examples

	Integration Basics
	Getting Started on Android
	NOTE

	Required System Permissions
	NOTE

	SmartDeviceLink Service
	Entering the Foreground
	NOTE

	Exiting the Foreground
	Implementing SDL Manager
	NOTE
	NOTE

	Listening for RPC notifications and events
	EXAMPLE OF A LISTENER FOR HMI STATUS:
	EXAMPLE OF A LISTENER FOR HMI STATUS:

	SmartDeviceLink Router Service
	NOTE
	MUST
	MUST

	Lock Screen Activity
	NOTE
	MUST
	NOTE
	Intent Filter
	MUST

	Metadata
	ROUTER SERVICE VERSION
	CUSTOM ROUTER SERVICE
	NOTE

	SmartDeviceLink Broadcast Receiver
	MUST
	NOTE
	MUST
	MUST
	MUST
	NOTE
	Main Activity

	Using Android Open Accessory Protocol
	Prerequisites
	Android Manifest
	MUST
	NOTE

	SmartDeviceLink Service
	Using only USB / AOA
	Multiple Transports

	Multiple Transports
	SDL Android
	PRIMARY TRANSPORTS
	SUPPORTING SPECIFIC PRIMARY TRANSPORTS
	SUPPORTING SPECIFIC PRIMARY TRANSPORTS
	NOTE
	REQUIRES HIGH BANDWIDTH
	HIGH BANDWIDTH APP WITH LOW BANDWIDTH SUPPORT

	SECONDARY TRANSPORTS

	Sending Multiple RPCs
	Batch Sending RPCs
	Send Requests
	Send Sequential Requests

	Hello SDL Android
	Introduction
	Getting Started
	NOTE
	BUILD FLAVORS

	Transports
	CONFIGURE FOR TCP
	NOTE

	CONFIGURE FOR BLUETOOTH
	CONFIGURE FOR USB (AOA)

	Building the Project
	MUST
	NOTE

	Troubleshooting
	TCP
	BLUETOOTH

	Adding the Lock Screen
	NOTE
	Lock Screen Activity
	MUST

	Configurations
	CUSTOM BACKGROUND COLOR
	CUSTOM APP ICON
	SHOWING THE DEVICE LOGO
	SETTING A CUSTOM LOCK SCREEN VIEW
	DISABLING THE LOCK SCREEN MANAGER:
	NOTE

	Designing a User Interface
	Designing for Different User Interfaces
	Dynamic User Interface Capabilities
	Templates
	Available Templates
	NOTE
	1. MEDIA - WITH AND WITHOUT PROGRESS BAR
	FORD HMI

	2. NON-MEDIA - WITH AND WITHOUT SOFT BUTTONS
	FORD HMI
	FORD HMI

	3. GRAPHIC_WITH_TEXT
	FORD HMI
	FORD HMI

	4. TEXT_WITH_GRAPHIC
	FORD HMI

	5. TILES_ONLY
	FORD HMI
	FORD HMI

	6. GRAPHIC_WITH_TILES
	FORD HMI

	7. TILES_WITH_GRAPHIC
	FORD HMI
	FORD HMI

	8. GRAPHIC_WITH_TEXT_AND_SOFTBUTTONS
	FORD HMI

	9. TEXT_AND_SOFTBUTTONS_WITH_GRAPHIC
	FORD HMI
	FORD HMI

	10. GRAPHIC_WITH_TEXTBUTTONS
	FORD HMI

	11. DOUBLE_GRAPHIC_SOFTBUTTONS
	FORD HMI
	FORD HMI

	12. TEXTBUTTONS_WITH_GRAPHIC
	FORD HMI

	13. TEXTBUTTONS_ONLY
	FORD HMI
	FORD HMI

	14. LARGE_GRAPHIC_WITH_SOFTBUTTONS
	FORD HMI

	15. LARGE_GRAPHIC_ONLY
	FORD HMI
	FORD HMI

	Text, Images, and Buttons
	Text
	NOTE

	Images
	NOTE
	SHOW THE IMAGE ON A HEAD UNIT

	Soft & Subscribe Buttons
	SOFT BUTTONS
	RECEIVING SOFT BUTTONS EVENTS
	RECEIVING SOFT BUTTONS EVENTS

	SUBSCRIBE BUTTONS
	NOTE
	RECEIVING SUBSCRIBE BUTTONS EVENTS
	NOTE
	NOTE

	Menus
	Default Menu
	FORD HMI
	FORD HMI

	Menu Structure
	ADD MENU ITEMS
	ADD A SUBMENU
	DELETE MENU ITEMS
	DELETE SUBMENUS

	Custom Menus
	CREATE A SET OF CUSTOM MENU ITEMS
	FORMAT THE SET OF CUSTOM MENU ITEMS
	INTERACTION MODE
	VR INTERACTION MODE
	FORD HMI

	MANUAL INTERACTION MODE
	FORD HMI
	FORD HMI

	INTERACTION LAYOUT
	NOTE

	ICON ONLY INTERACTION LAYOUT
	FORD HMI

	LIST ONLY INTERACTION LAYOUT
	FORD HMI
	FORD HMI

	LIST WITH SEARCH INTERACTION LAYOUT
	FORD HMI

	TEXT-TO-SPEECH (TTS)
	TIMEOUT
	SEND THE REQUEST
	DELETE THE CUSTOM MENU

	Alerts
	Alert UI
	ALERT WITHOUT SOFT BUTTONS
	FORD HMI
	FORD HMI

	ALERT WITH SOFT BUTTONS
	FORD HMI

	Alert TTS
	Example
	Dismissing the Alert

	Uploading Files and Graphics
	NOTE
	Detecting if Graphics are Supported
	SDL File and SDL Artwork
	CREATION
	A RESOURCE ID
	A URI
	A URI
	A BYTE ARRAY

	Uploading a File
	UPLOADING MULTIPLE FILES
	UPLOADING ARTWORK

	File Naming
	File Persistance
	NOTE

	Overwrite Stored Files
	Check if a File Has Already Been Uploaded
	GETTING REMOTE FILES
	SEE IF A FILE IS UPLOADED

	Check the Amount of File Storage
	Delete Stored Files
	FOR A SINGLE FILE
	MULTIPLE FILES

	Image Specifics
	Image File Type
	Image Sizes
	IMAGE SPECIFICATIONS

	Get Vehicle Data
	NOTE
	Single Time Vehicle Data Retrieval
	Subscribing to Vehicle Data
	Unsubscribing from Vehicle Data

	Knowing the In-Car UI Status
	Monitoring HMI Status
	More Detailed HMI Information
	AUDIO STREAMING STATE
	SYSTEM CONTEXT

	Monitoring Audio Streaming State and System Context

	Setting the Navigation Destination
	NOTE
	NOTE
	Determining the Result of SendLocation
	Detecting if SendLocation is Available
	Using SendLocation

	Calling a Phone Number
	NOTE
	Determining the Result of DialNumber
	Detecting if DialNumber is Available
	How to Use
	NOTE

	Getting In-Car Audio
	NOTE
	Subscribing to AudioPassThru Notifications
	NOTE

	Starting Audio Capture
	NOTE
	FORD HMI
	NOTE

	Ending Audio Capture
	Handling the Response

	Mobile Navigation
	NOTE
	Connecting an app
	NOTE

	Video Streaming
	SDL Remote Display
	NOTE
	NOTE

	Managing the Stream
	Ending the Stream

	Audio Streaming
	NOTE
	STREAMING AUDIO
	STOPPING THE AUDIO STREAM

	Supporting Haptic Input
	NOTE
	Using SDL Presentation
	Sending your own Rects

	Setting Security Level for Multiplexing
	Security Levels
	Applying to the Trusted Router Service Database

	Handling a Language Change
	SDL Broadcast Receiver
	MUST
	NOTE

	SDL Service

	System Capability Manager
	Querying Capabilities
	NOTE
	Capability Lists

	Asynchronous vs Synchronous Queries

	Permission Manager
	Querying Permission
	NOTE

	Querying Permission Parameters
	Querying Multiple Permissions at Once
	Adding Permissions Change Listener
	NOTE

	Remote Control
	NOTE
	WHY IS THIS HELPFUL?
	Integration
	NOTE
	SYSTEM CAPABILITY
	MUST

	GETTING DATA
	SETTING DATA
	BUTTON PRESSES
	SUBSCRIBING TO CHANGES
	NOTE

	Proguard Guidelines
	Required Proguard Rules
	NOTE

	Updating to 4.4 (Upgrading To Multiplexing)
	SmartDeviceLink Service
	SmartDeviceLink Router Service (New)
	NOTE
	MUST
	MUST
	MUST
	MUST

	SmartDeviceLink Broadcast Receiver
	NOTE
	NOTE
	MUST
	MUST
	MUST
	Main Activity

	Updating from 4.4 to 4.5
	AndroidManifest.xml Updates
	Intent Filter
	MUST
	MUST

	Metadata
	ROUTER SERVICE VERSION
	CUSTOM ROUTER SERVICE
	NOTE

	Android Oreo's Push To Foreground Services
	What do I need to do?
	SDLBROADCASTRECEIVER
	PREVIOUS VERSION
	PREVIOUS VERSION
	SAMPLE UPDATE

	SDLSERVICE (OR SIMILAR)
	EXITING THE FOREGROUND

	Notification Suggestions
	THE CORRECT WAY
	How to do it
	How to do it

	THE NOT SO CORRECT WAY
	How to do it
	How to do it
	How it looks
	How it looks

	THE ABSOLUTELY NOT CORRECT WAY
	How to do it
	How it looks
	How it looks

	Updating from 4.5 to 4.6
	AndroidManifest.xml Updates
	Gradle Update
	Deprecation of RPCRequestFactory

	Updating from 4.6 to 4.7
	Overview
	NOTE

	Integration Basics
	Removal of IProxyListenerALM
	4.6:
	4.6:
	4.7: THE REQUIREMENT TO IMPLEMENT IPROXYLISTENERALM IS REMOVED:
	NOTE

	Creation of SdlManager
	Listening for RPC notifications and events
	EXAMPLE OF A LISTENER FOR HMI STATUS:

	Sending RPCs
	4.6:
	4.7:

	Using AOA Protocol
	SDLBROADCASTRECEIVER
	4.6:
	4.7:
	4.7:

	SDLROUTERSERVICE
	4.6:
	4.7:
	NOTE
	MUST
	MUST

	SDLSERVICE
	4.6:
	4.7:
	ADDITIONAL CONFIGURATIONS:
	NOTE
	NOTE

	ANDROIDMANIFEST
	4.6
	4.7
	4.7

	Lock Screen
	USING YOUR CURRENT IMPLEMENTATION
	DISABLING THE LOCK SCREEN MANAGER:

	USING THE NEW LOCKSCREENMANAGER
	LOCK SCREEN ACTIVITY
	MUST
	CONFIGURATIONS
	Custom Background Color
	Custom App Icon
	Showing The Device Logo
	Setting A Custom Lock Screen View

	Displaying Information
	Setting text:
	4.6:
	4.6:
	4.7:

	Setting images:
	4.6:
	4.7:

	Using soft buttons:
	4.6:
	4.7:
	4.7:
	4.6:
	4.7:
	4.7:

	Receiving Subscribe Buttons Events
	4.6
	4.6

	Changing The Template:
	4.6:
	4.7:

	Uploading Files and Graphics
	SDL File and SDL Artwork
	CREATION
	A RESOURCE ID
	A URI
	A BYTE ARRAY

	Uploading a File

	Getting Vehicle Data and Subscribing to Notifications
	4.6:
	4.6:
	4.7:
	4.7:

	Getting In-Car Audio
	Subscribing to AudioPassThru Notifications
	4.6:
	4.6:
	4.7:
	4.7:

	Mobile Navigation
	Video Streaming:
	4.6:
	4.6:
	4.7:

	Audio Streaming
	4.6
	4.6
	4.7
	4.7

	Checking Permissions:
	4.6:
	4.6:
	4.7:
	4.7:
	Handling a Language Change

	Remote Control
	Subscribing to OnInteriorVehicleData Notifications
	4.6:
	4.7:

	What is SDL?
	Why do you see SDL notifications?
	How do you hide the notifications?
	What is the Android Router Service?
	What is a Trusted Router Service?
	How do I add my app to the SDL Trusted Router Service database?
	How do I know if an app is hosting a Trusted Router Service?

