
Android Documentation
Document current as of 11/20/2018 03:14 PM.

Installation

Introduction

Each SDL Android library release is published to JCenter. By adding a few lines

in their app's gradle script, developers can compile with the latest SDL Android

release.

To gain access to the JCenter repository, make sure your app's build.gradle file

includes the following:

Gradle Build

To compile with the a release of SDL Android, include the following line in your

app's build.gradle file,

repositories {
 jcenter()
}

https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://d83tozu1c8tt6.cloudfront.net/
https://github.com/smartdevicelink/sdl_android

and replace {version} with the desired release version in format of x.x.x .

The list of releases can be found here.

Examples

To compile release 4.7.1, use the following line:

To compile the latest minor release of major version 4, use:

dependencies {
 implementation 'com.smartdevicelink:sdl_android:{version}'
}

dependencies {
 implementation 'com.smartdevicelink:sdl_android:4.7.1'
}

dependencies {
 implementation 'com.smartdevicelink:sdl_android:4.+'
}

https://github.com/smartdevicelink/sdl_android/releases

Integration Basics

Getting Started on Android

In this guide, we exclusively use Android Studio. We are going to set-up a bare-

bones application so you get started using SDL.

Required System Permissions

In the AndroidManifest for our sample project we need to ensure we have the

following system permissions:

• Internet - Used by the mobile library to communicate with a SDL Server
• Bluetooth - Primary transport for SDL communication between the device

and the vehicle's head-unit
• Access Network State - Required to check if WiFi is enabled on the device

NOTE

The SDL Mobile library for supports Android 2.2.x (API Level 8) or

higher.

https://developer.android.com/about/versions/android-2.2.html
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_NETWORK_STATE

SmartDeviceLink Service

A SmartDeviceLink Android Service should be created to manage the lifecycle

of the SDL session. The SdlService should build and start an instance of the S

dlManager which will automatically connect with a headunit when available.

<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="com.company.mySdlApplication">

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.BLUETOOTH"/
>
 <uses-permission android:name=
"android.permission.ACCESS_NETWORK_STATE" />

</manifest>

NOTE

If the app is targeting Android P (API Level 28) or higher, the

Android Manifest file should also have the following permission to

allow the app to start a foreground service:

<uses-permission android:name=
"android.permission.FOREGROUND_SERVICE" />

This SdlManager will handle sending and receiving messages to and from SDL

after connected.

Create a new service and name it appropriately, for this guide we are going to

call it SdlService .

If you created the service using the Android Studio template then the service

should have been added to your AndroidManifest.xml otherwise the service

needs to be defined in the manifest:

Entering the Foreground

Because of Android Oreo's requirements, it is mandatory that services enter the

foreground for long running tasks. The first bit of integration is ensuring that

happens in the onCreate method of the SdlService or similar. Within the

service that implements the SDL lifecycle you will need to add a call to start the

service in the foreground. This will include creating a notification to sit in the

public class SdlService extends Service {
 //...
}

<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="com.company.mySdlApplication">

 <application>

 <service
 android:name=".SdlService"
 android:enabled="true"/>

 </application>

</manifest>

status bar tray. This information and icons should be relevant for what the

service is doing/going to do. If you already start your service in the foreground,

you can ignore this section.

Exiting the Foreground

It's important that you don't leave you notification in the notification tray as it

is very confusing to users. So in the onDestroy method in your service, simply

call the stopForeground method.

public void onCreate() {
 super.onCreate();
 //...
 if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
 NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
 notificationManager.createNotificationChannel(...);
 Notification serviceNotification = new Notification.Builder(this, *
Notification Channel*)
 .setContentTitle(...)
 .setSmallIcon(....)
 .setLargeIcon(...)
 .setContentText(...)
 .setChannelId(channel.getId())
 .build();
 startForeground(id, serviceNotification);
 }
}

NOTE

The sample code checks if the OS is of Android Oreo or newer to

start a foreground service. It is up to the app developer if they wish

to start the notification in previous versions.

Implementing SDL Manager

In order to correctly connect to an SDL enabled head unit developers need to

implement methods for the proper creation and disposing of an SdlManager in

our SdlService .

@Override
public void onDestroy(){
 //...
 if(Build.VERSION.SDK_INT>=Build.VERSION_CODES.O){
 NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
 if(notificationManager!=null){ //If this is the only notification on
your channel
 notificationManager.deleteNotificationChannel(* Notification
Channel*);
 }
 stopForeground(true);
 }
}

NOTE

An instance of SdlManager cannot be reused after it is closed and

properly disposed of. Instead, a new instance must be created.

Only one instance of SdlManager should be in use at any given

time.

public class SdlService extends Service {

 //The manager handles communication between the application and
SDL
 private SdlManager sdlManager = null;

 //...

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {

 if (sdlManager == null) {
 MultiplexTransportConfig transport = new
MultiplexTransportConfig(this, APP_ID, MultiplexTransportConfig.
FLAG_MULTI_SECURITY_OFF);

 // The app type to be used
 Vector<AppHMIType> appType = new Vector<>();
 appType.add(AppHMIType.MEDIA);

 // The manager listener helps you know when certain events
that pertain to the SDL Manager happen
 SdlManagerListener listener = new SdlManagerListener() {

 @Override
 public void onStart() {
 // After this callback is triggered the SdlManager can be
used to interact with the connected SDL session (updating the display,
sending RPCs, etc)
 }

 @Override
 public void onDestroy() {
 SdlService.this.stopSelf();
 }

 @Override
 public void onError(String info, Exception e) {
 }
 };

 // Create App Icon, this is set in the SdlManager builder
 SdlArtwork appIcon = new SdlArtwork(ICON_FILENAME, FileType.
GRAPHIC_PNG, R.mipmap.ic_launcher, true);

 // The manager builder sets options for your session
 SdlManager.Builder builder = new SdlManager.Builder(this,
APP_ID, APP_NAME, listener);
 builder.setAppTypes(appType);

The onDestroy() method from the SdlManagerListener is called whenever

the manager detects some disconnect in the connection, whether initiated by

the app, by SDL, or by the device’s connection.

Listening for RPC notifications and events

We can listen for specific events using SdlManager 's addOnRPCNotificationLis

tener . These listeners can be added either in the onStart() callback of the Sd

lManagerListener or after it has been triggered. The following example shows

how to listen for HMI Status notifications. Additional listeners can be added for

specific RPCs by using their corresponding FunctionID in place of the ON_HMI

_STATUS in the following example and casting the RPCNotification object to

the correct type.

 builder.setTransportType(transport);
 builder.setAppIcon(appIcon);
 sdlManager = builder.build();
 sdlManager.start();
 }

}

NOTE

The sdlManager must be shutdown properly in the SdlService.on

Destroy() callback using the method sdlManager.dispose() .

EXAMPLE OF A L ISTENER FOR HMI STATUS:

SmartDeviceLink Router Service

The SdlRouterService will listen for a connection with an SDL enabled module.

When a connection happens, it will alert all SDL enabled apps that a connection

has been established and they should start their SDL services.

We must implement a local copy of the SdlRouterService into our project. The

class doesn't need any modification, it's just important that we include it. We

will extend the com.smartdevicelink.transport.SdlRouterService in our class

named SdlRouterService :

sdlManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS,
new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnHMIStatus status = (OnHMIStatus) notification;
 if (status.getHmiLevel() == HMILevel.HMI_FULL && ((
OnHMIStatus) notification).getFirstRun()) {
 // first time in HMI Full
 }
 }
 });

NOTE

Do not include an import for com.smartdevicelink.transport.SdlRou

terService . Otherwise, we will get an error for 'SdlRouterService'

is already defined in this compilation unit .

If you created the service using the Android Studio template then the service

should have been added to your AndroidManifest.xml otherwise the service

needs to be added in the manifest. Because we want our service to be seen by

other SDL enabled apps, we need to set android:exported="true" . The system

public class SdlRouterService extends com.smartdevicelink.transport.
SdlRouterService {
 //Nothing to do here
}

MUST

The local extension of the com.smartdevicelink.transport.SdlRouter

Service must be named SdlRouterService .

MUST

Make sure this local class SdlRouterService.java is in the same

package of SdlReceiver.java (described below)

may issue a lint warning because of this, so we can suppress that using tools:i

gnore="ExportedService" .

Lock Screen Activity

An Activity entry must also be added to the manifest for the SDL lock

screen. For more information about lock screens, please see the Adding the

Lock Screen section.

Once added, your AndroidManifest.xml should be defined like below:

NOTE

When using SdlManager , the lock screen is enabled by default via

the LockScreenManager . Please see the link above for more

information

https://smartdevicelink.com/en/guides/android/adding-the-lock-screen/
https://smartdevicelink.com/en/guides/android/adding-the-lock-screen/

<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="com.company.mySdlApplication">

 <application>

 <service
 android:name=
"com.company.mySdlApplication.SdlRouterService"
 android:exported="true"
 android:process="com.smartdevicelink.router"
 tools:ignore="ExportedService">
 <intent-filter>
 <action android:name="com.smartdevicelink.router.service"/
>
 </intent-filter>
 <meta-data android:name="@string/
sdl_router_service_version_name" android:value="@integer/
sdl_router_service_version_value" />
 </service>

 <!-- Required to use the lock screen -->
 <activity android:name=
"com.smartdevicelink.managers.lockscreen.SDLLockScreenActivity"
 android:launchMode="singleTop"/>

 </application>

</manifest>

MUST

The SdlRouterService must be placed in a separate process with

the name com.smartdevicelink.router . If it is not in that process

during it's start up it will stop itself.

Intent Filter

The new versions of the SDL Android library rely on the com.smartdevicelink.ro

uter.service action to query SDL enabled apps that host router services. This

allows the library to determine which router service to start.

NOTE

Setting android:name to @string/

sdl_router_service_version_name for the router service metadata

may cause issues with some app packaging and analyzing tools like

aapt. You can avoid that by hardcoding the string value instead of

using a string reference.

<meta-data android:name="sdl_router_version" android:value=
"@integer/sdl_router_service_version_value" />

<intent-filter>
 <action android:name="com.smartdevicelink.router.service"/>
</intent-filter>

MUST

This intent-filter MUST be included.

Metadata

Adding the sdl_router_service_version metadata allows the library to know the

version of the router service that the app is using. This makes it simpler for the

library to choose the newest router service when multiple router services are

available.

ROUTER SERVICE VERSION

<meta-data android:name="@string/sdl_router_service_version_name"
 android:value="@integer/sdl_router_service_version_value" />

CUSTOM ROUTER SERVICE

<meta-data android:name="@string/
sdl_router_service_is_custom_name" android:value="false" />

NOTE

This is only for specific OEM applications, therefore normal

developers do not need to worry about this.

Some OEMs choose to implement custom router services. Setting the sdl_route

r_service_is_custom_name metadata value to true means that the app is

using something custom over the default router service that is included in the

SDL Android library. Do not include this meta-data entry unless you know

what you are doing.

SmartDeviceLink Broadcast
Receiver

The Android implementation of the SdlManager relies heavily on the OS's

bluetooth and USB intents. When the phone is connected to SDL and the router

service has sent a connection intent, the app needs to create an SdlManager,

which will bind to the already connected router service. As mentioned

previously, the SdlManager cannot be re-used. When a disconnect between the

app and SDL occurs, the current SdlManager must be disposed of and a new

one created.

The SDL Android library has a custom broadcast receiver named SdlBroadcast

Receiver that should be used as the base for your BroadcastReceiver. It is a

child class of Android's BroadcastReceiver so all normal flow and attributes will

be available. Two abstract methods will be automatically populate the class, we

will fill them out soon.

Create a new SdlBroadcastReceiver and name it appropriately, for this guide we

are going to call it SdlReceiver :

If you created the BroadcastReceiver using the Android Studio template then

the service should have been added to your AndroidManifest.xml otherwise

the receiver needs to be defined in the manifest. Regardless, the manifest

public class SdlReceiver extends SdlBroadcastReceiver {

 @Override
 public void onSdlEnabled(Context context, Intent intent) {
 //...

 }

 @Override
 public Class<? extends SdlRouterService> defineLocalSdlRouterClass
() {
 //...
 }
}

MUST

SdlBroadcastReceiver must call super if onReceive is overridden

 @Override
 public void onReceive(Context context, Intent intent) {
 super.onReceive(context, intent);
 //your code here
 }

needs to be edited so that the SdlBroadcastReceiver needs to respond to the

following intents:

• android.bluetooth.device.action.ACL_CONNECTED
• sdl.router.startservice

<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="com.company.mySdlApplication">

 <application>

 <receiver
 android:name=".SdlReceiver"
 android:exported="true"
 android:enabled="true">

 <intent-filter>
 <action android:name=
"android.bluetooth.device.action.ACL_CONNECTED" />
 <action android:name="sdl.router.startservice" />
 </intent-filter>

 </receiver>

 </application>

 <!-- Required to use the lock screen -->
 <activity android:name=
"com.smartdevicelink.managers.lockscreen.SDLLockScreenActivity"
 android:launchMode="singleTop"/>

</manifest>

NOTE

The intent sdl.router.startservice is a custom intent that will come

from the SdlRouterService to tell us that we have just connected to

an SDL enabled piece of hardware.

https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html#ACTION_ACL_CONNECTED

Next, we want to make sure we supply our instance of the SdlBroadcastService

with our local copy of the SdlRouterService. We do this by simply returning the

class object in the method defineLocalSdlRouterClass:

We want to start the SdlManager when an SDL connection is made via the SdlR

outerService . We do this by taking action in the onSdlEnabled method:

MUST

SdlBroadcastReceiver has to be exported, or it will not work

correctly

public class SdlReceiver extends SdlBroadcastReceiver {
 @Override
 public void onSdlEnabled(Context context, Intent intent) {

 }

 @Override
 public Class<? extends SdlRouterService> defineLocalSdlRouterClass
() {
 //Return a local copy of the SdlRouterService located in your
project
 return com.company.mySdlApplication.SdlRouterService.class;
 }
}

MUST

Apps must start their service in the foreground as of Android Oreo

(API 26).

Main Activity

Now that the basic connection infrastructure is in place, we should add

methods to start the SdlService when our application starts. In onCreate() in

your main activity, you need to call a method that will check to see if there is

currently an SDL connection made. If there is one, the onSdlEnabled method

public class SdlReceiver extends SdlBroadcastReceiver {

 @Override
 public void onSdlEnabled(Context context, Intent intent) {
 //Use the provided intent but set the class to the SdlService
 intent.setClass(context, SdlService.class);
 if(Build.VERSION.SDK_INT < Build.VERSION_CODES.O) {
 context.startService(intent);
 }else{
 context.startForegroundService(intent);
 }
 }

 @Override
 public Class<? extends SdlRouterService> defineLocalSdlRouterClass
() {
 //Return a local copy of the SdlRouterService located in your
project
 return com.company.mySdlApplication.SdlRouterService.class;
 }
}

NOTE

The onSdlEnabled method will be the main start point for our SDL

connection session. We define exactly what we want to happen

when we find out we are connected to SDL enabled hardware.

will be called and we will follow the flow we already set up. In our MainActivity.j

ava we need to check for an SDL connection:

Using Android Open
Accessory Protocol

Incorporating AOA into an SDL enabled app allows it to create and register an

SDL session over USB. This guide will assume the app has already integrated

the SDL library as laid out in the previous guides. AOA connections are sent

through the SDLRouterService to bypass an Android limitation of only one app

being able to be used through the AOA intent.

Prerequisites:

• Installation guide
• Integration Basics guide

We will add or make changes to:

• Android Manifest (of your app)
• SdlService (optional)

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 //If we are connected to a module we want to start our SdlService
 SdlReceiver.queryForConnectedService(this);
 }
}

https://d83tozu1c8tt6.cloudfront.net/guides/android/getting-started/installation/
https://d83tozu1c8tt6.cloudfront.net/guides/android/getting-started/integration-basics/

Prerequisites

The Installation and Integration Basics guides must be completed before

enabling the use of the AOA USB transport. The remainder of the guide will

assume all steps of those two guides will be followed.

Android Manifest

To use the AOA protocol, you must specify so in your app's Manifest with:

The SDL Android library houses a USBAccessoryAttachmentActivity that you

need to add between your Manifest's <application>…</application> tags:

<uses-feature android:name="android.hardware.usb.accessory"/>

MUST

This feature will not work without including this line!

SmartDeviceLink Service

As long as the app doesn't require high bandwidth, it shouldn't matter which

transport is being connected, and will be transport to the developer. If the

integration guides were followed, a multiplex transport configuration was

already created and provided to the SdlManager like the one that follows:

<activity android:name=
"com.smartdevicelink.transport.USBAccessoryAttachmentActivity"
 android:launchMode="singleTop">
 <intent-filter>
 <action android:name=
"android.hardware.usb.action.USB_ACCESSORY_ATTACHED" />
 </intent-filter>

 <meta-data
 android:name=
"android.hardware.usb.action.USB_ACCESSORY_ATTACHED"
 android:resource="@xml/accessory_filter" />
</activity>

NOTE

The accessory_filter.xml file is included with the SDL Android

Library

Using only USB / AOA

The new MultiplexingConfig allows for apps to be able to connect via

Bluetooth and USB as primary transports. If you want your app to only use USB

/ AOA, then you should specifically only set that as the only allowed primary

transport.

When defining your transport, also pass in a custom list that only contains the

USB:

@Override
 public int onStartCommand(Intent intent, int flags, int startId) {

 if (sdlManager == null) {
 MultiplexTransportConfig transport = new
MultiplexTransportConfig(this, APP_ID, MultiplexTransportConfig.
FLAG_MULTI_SECURITY_OFF);

 SdlManagerListener listener = new SdlManagerListener() {
 //...
 };

 // ...

 builder.setTransportType(transport);
 sdlManager = builder.build();
 sdlManager.start();
 }

List<TransportType> multiplexPrimaryTransports = Arrays.asList(
TransportType.USB);

MultiplexTransportConfig transport = new MultiplexTransportConfig(this,
 appId, MultiplexTransportConfig.FLAG_MULTI_SECURITY_MED);

transport.setPrimaryTransports(multiplexPrimaryTransports);

Multiple Transports

Since the SdlRouterService now handles both bluetooth and AOA/USB

connections, an app will be connected to the transport that connects first if the

app includes it in their transport config. If a module supports secondary

transports, the second transport to be connected of bluetooth or USB will be

available as well as potentially TCP. This means even though the app might

register over bluetooth, if USB or TCP are available those transports will be

available for high bandwidth services. For more information please see the

Multiple Transport Guide.

Multiple Transports

As of Protocol Version 5.1.0, which is supported from SDL Android 4.7 and SDL

Core 5.0, a new feature was introduced called Multiple Transports. This feature

allows apps to carry their SDL session over multiple transports. The first

transport that the app connects to is referred to as the primary transport, and a

later connected transport being a secondary. For example, apps can register

over bluetooth as a primary transport, then connect over WiFi when necessary

(video/audio streaming) as a secondary transport.

SDL Android

This feature coincides with our newly redesigned multiplexing transport. In SDL

Android 4.7 and newer, you can connect and register apps via a multiplexed

bluetooth and/or USB connection. On head units that support multiple

transports, the primary transport will be used for RPC communication while the

secondary will be used for high bandwidth services. Otherwise, the primary

transport will be used for all applicable services for that transport type.

PRIMARY TRANSPORTS

https://d83tozu1c8tt6.cloudfront.net/guides/android/getting-started/multiple-transports/

SUPPORTING SPECIF IC PRIMARY TRANSPORTS

Whether your app supports both bluetooth and/or USB connections are

determined by what you set as acceptable primary transports. By default, both

USB and bluetooth are supported and should be kept unless there is a specific

reason otherwise. If you list multiple primary transports and one disconnects, if

another included transport is available the app will automatically attempt to

connect and register.

If you only want to use bluetooth or USB, simply pass in a list with the one you

want.

REQUIRES HIGH BANDWIDTH

Certain app types will require a high bandwidth transport to be available, which

could be either primary or secondary transports. If this is the case, an app will

only be registered if a high bandwidth transport is either connected or available

to connect.

If this is the case for your app you can set the setRequiresHighBandwidth flag

to true :

List<TransportType> multiplexPrimaryTransports = Arrays.asList(
TransportType.USB, TransportType.BLUETOOTH);
MultiplexTransportConfig mtc = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);
mtc.setPrimaryTransports(multiplexPrimaryTransports);

NOTE

For the best compatibility we suggest supporting both primary

transports.

HIGH BANDWIDTH APP WITH LOW BANDWIDTH SUPPORT

While some app's main integration requires high bandwidth, it is possible to

support a low bandwidth integration for better visibility. As an example, a

navigation app might require high bandwidth transport to stream their map

view but could provide a low bandwidth integration that displays turn-by-turn

directions. Another simple low bandwidth integration could simply be displaying

a message that instructs the user to connect USB or WiFi to enable the app. In

this case the app should set the requires high bandwidth flag to false, as it is by

default.

Secondary transports are supported as of Protocol Version 5.1.0 , and must be

enabled by the module the app is connecting. In addition to supporting

bluetooth and USB, TCP is also a supported as a secondary transport.

Setting secondary transports that your app supports is similar to setting the

primary transports:

MultiplexTransportConfig mtc = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);

mtc.setRequiresHighBandwidth(true);

MultiplexTransportConfig mtc = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);

mtc.setRequiresHighBandwidth(false);

SECONDARY TRANSPORTS

By default, all three transports are set as supported secondary transports. As

mentioned above, secondary transports will often be used for high bandwidth

services.

Sending Multiple RPCs

Batch Sending RPCs

There are two ways to send multiple requests to the head unit: concurrently

and sequentially. Which method you should use depends on the type of RPCs

being sent. Concurrently sent requests might finish in a random order and

should only be used when none of the requests in the group depend on the

response of another, such as when uploading a group of artworks. Sequentially

sent requests only send the next request in the group when a response has

been received for the previously sent RPC. Requests should be sent

sequentially when you need to know the result of a previous request before

sending the next, like when sending the several different requests needed to

create a menu.

Both methods have optional listeners that are specific to them, the OnMultiple

RequestListener . This listener will provide additional information than the

normal OnRPCResponseListener . Its use is shown below.

List<TransportType> multiplexPrimaryTransports = Arrays.asList(
TransportType.USB, TransportType.BLUETOOTH);
List<TransportType> multiplexSecondaryTransports = Arrays.asList(
TransportType.TCP, TransportType.USB, TransportType.BLUETOOTH);
MultiplexTransportConfig mtc = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);
mtc.setPrimaryTransports(multiplexPrimaryTransports);
mtc.setSecondaryTransports(multiplexSecondaryTransports);

Send Requests

sendRPCs allows you to easily send an ArrayList of RPCRequests easily to

the head unit. When you send multiple RPCs concurrently there is no guarantee

of the order in which the RPCs will be sent or in which order Core will return

responses. The method also comes with its own listener, OnMultipleRequestLis

tener that will provide you with updates as the sending progresses, errors that

may arise, and let you know when the sending is finished. Below is a sample

call:

Send Sequential Requests

As you may have guessed, this method is called similarly to sendRPCs but

sends the requests synchronously, guaranteeing order. It is important to note

that you want to build your array with the items that you want to send first,

List<RPCRequest> rpcs = new ArrayList<>();

// rpc 1
SubscribeButton subscribeButtonRequestLeft = new SubscribeButton();
subscribeButtonRequestLeft.setButtonName(ButtonName.SEEKLEFT);
rpcs.add(subscribeButtonRequestLeft);

// rpc 2
SubscribeButton subscribeButtonRequestRight = new SubscribeButton
();
subscribeButtonRequestRight.setButtonName(ButtonName.SEEKRIGHT
);
rpcs.add(subscribeButtonRequestRight);

sdlManager.sendRPCs(rpcs, new OnMultipleRequestListener() {
 @Override
 public void onUpdate(int remainingRequests) {

 }

 @Override
 public void onFinished() {

 }

 @Override
 public void onResponse(int correlationId, RPCResponse response) {

 }

 @Override
 public void onError(int correlationId, RPCResponse response) {

 }
});

first. This is particularly useful for RPCs that are dependent upon other ones,

such as a performInteraction needing a createInteractionChoiceSet 's id.

This method call is exactly the same as above, except for the method name

being sendSequentialRPCs . For your convenience, the listener is also the

same and performs similarly.

List<RPCRequest> rpcs = new ArrayList<>();

// rpc 1
SubscribeButton subscribeButtonRequestLeft = new SubscribeButton();
subscribeButtonRequestLeft.setButtonName(ButtonName.SEEKLEFT);
rpcs.add(subscribeButtonRequestLeft);

// rpc 2
SubscribeButton subscribeButtonRequestRight = new SubscribeButton
();
subscribeButtonRequestRight.setButtonName(ButtonName.SEEKRIGHT
);
rpcs.add(subscribeButtonRequestRight);

sdlManager.sendSequentialRPCs(rpcs, new OnMultipleRequestListener()
 {
 @Override
 public void onUpdate(int remainingRequests) {

 }

 @Override
 public void onFinished() {

 }

 @Override
 public void onResponse(int correlationId, RPCResponse response) {

 }

 @Override
 public void onError(int correlationId, Result resultCode, String info) {

 }
});

Hello SDL Android

Introduction

In this guide we take you through the steps to get our sample project, Hello Sdl

Android, running and connected to Sdl Core as well as showing up on the

generic HMI.

First, make sure you download or clone the latest release from GitHub. It is a

package within the SDL Android library.

Open the project in Android Studio. We will exclusively use Android Studio as it

is the current supported platform for Android development.

Getting Started

If you are not using a Ford TDK for development, we will assume that you have

SDL Core (We recommend Ubuntu 16.04) and an HMI set up prior to this point.

Most people getting started with this tutorial will not have a Ford TDK, so

sample outputs will be using Sdl Core and our Generic HMI.

If you don't want to set up a virtual machine for testing, we offer Manticore,

which is a free service that allows you to test your apps via TCP/IP in the cloud.

NOTE

Sdl Core and an HMI or Manticore are needed to run Hello Sdl

Android and to ensure that it connects

https://github.com/smartdevicelink/sdl_android
https://developer.android.com/studio/index.html
https://github.com/smartdevicelink/sdl_core
https://github.com/smartdevicelink/generic_hmi
https://smartdevicelink.com/resources/manticore/

Hello Sdl Android has been built with different build flavors.

To access the Build Variant menu to choose your flavor, click on the menu Buil

d then Select Build Variant . A small window will appear on the bottom left of

your IDE window that allows you to choose a flavor.

There are many flavors to choose from and for now we will only be concerned

with the debug versions.

Versions Include:

• multi - Multiplexing (Bluetooth, USB, TCP (as secondary transport))
• multi_high_bandwidth - Multiplexing for apps that require a high

bandwidth transport
• tcp - Transmission Control Protocol - used only for debugging purposes

We will mainly be dealing with multi (if using a TDK) or tcp (if connecting to

SDL Core via a virtual machine or your localhost, or to Manticore)

Transports

If you aren't using a TDK or head unit, you can connect to SDL core via a virtual

machine or to your localhost. To do this we will use the flavor tcpDebug .

For TCP to work, you will have to know the IP address of your machine that is

running Sdl Core. If you don't know what it is, running ifconfig in a linux

terminal will usually let you see it for the interface you are connected with to

your network. We have to modify the IP address in Hello Sdl Android to let it

know where your instance of Sdl Core is running.

BUILD FLAVORS

CONFIGURE FOR TCP

In the main Java folder of Hello Sdl Android, open up SdlService.java

In the top of this file, locate the variable declaration for DEV_MACHINE_IP_ADD

RESS . Change it to your Sdl Core's IP. Leave the TCP_PORT set to 12345 .

Right out of the box, all you need to do to run bluetooth is to select the multi_s

ec_offDebug (Multiplexing) build flavor.

To connect to an SDL Core instance or TDK via USB transport, select the multi_

sec_offDebug (Multiplexing) build flavor. There is more information for USB

transport under Getting Started - Using AOA Protocol.

 // TCP/IP transport config
 private static final int TCP_PORT = 12345; // if using manticore,
change to assigned port
 private static final String DEV_MACHINE_IP_ADDRESS =
"192.168.1.78"; // change to your IP

NOTE

if you do not change the target IP address, the application will not

connect to Sdl Core or show up on the HMI

CONFIGURE FOR BLUETOOTH

CONFIGURE FOR USB (AOA)

https://d83tozu1c8tt6.cloudfront.net/guides/android/getting-started/using-aoa-protocol/

Building the Project

For TCP, you may use the built-in Android emulator or an Android phone on the

same network as Sdl Core. For Bluetooth, you will need an Android phone that

is paired to a TDK or head unit via Bluetooth.

Run the project in Android Studio, targeting the device you want Hello Sdl

Android installed on.

Hello Sdl Android should compile and launch on your device of choosing:

MUST

Make sure Sdl Core and the HMI are running prior to running Hello

Sdl Android

Following this, you should see an application appear on the TDK or HMI. In the

case of the Generic HMI (using TCP), you will see the following:

Click on the Hello Sdl icon in the HMI.

This is the main screen of the Hello Sdl App. If you get to this point, the project

is working.

On the device you are running the app on, a lock screen should now appear

once the app is opened on the HMI if distracted driver notifications are set to D

D_On :

At this point Hello Sdl Android has been compiled and is running properly!

Continue reading through our guides to learn about all of the

RPCs (Remote Procedure Calls) that can be made with the library.

NOTE

Lock Screens are an important part of Sdl enabled applications. The

goal is to keep the driver's eyes forward and off of the device

Troubleshooting

Sometimes things don't always go as planned, and so this section exists. If your

app compiles and does NOT show up on the HMI, there are a few things to

check out.

1. Make sure that you have changed the IP in SdlService.java to match the

machine running Sdl Core. Being on the same network is also important.
2. If you are sure that the IP is correct and it is still not showing up, make

sure the Build Flavor that is running is tcpDebug.
3. If the two above dont work, make sure there is no firewall blocking the

incoming port 12345 on the machine or VM running SDL Core. In the

same breath, make sure your firewall allows that outgoing port.
4. There are different network configurations needed for different

virtualization software (virtualbox, vmware, etc). Make sure yours is set up

correctly. Or use Manticore.

1. Make sure the build flavor multi_sec_offDebug is selected.
2. Ensure your phone is properly paired with the TDK
3. Make sure Bluetooth is turned on - on Both the TDK and your phone
4. Make sure apps are enabled on the TDK (in settings)

TCP

BLUETOOTH

https://smartdevicelink.com/resources/manticore/

Adding the Lock Screen

In order for your SDL application to be certified with most OEMs you will be

required to implement a lock screen on the mobile device. The lock screen will

disable user interactions with the application on the mobile device while they

are using the head-unit to control application functionality. OEMs may choose to

send their logo for your app's lock screen to use; the LockScreenManager

takes care of this automatically using the default layout.

There is a manager called the LockScreenManager that is accessed through

the SdlManager that handles much of the logic for you. If you have

implemented the SdlManager and have defined the SDLLockScreenActivity

in your manifest but have not defined any lock screen configuration, you are

already have a working default configuration. This guide will go over specific

configurations you are able to implement using the LockScreenManager

functionality.

Lock Screen Activity

You must declare the SDLLockScreenActivity in your manifest. To do so, simply

add the following to your app's AndroidManifest.xml if you have not already

done so:

NOTE

This guide assumes that you have an SDL Service implemented as

defined in the Getting Started guide.

https://d83tozu1c8tt6.cloudfront.net/guides/android/getting-started/integration-basics/

Configurations

The default configurations should work for most app developers and is simple

to get up and and running. However, it is easy to perform deeper configurations

to the lock screen for your app. Below are the options that are available to

customize your lock screen which builds on top of the logic already

implemented in the LockScreenManager .

There is a setter in the SdlManager.Builder that allows you to set a LockScree

nConfig by calling builder.setLockScreenConfig(lockScreenConfig) . The

following options are available to be configured with the LockScreenConfig .

In order to to use these features, create a LockScreenConfig object and set it

using SdlManager.Builder before you build SdlManager .

<activity android:name=
"com.smartdevicelink.managers.lockscreen.SDLLockScreenActivity"
 android:launchMode="singleTop"/>

MUST

This manifest entry must be added for the lock screen feature to

work.

In your LockScreenConfig object, you can set the background color to a color

resource that you have defined in your Colors.xml file:

In your LockScreenConfig object, you can set the resource location of the

drawable icon you would like displayed:

This sets whether or not to show the connected device's logo on the default

lock screen. The logo will come from the connected hardware if set by the

manufacturer. When using a Custom View, the custom layout will have to

handle the logic to display the device logo or not. The default setting is false,

but some OEM partners may require it.

CUSTOM BACKGROUND COLOR

lockScreenConfig.setBackgroundColor(resourceColor); // For example,
R.color.black

CUSTOM APP ICON

lockScreenConfig.setAppIcon(appIconInt); // For example,
R.drawable.lockscreen_icon

SHOWING THE DEVICE LOGO

In your LockScreenConfig object, you can set the boolean of whether or not

you want the device logo shown, if available:

If you'd rather provide your own layout, it is easy to set. In your LockScreenCo

nfig object, you can set the reference to the custom layout to be used for the

lock screen. If this is set, the other customizations described above will be

ignored:

Please note that a lock screen will likely be required by OEMs. You can disable

the LockScreenManager , but you will then be required to create your own

implementation. This is not recommended as the LockScreenConfig should

enable all possible settings while still adhering to most OEM requirements.

However, if it is unavoidable to create one from scratch the LockScreenManage

r can be disabled via the LockScreenConfig as follows.

lockScreenConfig.showDeviceLogo(true);

SETTING A CUSTOM LOCK SCREEN VIEW

lockScreenConfig.setCustomView(customViewInt);

DISABLING THE LOCK SCREEN MANAGER:

lockScreenConfig.setEnabled(false);

Designing a User Interface

Designing for Different User Interfaces

Each car manufacturer may have different user interface style guidelines and

slight variations in their templates(number of lines of text, buttons, and images

supported). After the SdlManager has been started and is able to connect to

and register on a module, the SystemCapabilityManager will have this

capability information. The information stored in the

SystemCapabilityManager can be used to aid in the layout and flow of your

user interface.

Dynamic User Interface Capabilities

After the SdlManager has been successfully started the module will have sent

any user interface information it has back to your app. This information

includes the display type, the type of images supported, the number of text

fields supported, the HMI display language, and a lot of other useful properties.

This information can be accessed using the SystemCapabilityManager . The

table below has a list of all possible properties available. Each property is

optional, so you may not get information for all the parameters in the table.

NOTE

When the enabled flag is set to false all other config options will

be ignored.

PA R A M E T E R S D E S C R I P T I O N N O T E S

sdlLanguage

The currently active voice-

recognition and text-to-

speech language on the

head unit.

Check Language.java for

more information

hmiDisplayLanguage

The currently active

display language on the

head unit.

Check Language.java for

more information

displayCapabilities

Information about the

head unit display. This

includes information

about available templates,

whether or not graphics

are supported, and a list

of all text fields and the

max number of characters

allowed in each text field.

Check

DisplayCapabilities.java

for more information

buttonCapabilities

A list of available buttons

and whether the buttons

support long, short and

up-down presses.

Check

ButtonCapabilities.java

for more information

softButtonCapabilities

A list of available soft

buttons and whether the

button support images.

Also information about

whether the button

supports long, short and

up-down presses.

Check

SoftButtonCapabilities.ja

va for more information

presetBankCapabilities

If returned, the platform

supports custom on-

screen presets.

Check

PresetBankCapabilities.j

ava for more information

speechCapabilities

Contains information

about TTS capabilities on

the SDL platform.

Platforms may support

text, SAPI phonemes, LH

PLUS phonemes, pre-

recorded speech, and

silence.

Check

SpeechCapabilities.java

for more information

PA R A M E T E R S D E S C R I P T I O N N O T E S

Templates

Each car manufacturer supports a set of templates for the user interface. These

templates determine the position and size of the text, images, and buttons on

the screen. A list of supported templates is sent with RegisterAppInterface

response and can be accessed using the SystemCapabilityManager .

prerecordedSpeech

A list of pre-recorded

sounds you can use in

your app. Sounds may

include a help, initial,

listen, positive, or a

negative jingle.

Check

PrerecordedSpeech.java

for more information

vrCapabilities

The voice-recognition

capabilities of the

connected SDL platform.

The platform may be able

to recognize spoken text

in the current language.

Check

VrCapabilities.java for

more information

audioPassThruCapabiliti

es

Describes the sampling

rate, bits per sample, and

audio types available.

Check

AudioPassThruCapabiliti

es.java for more

information

supportedDiagModes

Specifies the white-list of

supported diagnostic

modes (0x00-0xFF)

capable for

DiagnosticMessage

requests. If a mode

outside this list is

requested, it will be

rejected.

List

hmiCapabilities

Returns whether or not

the app can support built-

in navigation and phone

calls.

Check

HMICapabilities.java for

more information

To change a template at any time, send a SetDisplayLayout RPC to the SDL

Core. If you want to ensure that the new template is used, wait for a response

from the SDL Core before sending any more user interface RPCs.

Available Templates

There are fifteen standard templates to choose from, however some head units

may only support a subset of these templates. Please check the DisplayCapabi

lities object returned by SystemCapabilityManager for the supported

templates. The following examples show how templates will appear on the

generic head unit.

SetDisplayLayout setDisplayLayoutRequest = new SetDisplayLayout();
setDisplayLayoutRequest.setDisplayLayout(PredefinedLayout.
GRAPHIC_WITH_TEXT.toString());
setDisplayLayoutRequest.setOnRPCResponseListener(new
OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if(((SetDisplayLayoutResponse) response).getSuccess()){
 Log.i("SdlService", "Display layout set successfully.");
 // Proceed with more user interface RPCs
 }else{
 Log.i("SdlService", "Display layout request rejected.");
 }
 }
});

sdlManager.sendRPC(setDisplayLayoutRequest);

NOTE

You will automatically be assigned the media template if you set

your configuration app type as MEDIA .

FORD HMI

1. MEDIA - WITH AND WITHOUT PROGRESS BAR

2. NON-MEDIA - WITH AND WITHOUT SOFT BUTTONS

FORD HMI

3. GRAPHIC_WITH_TEXT

FORD HMI

FORD HMI

4. TEXT_WITH_GRAPHIC

5. TILES_ONLY

FORD HMI

FORD HMI

6. GRAPHIC_WITH_TILES

7. TILES_WITH_GRAPHIC

FORD HMI

FORD HMI

8. GRAPHIC_WITH_TEXT_AND_SOFTBUTTONS

9. TEXT_AND_SOFTBUTTONS_WITH_GRAPHIC

FORD HMI

FORD HMI

10. GRAPHIC_WITH_TEXTBUTTONS

11. DOUBLE_GRAPHIC_SOFTBUTTONS

FORD HMI

FORD HMI

12. TEXTBUTTONS_WITH_GRAPHIC

13. TEXTBUTTONS_ONLY

FORD HMI

FORD HMI

14. LARGE_GRAPHIC_WITH_SOFTBUTTONS

15. LARGE_GRAPHIC_ONLY

FORD HMI

Text, Images, and Buttons

All text, images, and soft buttons on the HMI screen must be sent as part of a

Show RPC. The ScreenManager will take care of creating and sending the S

how request for text, images, and soft buttons so developers don't have to

worry about that. Subscribe buttons need to be sent as part of a SubscribeButt

on RPC.

Text

A maximum of four lines of text can be sent to the module, however, some

templates may only support 1, 2, or 3 lines of text. The ScreenManager well

automatically handle the combining of lines based on how many lines are

available and which fields the developer has set. For example, if all four lines of

text are set in the ScreenManager , but the template only supports three lines

of text, then the ScreenManager will hyphenate the third and fourth line and

display them in one line.

//Start the UI updates
sdlManager.getScreenManager().beginTransaction();

sdlManager.getScreenManager().setTextField1("Hello, this is
MainField1.");
sdlManager.getScreenManager().setTextField2("Hello, this is
MainField2.");
sdlManager.getScreenManager().setTextField3("Hello, this is
MainField3.");
sdlManager.getScreenManager().setTextField4("Hello, this is
MainField4.");

//Commit the UI updates
sdlManager.getScreenManager().commit(new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 Log.i(TAG, "ScreenManager update complete: " + success);
 }
});

NOTE

If you don't use beginTransaction() and commit() , ScreenManag

er will still update the text fields correctly, however, it will send a

Show request every time a text field is set. It is always

recommended to use transactions if you have a batch of ScreenMa

nager updates. Transactions will let the ScreenManager queue

the updates and send them all at once in one Show RPC when co

mmit() is called resulting in better performance and UI stability.

Images

The position and size of images on the screen is determined by the currently

set template. ScreenManager will handle uploading images and sending the

Show RPC to display the images when they are ready.

To display an image in the head unit, you have to create an SdlArtwork object

and set it using the ScreenManager . The fileName property should be set to

the name that you want to use to save the file in the head unit. The FileType

should be set to the correct type of image that is being sent, in the example it

is set to FileType.GRAPHIC_JPEG because the image has JPEG format. The id

is set to the Android resource id of the image that you want to use. The persist

entFile is a boolean that represents whether you want the file to persist

between sessions.

NOTE

Some head units may only support certain images or possibly none

at all. Please consult the getGraphicSupported() method in the Di

splayCapabilities using the SystemCapabilityManager .

SHOW THE IMAGE ON A HEAD UNIT

SdlArtwork sdlArtwork = new SdlArtwork("appImage.jpeg", FileType.
GRAPHIC_JPEG, R.drawable.appImage, true);
sdlManager.getScreenManager().setPrimaryGraphic(sdlArtwork);

Soft & Subscribe Buttons

Buttons pushed by an app to the module's HMI screen are referred to as soft

buttons to distinguish them from hard or preloaded buttons, which are either

physical buttons on the head unit or buttons that exist on the module at all

times. Don’t confuse soft buttons with subscribe buttons, which are buttons

that can detect user selection on hard buttons (or built-in soft buttons).

Soft buttons can be created with text, images or both text and images. The

location, size, and number of soft buttons visible on the screen depends on the

template. A SoftButtonObject can have multiple SoftButtonState objects;

each state can have text, image, or both. Buttons can be transitioned from one

state to another at runtime.

SOFT BUTTONS

SoftButtonState softButtonState1 = new SoftButtonState("state1",
"state1", new SdlArtwork("state1.png", FileType.GRAPHIC_PNG, R.
drawable.state1, true));

SoftButtonState softButtonState2 = new SoftButtonState("state2",
"state2", new SdlArtwork("state2.png", FileType.GRAPHIC_PNG, R.
drawable.state2, true));

List<SoftButtonState> softButtonStates = Arrays.asList(
softButtonState1, softButtonState2);
SoftButtonObject softButtonObject = new SoftButtonObject("object",
softButtonStates, softButtonState1.getName(), null);

//We will add a listener for events in the next example here

sdlManager.getScreenManager().setSoftButtonObjects(Collections.
singletonList(softButtonObject));

RECEIVING SOFT BUTTONS EVENTS

Once you have created soft buttons, you will likely want to know when events

happen to those buttons. These events come through two callbacks onEvent

and onPress . Depending which type of event you're looking for you can use

that type of callback.

Subscribe buttons are used to detect changes to hard or preloaded buttons. You

can subscribe to the following hard buttons:

softButtonObject.setOnEventListener(new SoftButtonObject.
OnEventListener() {
 @Override
 public void onPress(SoftButtonObject softButtonObject,
OnButtonPress onButtonPress) {
 softButtonObject.transitionToNextState();
 }

 @Override
 public void onEvent(SoftButtonObject softButtonObject,
OnButtonEvent onButtonEvent) {

 }
});

SUBSCRIBE BUTTONS

B U T T O N T E M P L AT E B U T T O N T Y P E

Audio buttons like the OK (i.e. the play/pause button), seek left, seek right,

tune up, and tune down buttons can only be used with a media template. The

OK, seek left, and seek right buttons will also show up on the screen in a

predefined location dictated by the media template on touchscreens. The app

will be notified when the user selects the subscribe button on the screen or

when the user manipulates the corresponding hard button.

You can subscribe to buttons using the SubscribeButton RPC.

Ok (play/pause) media template only
soft button and hard

button

Seek left media template only
soft button and hard

button

Seek right media template only
soft button and hard

button

Tune up media template only hard button

Tune down media template only hard button

Preset 0-9 any template hard button

Search any template hard button

Custom any template hard button

SubscribeButton subscribeButtonRequest = new SubscribeButton();
subscribeButtonRequest.setButtonName(ButtonName.SEEKRIGHT);
sdlManager.sendRPC(subscribeButtonRequest);

RECEIVING SUBSCRIBE BUTTONS EVENTS

When you want to subscribe to buttons, you will be subscribing to events that

happen to those buttons. These events come through two callbacks OnButtonE

vent and OnButtonPress . Depending which type of event you're looking for

you can use that type of callback. The ButtonName enum refers to which

button the event happened to.

NOTE

It is not required to manually subscribe to soft buttons. When soft

buttons are added, your app will automatically be subscribed for

their events.

NOTE

Some templates will not show a preloaded button until an app

subscribes to it. After an app subscribes to the events of that

button, it will appear.

sdlManager.addOnRPCNotificationListener(FunctionID.
ON_BUTTON_EVENT, new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnButtonPress onButtonPressNotification = (OnButtonPress)
notification;
 switch (onButtonPressNotification.getButtonName()) {
 case OK:
 break;
 case SEEKLEFT:
 break;
 case SEEKRIGHT:
 break;
 case TUNEUP:
 break;
 case TUNEDOWN:
 break;
 default:
 break;
 }
 }
});

sdlManager.addOnRPCNotificationListener(FunctionID.
ON_BUTTON_PRESS, new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnButtonPress onButtonPressNotification = (OnButtonPress)
notification;
 switch (onButtonPressNotification.getButtonName()) {
 case OK:
 break;
 case SEEKLEFT:
 break;
 case SEEKRIGHT:
 break;
 case TUNEUP:
 break;
 case TUNEDOWN:
 break;
 default:
 break;
 }
 }
});

Menus

You have two different options when creating menus. One is to simply add

items to the default menu available in every template. The other is to create a

custom menu that pops up when needed.

Default Menu

NOTE

The app should subscribe to button events before sending the Sub

scribeButton request to make sure that it doesn't miss any button

events.

FORD HMI

Every template has a default menu button. The position of this button varies

between templates, and can not be removed from the template. The default

menu is initially empty except for an "Exit Your App Name" button. Items can be

added to the menu at the root level or to a submenu. It is important to note

that a submenu can only be one level deep.

Menu Structure

The AddCommand RPC can be used to add items to the root menu or to a

submenu. Each AddCommand RPC must be sent with a unique id, a voice-

recognition command, and a set of menu parameters. The menu parameters

include the menu name, the position of the item in the menu, and the id of the

menu item’s parent. If the menu item is being added to the root menu, then the

ADD MENU ITEMS

parent id is 0. If it is being added to a submenu, then the parent id is the

submenu’s id.

To create a submenu, first send an AddSubMenu RPC. When a response is

received from the SDL Core, check if the submenu was added successfully. If it

was, send an AddCommand RPC for each item in the submenu.

// Create the menu parameters
// The parent id is 0 if adding to the root menu
// If adding to a submenu, the parent id is the submenu's id
MenuParams menuParams = new MenuParams();
menuParams.setParentID(0);
menuParams.setPosition(0);
menuParams.setMenuName("Options");

AddCommand addCommand = new AddCommand();
addCommand.setCmdID(0); // Ensure this is unique
addCommand.setMenuParams(menuParams); // Set the menu
parameters

sdlManager.sendRPC(addCommand);

ADD A SUBMENU

Use the cmdID of the menu item to tell the SDL Core which item to delete using

the DeleteCommand RPC.

int unique_id = 313;

AddSubMenu addSubMenu = new AddSubMenu();
addSubMenu.setPosition(0);
addSubMenu.setMenuID(unique_id);
addSubMenu.setMenuName("SubMenu");
addSubMenu.setOnRPCResponseListener(new OnRPCResponseListener
() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if(((AddSubMenuResponse) response).getSuccess()){
 // The submenu was created successfully, start adding the
submenu items
 // Use unique_id
 }else{
 Log.i("SdlService", "AddSubMenu request rejected.");
 }
 }
});

DELETE MENU ITEMS

int cmdID_to_delete = 1;

DeleteCommand deleteCommand = new DeleteCommand();
deleteCommand.setCmdID(cmdID_to_delete);

sdlManager.sendRPC(deleteCommand);

Use the menuID to tell the SDLCore which item to delete using the DeleteSubM

enu RPC.

Custom Menus

Custom menus, called perform interactions, are one level deep, however,

you can create submenus by triggering another perform interaction when the

user selects a row in a menu. Perform interactions can be set up to recognize

speech, so a user can select an item in the menu by speaking their preference

rather than physically selecting the item.

DELETE SUBMENUS

DeleteSubMenu deleteSubMenu = new DeleteSubMenu();
deleteSubMenu.setMenuID(submenuID_to_delete); // Replace with
submenu ID to delete

Perform interactions are created by sending two different RPCs. First a CreateIn

teractionChoiceSet RPC must be sent. This RPC sends a list of items that will

show up in the menu. When the request has been registered successfully, then

a PerformInteraction RPC is sent. The PerformInteraction RPC sends the

formatting requirements, the voice-recognition commands, and a timeout

command.

Each menu item choice defined in Choice should be assigned a unique id. The

choice set in CreateInteractionChoiceSet should also have its own unique id.

CREATE A SET OF CUSTOM MENU ITEMS

CreateInteractionChoiceSet choiceSet = new
CreateInteractionChoiceSet();

Choice choice = new Choice();
choice.setChoiceID(uniqueChoiceID);
choice.setMenuName("ChoiceA");
choice.setVrCommands(Arrays.asList("ChoiceA"));

List<Choice> choiceList = new ArrayList<>();
choiceList.add(choice);

choiceSet.setChoiceSet(choiceList);
choiceSet.setInteractionChoiceSetID(uniqueIntChoiceSetID);
choiceSet.setOnRPCResponseListener(new OnRPCResponseListener() {
@Override
public void onResponse(int correlationId, RPCResponse response) {
 if(((CreateInteractionChoiceSetResponse) response).getSuccess()){
 // The request was successful, now send the
SDLPerformInteraction RPC
 }else{
 // The request was unsuccessful
 }
}
});

sdlManager.sendRPC(choiceSet);

Once the set of menu items has been sent to SDL Core, send a PerformInteract

ion RPC to get the items to show up on the HMI screen.

The interaction mode specifies the way the user is prompted to make a section

and the way in which the user’s selection is recorded.

I N T E R A C T I O N M O D E D E S C R I P T I O N

FORMAT THE SET OF CUSTOM MENU ITEMS

List<Integer> interactionChoiceSetIDList = new ArrayList<>();
interactionChoiceSetIDList.add(uniqueIntChoiceSetID);

PerformInteraction performInteraction = new PerformInteraction();
performInteraction.setInitialText("Initial text.");
performInteraction.setInteractionChoiceSetIDList(
interactionChoiceSetIDList);

INTERACTION MODE

Manual only
Interactions occur only through the

display

VR only
Interactions occur only through text-to-

speech and voice recognition

Both
Interactions can occur both manually or

through VR

performInteraction.setInteractionMode(InteractionMode.MANUAL_ONLY
);

FORD HMI

VR INTERACTION MODE

MANUAL INTERACTION MODE

FORD HMI

The items in the perform interaction can be shown as a grid of buttons (with

optional images) or as a list of choices.

L AYO U T M O D E F O R M AT T I N G D E S C R I P T I O N

INTERACTION LAYOUT

Icon only A grid of buttons with images

Icon with search
A grid of buttons with images along with

a search field in the HMI

List only A vertical list of text

List with search
A vertical list of text with a search field in

the HMI

Keyboard
A keyboard shows up immediately in the

HMI

FORD HMI

NOTE

Keyboard is currently only supported for the navigation app type.

performInteraction.setInteractionLayout(LayoutMode.LIST_ONLY);

ICON ONLY INTERACTION LAYOUT

LIST ONLY INTERACTION LAYOUT

FORD HMI

FORD HMI

LIST WITH SEARCH INTERACTION LAYOUT

A text-to-speech chunk is a text phrase or prerecorded sound that will be

spoken by the head unit. The text parameter specifies the text to be spoken or

the name of the pre-recorded sound. Use the type parameter to define the type

of information in the text parameter. The PerformInteraction request can have

a initial, timeout, and a help prompt.

The timeout parameter defines the amount of time the menu will appear on the

screen before the menu is dismissed automatically by the HMI.

TEXT-TO-SPEECH (TTS)

performInteraction.setInitialPrompt(
 TTSChunkFactory.createSimpleTTSChunks("Hello, welcome."));

TIMEOUT

performInteraction.setTimeout(30000); // 30 seconds

If the information in the menu is dynamic, then the old interaction choice set

needs to be deleted with a DeleteInteractionChoiceSet RPC before the new

information can be added to the menu. Use the interaction choice set id to

delete the menu.

SEND THE REQUEST

performInteraction.setOnRPCResponseListener(new
OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 PerformInteractionResponse piResponse = (
PerformInteractionResponse) response;
 if(piResponse.getSuccess()){
 // Successful request
 if(piResponse.getResultCode().equals(Result.TIMED_OUT)){
 // Interaction timed out without user input
 }else if(piResponse.getResultCode().equals(Result.SUCCESS)){
 Integer userChoice = piResponse.getChoiceID();
 }
 }else{
 // Unsuccessful request
 }
 }
});

sdlManager.sendRPC(performInteraction);

DELETE THE CUSTOM MENU

Alerts

An alert is a pop-up window with some lines of text and optional soft buttons.

When an alert is activated, it will abort any SDL operation that is in-progress,

except the already-in-progress alert. If an alert is issued while another alert is

still in progress, the newest alert will simply be ignored.

Alert UI

Depending the platform, an alert can have up to three lines of text, a progress

indicator (e.g. a spinning wheel or hourglass), and up to four soft buttons.

DeleteInteractionChoiceSet deleteInteractionChoiceSet = new
DeleteInteractionChoiceSet();
deleteInteractionChoiceSet.setInteractionChoiceSetID(
interactionChoiceSetID_to_delete); // Replace with interaction choice
set to delete

sdlManager.sendRPC(deleteInteractionChoiceSet);

ALERT WITHOUT SOFT BUTTONS

FORD HMI

FORD HMI

Alert TTS

The alert can also be formatted to speak a prompt when the alert appears on

the screen. Do this by setting the ttsChunks parameter. To play the alert tone

before the text-to-speech is spoken, set playTone to true .

ALERT WITH SOFT BUTTONS

Example

Dismissing the Alert

The alert will persist on the screen until the timeout has elapsed, or the user

dismisses the alert by selecting a button. There is no way to dismiss the alert

programmatically other than to set the timeout length.

Alert alert = new Alert();
alert.setAlertText1("Alert Text 1");
alert.setAlertText2("Alert Text 2");
alert.setAlertText3("Alert Text 3");

// Maximum time alert appears before being dismissed
// Timeouts are must be between 3-10 seconds
// Timeouts may not work when soft buttons are also used in the alert
alert.setDuration(5000);

// A progress indicator (e.g. spinning wheel or hourglass)
// Not all head units support the progress indicator
alert.setProgressIndicator(true);

//Text to speech
alert.setTtsChunks(TTS_list); // TTS_list populated elsewhere

// Special tone played before the tts is spoken
alert.setPlayTone(true);

// Soft buttons
alert.setSoftButtons(softButtons); // softButtons populated elsewhere

// Send alert
sdlManager.sendRPC(alert);

Uploading Files and Graphics

Graphics allow you to better customize what you would like to have your users

see and provide a better User Interface.

When developing an application using SmartDeviceLink, two things must

always be remembered when using graphics:

1. You may be connected to a head unit that does not display graphics.
2. You must upload them from your mobile device to Core before using them.

Detecting if Graphics are Supported

Being able to know if graphics are supported is a very important feature of your

application, as this avoids you uploading unnecessary images to the head unit.

In order to see if graphics are supported, use the getCapability() method of a

valid SystemCapabilityManager obtained from sdlManager.getSystemCapabili

tyManager() to find out the display capabilities of the head unit.

NOTE

Many of these features will be handled for you automatically by the

ScreenManager and other managers. This guide will be for using

the FileManager directly through SdlManager

SDL File and SDL Artwork

SDL files and artwork are uploaded through the FileManager . This is

accomplished with SdlFile and SdlArtwork objects. The FileManager helps

streamline the file management workflow within SDL. SdlArtwork is an

extension of SdlFile that pertains only to graphic specific file types, and its use

case is similar. For the rest of this document, SdlFile will be described, but

everything also applies to SdlArtwork .

The first step in uploading files to the connected module is creating an instance

of SdlFile . There are a few different constructors that can be used based on

the source of the file. The following can be used to instantiate SdlFile :

A RESOURCE ID

sdlManager.getSystemCapabilityManager().getCapability(
SystemCapabilityType.DISPLAY, new OnSystemCapabilityListener(){

 @Override
 public void onCapabilityRetrieved(Object capability){
 DisplayCapabilities dispCapability = (DisplayCapabilities) capability;
 }

 @Override
 public void onError(String info){
 Log.i(TAG, "Capability could not be retrieved: "+ info);
 }
 });

CREATION

new SdlFile(@NonNull String fileName, @NonNull FileType fileType, int id
, boolean persistentFile)

A URI

A BYTE ARRAY

Uploading a File

Uploading a file with the FileManager is a simple process. With an instantiated

SdlManager ,

you can simply call:

Sometimes you need to upload more than one file. We've got you covered.

Simply create a List<SdlFile> object, add your files, and then call:

new SdlFile(@NonNull String fileName, @NonNull FileType fileType, Uri
uri, boolean persistentFile)

new SdlFile(@NonNull String fileName, @NonNull FileType fileType, byte
[] data, boolean persistentFile)

sdlManager.getFileManager().uploadFile(sdlFile, new
CompletionListener() {
 @Override
 public void onComplete(boolean success) {

 }
});

UPLOADING MULTIPLE FILES

As mentioned before, the behavior of SdlFile and SdlArtwork are the same.

But to help separate code, we have also included uploadArtwork and uploadA

rtworks methods to the FileManager that work the same as their SdlFile

counterparts shown above.

File Naming

The file name can only consist of letters (a-Z) and numbers (0-9), otherwise the

SDL Core may fail to find the uploaded file (even if it was uploaded

successfully).

File Persistance

SdlFile supports uploading persistent images, i.e. images that do not become

deleted when your application disconnects. Persistence should be used for

images relating to your UI like your app icon, and not for dynamic aspects, such

as Album Artwork.

sdlManager.getFileManager().uploadFiles(sdlFileList, new
MultipleFileCompletionListener() {
 @Override
 public void onComplete(Map<String, String> errors) {

 }
});

UPLOADING ARTWORK

Overwrite Stored Files

If a file being uploaded has the same name as an already uploaded file, the

new file will overwrite the previous file.

Check if a File Has Already Been Uploaded

FileManager provides two methods that allow you to check if a file has been

uploaded.

getRemoteFileNames() returns a List<String> of the names of files that are

uploaded to the head unit.

NOTE

Be aware that persistence will not work if space on the head unit is

limited. Persistence is also not guaranteed.

GETTING REMOTE FILES

List<String> files = sdlManager.getFileManager().getRemoteFileNames
();

hasUploadedFile takes an SdlFile and returns a boolean of whether it is

uploaded or not.

Check the Amount of File Storage

To find the amount of file storage left on the head unit, use the ListFiles RPC.

Delete Stored Files

As with uploading, there are two methods that allow you to delete remote files.

SEE IF A FILE IS UPLOADED

boolean isUploaded = sdlManager.getFileManager().hasUploadedFile(
sdlFile);

ListFiles listFiles = new ListFiles();
listFiles.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if(response.getSuccess()){
 Integer spaceAvailable = ((ListFilesResponse) response).
getSpaceAvailable();
 Log.i("SdlService", "Space available on Core = " +
spaceAvailable);
 }else{
 Log.i("SdlService", "Failed to request list of uploaded files.");
 }
 }
});

sdlManager.sendRPC(listFiles);

To delete a single file, call deleteRemoteFileWithName() and pass in the file

name as a string. You can optionally pass in a CompletionListener .

To delete multiple files, call deleteRemoteFilesWithNames() and pass in a list

with the names of the files you want to delete. You can optionally pass in a Mul

tipleFileCompletionListener .

FOR A SINGLE FILE

sdlManager.getFileManager().deleteRemoteFileWithName("testFile",
new CompletionListener() {
 @Override
 public void onComplete(boolean success) {

 }
});

MULTIPLE FILES

sdlManager.getFileManager().deleteRemoteFilesWithNames(remoteFiles
, new MultipleFileCompletionListener() {
 @Override
 public void onComplete(Map<String, String> errors) {

 }
});

Image Specifics

Image File Type

Images may be formatted as PNG, JPEG, or BMP. Check the DisplayCapabilities

object provided by sdlManager.getSystemCapabilityManager().getCapability()

to find out what image formats the head unit supports.

Image Sizes

If an image is uploaded that is larger than the supported size, that image will

be scaled down to accommodate.

IMAGE SPECIFICATIONS

I M A G E
N A M E

U S E D I N
R P C

D E TA I L S H E I G H T W I D T H T Y P E

softButt

onImag

e

Show

Will be

shown on

softbutto

ns on the

base

screen

70px 70px

png,

jpg,

bmp

choiceI

mage

CreateInt

eractionC

hoiceSet

Will be

shown in

the

manual

part of an

performIn

teraction

either big

(ICON_ON

LY) or

small

(LIST_ONL

Y)

70px 70px

png,

jpg,

bmp

choiceS

econdar

yImage

CreateInt

eractionC

hoiceSet

Will be

shown on

the right

side of an

entry in

(LIST_ONL

Y)

performIn

teraction

35px 35px

png,

jpg,

bmp

vrHelpIt

em

SetGlobal

Propertie

s

Will be

shown

during

voice

interactio

n

35px 35px

png,

jpg,

bmp

menuIc

on

SetGlobal

Propertie

s

Will be

shown on

the

“More…”

button

35px 35px

png,

jpg,

bmp

I M A G E
N A M E

U S E D I N
R P C

D E TA I L S H E I G H T W I D T H T Y P E

Get Vehicle Data

Use the GetVehicleData RPC request to get vehicle data. The HMI level must be

FULL, LIMITED, or BACKGROUND in order to get data.

Each vehicle manufacturer decides which data it will expose. Please check the

PermissionManager to find out which data types your app currently has access

to for the connected head unit.

cmdIco

n

AddCom

mand

Will be

shown for

command

s in the

"More…"

menu

35px 35px

png,

jpg,

bmp

appIcon
SetAppIc

on

Will be

shown as

Icon in

the

"Mobile

Apps"

menu

70px 70px

png,

jpg,

bmp

graphic Show

Will be

shown on

the

basescre

en as

cover art

185px 185px

png,

jpg,

bmp

https://d83tozu1c8tt6.cloudfront.net/guides/android/permission-manager/

NOTE

You may only ask for vehicle data that is available to your

appName & appId combination. These will be specified by each

OEM separately.

V E H I C L E D ATA PA R A M E T E R N A M E D E S C R I P T I O N

GPS gps

Longitude and latitude,

current time in UTC,

degree of precision,

altitude, heading, speed,

satellite data vs dead

reckoning, and

supported dimensions of

the GPS

Speed speed Speed in KPH

RPM rpm

The number of

revolutions per minute

of the engine

Fuel level fuelLevel
The fuel level in the tank

(percentage)

Fuel level state fuelLevel_State

The fuel level state:

unknown, normal, low,

fault, alert, or not

supported

Fuel range fuelRange

The estimate range in

KM the vehicle can

travel based on fuel

level and consumption

Instant fuel consumption instantFuelConsumption

The instantaneous fuel

consumption in

microlitres

External temperature externalTemperature

The external

temperature in degrees

celsius

VIN vin
The Vehicle

Identification Number

PRNDL prndl

The selected gear the

car is in: park, reverse,

neutral, drive, sport, low

gear, first, second, third,

fourth, fifth, sixth,

seventh or eighth gear,

unknown, or fault

V E H I C L E D ATA PA R A M E T E R N A M E D E S C R I P T I O N

Tire pressure tirePressure

Tire status of each

wheel in the vehicle:

normal, low, fault, alert,

or not supported.

Warning light status for

the tire pressure: off, on,

flash, or not used

Odometer odometer Odometer reading in km

Belt status beltStatus

The status of each of the

seat belts: no, yes, not

supported, fault, or no

event

Body information bodyInformation

Door ajar status for each

door. The Ignition status.

The ignition stable

status. The park brake

active status.

Device status deviceStatus

Contains information

about the smartphone

device. Is voice

recognition on or off,

has a bluetooth

connection been

established, is a call

active, is the phone in

roaming mode, is a text

message available, the

battery level, the status

of the mono and stereo

output channels, the

signal level, the primary

audio source, whether or

not an emergency call is

currently taking place

Driver braking driverBraking

The status of the brake

pedal: yes, no, no event,

fault, not supported

V E H I C L E D ATA PA R A M E T E R N A M E D E S C R I P T I O N

Wiper status wiperStatus

The status of the wipers:

off, automatic off, off

moving, manual

interaction off, manual

interaction on, manual

low, manual high,

manual flick, wash,

automatic low,

automatic high, courtesy

wipe, automatic adjust,

stalled, no data exists

Head lamp status headLampStatus

Status of the head

lamps: whether or not

the low and high beams

are on or off. The

ambient light sensor

status: night, twilight 1,

twilight 2, twilight 3,

twilight 4, day,

unknown, invalid

Engine torque engineTorque

Torque value for engine

(in Nm) on non-diesel

variants

Engine oil life engineOilLife

The estimated

percentage of remaining

oil life of the engine

Acceleration pedal

position
accPedalPosition

Accelerator pedal

position (percentage

depressed)

Steering wheel angle steeringWheelAngle

Current angle of the

steering wheel (in

degrees)

E-Call information eCallInfo

Information about the

status of an emergency

call

Airbag status airbagStatus

Status of each of the

airbags in the vehicle:

yes, no, no event, not

supported, fault

V E H I C L E D ATA PA R A M E T E R N A M E D E S C R I P T I O N

Emergency event emergencyEvent

The type of emergency:

frontal, side, rear,

rollover, no event, not

supported, fault. Fuel

cutoff status: normal

operation, fuel is cut off,

fault. The roll over

status: yes, no, no

event, not supported,

fault. The maximum

change in velocity.

Whether or not multiple

emergency events have

occurred

Cluster mode status clusterModeStatus

Whether or not the

power mode is active.

The power mode

qualification status:

power mode undefined,

power mode evaluation

in progress, not defined,

power mode ok. The car

mode status: normal,

factory, transport, or

crash. The power mode

status: key out, key

recently out, key

approved, post

accessory, accessory,

post ignition, ignition on,

running, crank

My key myKey

Information about

whether or not the

emergency 911 override

has been activated

Turn signal turnSignal
The status of the turn

light indicator

V E H I C L E D ATA PA R A M E T E R N A M E D E S C R I P T I O N

Single Time Vehicle Data Retrieval

Using GetVehicleData , we can ask for vehicle data a single time, if needed.

Subscribing to Vehicle Data

Subscribing to vehicle data allows you to get notified whenever we have new

data available. This data should not be relied upon being received in a

consistent manner. New vehicle data is available roughly every second.

First, you should add a notification listener for OnVehicleData notification:

Electronic park brake

status
electronicParkBrakeStatus

The status of the park

brake as provided by

Electric Park Brake (EPB)

system

GetVehicleData vdRequest = new GetVehicleData();
vdRequest.setPrndl(true);
vdRequest.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if(response.getSuccess()){
 PRNDL prndl = ((GetVehicleDataResponse) response).getPrndl();
 Log.i("SdlService", "PRNDL status: " + prndl.toString());
 }else{
 Log.i("SdlService", "GetVehicleData was rejected.");
 }
 }
});
sdlManager.sendRPC(vdRequest);

Then, send the Subscribe Vehicle Data Request:

After that, the onNotified method should be called when there is an update

to the subscribed vehicle data.

sdlManager.addOnRPCNotificationListener(FunctionID.
ON_VEHICLE_DATA, new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnVehicleData onVehicleDataNotification = (OnVehicleData)
notification;
 if (onVehicleDataNotification.getPrndl() != null) {
 Log.i("SdlService", "PRNDL status was updated to: " +
onVehicleDataNotification.getPrndl());
 }
 }
});

SubscribeVehicleData subscribeRequest = new SubscribeVehicleData();
subscribeRequest.setPrndl(true);
subscribeRequest.setOnRPCResponseListener(new
OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if(response.getSuccess()){
 Log.i("SdlService", "Successfully subscribed to vehicle data.");
 }else{
 Log.i("SdlService", "Request to subscribe to vehicle data was
rejected.");
 }
 }
});
sdlManager.sendRPC(subscribeRequest);

Unsubscribing from Vehicle Data

Sometimes you may not always need all of the vehicle data you are listening

to. We suggest that you only are subscribing when the vehicle data is needed.

To stop listening to specific vehicle data items, utilize UnsubscribeVehicleData

.

Knowing the In-Car UI Status

Once your app is connected to Core, most of the interaction you will be doing

requires knowledge of the current In-Car UI, or HMI, Status. The HMI Status

informs you of where the user is within the head unit in a general sense.

Refer to the table below of all possible HMI States:

UnsubscribeVehicleData unsubscribeRequest = new
UnsubscribeVehicleData();
unsubscribeRequest.setPrndl(true); // unsubscribe to PRNDL data
unsubscribeRequest.setOnRPCResponseListener(new
OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if(response.getSuccess()){
 Log.i("SdlService", "Successfully unsubscribed to vehicle data."
);
 }else{
 Log.i("SdlService", "Request to unsubscribe to vehicle data was
rejected.");
 }
 }
});
sdlManager.sendRPC(unsubscribeRequest);

H M I S TAT E W H AT D O E S T H I S M E A N ?

Monitoring HMI Status

Monitoring HMI Status is possible through an OnHMIStatus notification that

you can subscribe to via the SdlManager 's addOnRPCNotificationListener .

NONE

The user has not been opened your app,

or it has been Exited via the "Menu"

button.

BACKGROUND

The user has opened your app, but is

currently in another part of the Head

Unit. If you have a Media app, this means

that another Media app has been

selected.

LIMITED

For Media apps, this means that a user

has opened your app, but is in another

part of the Head Unit.

FULL
Your app is currently in focus on the

screen.

sdlManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS,
new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnHMIStatus status = (OnHMIStatus) notification;
 if (status.getHmiLevel() == HMILevel.HMI_FULL && ((OnHMIStatus)
 notification).getFirstRun()) {
 // first time in HMI Full
 }
 }
});

More Detailed HMI Information

When an interaction occurs relating to your application, there is some

additional pieces of information that can be observed that help figure out a

more descriptive picture of what is going on with the Head Unit.

From the documentation, Audio Streaming State informs your app whether any

currently streaming audio is audible to user (AUDIBLE) or not (NOT_AUDIBLE). A

value of NOT_AUDIBLE means that either the application's audio will not be

audible to the user, or that the application's audio should not be audible to the

user (i.e. some other application on the mobile device may be streaming audio

and the application's audio would be blended with that other audio).

You will see this come in for things such as Alert, PerformAudioPassThru,

Speaks, etc.

AU D I O S T R E A M I N G S TAT E W H AT D O E S T H I S M E A N ?

AUDIO STREAMING STATE

AUDIBLE
Any audio you are streaming will be

audible to the user.

ATTENUATED

Some kind of audio mixing is occuring

between what you are streaming, if

anything, and some system level sound.

This can be visible is displaying an Alert

with playTone set to true.

NOT_AUDIBLE

Your streaming audio is not audible. This

could occur during a VRSESSSION

System Context.

System Context informs your app if there is potentially a blocking HMI

component while your app is still visible. An example of this would be if your

application is open, and you display an Alert. Your app will receive a System

Context of ALERT while it is presented on the screen, followed by MAIN when it

is dismissed.

S Y S T E M C O N T E X T S TAT E W H AT D O E S T H I S M E A N ?

Monitoring Audio Streaming State and
System Context

Monitoring these two properties is quite easy using the OnHMIStatus

notification.

SYSTEM CONTEXT

MAIN
No user interaction is in progress that

could be blocking your app's visibility.

VRSESSION
Voice Recognition is currently in

progress.

MENU
A menu interaction is currently in-

progress.

HMI_OBSCURED

The app's display HMI is being blocked

by either a system or other app's overlay

(another app's Alert, for instance).

ALERT
An alert that you have sent is currently

visible (Other apps will not receive this).

Setting the Navigation
Destination

Setting a Navigation Destination allows you to send a GPS location that you

would like to prompt that user to navigate to using their embedded navigation.

When using the SendLocation RPC, you will not receive a callback about how

the user interacted with this location, only if it was successfully sent to Core

and received. It will be handled by Core from that point on using the embedded

navigation system.

@Override
public void onNotified(RPCNotification notification) {
 OnHMIStatus status = (OnHMIStatus) notification;
 AudioStreamingState streamingState = notification.
getAudioStreamingState();
 SystemContext systemContext = notification.getSystemContext();
}

NOTE

This currently is only supported for Embedded Navigation. This

does not work with Mobile Navigation Apps at this time.

Determining the Result of SendLocation

SendLocation has 3 possible results that you should expect:

1. SUCCESS - SendLocation was successfully sent.
2. INVALID_DATA - The request you sent contains invalid data and was

rejected.
3. DISALLOWED - Your app does not have permission to use SendLocation.

Detecting if SendLocation is Available

SendLocation is a newer RPC, so there is a possibility that not all head units

will support it, especially if you are connected to a head unit that does not have

an embedded navigation. To see if SendLocation is supported, you may look

at HmiCapabilities that can be retrieved using SystemCapabilityManager .

NOTE

SendLocation is an RPC that is usually restricted by OEMs. As a

result, the OEM you are connecting to may limit app functionality if

not approved for usage.

HMICapabilities hmiCapabilities = (HMICapabilities) sdlManager.
getSystemCapabilityManager().getCapability(SystemCapabilityType.HMI
);
if (hmiCapabilities.isNavigationAvailable()){
 // SendLocation supported
}else{
 // SendLocation is not supported
}

Using SendLocation

To use SendLocation , you must at least include the Longitude and Latitude of

the location. You can also include an address, name, description, phone

number, and image.

SendLocation sendLocation = new SendLocation();
sendLocation.setLatitudeDegrees(42.877737);
sendLocation.setLongitudeDegrees(-97.380967);
sendLocation.setLocationName("The Center");
sendLocation.setLocationDescription("Center of the United States");

// Create Address
OasisAddress address = new OasisAddress();
address.setSubThoroughfare("900");
address.setThoroughfare("Whiting Dr");
address.setLocality("Yankton");
address.setAdministrativeArea("SD");
address.setPostalCode("57078");
address.setCountryCode("US-SD");
address.setCountryName("United States");

sendLocation.setAddress(address);

// Monitor response
sendLocation.setOnRPCResponseListener(new OnRPCResponseListener
() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 Result result = response.getResultCode();
 if(result.equals(Result.SUCCESS)){
 // SendLocation was successfully sent.
 }else if(result.equals(Result.INVALID_DATA)){
 // The request you sent contains invalid data and was rejected.
 }else if(result.equals(Result.DISALLOWED)){
 // Your app does not have permission to use SendLocation.
 }
 }
});

sdlManager.sendRPC(sendLocation);

Calling a Phone Number

Dialing a Phone Number allows you to send a phone number to dial on the

user's phone. Regardless of platform, you must be sure that a device is

connected via Bluetooth for this RPC to work. If it is not connected, you will

receive a REJECTED Result .

Determining the Result of DialNumber

DialNumber has 3 possible results that you should expect:

1. SUCCESS - DialNumber was successfully sent, and a phone call was

initiated by the user.
2. REJECTED - DialNumber was sent, and a phone call was cancelled by the

user. Also, this could mean that there is no phone connected via

Bluetooth.
3. DISALLOWED - Your app does not have permission to use DialNumber.

Detecting if DialNumber is Available

DialNumber is a newer RPC, so there is a possibility that not all head units will

support it. To see if DialNumber is supported, you may look at the HMICapabil

ities that can be retrieved using SystemCapabilityManager .

NOTE

DialNumber is an RPC that is usually restricted by OEMs. As a

result, the OEM you are connecting to may limit app functionality if

not approved for usage.

How to Use

HMICapabilities hmiCapabilities = (HMICapabilities) sdlManager.
getSystemCapabilityManager().getCapability(SystemCapabilityType.HMI
);
if(hmiCapabilities.isPhoneCallAvailable()){
 // DialNumber supported
}else{
 // DialNumber is not supported
}

NOTE

For DialNumber, all characters are stripped except for 0 - 9 , * ,

, , , ; , and +

Getting In-Car Audio

Capturing in-car audio allows developers to interact with users via raw audio

data provided to them from the car's microphones. In order to gather the raw

audio from the vehicle, we must leverage the PerformAudioPassThru RPC.

DialNumber dialNumber = new DialNumber();
dialNumber.setNumber("1238675309");
dialNumber.setOnRPCResponseListener(new OnRPCResponseListener()
{
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 Result result = response.getResultCode();
 if(result.equals(Result.SUCCESS)){
 // `DialNumber` was successfully sent, and a phone call was
initiated by the user.
 }else if(result.equals(Result.REJECTED)){
 // `DialNumber` was sent, and a phone call was cancelled by
the user. Also, this could mean that there is no phone connected via
Bluetooth.
 }else if(result.equals(Result.DISALLOWED)){
 // Your app does not have permission to use DialNumber.
 }
 }
});

sdlManager.sendRPC(dialNumber);

NOTE

PerformAudioPassThru does not support automatic speech

cancellation detection, so if this feature is desired, it is up to the

developer to implement.

Subscribing to AudioPassThru Notifications

Before starting audio capture, the app has to subscribe to AudioPassThru

notification. SDL provides audio data as fast as it can gather it, and sends it to

the developer in chunks. In order to retrieve this audio data, observe the OnAu

dioPassThru notification:

Starting Audio Capture

To initiate audio capture, we must construct a PerformAudioPassThru object.

The properties we will set in this object's constructor relate to how we wish to

gather the audio data from the vehicle we are connected to.

sdlManager.addOnRPCNotificationListener(FunctionID.
ON_AUDIO_PASS_THRU, new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnAudioPassThru onAudioPassThru = (OnAudioPassThru)
notification;
 byte[] dataRcvd = onAudioPassThru.getAPTData();
 processAPTData(dataRcvd); // Do something with audio data
 }
});

NOTE

This audio data is only the current audio data, so the developer

must be in charge of managing previously retrieved audio data.

PerformAudioPassThru performAPT = new PerformAudioPassThru();
performAPT.setAudioPassThruDisplayText1("Ask me \"What's the
weather?\"");
performAPT.setAudioPassThruDisplayText2("or \"What's 1 + 2?\"");

performAPT.setInitialPrompt(TTSChunkFactory.createSimpleTTSChunks(
"Ask me What's the weather? or What's 1 plus 2?"));
performAPT.setSamplingRate(SamplingRate._22KHZ);
performAPT.setMaxDuration(7000);
performAPT.setBitsPerSample(BitsPerSample._16_BIT);
performAPT.setAudioType(AudioType.PCM);
performAPT.setMuteAudio(false);

sdlManager.sendRPC(performAPT);

NOTE

AudioPassThru notification listener should be added before

sending PerformAudioPassThru request or else some audio data

may be missed.

In order to know the currently supported audio capture capabilities of the

connected head unit, please refer to the SystemCapabilityManager . It can

retrieve the AudioPassThruCapabilities that the head unit supports.

Ending Audio Capture

AudioPassThru is a request that works in a different way when compared to

other RPCs. For most RPCs a request is followed by an immediate response that

informs the developer whether or not that RPC was successful. This RPC,

FORD HMI

NOTE

Currently, Ford's SYNC 3 vehicles only support a sampling rates of

16 khz and a bit rate of 16.

however, will only send out the response when the Perform Audio Pass Thru is

ended.

Audio Capture can be ended in 4 ways:

1. AudioPassThru has timed out.

If the audio passthrough has proceeded longer than the requested timeout

duration, Core will end this request and send a PerformAudioPassThruRes

ponse with a Result of SUCCESS . You should expect to handle this

audio passthrough as though it was successful.
2. AudioPassThru was closed due to user pressing "Cancel".

If the audio passthrough was displayed, and the user pressed the "Cancel"

button, you will receive a PerformAudioPassThruResponse with a Result

of ABORTED . You should expect to ignore this audio pass through.
3. AudioPassThru was closed due to user pressing "Done".

If the audio passthrough was displayed, and the user pressed the "Done"

button, you will receive a PerformAudioPassThruResponse with a Result

of SUCCESS . You should expect to handle this audio passthrough as

though it was successful.
4. AudioPassThru was ended due to the developer ending the request.

If the audio passthrough was displayed, but you have established on your

own that you no longer need to capture audio data, you can send an End

AudioPassThru RPC.

You will receive an EndAudioPassThruResponse and a PerformAudioPassThruR

esponse with a Result of SUCCESS , and should expect to handle this audio

passthrough as though it was successful.

EndAudioPassThru endAPT = new EndAudioPassThru();
sdlManager.sendRPC(endAPT);

Handling the Response

To process the response that we received from an ended audio capture, we

monitor the PerformAudioPassThruResponse by adding a listener to the Perfo

rmAudioPassThru RPC before sending it. If the response has a successful Resu

lt , all of the audio data for the passthrough has been received and is ready for

processing.

Mobile Navigation

Mobile Navigation allows map partners to bring their applications into the car

and display their maps and turn by turn easily for the user. This feature has a

different behavior on the head unit than normal applications. The main

differences are:

• Navigation Apps don't use base screen templates. Their main view is the

video stream sent from the device

performAPT.setOnRPCResponseListener(new OnRPCResponseListener()
{
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 Result result = response.getResultCode();

 if(result.equals(Result.SUCCESS)){
 // We can use the data
 }else{
 // Cancel any usage of the data
 Log.e("SdlService", "Audio pass thru attempt failed.");
 }
 }
});

• Navigation Apps can send audio via a binary stream. This will attenuate

the current audio source and should be used for navigation commands
• Navigation Apps can receive touch events from the video stream

Connecting an app

The basic connection is the similar for all apps. Please follow Getting Started >

Integration Basics for more information.

The first difference for a navigation app is the appHMIType of NAVIGATION

that has to be set in the creation of the SdlManager . Navigation apps are also

non-media apps.

The second difference is the requirement to call the setSdlSecurity

(List<Class<? extends SdlSecurityBase>> secList) method from the SdlMana

ger.Builder if connecting to an implementation of Core that requires secure

video & audio streaming. This method requires an array of Security Managers,

which will extend the SdlSecurityBase class. These security libraries are

provided by the OEMs themselves, and will only work for that OEM. There is not

a general catch-all security library.

NOTE

In order to use SDL's Mobile Navigation feature, the app must have

a minimum requirement of Android 4.4 (SDK 19). This is due to

using Android's provided video encoder.

https://d83tozu1c8tt6.cloudfront.net/guides/android/getting-started/integration-basics/
https://d83tozu1c8tt6.cloudfront.net/guides/android/getting-started/integration-basics/

After being registered, the app will start receiving callbacks. One important

notification is ON_HMI_STATUS , which informs the app about the currently

visible application on the head unit. Right after registering, the hmiLevel will

be NONE or BACKGROUND . Streaming should commence once the

hmiLevel has been set to FULL by the head unit.

SdlManager.Builder builder = new SdlManager.Builder(this, APP_ID,
APP_NAME, listener);

Vector<AppHMIType> hmiTypes = new Vector<AppHMIType>();
hmiTypes.add(AppHMIType.NAVIGATION);
builder.setAppTypes(hmiTypes);

List<? extends SdlSecurityBase> securityManagers = new ArrayList();
securityManagers.add(OEMSecurityManager1.class);
securityManagers.add(OEMSecurityManager1.class);
builder.setSdlSecurity(securityManagers);

MultiplexTransportConfig mtc = new MultiplexTransportConfig(this,
APP_ID, MultiplexTransportConfig.FLAG_MULTI_SECURITY_OFF);
mtc.setRequiresHighBandwidth(true);
builder.setTransportType(transport);

sdlManager = builder.build();
sdlManager.start();

NOTE

When compiling, you must make sure to include all possible OEM's

security managers that you wish to support.

Video Streaming

In order to stream video from an SDL app, we only need to manage a few

things. For the most part, the library will handle the majority of logic needed to

perform video streaming.

SDL Remote Display

The SdlRemoteDisplay base class provides the easiest way to start streaming

using SDL. The SdlRemoteDisplay is extended from Android's Presentation

class with modifications to work with other aspects of the SDL Android library.

Extending this class gives developers a familiar, native experience to handling

layouts and events on screen.

NOTE

It is recommended that you extend this as a local class within the

service that has the SdlManager instance.

Managing the Stream

The VideoStreamingManager can be used to start streaming video after the S

dlManager has successfully been started. This is performed by calling the

method startRemoteDisplayStream(Context context, final Class<? extends

public static class MyDisplay extends SdlRemoteDisplay{
 public MyDisplay(Context context, Display display) {
 super(context, display);
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.sdl);

 final Button button1 = (Button) findViewById(R.id.button_1);

 button1.setOnTouchListener(new View.OnTouchListener() {
 @Override
 public boolean onTouch(View v, MotionEvent event) {
 Log.d(TAG, "Received motion event for button1");
 }
 });
 }
}

NOTE

If you are obfuscating the code in your app, make sure to exclude

your class that extends SdlRemoteDisplay . For more information

on how to do that, you can check Proguard Guidelines.

https://d83tozu1c8tt6.cloudfront.net/guides/android/proguard-guidelines/

SdlRemoteDisplay> remoteDisplay, final VideoStreamingParameters

parameters, final boolean encrypted) .

Ending the Stream

When the HMIStatus is back to HMI_NONE it is time to stop the stream. This

is accomplished through a method stopStreaming() .

if (sdlManager.getVideoStreamManager() != null) {
 sdlManager.getVideoStreamManager().start(new CompletionListener
() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 sdlManager.getVideoStreamManager().
startRemoteDisplayStream(getApplicationContext(), MyDisplay.class,
null, false);
 } else {
 Log.e(TAG, "Failed to start video streaming manager");
 }
 }
 });
}

sdlManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS,
new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnHMIStatus status = (OnHMIStatus) notification;
 if (status != null && status.getHmiLevel() == HMILevel.HMI_NONE)
 {

 //Stop the stream
 if (sdlManager.getVideoStreamManager() != null && sdlManager
.getVideoStreamManager().isStreaming()) {
 sdlManager.getVideoStreamManager().stopStreaming();
 }

 }
 }
});

Audio Streaming

Navigation apps are allowed to stream raw audio to be played by the head unit.

The audio received this way is played immediately, and the current audio

source will be attenuated. The raw audio has to be played with the following

parameters:

• Format: PCM
• Sample Rate: 16k
• Number of Channels: 1
• Bits Per Second (BPS): 16 bits per sample / 2 bytes per sample

You can now also push mp3 files using the AudioStreamingManager , which is

accessed through the SdlManager .

To stream audio, we call sdlManager.getAudioStreamManager().start() which

will start the manager. When that callback returns successful, you call sdlMana

ger.getAudioStreamManager().startAudioStream() . When the callback for that

is successful, you can push the audio source using sdlManager.getAudioStream

Manager().pushAudioSource() . Below is an example of playing an mp3 file

that we have in our resource directory:

NOTE

For streaming consistent audio, such as music, use a normal A2DP

stream and not this method.

STREAMING AUDIO

if (sdlManager.getAudioStreamManager() != null) {
 Log.i(TAG, "Trying to start audio streaming");
 sdlManager.getAudioStreamManager().start(new CompletionListener
() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 sdlManager.getAudioStreamManager().startAudioStream(
false, new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 Resources resources = getApplicationContext().
getResources();
 int resourceId = R.raw.exampleMp3;
 Uri uri = new Uri.Builder()
 .scheme(ContentResolver.
SCHEME_ANDROID_RESOURCE)
 .authority(resources.getResourcePackageName(
resourceId))
 .appendPath(resources.getResourceTypeName(
resourceId))
 .appendPath(resources.getResourceEntryName(
resourceId))
 .build();
 sdlManager.getAudioStreamManager().
pushAudioSource(uri, new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 Log.i(TAG, "Audio file played successfully!");
 } else {
 Log.i(TAG, "Audio file failed to play!");
 }
 }
 });
 } else {
 Log.d(TAG, "Audio stream failed to start!");
 }
 }
 });
 } else {
 Log.i(TAG, "Failed to start audio streaming manager");
 }
 }
 });
}

When the stream is complete, or you receive HMI_NONE, you should stop the

stream by calling:

Supporting Haptic Input

SDL now supports "haptic" input, input from something other than a touch

screen. This could include trackpads, click-wheels, etc. These kinds of inputs

work by knowing which areas on the screen are touchable and focusing on

those areas when the user moves the trackpad or click wheel. When the user

selects a rect, the center of that area will be "touched".

STOPPING THE AUDIO STREAM

sdlManager.getAudioStreamManager().stopAudioStream(new
CompletionListener() {
 @Override
 public void onComplete(boolean success) {

 }
});

NOTE

Currently, there are no RPCs for knowing which rect is highlighted,

so your UI will have to remain static, without scrolling.

You will also need to implement touch input support (Mobile Navigation/Touch

Input) in order to receive touches of the rects.

Using SDL Presentation

SDL has support for automatically detecting focusable rects within your UI and

sending that data to the head unit. You will still need to tell SDL when your UI

changes so that it can re-scan and detect the rects to be sent. The easiest way

to use this is by taking advantage of SDL's Presentation class. This will

automatically check if the capability is available and instantiate the manager

for you. All you have to do is set your layout:

This will go through your view that was passed in and then find and send the

rects to the head unit for use. When your UI changes, call invalidate() from

your class that extends SdlRemoteDisplay .

public static class MyPresentation extends SdlRemoteDisplay {

 public MyPresentation(Context context, Display display) {
 super(context, display);
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.haptic_layout);
 LinearLayout videoView = (LinearLayout) findViewById(R.id.
cat_view);
 videoView.setOnTouchListener(new View.OnTouchListener() {
 @Override
 public boolean onTouch(View view, MotionEvent motionEvent) {
 // ...Update something on the ui

 MyPresentation.this.invalidate();
 }
 });
 }
}

Sending your own Rects

It is also possible that you may want to create your own rects instead of using

the automated methods in the Presentation class. It is important that if sending

this data yourself that you also use the SystemCapabilityManager to check if

you are on a head unit that supports this feature. If the capability is available, it

is easy to build the area you want to become selectable:

Each SendHapticData rpc should contain the entirety of all clickable areas to be

accessed via haptic controls.

public void sendHapticData() {

 Rectangle rectangle = new Rectangle();
 rectangle.setX((float) 1.0);
 rectangle.setY((float) 1.0);
 rectangle.setWidth((float) 1.0);
 rectangle.setHeight((float) 1.0);

 HapticRect hapticRect = new HapticRect();
 hapticRect.setId(123);
 hapticRect.setRect(rec);

 ArrayList<HapticRect> hapticArray = new ArrayList<HapticRect>();
 hapticArray.add(0, hr);

 SendHapticData sendHapticData = new SendHapticData();
 sendHapticData.setHapticRectData(hapticArray);

 sdlManager.sendRPC(sendHapticData);

}

Setting Security Level for
Multiplexing

When connecting to Core via Multiplex Bluetooth transport, your SDL app will

use a Router Service housed within your app or another SDL enabled app.

To help ensure the validility of the Router Service, you can select the security

level explicity when you create your Multiplex Bluetooth transport in your app's

SdlService:

If you create the transport without specifying the security level, it will be set to

FLAG_MULTI_SECURITY_MED by default.

int securityLevel = FLAG_MULTI_SECURITY_MED;

BaseTransport transport = MultiplexTransportConfig(context, appId,
securityLevel);

Security Levels

S E C U R I T Y F L A G M E A N I N G

Applying to the Trusted Router
Service Database

For an Android application to be added to the Trusted Router Service database,

the application will need to be registered on the SDL Developer Portal and

FLAG_MULTI_SECURITY_OFF
Multiplexing security turned off. All router

services are trusted.

FLAG_MULTI_SECURITY_LOW

Multiplexing security will be minimal.

Only trusted router services will be used.

Trusted router list will be obtained from

server. List will be refreshed every 20

days or during next connection session if

an SDL enabled app has been installed or

uninstalled.

FLAG_MULTI_SECURITY_MED

Multiplexing security will be on at a

normal level. Only trusted router services

will be used. Trusted router list will be

obtained from server. List will be

refreshed every 7 days or during next

connection session if an SDL enabled app

has been installed or uninstalled.

FLAG_MULTI_SECURITY_HIGH

Multiplexing security will be very strict.

Only trusted router services installed

from trusted app stores will be used.

Trusted router list will be obtained from

server. List will be refreshed every 7 days

or during next connection session if an

SDL enabled app has been installed or

uninstalled.

certified by the SDLC. For more information on registration, please see this

guide.

Any Android application that is certified by the SDLC will be added to the

Trusted Router Service database; there are no additional steps required as it is

part of the certification process.

Please consult the Trusted Router Service FAQs if you have any additional

questions.

Handling a Language Change

When a user changes the language on a head unit, an OnLanguageChange

notification will be sent from Core. Then your app will disconnect. In order for

your app to automatically reconnect to the head unit, there are a few changes

to make in the following files:

• Local SDL Broadcast Receiver
• Local SDL Service

SDL Broadcast Receiver

When the SDL Service's connection to core is closed, we want to tell our local

SDL Broadcast Receiver to restart the SDL Service. To do this, first add a public

String in your app's local SDL Broadcast Receiver class that can be included as

an extra in a broadcast intent.

public static final String RECONNECT_LANG_CHANGE =

"RECONNECT_LANG_CHANGE";

Then, override the onReceive() method of the local SDL Broadcast Receiver to

call onSdlEnabled() when receiving that action:

https://d83tozu1c8tt6.cloudfront.net/media/resources/SDL_Developer_Portal_Registration_Guide.pdf
https://d83tozu1c8tt6.cloudfront.net/media/resources/SDL_Developer_Portal_Registration_Guide.pdf
https://smartdevicelink.com/en/guides/android/frequently-asked-questions/trusted-router-service/

@Override
public void onReceive(Context context, Intent intent) {
 super.onReceive(context, intent); // Required if overriding this
method

 if (intent != null) {
 String action = intent.getAction();
 if (action != null){
 if(action.equalsIgnoreCase(TransportConstants.
START_ROUTER_SERVICE_ACTION)) {
 if (intent.getBooleanExtra(RECONNECT_LANG_CHANGE, false
)) {
 onSdlEnabled(context, intent);
 }
 }
 }
 }
}

MUST

Be sure to call super.onReceive(context, intent); at the start of the

method!

NOTE

This guide also assumes your local SDL Broadcast Receiver

implements the onSdlEnabled() method as follows:

SDL Service

We want to tell our local SDL Broadcast Receiver to restart the service when an

OnLanguageChange notification is received from Core . To do so, add a

notification listener as follows:

@Override
public void onSdlEnabled(Context context, Intent intent) {
 intent.setClass(context, SdlService.class);
 context.startService(intent);
}

sdlManager.addOnRPCNotificationListener(FunctionID.
ON_LANGUAGE_CHANGE, new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 SdlService.this.stopSelf();
 Intent intent = new Intent(TransportConstants.
START_ROUTER_SERVICE_ACTION);
 intent.putExtra(SdlReceiver.RECONNECT_LANG_CHANGE, true);
 AndroidTools.sendExplicitBroadcast(context, intent, null);
 }
});

System Capability Manager

The System Capability Manager is a central location to obtain capabilities about

the currently connected module. Specific capabilities will be returned for a

number of given keys (e.g. NAVIGATION , VIDEO_STREAMING). It also

alleviates the need to individually cache results that come from the RegisterAp

pInterface response or from the new SystemCapabilityQuery .

There are multiple capabilities that can be retrieved:

S U P P O RT E D C A PA B I L I T I E S

Querying Capabilities

Any point after receiving the first OnHMIStatus notification from the

connected module, you can access the SystemCapability manager and its

data. Your instance of SdlManager will provide access to the SystemCapabilit

yManager .

NAVIGATION

PHONE_CALL

VIDEO_STREAMING

REMOTE_CONTROL

HMI

DISPLAY

AUDIO_PASSTHROUGH

BUTTON

HMI_ZONE

PRESET_BANK

SOFTBUTTON

SPEECH

VOICE_RECOGNITION

For example (obtaining the head unit's DISPLAY capability):

The returned capability needs to be cast into the capability type you requested.

From there you can determine whether or not the head unit that the app is

connected to can utilize a feature or not.

Capability Lists

These are the current responses that come back as Lists:

- AUDIO_PASSTHROUGH

NOTE

It is important to query capabilities before you use them. Your app

may be used on a variety of head units across different

manufacturers and software versions. Never assume that a

capability exists.

sdlManager.getSystemCapabilityManager().getCapability(
SystemCapabilityType.DISPLAY, new OnSystemCapabilityListener(){

 @Override
 public void onCapabilityRetrieved(Object capability){
 DisplayCapabilities dispCapability = (DisplayCapabilities)
capability;
 }

 @Override
 public void onError(String info){
 Log.i(TAG, "Capability could not be retrieved: "+ info);
 }
});

- BUTTON

- SOFTBUTTON

- SPEECH

- HMI_ZONE

- VOICE_RECOGNITION

We've created a method in the SystemCapabilityManager to help cast these

lists. Below is an example of its usage:

This method prevents the developer from having to suppress a warning as well

as creates a safe way to cast the object to a list.

Asynchronous vs Synchronous
Queries

Some capabilities will be instantly available after the first OnHMIStatus

notification. These are parsed from the RegisterAppInterface response.

However, some capabilities MUST be obtained asynchronously and therefore

require a callback to be obtained. If a capability can be retrieved synchronously

another method can be used via the SystemCapbilityManager object obtained

sdlManager.getSystemCapabilityManager().getCapability(
SystemCapabilityType.BUTTON, new OnSystemCapabilityListener(){

 @Override
 public void onCapabilityRetrieved(Object capability){
 List<ButtonCapabilities> buttonCapabilityList =
SystemCapabilityManager.convertToList(capability, ButtonCapabilities.
class);
 }

 @Override
 public void onError(String info){
 Log.i(TAG, "Capability could not be retrieved: "+ info);
 }
});

from the SdlManager , sdlManager.getSystemCapabilityManager

().getCapability(SystemCapabilityType) .

C A PA B I L I T Y A S Y N C R E Q U I R E D

NAVIGATION Yes

PHONE_CALL Yes

VIDEO_STREAMING Yes

REMOTE_CONTROL Yes

HMI No

DISPLAY No

AUDIO_PASSTHROUGH No

BUTTON No

HMI_ZONE No

PRESET_BANK No

SOFTBUTTON No

SPEECH No

VOICE_RECOGNITION No

Permission Manager

The PermissionManager allows developers to easily query whether specific

RPCs are allowed or not. It also allows a listener to be added for a list of RPCs

so that if there are changes in their permissions, the app will be notified.

Querying Permission

Using the PermissionManager , you can easily know if a specific RPC is allowed

or not. For example, if you want to check if the Show RPC is allowed you can

use the isRPCAllowed method:

Querying Permission Parameters

Some RPCs have parameters. For example, GetVehicleData has parameters

like speed , rpm , and airbagStatus . The developer may need to know not

boolean allowed = sdlManager.getPermissionManager().isRPCAllowed(
FunctionID.SHOW);

NOTE

Some RPCs are allowed in specific hmi levels but not allowed in

others.

only whether GetVehicleData is allowed but also if a specific parameter in that

RPC is allowed. For that case the isPermissionParameterAllowed method can

be used to tell if the RPC and the parameter are both allowed:

Querying Multiple Permissions at
Once

In some cases, developers may need to know whether multiple permissions (or

permission parameters) are allowed and perform a specific action based on the

result. The PermissionManager has a convenience method that does that. For

example, if the developers need to know whether Show and GetVehicleData

RPCs are allowed and also make sure that speed and rpm parameters in Ge

tVehicleData are allowed, they can use getGroupStatusOfPermissions method

to do that. First, a list of PermissionElement s should be created. Each Permiss

ionElement in the list holds the RPC that we want to check the permission for

and a list of optional parameters for that permission:

boolean allowed = sdlManager.getPermissionManager().
isPermissionParameterAllowed(FunctionID.GET_VEHICLE_DATA,
GetVehicleData.KEY_RPM);

The previous snippet will give a quick generic status for all permissions

together. However, if developers want to get a more detailed result about the

status of every permission or parameter in the group, they can use getStatusO

fPermissions method:

List<PermissionElement> permissionElements = new ArrayList<>();
permissionElements.add(new PermissionElement(FunctionID.SHOW,
null));
permissionElements.add(new PermissionElement(FunctionID.
GET_VEHICLE_DATA, Arrays.asList(GetVehicleData.KEY_RPM,
GetVehicleData.KEY_SPEED)));

int groupStatus = sdlManager.getPermissionManager().
getGroupStatusOfPermissions(permissionElements);

switch (groupStatus) {
 case PermissionManager.PERMISSION_GROUP_STATUS_ALLOWED:
 // Every permission in the group is currently allowed
 break;
 case PermissionManager.PERMISSION_GROUP_STATUS_DISALLOWED:
 // Every permission in the group is currently disallowed
 break;
 case PermissionManager.PERMISSION_GROUP_STATUS_MIXED:
 // Some permissions in the group are allowed and some disallowed
 break;
 case PermissionManager.PERMISSION_GROUP_STATUS_UNKNOWN:
 // The current status of the group is unknown
 break;
}

Adding Permissions Change
Listener

In some cases, the app may need to be notified when there is a change in some

permissions. Developers can use the PermissionManager to add a listener that

will be called when the specified permissions change. The listener can be called

either when there is any change or only when all permissions become allowed.

That can be determined by the PermissionGroupType value that is passed to

the AddListener method:

List<PermissionElement> permissionElements = new ArrayList<>();
permissionElements.add(new PermissionElement(FunctionID.SHOW,
null));
permissionElements.add(new PermissionElement(FunctionID.
GET_VEHICLE_DATA, Arrays.asList(GetVehicleData.KEY_RPM,
GetVehicleData.KEY_AIRBAG_STATUS)));

Map<FunctionID, PermissionStatus> status = sdlManager.
getPermissionManager().getStatusOfPermissions(permissionElements);

if (status.get(FunctionID.GET_VEHICLE_DATA).getIsRPCAllowed()){
 // GetVehicleData RPC is allowed
}

if (status.get(FunctionID.GET_VEHICLE_DATA).getAllowedParameters().
get(GetVehicleData.KEY_RPM)){
 // rpm parameter in GetVehicleData RPC is allowed
}

P E R M I SS I O N G R O U P T Y P E D E S C R I P T I O N

For example, to setup a listener that will be called when there is any update to

Show or GetVehicleData permissions or rpm , airbagStatus parameter

permissions in the GetVehicleData RPC, you can use the following code

snippet:

PERMISSION_GROUP_TYPE_ALL_ALLOWE

D

Be notified when all of the permissions in

the group are allowed, or when they all

stop being allowed in some sense, that

is, when they were all allowed, and now

they are not.

PERMISSION_GROUP_TYPE_ANY
Be notified when any change in

availability occurs among the group.

List<PermissionElement> permissionElements = new ArrayList<>();
permissionElements.add(new PermissionElement(FunctionID.SHOW,
null));
permissionElements.add(new PermissionElement(FunctionID.
GET_VEHICLE_DATA, Arrays.asList(GetVehicleData.KEY_RPM,
GetVehicleData.KEY_AIRBAG_STATUS)));

UUID listenerId = sdlManager.getPermissionManager().addListener(
permissionElements, PermissionManager.
PERMISSION_GROUP_TYPE_ANY, new OnPermissionChangeListener() {
 @Override
 public void onPermissionsChange(@NonNull Map<FunctionID,
PermissionStatus> allowedPermissions, @NonNull int
permissionGroupStatus) {
 if (allowedPermissions.get(FunctionID.GET_VEHICLE_DATA).
getIsRPCAllowed()) {
 // GetVehicleData RPC is allowed
 }

 if (allowedPermissions.get(FunctionID.GET_VEHICLE_DATA).
getAllowedParameters().get(GetVehicleData.KEY_RPM)){
 // rpm parameter in GetVehicleData RPC is allowed
 }
 }
});

Remote Control

Remote Control provides a framework to allow apps to control certain safe

modules within a vehicle.

Consider the following scenarios:

• A radio application wants to use the in-vehicle radio tuner. It needs the

functionality to select the radio band (AM/FM/XM/HD/DAB), tune the radio

NOTE

Don't forget to remove the listener using the removeListener

method when you are done with it.

NOTE

Not all vehicles have this functionality. Even if they support remote

control, you will likely need to request permission from the vehicle

manufacturer to use it.

WHY IS THIS HELPFUL?

frequency or change the radio station, as well as obtain general radio

information for decision making.
• A climate control application needs to turn on the AC, control the air

circulation mode, change the fan speed and set the desired cabin

temperature.
• A user profile application wants to remember users' favorite settings and

apply it later automatically when the users get into the same/another

vehicle.

Currently, the Remote Control feature supports these modules:

S U P P O RT E D R C M O D U L E S

The following table lists what control items are in each control module.

Climate

Radio

Seat

Audio

Light

HMI Settings

R C
M O D U L E

C O N T R O L
I T E M

VA LU E
R A N G E

T Y P E
C O M M E N
T S

Climate

Current

Cabin

Temperature

Get/

Notification

read only,

value

range

depends

on OEM

Desired

Cabin

Temperature

Get/Set/

Notification

value

range

depends

on OEM

AC Setting on, off
Get/Set/

Notification

AC MAX

Setting
on, off

Get/Set/

Notification

Air

Recirculation

Setting

on, off
Get/Set/

Notification

Auto AC

Mode Setting
on, off

Get/Set/

Notification

Defrost Zone

Setting

front, rear,

all, none

Get/Set/

Notification

Dual Mode

Setting
on, off

Get/Set/

Notification

Fan Speed

Setting
0%-100%

Get/Set/

Notification

Ventilation

Mode Setting

upper, lower,

both, none

Get/Set/

Notification

Radio
Radio

Enabled
true,false

Get/Set/

Notification

read only,

all other

radio

control

items need

radio

enabled to

work

Radio Band AM,FM,XM
Get/Set/

Notification

R C
M O D U L E

C O N T R O L
I T E M

VA LU E
R A N G E

T Y P E
C O M M E N
T S

Radio

Frequency

Get/Set/

Notification

value

range

depends

on band

Radio RDS

Data

Get/

Notification
read only

Available HD

Channel
1-3

Get/

Notification
read only

Current HD

Channel
1-3

Get/Set/

Notification

Radio Signal

Strength

Get/

Notification
read only

Signal

Change

Threshold

Get/

Notification
read only

Radio State

Acquiring,

acquired,

multicast,

not_found

Get/

Notification
read only

Seat
Seat Heating

Enabled
true, false

Get/Set/

Notification

Indicates

whether

heating is

enabled for

a seat

Seat Cooling

Enabled
true, false

Get/Set/

Notification

Indicates

whether

cooling is

enabled for

a seat

Seat Heating

level
0-100%

Get/Set/

Notification

Level of

the seat

heating

Seat Cooling

level
0-100%

Get/Set/

Notification

Level of

the seat

cooling

R C
M O D U L E

C O N T R O L
I T E M

VA LU E
R A N G E

T Y P E
C O M M E N
T S

Seat

Horizontal

Positon

0-100%
Get/Set/

Notification

Adjust a

seat

forward/

backward,

0 means

the nearest

position to

the

steering

wheel,

100%

means the

furthest

position

from the

steering

wheel

Seat Vertical

Position
0-100%

Get/Set/

Notification

Adjust seat

height (up

or down) in

case there

is only one

actuator

for seat

height, 0

means the

lowest

position,

100%

means the

highest

position

R C
M O D U L E

C O N T R O L
I T E M

VA LU E
R A N G E

T Y P E
C O M M E N
T S

Seat-Front

Vertical

Position

0-100%
Get/Set/

Notification

Adjust seat

front

height (in

case there

are two

actuators

for seat

height), 0

means the

lowest

position,

100%

means the

highest

position

Seat-Back

Vertical

Position

0-100%
Get/Set/

Notification

Adjust seat

back

height (in

case there

are two

actuators

for seat

height), 0

means the

lowest

position,

100%

means the

highest

position

R C
M O D U L E

C O N T R O L
I T E M

VA LU E
R A N G E

T Y P E
C O M M E N
T S

Seat Back

Tilt Angle
0-100%

Get/Set/

Notification

Backrest

recline, 0

means the

angle that

back top is

nearest to

the

steering

wheel,

100%

means the

angle that

back top is

furthest

from the

steering

wheel

Head

Support

Horizontal

Positon

0-100%
Get/Set/

Notification

Adjust

head

support

forward/

backward,

0 means

the nearest

position to

the front,

100%

means the

furthest

position

from the

front

R C
M O D U L E

C O N T R O L
I T E M

VA LU E
R A N G E

T Y P E
C O M M E N
T S

Head

Support

Vertical

Position

0-100%
Get/Set/

Notification

Adjust

head

support

height (up

or down), 0

means the

lowest

position,

100%

means the

highest

position

Seat

Massaging

Enabled

true, false
Get/Set/

Notification

Indicates

whether

massage is

enabled for

a seat

Massage

Mode

List of Struct

{MassageZo

ne,

MassageMod

e}

Get/Set/

Notification

list of

massage

mode of

each zone

Massage

Cushion

Firmness

List of Struct

{Cushion,

0-100%}

Get/Set/

Notification

list of

firmness of

each

massage

cushion

Seat

memory

Struct{ id,

label, action

(SAVE/

RESTORE/

NONE)}

Get/Set/

Notification

seat

memory

Audio
Audio

volume
0%-100%

Get/Set/

Notification

The audio

source

volume

level

R C
M O D U L E

C O N T R O L
I T E M

VA LU E
R A N G E

T Y P E
C O M M E N
T S

Audio Source

MOBILE_APP,

RADIO_TUNE

R, CD,

BLUETOOTH,

USB, etc. see

PrimaryAudio

Source

Get/Set/

Notification

defines one

of the

available

audio

sources

keep Context true, false Set only

control

whether

HMI shall

keep

current

application

context or

switch to

default

media UI/

APP

associated

with the

audio

source

Equilizer

Settings

Struct

{Channel ID

as integer,

Channel

setting as

0%-100%}

Get/Set/

Notification

Defines the

list of

supported

channels

(band) and

their

current/

desired

settings on

HMI

Light Light Status ON, OFF
Get/Set/

Notification

turn on/off

a single

light or all

lights in a

group

R C
M O D U L E

C O N T R O L
I T E M

VA LU E
R A N G E

T Y P E
C O M M E N
T S

Remote Control can also allow mobile applications to send simulated button

press events for the following common buttons in the vehicle.

Light Density float 0.0-1.0
Get/Set/

Notification

change the

density/

dim a

single light

or all lights

in a group

Light Color RGB color
Get/Set/

Notification

change the

color

scheme of

a single

light or all

lights in a

group

HMI

Settings

Display

Mode

DAY, NIGHT,

AUTO

Get/Set/

Notification

Current

display

mode of

the HMI

display

Distance

Unit

MILES,

KILOMETERS

Get/Set/

Notification

Distance

Unit used

in the HMI

(for maps/

tracking

distances)

Temperature

Unit

FAHRENHEIT,

CELSIUS

Get/Set/

Notification

Temperatur

e Unit used

in the HMI

(for

temperatur

e

measuring

systems)

The system shall list all available buttons for Remote Control in the RemoteCon

trolCapabilities . The capability object will have a List of ButtonCapabilities

that can be obtained using getButtonCapabilities() .

R C M O D U L E C O N T R O L B U T T O N

Climate AC

AC MAX

RECIRCULATE

FAN UP

FAN DOWN

TEMPERATURE UP

TEMPERATURE DOWN

DEFROST

DEFROST REAR

DEFROST MAX

UPPER VENT

LOWER VENT

Radio VOLUME UP

VOLUME DOWN

EJECT

SOURCE

SHUFFLE

REPEAT

Integration

To check for this capability, use the following call:

NOTE

For Remote Control to work, the head unit must support SDL Core

Version 4.4 or newer. Also your app's appHMIType should be set to

REMOTE_CONTROL .

SYSTEM CAPABILITY

MUST

Prior to using any Remote Control RPCs, you must check that the

head unit has the Remote Control capability. As you may encounter

head units that do not support it, this check is important.

It is possible to retrieve current data relating to these Remote Control modules.

The data could be used to store the settings prior to setting them, saving user

preferences, etc. Following the check on the system's capability to support

Remote Control, we can actually retrieve the data. The following is an example

of getting data about the RADIO module. It also subscribes to updates to radio

data, which will be discussed later on in this guide.

// First you can check to see if the capability is supported on the module
if (sdlManager.getSystemCapabilityManager().isCapabilitySupported(
SystemCapabilityType.REMOTE_CONTROL)){
 // Since the module does support this capability we can query it for
more information
 sdlManager.getSystemCapabilityManager().getCapability(
SystemCapabilityType.REMOTE_CONTROL, new
OnSystemCapabilityListener(){

 @Override
 public void onCapabilityRetrieved(Object capability){
 RemoteControlCapabilities remoteControlCapabilities = (
RemoteControlCapabilities) capability;
 // Now it is possible to get details on how this capability
 // is supported using the remoteControlCapabilities object
 }

 @Override
 public void onError(String info){
 Log.i(TAG, "Capability could not be retrieved: "+ info);
 }
 });
}

GETTING DATA

Of course, the ability to set these modules is the point of Remote Control.

Setting data is similar to getting it. Below is an example of setting ClimateCont

rolData .

GetInteriorVehicleData interiorVehicleData = new
GetInteriorVehicleData();
interiorVehicleData.setModuleType(ModuleType.RADIO);
interiorVehicleData.setSubscribe(true);
interiorVehicleData.setOnRPCResponseListener(new
OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 GetInteriorVehicleData getResponse = (GetInteriorVehicleData)
response;
 //This can now be used to retrieve data
 }
});

sdlManager.sendRPC(interiorVehicleData);

SETTING DATA

It is likely that you will not need to set all the data as it is in the example, so if

there are settings you don't wish to modify, then you don't have to.

Another unique feature of Remote Control is the ability to send simulated

button presses to the associated modules, imitating a button press on the

hardware itself.

Simply specify the module, the button, and the type of press you would like:

Temperature temp = new Temperature();
temp.setUnit(TemperatureUnit.FAHRENHEIT);
temp.setValue((float) 74.1);

ClimateControlData climateControlData = new ClimateControlData();
climateControlData.setAcEnable(true);
climateControlData.setAcMaxEnable(true);
climateControlData.setAutoModeEnable(false);
climateControlData.setCirculateAirEnable(true);
climateControlData.setCurrentTemperature(temp);
climateControlData.setDefrostZone(DefrostZone.FRONT);
climateControlData.setDualModeEnable(true);
climateControlData.setFanSpeed(2);
climateControlData.setVentilationMode(VentilationMode.BOTH);
climateControlData.setDesiredTemperature(temp);

ModuleData moduleData = new ModuleData();
moduleData.setModuleType(ModuleType.CLIMATE);
moduleData.setClimateControlData(climateControlData);

SetInteriorVehicleData setInteriorVehicleData = new
SetInteriorVehicleData();
setInteriorVehicleData.setModuleData(moduleData);

sdlManager.sendRPC(setInteriorVehicleData);

BUTTON PRESSES

It is also possible to subscribe to changes in data associated with supported

modules.

To do so, during your GET request for data, simply add in setSubscribe

(Boolean) . To unsubscribe, send the request again with the boolean set to Fals

e . A code sample for setting the subscription is in the GET example above.

The response to a subscription will come in a form of a notification. You can

receive this notification by adding a notification listener for OnInteriorVehicleD

ata .

ButtonPress buttonPress = new ButtonPress();
buttonPress.setModuleType(ModuleType.RADIO);
buttonPress.setButtonName(ButtonName.EJECT);
buttonPress.setButtonPressMode(ButtonPressMode.SHORT);

sdlManager.sendRPC(buttonPress);

SUBSCRIBING TO CHANGES

Proguard Guidelines

SmartDeviceLink and its dependent libraries are open source and not intended

to be obfuscated. When using Proguard in an app that integrates

SmartDeviceLink, it is necessary to follow these guidelines.

sdlManager.addOnRPCNotificationListener(FunctionID.
ON_INTERIOR_VEHICLE_DATA, new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnInteriorVehicleData onInteriorVehicleData = (
OnInteriorVehicleData) notification;
 //Perform action based on notification
 }
});

//Then send the GetInteriorVehicleData with subscription set to true
GetInteriorVehicleData interiorVehicleData = new
GetInteriorVehicleData();
interiorVehicleData.setModuleType(ModuleType.RADIO);
interiorVehicleData.setSubscribe(true);

sdlManager.sendRPC(interiorVehicleData);

NOTE

The notification listener should be added before sending the GetInt

eriorVehicleData request.

Required Proguard Rules

Apps that are code shrinking a release build with Proguard typically have a

section resembling this snippet in their build.gradle :

Developers using Proguard in this manner should be sure to include the

following lines in their proguard-rules.pro file:

android {
 buildTypes {
 release {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
 }
 ...
}

-keep class com.smartdevicelink.** { *; }
-keep class com.livio.** { *; }
Video streaming apps must add the following line
-keep class ** extends com.smartdevicelink.streaming.video.
SdlRemoteDisplay { *; }

NOTE

Failure to include these Proguard rules may result in a failed build

or cause issues during runtime.

Updating to 4.4 (Upgrading To
Multiplexing)

This guide is to help developers get setup with the SDL Android library 4.4.

Upgrading apps to utilize the multiplexing transport flow will require us to do a

few steps. This guide will assume the SDL library is already integrated into the

app.

We will make changes to:

• SdlService
• SdlRouterService (new)
• SdlBroadcastReceiver
• MainActivity

SmartDeviceLink Service

The SmartDeviceLink proxy object instantiation needs to change to the new

constructor. We also need to check for a boolean extra supplied through the

intent that started the service.

The old instantiation should look similar to this:

The new constructor should look like this

 proxy = new SdlProxyALM(this, APP_NAME, true, APP_ID);

Notice we now gather the extra boolean from the intent and add to our if-else

statement. If the proxy is not null, we need to check if the supplied boolean

extra is true and if so, take action.

public class SdlService extends Service implements IProxyListenerALM
{

 //...

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 boolean forceConnect = intent !=null && intent.getBooleanExtra(
TransportConstants.FORCE_TRANSPORT_CONNECTED, false);
 if (proxy == null) {
 try {
 //Create a new proxy using Bluetooth transport
 //The listener, app name,
 //whether or not it is a media app and the applicationId are
supplied.
 proxy = new SdlProxyALM(this.getBaseContext(),this,
APP_NAME, true, APP_ID);
 } catch (SdlException e) {
 //There was an error creating the proxy
 if (proxy == null) {
 //Stop the SdlService
 stopSelf();
 }
 }
 }else if(forceConnect){
 proxy.forceOnConnected();
 }

 //use START_STICKY because we want the SDLService to be
explicitly started and stopped as needed.
 return START_STICKY;
 }

 if (proxy == null) {
 //...
 }else if(forceConnect){
 proxy.forceOnConnected();
 }

SmartDeviceLink Router Service
(New)

The SdlRouterService will listen for a bluetooth connection with an SDL enabled

module. When a connection happens, it will alert all SDL enabled apps that a

connection has been established and they should start their SDL services.

We must implement a local copy of the SdlRouterService into our project. The

class doesn't need any modification, it's just important that we include it. We

will extend the com.smartdevicelink.transport.SdlRouterService in our class

named SdlRouterService :

NOTE

Do not include an import for com.smartdevicelink.transport.SdlRou

terService . Otherwise, we will get an error for 'SdlRouterService'

is already defined in this compilation unit .

public class SdlRouterService extends com.smartdevicelink.transport.
SdlRouterService {
//Nothing to do here
}

If you created the service using the Android Studio template then the service

should have been added to your AndroidManifest.xml otherwise the service

needs to be added in the manifest. Because we want our service to be seen by

other SDL enabled apps, we need to set android:exported="true" . The system

may issue a lint warning because of this, so we can suppress that using tools:i

gnore="ExportedService" . Once added, it should be defined like below:

MUST

The local extension of the com.smartdevicelink.transport.SdlRouter

Service must be named SdlRouterService .

MUST

Make sure this local class (SdlRouterService.java) is in the same

package of SdlReceiver.java (described below)

SmartDeviceLink Broadcast
Receiver

The SmartDeviceLink Android Library now includes a base BroadcastReceiver

that needs to be used. It's called SdlBroadcastReceiver . Our old

<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="com.company.mySdlApplication">

 <application>

 ...

 <service
 android:name=
"com.company.mySdlApplication.SdlRouterService"
 android:exported="true"
 android:process="com.smartdevicelink.router"
 tools:ignore="ExportedService">
 </service>

 </application>

 ...

</manifest>

MUST

The SdlRouterService must be placed in a separate process with

the name com.smartdevicelink.router . If it is not in that process

during it's start up it will stop itself.

BroadcastReceiver will just need to extend this class instead of the Android

BroadcastReceiver. Two abstract methods will be automatically populate the

class, we will fill them out soon.

Next, we want to make sure we supply our instance of the SdlBroadcastService

with our local copy of the SdlRouterService. We do this by simply returning the

class object in the method defineLocalSdlRouterClass:

We want to start the SDL Proxy when an SDL connection is made via the SdlRo

uterService . This is likely code included on the onReceive method call

previously. We do this by taking action in the onSdlEnabled method:

public class SdlReceiver extends SdlBroadcastReceiver {

 @Override
 public void onSdlEnabled(Context context, Intent intent) {...}

 @Override
 public Class<? extends SdlRouterService> defineLocalSdlRouterClass
() {...}

}

 public Class<? extends SdlRouterService> defineLocalSdlRouterClass
() {
 //Return a local copy of the SdlRouterService located in your
project
 return com.company.mySdlApplication.SdlRouterService.class;
 }

NOTE

The actual package definition for the SdlRouterService might be

different. Just make sure to return your local copy and not the class

object from the library itself.

public class SdlReceiver extends SdlBroadcastReceiver {

 @Override
 public void onSdlEnabled(Context context, Intent intent) {
 //Use the provided intent but set the class to the SdlService
 intent.setClass(context, SdlService.class);
 context.startService(intent);

 }

 @Override
 public Class<? extends SdlRouterService> defineLocalSdlRouterClass
() {
 //Return a local copy of the SdlRouterService located in your
project.
 return com.company.mySdlApplication.SdlRouterService.class;
 }
}

NOTE

The onSdlEnabled method will be the main start point for our SDL

connection session. We define exactly what we want to happen

when we find out we are connected to SDL enabled hardware.

Now we need to add two extra intent actions to or our intent filter for the

SdlBroadcastReceiver:

• android.bluetooth.adapter.action.STATE_CHANGED
• sdl.router.startservice

MUST

SdlBroadcastReceiver must call super if onReceive is overridden

 @Override
 public void onReceive(Context context, Intent intent) {
 super.onReceive(context, intent);
 //your code here
 }

https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#ACTION_CONNECTION_STATE_CHANGED

<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="com.company.mySdlApplication">

 <application>

 ...

 <receiver
 android:name=".SdlReceiver"
 android:exported="true"
 android:enabled="true">

 <intent-filter>
 <action android:name=
"android.bluetooth.device.action.ACL_CONNECTED" />
 <action android:name=
"android.bluetooth.device.action.ACL_DISCONNECTED"/>
 <action android:name=
"android.bluetooth.adapter.action.STATE_CHANGED"/>
 <action android:name=
"android.media.AUDIO_BECOMING_NOISY" />
 <action android:name="sdl.router.startservice" />
 </intent-filter>

 </receiver>

 </application>

...

</manifest>

MUST

SdlBroadcastReceiver has to be exported, or it will not work

correctly

Main Activity

Our previous MainActivity class probably looked similar to this:

However now instead of starting the service every time we launch the

application we can do a query that will let us know if we are connected to SDL

enabled hardware or not. If we are, the onSdlEnabled method in our

SdlBroadcastReceiver will be called and the proper flow should start. We do this

by removing the intent creation and startService call and instead replace them

with a single call to SdlReceiver.queryForConnectedService(Context) .

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Start the SDLService
 Intent sdlServiceIntent = new Intent(this, SdlService.class);
 startService(sdlServiceIntent);
 }
}

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 //If we are connected to a module we want to start our SdlService
 SdlReceiver.queryForConnectedService(this);
 }
}

Updating from 4.4 to 4.5

This guide is to help developers get setup with the SDL Android library 4.5. It is

assumed that the developer is already updated to 4.4 of the library. There are a

few very important changes that we need to make to the integration to keep

things working well. The first is a few new additions to the AndroidManifest.xml

and the SdlRouterService entry. Next, we have to prepare for Android Oreo's

push towards foreground services.

We will make changes to:

• AndroidManifest.xml
• SdlService
• SdlBroadcastReceiver

AndroidManifest.xml Updates

Assuming the manifest was up to date with version 4.4 requirements we need

to add an intent-filter and a meta-data item. The entire entry should look as

follows:

Intent Filter

The new versions of the SDL Android library rely on the com.smartdevicelink.ro

uter.service action to query SDL enabled apps that host router services. This

allows the library to determine which router service to start.

<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="com.company.mySdlApplication">

 <application>

 ...

 <service
 android:name=
"com.company.mySdlApplication.SdlRouterService"
 android:exported="true"
 android:process="com.smartdevicelink.router"
 tools:ignore="ExportedService">
 <intent-filter>
 <action android:name="com.smartdevicelink.router.service"/
>
 </intent-filter>
 <meta-data android:name="@string/
sdl_router_service_version_name" android:value="@integer/
sdl_router_service_version_value" />
 </service>

 </application>

 ...

</manifest>

<intent-filter>
 <action android:name="com.smartdevicelink.router.service"/>
</intent-filter>

Metadata

Adding the sdl_router_service_version metadata allows the library to know the

version of the router service that the app is using. This makes it simpler for the

library to choose the newest router service when multiple router services are

available.

MUST

This intent-filter MUST be included.

ROUTER SERVICE VERSION

<meta-data android:name="@string/sdl_router_service_version_name"
 android:value="@integer/sdl_router_service_version_value" />

CUSTOM ROUTER SERVICE

<meta-data android:name="@string/
sdl_router_service_is_custom_name" android:value="false" />

Some OEMs choose to implement custom router services. Setting the sdl_route

r_service_is_custom_name metadata value to true means that the app is

using something custom over the default router service that is included in the

SDL Android library. Do not include this meta-data entry unless you know

what you are doing.

Android Oreo's Push To
Foreground Services

Previous versions of Android allowed our SDL app partners to start their SDL

services in the background and attach themselves to the foregrounded SDL

router service. Android Oreo (API 26) has changed that. Due to new OS

limitations, apps must start their SDL service in the foreground.

What do I need to do?

There are a few changes to make, one in the SdlBroadcastReceiver and the

other in the SdlService (or which service the proxy is implemented).

NOTE

This is only for specific OEM applications, therefore normal

developers do not need to worry about this.

SDLBROADCASTRECEIVER

PREVIOUS VERSION

SAMPLE UPDATE

This means the app will start the SDL service in the background if we are on a

device that uses Android N or earlier. If the app is running on Android Oreo or

newer, the service will make a promise to the OS that the service will move into

the foreground. If the service doesn't explicitly move into the foreground an

exception will be thrown.

Within the SdlService class or similar you will need to add a call to start the

service in the foreground. This will include creating a notification to sit in the

 @Override
 public void onSdlEnabled(Context context, Intent intent) {
 Log.d(TAG, "SDL Enabled");
 intent.setClass(context, SdlService.class);
 context.startService(intent);
 }

 @Override
 public void onSdlEnabled(Context context, Intent intent) {
 Log.d(TAG, "SDL Enabled");
 intent.setClass(context, SdlService.class);
 if(Build.VERSION.SDK_INT < Build.VERSION_CODES.O) {
 context.startService(intent);
 }else{
 context.startForegroundService(intent);
 }

 }

SDLSERVICE (OR SIMILAR)

status bar tray. This information and icons should be relevant for what the

service is doing/going to do. If you already start your service in the foreground,

you can ignore this section.

It's important that you don't leave you notification in the notification tray as it

is very confusing to users. So in the onDestroy method in your service, simply

call the stopForeground method.

public void onCreate() {
 super.onCreate();
 ...

 NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
 notificationManager.createNotificationChannel(...);
 Notification serviceNotification = new Notification.Builder(this, *
Notification Channel*)
 .setContentTitle(...)
 .setSmallIcon(....)
 .setLargeIcon(...)
 .setContentText(...)
 .setChannelId(channel.getId())
 .build();
 startForeground(id, serviceNotification);
}

EXITING THE FOREGROUND

Notification Suggestions

We realize that pushing a notification to the notification tray is not ideal for any

apps, but with Android's push for more transparency to users it's important that

we don't try to workaround that. Android is getting stricter with their guidelines

and could potentially prevent apps from being released if they are found to be

not adhering to these rules.

The right way to handle the new foreground service requirement is to simply

push a full fledged notification to the notification tray.

@Override
public void onDestroy(){
 //...
 if(Build.VERSION.SDK_INT>=Build.VERSION_CODES.O){
 NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
 if(notificationManager!=null){ //If this is the only notification on
your channel
 notificationManager.deleteNotificationChannel(* Notification
Channel*);
 }
 stopForeground(true);
 }
}

THE CORRECT WAY

How to do i t

Currently Android Oreo allows a notification to be used that has not declared a

notification channel. This results in the notification icon not actually appearing

on its own. Instead it is grouped together into the notification channel that

reads "# apps are using battery" from the Android System. This is likely to

prevent breaking changes from apps that have not updated their integration to

Android Oreo, however, we fully anticipate this to be changed in the future so it

is not recommended.

 @Override
 public void onCreate() {
 super.onCreate();
 ...
 if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
 NotificationManager notificationManager = (NotificationManager
) getSystemService(Context.NOTIFICATION_SERVICE);
 NotificationChannel channel = new NotificationChannel(
"MyApp", "SdlService", NotificationManager.IMPORTANCE_DEFAULT);
 notificationManager.createNotificationChannel(channel);
 Notification serviceNotification = new Notification.Builder(this,
channel.getId())
 .setContentTitle("MyApp is connected through SDL")
 .setSmallIcon(R.drawable.ic_launcher_foreground)
 .build();
 startForeground(id, serviceNotification);
 }
 }

THE NOT SO CORRECT WAY

How to do i t

 @Override
 public void onCreate() {
 super.onCreate();
 ...
 if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
 Notification serviceNotification = new Notification.Builder(this,
"NoChannel")
 .setContentTitle("MyApp is connected through SDL")
 .setSmallIcon(R.drawable.ic_launcher_foreground)
 .build();
 startForeground(id, serviceNotification);
 }
 }

How i t l ooks

It is possible to create a somewhat invisible notification. This will appear to just

be blank space in the notification tray. With adding minimal content to the

notification when the user pulls down the tray it will have a very small footprint

on the screen. However, this is completely disingenuous to the user and should

not be considered a solution. Android will most likely see this as bad behavior

THE ABSOLUTELY NOT CORRECT WAY

and could prevent you from releasing your app or even remove your app from

the play store with a ban included. Don't do this.
How to do i t

 @Override
 public void onCreate() {
 super.onCreate();
 ...
 if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
 NotificationManager notificationManager = (NotificationManager
) getSystemService(Context.NOTIFICATION_SERVICE);
 NotificationChannel channel = new NotificationChannel(
"MyApp", "SdlService", NotificationManager.IMPORTANCE_DEFAULT);
 notificationManager.createNotificationChannel(channel);
 Notification serviceNotification = new Notification.Builder(this,
channel.getId())
 .setSmallIcon(R.drawable.sdl_tray_invis)
 .build();
 startForeground(id, serviceNotification);
 }
 }

How i t l ooks

Updating from 4.5 to 4.6

This guide is to help developers get setup with the SDL Android library 4.6. It is

assumed that the developer is already updated to 4.5 of the library. There are a

few important changes that we need to make to the integration to keep things

working well. The first is removing some of the BroadcastReceiver's intent

filters in AndroidManifest.xml that are now unneccessary. Secondly, the gradle

integration of our library should now use implementation instead of compile .

Lastly, the RPCRequestFactory class has been deprecated and constructors

with mandatory parameters have been added for each RPC class.

We will make changes to:

• AndroidManifest.xml
• build.gradle
• any usage of RPCRequestFactory

AndroidManifest.xml Updates

Assuming the manifest was up to date with version 4.5, we can now remove

some of the intent-filters (ACL_DISCONNECTED , STATE_CHANGED , AUDIO_B

ECOMING_NOISY) for your app's BroadcastReceiver. The BroadcastReceiver

section of the manifest should look as follows:

Gradle Update

The previous way of including the libary via compile should now use impleme

ntation . The dependencies section of your app's build.gradle file should now

appear as:

<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="com.company.mySdlApplication">

 <application>

 ...

 <receiver
 android:name=".SdlReceiver"
 android:exported="true"
 android:enabled="true">

 <intent-filter>
 <action android:name=
"android.bluetooth.device.action.ACL_CONNECTED" />
 <action android:name="sdl.router.startservice" />
 </intent-filter>

 </receiver>

 </application>

...

</manifest>

dependencies {
 implementation 'com.smartdevicelink:sdl_android:4.+'
}

Deprecation of
RPCRequestFactory

The RPCRequestFactory has been deprecated in 4.6. To build RPC requests,

developers should use the constructors in the desired RPC request class. For

example, instead of using RPCRequestFactory.buildAddCommand(...) to build

an AddCommand request, try the following:

Updating from 4.6 to 4.7

Overview

This guide is to help developers get setup with the SDL Android library version

4.7. It is assumed that the developer is already updated to 4.6 of the library.

This version includes the addition of the SdlManagers and a re-working of the

transports which greatly enhances the use of the SdlRouterService , along with

adding the functionality for secondary transports on supporting versions of SDL

Core.

In this guide we will be focusing on the transitioning from the proxy, which

implemented SdlProxyALM into using the SdlManager system, which

AddCommand addCommand = new AddCommand(100);
addCommand.setMenuParams(new MenuParams("Skip"));
proxy.sendRPCRequest(addCommand);

includes specialized sub-managers that you can interact with through the SdlM

anager . We will follow the naming convention of the guides, highlighting the

previous way of implementing SDL and showing the new ways of implementing

it.

Integration Basics

The SdlService class will contain a great deal of changes as it acts as the main

bridge to SDL functionality. There are going to be two main differences with

how this class was set up in 4.6 versus 4.7.

Removal of IProxyListenerALM

Previously, your SdlService had to implement the IProxyListenerALM

interface. This often added many unnecessary lines of code to the class due to

the need to override all of its functions. The need to do this has been removed

in 4.7 with the inclusion of the SdlManager APIs. Developers now only have to

add the listeners they need.

NOTE

Moving from the SdlProxyALM implementation to the

SdlManager API will require you to manually subscribe to the

notifications and responses that you wish to receive instead of all

of the notifications and responses being passed through the IProxy

ListenerALM interface.

4.6:

4.7: THE REQUIREMENT TO IMPLEMENT IPROXYLISTENERALM
IS REMOVED:

After removing IProxyListenerALM from the SdlService , all of its previously

overridden functions will need to be removed. If your app used any of these

callback methods, it will help to document which ones they were, as you will

need to add in the listeners that you need using the SdlManager 's addOnRPC

NotificationListener .

public class SdlService extends Service implements IProxyListenerALM
{

 // The proxy handles communication between the application and
SDL
 private SdlProxyALM proxy = null;

 //...

 @Override
 public void someListener(){}
 //...
}

public class SdlService extends Service {

 // The SdlManager exposes the APIs needed to communicate
between the application and SDL
 private SdlManager sdlManager = null;

 //...
}

Creation of SdlManager

As we no longer want to directly instantiate SdlProxyALM , we need to

instantiate the SdlManager instead. This is best done using the SdlManager.B

uilder class using your application's details and configurations. In order to

receive life cycle events from the SdlManager , an SdlManagerListener must

be provided. The new code should resemble the following:

NOTE

When you start using the managers, you have to make sure that

your app subscribes to notifications before sending the

corresponding RPC requests and subscriptions or else some

notifications may be missed.

public class SdlService extends Service {

 //The manager handles communication between the application and
SDL
 private SdlManager sdlManager = null;

 //...

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {

 if (sdlManager == null) {
 MultiplexTransportConfig transport = new
MultiplexTransportConfig(this, APP_ID, MultiplexTransportConfig.
FLAG_MULTI_SECURITY_OFF);

 // The app type to be used
 Vector<AppHMIType> appType = new Vector<>();
 appType.add(AppHMIType.MEDIA);

 // The manager listener helps you know when certain events
that pertain to the SDL Manager happen
 SdlManagerListener listener = new SdlManagerListener() {

 @Override
 public void onStart() {
 // RPC listeners and other functionality can be called once
this callback is triggered.
 }

 @Override
 public void onDestroy() {
 SdlService.this.stopSelf();
 }

 @Override
 public void onError(String info, Exception e) {
 }
 };

 // Create App Icon, this is set in the SdlManager builder
 SdlArtwork appIcon = new SdlArtwork(ICON_FILENAME, FileType.
GRAPHIC_PNG, R.mipmap.ic_launcher, true);

 // The manager builder sets options for your session
 SdlManager.Builder builder = new SdlManager.Builder(this,
APP_ID, APP_NAME, listener);
 builder.setAppTypes(appType);
 builder.setTransportType(transport);

Once you receive the onStart callback from SdlManager , you can add in your

listeners and start adding UI elements. There will be more about adding the UI

elements later. The last example in this section will be about adding specific

listeners. Because we removed the IProxyListenerALM implementation, you

will have to set listeners for the needs of your app.

Listening for RPC notifications and events

We can listen for specific events using SdlManager 's addOnRPCNotificationLis

tener . These listeners can be added either in the onStart() callback of the Sd

lManagerListener or after it has been triggered. The following example shows

how to listen for HMI Status notifications. Additional listeners can be added for

specific RPCs by using their corresponding FunctionID in place of the ON_HMI

_STATUS in the following example and casting the RPCNotification object to

the correct type.

EXAMPLE OF A L ISTENER FOR HMI STATUS:

 builder.setAppIcon(appIcon);
 sdlManager = builder.build();
 sdlManager.start();
 }

 //...

}

sdlManager.addOnRPCNotificationListener(FunctionID.ON_HMI_STATUS,
new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnHMIStatus status = (OnHMIStatus) notification;
 if (status.getHmiLevel() == HMILevel.HMI_FULL && ((
OnHMIStatus) notification).getFirstRun()) {
 // first time in HMI Full
 }
 }
 });

Sending RPCs

There are new method names and locations that mimic previous functionality

for sending RPCs. These methods are located in the SdlManager and have the

new names of sendRPC , sendRPCs , and sendSequentialRPCs .

4.6:

In 4.7, we use the SdlManager to send the requests.

4 .7:

// single RPC
proxy.sendRPCRequest(request);

// muliple RPCs, non-sequential
proxy.sendRequests(rpcs, new OnMultipleRequestListener() {
 //...
});

// multiple RPCs, sequential
proxy.sendSequentialRequests(rpcs, new OnMultipleRequestListener() {
 //...
});

// single RPC
sdlManager.sendRPC(request);

// muliple RPCs, non-sequential
sdlManager.sendRPCs(rpcs, new OnMultipleRequestListener() {
 //...
});

// multiple RPCs, sequential
sdlManager.sendSequentialRPCs(rpcs, new OnMultipleRequestListener()
 {
 //...
});

Using AOA Protocol

If your app uses USB to connect to SDL, this update provides a very useful

enhancement. AOA connections now work with the SdlRouterService . This

means that multiple USB apps can be connected to the head unit at once.

Since the AOA transport will now use the multiplexing feature, it is important

that your app correctly adds funcitonality for the SdlRouterService . This starts

in the SdlBroadcastReciever .

4 .6:

SDLBROADCASTRECEIVER

public class SdlReceiver extends com.smartdevicelink.
SdlBroadcastReceiver {

 @Override
 public void onSdlEnabled(Context context, Intent intent) {
 //Use the provided intent but set the class to your SdlService
 intent.setClass(context, SdlService.class);
 context.startService(intent);
 }

 @Override
 public Class<? extends SdlRouterService> defineLocalSdlRouterClass
() {
 return null;
 }

}

4.7:

The SdlRouterService will listen for a connection with an SDL enabled module.

When a connection happens, it will alert all SDL enabled apps that a connection

has been established and they should start their SDL services.

4.6:

(No implementation required).

4 .7:

We must implement a local copy of the SdlRouterService into our project. The

class doesn't need any modification, it's just important that we include it. We

will extend the com.smartdevicelink.transport.SdlRouterService in our class

named SdlRouterService :

public class SdlReceiver extends com.smartdevicelink.
SdlBroadcastReceiver {

 @Override
 public void onSdlEnabled(Context context, Intent intent) {
 //Use the provided intent but set the class to your SdlService
 intent.setClass(context, SdlService.class);
 context.startService(intent);
 }

 @Override
 public Class<? extends SdlRouterService> defineLocalSdlRouterClass
() {
 // define your local router service. For example:
 return com.sdl.hellosdlandroid.SdlRouterService.class;
 }

}

SDLROUTERSERVICE

NOTE

Do not include an import for com.smartdevicelink.transport.SdlRou

terService . Otherwise, we will get an error for 'SdlRouterService'

is already defined in this compilation unit .

public class SdlRouterService extends com.smartdevicelink.transport.
SdlRouterService {
//Nothing to do here
}

MUST

The local extension of the com.smartdevicelink.transport.SdlRouter

Service must be named SdlRouterService .

MUST

Make sure this local class (SdlRouterService.java) is in the same

package of SdlReceiver.java

4.6:

4.7:

ADDITIONAL CONFIGURATIONS:

If your app requires high bandwidth transport, you can now specify that:

SDLSERVICE

transport = new USBTransportConfig(getBaseContext(), (UsbAccessory)
 intent.getParcelableExtra(UsbManager.EXTRA_ACCESSORY), false, false
);

MultiplexTransportConfig transport = new MultiplexTransportConfig(this,
 APP_ID, MultiplexTransportConfig.FLAG_MULTI_SECURITY_MED);

transport.setRequiresHighBandwidth(true);

Since the SdlRouterService now works with multiple transports, you can set

your own configuration, for example:

NOTE

If your app only works when a high bandwidth transport is

available, you should set setRequiresHighBandwidth to true . You

cannot be certain that all core implementations support multiple

transports. You could also set TransportType.USB as your only

supported primary transport

static final List<TransportType> multiplexPrimaryTransports = Arrays.
asList(TransportType.USB, TransportType.BLUETOOTH);
static final List<TransportType> multiplexSecondaryTransports = Arrays
.asList(TransportType.TCP, TransportType.USB, TransportType.
BLUETOOTH);

//...

transport.setPrimaryTransports(multiplexPrimaryTransports);
transport.setSecondaryTransports(multiplexSecondaryTransports);

NOTE

Multiple transports only work on supported versions of SDL Core.

4.6

ANDROIDMANIFEST

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name=
"android.permission.ACCESS_NETWORK_STATE" />

 <uses-feature android:name="android.hardware.usb.accessory"/>

 <service
 android:name=".SdlService"
 android:enabled="true"/>

 <receiver
 android:name=".SdlReceiver"
 android:enabled="true"
 android:exported="true"
 tools:ignore="ExportedReceiver">
 <intent-filter>
 <action android:name=
"com.smartdevicelink.USB_ACCESSORY_ATTACHED"/> <!--For AOA -->
 <action android:name="sdl.router.startservice" />
 </intent-filter>
 </receiver>

 <activity android:name=
"com.smartdevicelink.transport.USBAccessoryAttachmentActivity"
 android:launchMode="singleTop">
 <intent-filter>
 <action android:name=
"android.hardware.usb.action.USB_ACCESSORY_ATTACHED" />
 </intent-filter>

 <meta-data
 android:name=
"android.hardware.usb.action.USB_ACCESSORY_ATTACHED"
 android:resource="@xml/accessory_filter" />
 </activity>

4.7

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.BLUETOOTH"/
>
 <uses-permission android:name=
"android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name=
"android.permission.FOREGROUND_SERVICE" />

 <uses-feature android:name="android.hardware.usb.accessory"/>

 <service
 android:name=".SdlService"
 android:enabled="true"/>

 <service
 android:name="com.company.mySdlApplication.SdlRouterService"
 android:exported="true"
 android:process="com.smartdevicelink.router"
 tools:ignore="ExportedService">
 <intent-filter>
 <action android:name="com.smartdevicelink.router.service"/>
 </intent-filter>
 <meta-data android:name="@string/
sdl_router_service_version_name" android:value="@integer/
sdl_router_service_version_value" />
 </service>
 <receiver
 android:name=".SdlReceiver"
 android:enabled="true"
 android:exported="true"
 tools:ignore="ExportedReceiver">
 <intent-filter>
 <action android:name=
"com.smartdevicelink.USB_ACCESSORY_ATTACHED"/> <!--For AOA -->
 <action android:name=
"android.bluetooth.device.action.ACL_CONNECTED" />
 <action android:name="sdl.router.startservice" />
 </intent-filter>
 </receiver>

 <activity android:name=
"com.smartdevicelink.transport.USBAccessoryAttachmentActivity"
 android:launchMode="singleTop">
 <intent-filter>
 <action android:name=
"android.hardware.usb.action.USB_ACCESSORY_ATTACHED" />
 </intent-filter>

Lock Screen

There has been a major overhaul for lock screens in 4.7. Complicated lock

screen setups are no longer required due to the addition of the LockScreenMan

ager . Instead of going over the previous lock screen tutorial and then writing

another one I will give brief instructions on how to either continue using your

lock screen implementation, or upgrading to the new managed system. This

review is brief, it is recommended that you look at the full lock screen guide

If you would like to keep your current lock screen implementation, but would

like to use the SdlManager for its other functionalities, you must disable the L

ockScreenManager . (This is not recommended as the new LockScreenManage

r takes care of a lot of boiler plate code and reduces possible errors)

DISABLING THE LOCK SCREEN MANAGER:

To disable, create a LockScreenConfig object and set it in the SdlManager.Buil

der in your SdlService.java class.

 <meta-data
 android:name=
"android.hardware.usb.action.USB_ACCESSORY_ATTACHED"
 android:resource="@xml/accessory_filter" />
 </activity>

USING YOUR CURRENT IMPLEMENTATION

lockScreenConfig.setEnabled(false);
//...
builder.setLockScreenConfig(lockScreenConfig);

https://smartdevicelink.com/en/guides/android/adding-the-lock-screen/

If you want SDL to handle the lock screen logic for you, it is simple. You will

remove the classes that currently handle your lock screen, and set the

variables you want for your new lock screen as defined in the lock screen guide.

This simple addition is handled during the instantiation of the the SdlManager

within SdlService.java .

LOCK SCREEN ACTIVITY

You must declare the SDLLockScreenActivity in your manifest. To do so, simply

add the following to your app's AndroidManifest.xml if you have not already

done so:

CONFIGURATIONS

The default configurations should work for most app developers and is simple

to get up and and running. However, it is easy to perform deeper configurations

to the lock screen for your app. Below are the options that are available to

customize your lock screen which builds on top of the logic already

implemented in the LockScreenManager .

USING THE NEW LOCKSCREENMANAGER

<activity android:name=
"com.smartdevicelink.managers.lockscreen.SDLLockScreenActivity"
 android:launchMode="singleTop"/>

MUST

This manifest entry must be added for the lock screen feature to

work.

https://smartdevicelink.com/en/guides/android/adding-the-lock-screen/

There is a setter in the SdlManager.Builder that allows you to set a LockScree

nConfig by calling builder.setLockScreenConfig(lockScreenConfig) . The

following options are available to be configured with the LockScreenConfig .

In order to to use these features, create a LockScreenConfig object and set it

using SdlManager.Builder before you build SdlManager .
Cus tom Background Co lo r

In your LockScreenConfig object, you can set the background color to a color

resource that you have defined in your Colors.xml file:

Cus tom App I con

In your LockScreenConfig object, you can set the resource location of the

drawable icon you would like displayed:

Showing The Dev ice Logo

This sets whether or not to show the connected device's logo on the default

lock screen. The logo will come from the connected hardware if set by the

manufacturer. When using a Custom View, the custom layout will have to

handle the logic to display the device logo or not. The default setting is false,

but some OEM partners may require it.

In your LockScreenConfig object, you can set the boolean of whether or not

you want the device logo shown, if available:

lockScreenConfig.setBackgroundColor(resourceColor); // For example,
R.color.black

lockScreenConfig.setAppIcon(appIconInt); // For example,
R.drawable.lockscreen_icon

Set t ing A Cus tom Lock Sc reen View

If you'd rather provide your own layout, it is easy to set. In your LockScreenCo

nfig object, you can set the reference to the custom layout to be used for the

lock screen. If this is set, the other customizations described above will be

ignored:

Displaying Information

Setting text:

Previously, to set text fields, the developer had to create a Show RPC, set the

text fields, and then send the PRC. It was also the developer's responsibility to

make sure that they set only the lines of text that are supported by the

template. In 4.7, the ScreenManager can be used and handles such logic

internally. If a specific text field is not supported, it will be automatically

hyphenated with other texts to make sure that everything is displayed

correctly.

lockScreenConfig.showDeviceLogo(true);

lockScreenConfig.setCustomView(customViewInt);

4.6:

4.7:

Show show = new Show();
show.setMainField1("Hello, this is MainField1.");
show.setMainField2("Hello, this is MainField2.");
show.setMainField3("Hello, this is MainField3.");
show.setMainField4("Hello, this is MainField4.");
show.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (((ShowResponse) response).getSuccess()) {
 Log.i("SdlService", "Successfully showed.");
 } else {
 Log.i("SdlService", "Show request was rejected.");
 }
 }
});
proxy.sendRPCRequest(show);

sdlManager.getScreenManager().beginTransaction();
sdlManager.getScreenManager().setTextField1("Hello, this is
MainField1.");
sdlManager.getScreenManager().setTextField2("Hello, this is
MainField2.");
sdlManager.getScreenManager().setTextField3("Hello, this is
MainField3.");
sdlManager.getScreenManager().setTextField4("Hello, this is
MainField4.");
sdlManager.getScreenManager().commit(new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 Log.i(TAG, "ScreenManager update complete: " + success);

 }
});

Setting images:

Previously, to set an image, the developer had to upload the image using the P

utFile RPC. When it is uploaded, a Show RPC was then created and sent to

display the image. In 4.7, the ScreenManager handles uploading the image

and sending the RPCs internally.

4 .6:

4.7:

Image image = new Image();
image.setImageType(ImageType.DYNAMIC);
image.setValue("appImage.jpeg"); // a previously uploaded filename
using PutFile RPC

Show show = new Show();
show.setGraphic(image);
show.setCorrelationID(CorrelationIdGenerator.generateId());
show.setOnRPCResponseListener(new OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if (((ShowResponse) response).getSuccess()) {
 Log.i("SdlService", "Successfully showed.");
 } else {
 Log.i("SdlService", "Show request was rejected.");
 }
 }
});
proxy.sendRPCRequest(show);

SdlArtwork sdlArtwork = new SdlArtwork("appImage.jpeg", FileType.
GRAPHIC_JPEG, R.drawable.appImage, true);
sdlManager.getScreenManager().setPrimaryGraphic(sdlArtwork);

Using soft buttons:

Previously, to add a soft button with an image the developer had to upload the

image by sending a PutFile RPC, and after the image is uploaded, creating a

SoftButton object, then creating a Show RPC. They would then need to set

the button in the RPC, and then send the request. In 4.7, the ScreenManager

takes care of sending the RPCs. The developer just has to create softButtonObj

ect , add a state to it, then use the ScreenManager to set soft button objects.

4 .6:

Image cancelImage = new Image();
cancelImage.setImageType(ImageType.DYNAMIC);
cancelImage.setValue("cancel.jpeg"); // a previously uploaded filename
using PutFile RPC

List<SoftButton> softButtons = new ArrayList<>();

SoftButton cancelButton = new SoftButton();
cancelButton.setType(SoftButtonType.SBT_IMAGE);
cancelButton.setImage(cancelImage);
cancelButton.setSoftButtonID(1);

softButtons.add(cancelButton);

Show show = new Show();
show.setSoftButtons(softButtons);
proxy.sendRPCRequest(show);

4.7:

Receiving button events on previous versions of SDL had to be done using onO

nButtonEvent and onOnButtonPress callbacks from the IProxyListenerALM

interface. The id had to be checked to know the exact button that received the

event. In 4.7, it is much cleaner: a listener can be added to the SoftButtonObje

ct , so the developer can easily tell when and which soft button received the

event.

4 .6:

SoftButtonState softButtonState = new SoftButtonState("state1",
"cancel", new SdlArtwork("cancel.jpeg", FileType.GRAPHIC_JPEG, R.
drawable.cancel, true));
SoftButtonObject softButtonObject = new SoftButtonObject("object",
Collections.singletonList(softButtonState), softButtonState.getName(),
null);
sdlManager.getScreenManager().setSoftButtonObjects(Collections.
singletonList(softButtonObject));

@Override
public void onOnButtonEvent(OnButtonEvent notification) {
 Log.i(TAG, "onOnButtonEvent: ");

 if (notification.getButtonName() == CUSTOM_BUTTON){
 int ID = notification.getCustomButtonName();
 Log.i(TAG, "Button event received for button " + ID);
 }
}

@Override
public void onOnButtonPress(OnButtonPress notification) {
 Log.i(TAG, "onOnButtonPress: ");

 if (notification.getButtonName() == CUSTOM_BUTTON){
 int ID = notification.getCustomButtonName();
 Log.i(TAG, "Button press received for button " + ID);
 }
}

4.7:

Receiving Subscribe Buttons Events

Previously, your SdlService had to implement IProxyListenerALM interface

which means your SdlService class had to override all of the IProxyListenerAL

M callback methods including OnButtonEvent and OnButtonPress .

softButtonObject.setOnEventListener(new SoftButtonObject.
OnEventListener() {
 @Override
 public void onPress(SoftButtonObject softButtonObject,
OnButtonPress onButtonPress) {
 Log.i(TAG, "OnButtonPress: ");
 }

 @Override
 public void onEvent(SoftButtonObject softButtonObject,
OnButtonEvent onButtonEvent) {
 Log.i(TAG, "OnButtonEvent: ");
 }
});

4.6

@Override
public void onOnHMIStatus(OnHMIStatus notification) {
 if(notification.getHmiLevel() == HMILevel.HMI_FULL && notification.
getFirstRun()) {
 SubscribeButton subscribeButtonRequest = new SubscribeButton
();
 subscribeButtonRequest.setButtonName(ButtonName.SEEKRIGHT
);
 proxy.sendRPCRequest(subscribeButtonRequest);
 }
}

@@Override
public void onOnButtonEvent(OnButtonEvent notification) {
 switch(notification.getButtonName()){
 case OK:
 break;
 case SEEKLEFT:
 break;
 case SEEKRIGHT:
 break;
 case TUNEUP:
 break;
 case TUNEDOWN:
 break;
 }
}

@Override
public void onOnButtonPress(OnButtonPress notification) {
 switch(notification.getButtonName()){
 case OK:
 break;
 case SEEKLEFT:
 break;
 case SEEKRIGHT:
 break;
 case TUNEUP:
 break;
 case TUNEDOWN:
 break;
 }
}

In 4.7 and the new manager APIs, in order to receive the OnButtonEvent and

OnButtonPress notifications, your app must add a OnRPCNotificationListener

using the SdlManager 's method addOnRPCNotificationListener . This will

subscribe the app to any notifications of the provided type, in this case ON_BU

TTON_EVENT and ON_BUTTON_PRESS . The listener should be added before

sending the corresponding RPC request/subscription or else some notifications

may be missed.

sdlManager.addOnRPCNotificationListener(FunctionID.
ON_BUTTON_EVENT, new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnButtonPress onButtonPressNotification = (OnButtonPress)
notification;
 switch (onButtonPressNotification.getButtonName()) {
 case OK:
 break;
 case SEEKLEFT:
 break;
 case SEEKRIGHT:
 break;
 case TUNEUP:
 break;
 case TUNEDOWN:
 break;
 }
 }
});

sdlManager.addOnRPCNotificationListener(FunctionID.
ON_BUTTON_PRESS, new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnButtonPress onButtonPressNotification = (OnButtonPress)
notification;
 switch (onButtonPressNotification.getButtonName()) {
 case OK:
 break;
 case SEEKLEFT:
 break;
 case SEEKRIGHT:
 break;
 case TUNEUP:
 break;
 case TUNEDOWN:
 break;
 }
 }
});

SubscribeButton subscribeButtonRequest = new SubscribeButton();
subscribeButtonRequest.setButtonName(ButtonName.SEEKRIGHT);
sdlManager.sendRPC(subscribeButtonRequest);

Changing The Template:

Previously, developers had to pass a string that represents the name of the

template to SetDisplayLayout . In 4.7, a new PredefinedLayout enum is

introduced to hold all possible values for the templates.

4.6:

4.7:

Uploading Files and Graphics

SDL Android 4.7 introduces the FileManager , which is accessible through the

SdlManager . Previous methods of uploading files and performing their

functions still work, but now there are a set of convenience methods that do a

lot of the boilerplate work for you.

SetDisplayLayout setDisplayLayoutRequest = new SetDisplayLayout();
setDisplayLayoutRequest.setDisplayLayout("GRAPHIC_WITH_TEXT");
try{
 proxy.sendRPCRequest(setDisplayLayoutRequest);
}catch (SdlException e){
 e.printStackTrace();
}

SetDisplayLayout setDisplayLayoutRequest = new SetDisplayLayout();
setDisplayLayoutRequest.setDisplayLayout(PredefinedLayout.
GRAPHIC_WITH_TEXT.toString());

sdlManager.sendRPC(setDisplayLayoutRequest);

Check out the Uploading Files and Graphics guide for code examples and

detailed explanations.

SDL File and SDL Artwork

New to version 4.7 of the SDL Android library are SdlFile and SdlArtwork

objects. These have been created in parallel with the FileManager to help

streamline SDL workflow. SdlArtwork is an extension of SdlFile that pertains

only to graphic specific file types, and its use case is similar. For the rest of this

document, SdlFile will be described, but everything also applies to

SdlArtwork .

One of the hardest parts about getting a file into SDL was the boilerplate code

needed to convert the file into a byte array that was used by the head unit.

Now, you can instantiate a SdlFile with:

A RESOURCE ID

A URI

CREATION

new SdlFile(@NonNull String fileName, @NonNull FileType fileType, int id
, boolean persistentFile)

new SdlFile(@NonNull String fileName, @NonNull FileType fileType, Uri
uri, boolean persistentFile)

https://smartdevicelink.com/en/guides/android/uploading-files-and-graphics/

And last but not least

A BYTE ARRAY

without the need to implement the methods needed to do the conversion of

data yourself.

Uploading a File

Uploading a file with the FileManager is a simple process. With an instantiated

SdlManager ,

you can simply call:

Getting Vehicle Data and
Subscribing to Notifications

Previously, your SdlService had to implement IProxyListenerALM interface

which means your SdlService class had to override all of the IProxyListenerAL

M callback methods including onOnVehicleData .

new SdlFile(@NonNull String fileName, @NonNull FileType fileType, byte
[] data, boolean persistentFile)

sdlManager.getFileManager().uploadFile(sdlFile, new
CompletionListener() {
 @Override
 public void onComplete(boolean success) {

 }
});

4.6:

In 4.7 and the new manager APIs, in order to receive the OnVehicleData

notifications, your app must add a OnRPCNotificationListener using the SdlMa

nager 's method addOnRPCNotificationListener . This will subscribe the app to

any notifications of the provided type, in this case ON_VEHICLE_DATA . The

listener should be added before sending the corresponding RPC request/

subscription or else some notifications may be missed.

@Override
public void onOnHMIStatus(OnHMIStatus notification) {
 if(notification.getHmiLevel() == HMILevel.HMI_FULL && notification.
getFirstRun()) {
 SubscribeVehicleData subscribeRequest = new
SubscribeVehicleData();
 subscribeRequest.setPrndl(true);
 subscribeRequest.setOnRPCResponseListener(new
OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response
) {
 if(response.getSuccess()){
 Log.i("SdlService", "Successfully subscribed to vehicle
data.");
 }else{
 Log.i("SdlService", "Request to subscribe to vehicle data
was rejected.");
 }
 }
 });
 try {
 proxy.sendRPCRequest(subscribeRequest);
 } catch (SdlException e) {
 e.printStackTrace();
 }
 }
}

@Override
public void onOnVehicleData(OnVehicleData notification) {
 PRNDL prndl = notification.getPrndl();
 Log.i("SdlService", "PRNDL status was updated to: " prndl.toString());
}

4.7:

Getting In-Car Audio

Subscribing to AudioPassThru Notifications

Previously, your SdlService had to implement IProxyListenerALM interface

which means your SdlService class had to override all of the IProxyListenerAL

M callback methods including onOnAudioPassThru .

sdlManager.addOnRPCNotificationListener(FunctionID.
ON_VEHICLE_DATA, new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnVehicleData onVehicleDataNotification = (OnVehicleData)
notification;
 if (onVehicleDataNotification.getPrndl() != null) {
 Log.i("SdlService", "PRNDL status was updated to: " +
onVehicleDataNotification.getPrndl());
 }
 }
});

SubscribeVehicleData subscribeRequest = new SubscribeVehicleData();
subscribeRequest.setPrndl(true);
subscribeRequest.setOnRPCResponseListener(new
OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 if(response.getSuccess()){
 Log.i("SdlService", "Successfully subscribed to vehicle data.");
 }else{
 Log.i("SdlService", "Request to subscribe to vehicle data was
rejected.");
 }
 }
});
sdlManager.sendRPC(subscribeRequest);

4.6:

In 4.7 and the new manager APIs, in order to receive the OnAudioPassThru

notifications, your app must add a OnRPCNotificationListener using the SdlMa

nager 's method addOnRPCNotificationListener . This will subscribe the app to

any notifications of the provided type, in this case ON_AUDIO_PASS_THRU .

The listener should be added before sending the corresponding RPC request/

subscription or else some notifications may be missed.

@Override
public void onOnHMIStatus(OnHMIStatus notification) {
 if(notification.getHmiLevel() == HMILevel.HMI_FULL && notification.
getFirstRun()) {
 PerformAudioPassThru performAPT = new PerformAudioPassThru
();
 performAPT.setAudioPassThruDisplayText1("Ask me \"What's the
weather?\"");
 performAPT.setAudioPassThruDisplayText2("or \"What's 1 + 2?\"");
 performAPT.setInitialPrompt(TTSChunkFactory.
createSimpleTTSChunks("Ask me What's the weather? or What's 1 plus
2?"));
 performAPT.setSamplingRate(SamplingRate._22KHZ);
 performAPT.setMaxDuration(7000);
 performAPT.setBitsPerSample(BitsPerSample._16_BIT);
 performAPT.setAudioType(AudioType.PCM);
 performAPT.setMuteAudio(false);
 proxy.sendRPCRequest(performAPT);
 }
}

@Override
public void onOnAudioPassThru(OnAudioPassThru notification) {
 byte[] dataRcvd = notification.getAPTData();
 processAPTData(dataRcvd); // Do something with audio data
}

4.7:

Mobile Navigation

Video Streaming:

Previously, developers had to make sure that the app was in HMI_FULL before

starting the video stream, In 4.7, after the SdlManager has called its onStart

method, the developer can start video streaming in VideoStreamingManager.st

art() 's CompletionListener . The VideoStreamingManager will take care of

starting the video when the app becomes ready.

sdlManager.addOnRPCNotificationListener(FunctionID.
ON_AUDIO_PASS_THRU, new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnAudioPassThru onAudioPassThru = (OnAudioPassThru)
notification;
 byte[] dataRcvd = onAudioPassThru.getAPTData();
 processAPTData(dataRcvd); // Do something with audio data
 }
});

PerformAudioPassThru performAPT = new PerformAudioPassThru();
performAPT.setAudioPassThruDisplayText1("Ask me \"What's the
weather?\"");
performAPT.setAudioPassThruDisplayText2("or \"What's 1 + 2?\"");
performAPT.setInitialPrompt(TTSChunkFactory.createSimpleTTSChunks(
"Ask me What's the weather? or What's 1 plus 2?"));
performAPT.setSamplingRate(SamplingRate._22KHZ);
performAPT.setMaxDuration(7000);
performAPT.setBitsPerSample(BitsPerSample._16_BIT);
performAPT.setAudioType(AudioType.PCM);
performAPT.setMuteAudio(false);
sdlManager.sendRPC(performAPT);

4.6:

4.7:

Audio Streaming

With the addition of the AudioStreamingManager , which is accessed through

SdlManager , you can now use mp3 files in addition to raw . The AudioStrea

mingManager also handles AudioStreamingCapabilities for you, so your

stream will use the correct capabilities for the connected head unit. We suggest

that for any audio streaming that this is now used. Below is the difference in

streaming from 4.6 to 4.7

 if(notification.getHmiLevel().equals(HMILevel.HMI_FULL)){
 if (notification.getFirstRun()) {
 proxy.startRemoteDisplayStream(getApplicationContext(),
MyDisplay.class, null, false);
 }
 }

}

sdlManager.getVideoStreamManager().start(new CompletionListener()
{
 @Override
 public void onComplete(boolean success) {
 if (success) {
 sdlManager.getVideoStreamManager().
startRemoteDisplayStream(getApplicationContext(), MyDisplay.class,
null, false);
 }
 }
});

4.6

 private void startAudioStream(){

 final InputStream is = getResources().openRawResource(R.raw.
audio_file);

 AudioStreamingParams audioParams = new
AudioStreamingParams(44100, 1);
 listener = proxy.startAudioStream(false, AudioStreamingCodec.
LPCM, audioParams);
 if (listener != null){
 try {
 listener.sendAudio(readToByteBuffer(is), -1);

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

 private void stopAudioStream(){
 proxy.endAudioStream();
 }

 static ByteBuffer readToByteBuffer(InputStream inStream) throws
IOException {
 byte[] buffer = new byte[8000];
 ByteArrayOutputStream outStream = new ByteArrayOutputStream
(8000);
 int read;
 while (true) {
 read = inStream.read(buffer);
 if (read == -1)
 break;
 outStream.write(buffer, 0, read);
 }
 ByteBuffer byteData = ByteBuffer.wrap(outStream.toByteArray());
 return byteData;
 }

4.7

if (sdlManager.getAudioStreamManager() != null) {
 Log.i(TAG, "Trying to start audio streaming");
 sdlManager.getAudioStreamManager().start(new CompletionListener
() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 sdlManager.getAudioStreamManager().startAudioStream(
false, new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 Resources resources = getApplicationContext().
getResources();
 int resourceId = R.raw.audio_file;
 Uri uri = new Uri.Builder()
 .scheme(ContentResolver.
SCHEME_ANDROID_RESOURCE)
 .authority(resources.getResourcePackageName(
resourceId))
 .appendPath(resources.getResourceTypeName(
resourceId))
 .appendPath(resources.getResourceEntryName(
resourceId))
 .build();
 sdlManager.getAudioStreamManager().
pushAudioSource(uri, new CompletionListener() {
 @Override
 public void onComplete(boolean success) {
 if (success) {
 Log.i(TAG, "Audio file played successfully!");
 } else {
 Log.i(TAG, "Audio file failed to play!");
 }
 }
 });
 } else {
 Log.d(TAG, "Audio stream failed to start!");
 }
 }
 });
 } else {
 Log.i(TAG, "Failed to start audio streaming manager");
 }
 }
 });
}

Checking Permissions:

Previously, it was not easy to check if specific permission had changed.

Developers had to keep checking onOnHMIStatus and onOnPermissionsChan

ge callbacks and manually check the responses to see if the permission is

allowed. In 4.7, the PermissionManager implements all of this logic internally.

It keeps a cached copy of the callback responses whenever an update is

received. So developer can call isRPCAllowed() any time to know if a

permission is allowed. It also makes it very simple to add a listener.

4.6:

@Override
public void onOnHMIStatus(OnHMIStatus notification) {
 hmiLevel = notification.getHmiLevel();
 if (checkShowPermission(FunctionID.SHOW.toString(), hmiLevel,
permissionItems)){
 // Show RPC is allowed
 }
}

@Override
public void onOnPermissionsChange(OnPermissionsChange notification)
 {
 permissionItems = notification.getPermissionItem();
 if (checkShowPermission(FunctionID.SHOW.toString(), hmiLevel,
permissionItems)){
 // Show RPC is allowed
 }
}

private boolean checkShowPermission(String rpcName, HMILevel
hmiLevel, List<PermissionItem> permissionItems){
 PermissionItem permissionItem = null;
 for (PermissionItem item : permissionItems) {
 if (rpcName.equals(item.getRpcName())){
 permissionItem = item;
 break;
 }
 }
 if (hmiLevel == null || permissionItem == null || permissionItem.
getHMIPermissions() == null || permissionItem.getHMIPermissions().
getAllowed() == null){
 return false;
 } else if (permissionItem.getHMIPermissions().getUserDisallowed() !=
 null){
 return permissionItem.getHMIPermissions().getAllowed().contains(
hmiLevel) && !permissionItem.getHMIPermissions().getUserDisallowed
().contains(hmiLevel);
 } else {
 return permissionItem.getHMIPermissions().getAllowed().contains(
hmiLevel);
 }
}

4.7:

To check if a permission is allowed:

To setup a permission listener:

For more information about PermissionManager , you can check this page.

Handling a Language Change

Previously, to let your app reconnect after the user changes the head unit

language, your app had to send an intent in the onProxyClosed callback. That

intent should be received by SdlReceiver to start the SdlService . The SdlRec

eiver part did not change so we will only cover the changes in sending the

intent which was done in previous versions as the following:

boolean allowed = sdlManager.getPermissionManager().isRPCAllowed(
FunctionID.SHOW);

List<PermissionElement> permissionElements = Collections.
singletonList(new PermissionElement(FunctionID.SHOW, null));
UUID listenerId = sdlManager.getPermissionManager().addListener(
permissionElements, PermissionManager.
PERMISSION_GROUP_TYPE_ANY, new OnPermissionChangeListener() {
 @Override
 public void onPermissionsChange(@NonNull Map<FunctionID,
PermissionStatus> allowedPermissions, @NonNull int
permissionGroupStatus) {
 if (allowedPermissions.get(FunctionID.SHOW).getIsRPCAllowed()) {
 // Show RPC is allowed
 }
 }
});

https://d83tozu1c8tt6.cloudfront.net/guides/android/permission-manager/

In 4.7, the app has to send the intent in a ON_LANGUAGE_CHANGE

notification listener as the following:

Fore more information about handling language changes please visit this page

@Override
public void onProxyClosed(String info, Exception e,
SdlDisconnectedReason reason) {
 stopSelf();
 if(reason.equals(SdlDisconnectedReason.LANGUAGE_CHANGE)){
 Intent intent = new Intent(TransportConstants.
START_ROUTER_SERVICE_ACTION);
 intent.putExtra(SdlReceiver.RECONNECT_LANG_CHANGE, true);
 sendBroadcast(intent);
 }
}

sdlManager.addOnRPCNotificationListener(FunctionID.
ON_LANGUAGE_CHANGE, new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 SdlService.this.stopSelf();
 Intent intent = new Intent(TransportConstants.
START_ROUTER_SERVICE_ACTION);
 intent.putExtra(SdlReceiver.RECONNECT_LANG_CHANGE, true);
 AndroidTools.sendExplicitBroadcast(context, intent, null);
 }
});

https://d83tozu1c8tt6.cloudfront.net/guides/android/handling-language-change/

Remote Control

Subscribing to OnInteriorVehicleData
Notifications

Previously, your SdlService had to implement IProxyListenerALM interface

which means your SdlService class had to override all of the IProxyListenerAL

M callback methods including onOnInteriorVehicleData .

4.6:

@Override
public void onOnHMIStatus(OnHMIStatus notification) {
 if(notification.getHmiLevel() == HMILevel.HMI_FULL && notification.
getFirstRun()) {
 GetInteriorVehicleData interiorVehicleData = new
GetInteriorVehicleData();
 interiorVehicleData.setModuleType(ModuleType.RADIO);
 interiorVehicleData.setSubscribe(true);
 interiorVehicleData.setOnRPCResponseListener(new
OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse
response) {
 GetInteriorVehicleData getResponse = (
GetInteriorVehicleData) response;
 //This can now be used to retrieve data
 }
 });
 proxy.sendRPCRequest(interiorVehicleData);
 }
}

@Override
public void onOnInteriorVehicleData(OnInteriorVehicleData response) {
 //Perform action based on notification
}

In 4.7 and the new manager APIs, in order to receive the

OnInteriorVehicleData notifications, your app must add a OnRPCNotificationLi

stener using the SdlManager 's method addOnRPCNotificationListener . This

will subscribe the app to any notifications of the provided type, in this case ON

_INTERIOR_VEHICLE_DATA . The listener should be added before sending the

corresponding RPC request/subscription or else some notifications may be

missed.

4.7:

sdlManager.addOnRPCNotificationListener(FunctionID.
ON_INTERIOR_VEHICLE_DATA, new OnRPCNotificationListener() {
 @Override
 public void onNotified(RPCNotification notification) {
 OnInteriorVehicleData onInteriorVehicleData = (
OnInteriorVehicleData) notification;
 //Perform action based on notification
 }
});

GetInteriorVehicleData interiorVehicleData = new
GetInteriorVehicleData();
interiorVehicleData.setModuleType(ModuleType.RADIO);
interiorVehicleData.setSubscribe(true);
interiorVehicleData.setOnRPCResponseListener(new
OnRPCResponseListener() {
 @Override
 public void onResponse(int correlationId, RPCResponse response) {
 GetInteriorVehicleData getResponse = (GetInteriorVehicleData)
response;
 //This can now be used to retrieve data
 }
});
sdlManager.sendRPC(interiorVehicleData);

What is SDL?

SmartDeviceLink (SDL) connects in-vehicle infotainment systems to

smartphone apps. SDL allows automakers to provide highly integrated

connected experiences and allows users to operate smartphone apps through

the in-vehicle infotainment screen and, if equipped, voice recognition system.

Why do you see SDL
notifications?

If you see a notification similar to the one in the screenshot below, that means

you are using an app that has an SDL integration that allows it to push content

to cars that support SDL. However, if your car doesn’t support SDL, you can

simply hide the notification.

How do you hide the
notifications?

If you would like to hide the notification, you can simply long click on the

notification and disable it as shown in the following screenshot.

What is the Android Router
Service?

The Android OS has limitations around the availability of certain transports

(Bluetooth RFCOMM channels, single app AOA/USB permissions). Therefore,

SmartDeviceLink introduced a service that operates as a router, using a single

transport pipe and extending it to many different bound apps. The router

service is part of the required integration to become SDL enabled and can be

hosted by any of the SDL enabled apps on a phone. Some OEMs might choose

to have their own companion app that always hosts a router service for their

specific hardware.

What is a Trusted Router
Service?

Since information is being shared through the Android router service it is

important that the app hosting the router service can be trusted. This is done

through a certification process and a back-end server that maintains a

database of apps that can act as a Trusted Router Service. The SDLC will verify

the integration of SDL apps to ensure there is no malicious activity. If the app is

certified, it will be added to the Trusted Router Service database and be able to

act as a Trusted Router Service.

How do I add my app to the SDL
Trusted Router Service
database?

For an Android application to be added to the Trusted Router Service database,

the application will need to be registered on the SDL Developer Portal and

certified by the SDLC. For more information on registration, please see this

guide. Any Android application that is certified by the SDLC will be added to the

Trusted Router Service database; there are no additional steps required as it is

part of the certification process.

How do I know if an app is
hosting a Trusted Router
Service?

Each app will retrieve and cache a list of Trusted Router Services from the back-

end server. Based on that app's security levels, they will perform checks

against the currently running router service, and if trusted it will bind to the

Trusted Router Service. If not, the app will attempt to use its own local

transport.

https://d83tozu1c8tt6.cloudfront.net/media/resources/SDL_Developer_Portal_Registration_Guide.pdf
https://d83tozu1c8tt6.cloudfront.net/media/resources/SDL_Developer_Portal_Registration_Guide.pdf

	Installation
	Introduction
	Gradle Build
	Examples

	Integration Basics
	Getting Started on Android
	NOTE

	Required System Permissions
	NOTE

	SmartDeviceLink Service
	Entering the Foreground
	NOTE

	Exiting the Foreground
	Implementing SDL Manager
	NOTE
	NOTE

	Listening for RPC notifications and events
	EXAMPLE OF A LISTENER FOR HMI STATUS:
	EXAMPLE OF A LISTENER FOR HMI STATUS:

	SmartDeviceLink Router Service
	NOTE
	MUST
	MUST

	Lock Screen Activity
	NOTE
	MUST
	NOTE
	Intent Filter
	MUST

	Metadata
	ROUTER SERVICE VERSION
	CUSTOM ROUTER SERVICE
	NOTE

	SmartDeviceLink Broadcast Receiver
	MUST
	NOTE
	MUST
	MUST
	MUST
	NOTE
	Main Activity

	Using Android Open Accessory Protocol
	Prerequisites
	Android Manifest
	MUST
	NOTE

	SmartDeviceLink Service
	Using only USB / AOA
	Multiple Transports

	Multiple Transports
	SDL Android
	PRIMARY TRANSPORTS
	SUPPORTING SPECIFIC PRIMARY TRANSPORTS
	SUPPORTING SPECIFIC PRIMARY TRANSPORTS
	NOTE
	REQUIRES HIGH BANDWIDTH
	HIGH BANDWIDTH APP WITH LOW BANDWIDTH SUPPORT

	SECONDARY TRANSPORTS

	Sending Multiple RPCs
	Batch Sending RPCs
	Send Requests
	Send Sequential Requests

	Hello SDL Android
	Introduction
	Getting Started
	NOTE
	BUILD FLAVORS

	Transports
	CONFIGURE FOR TCP
	NOTE

	CONFIGURE FOR BLUETOOTH
	CONFIGURE FOR USB (AOA)

	Building the Project
	MUST
	NOTE

	Troubleshooting
	TCP
	BLUETOOTH

	Adding the Lock Screen
	NOTE
	Lock Screen Activity
	MUST

	Configurations
	CUSTOM BACKGROUND COLOR
	CUSTOM APP ICON
	SHOWING THE DEVICE LOGO
	SETTING A CUSTOM LOCK SCREEN VIEW
	DISABLING THE LOCK SCREEN MANAGER:
	NOTE

	Designing a User Interface
	Designing for Different User Interfaces
	Dynamic User Interface Capabilities
	Templates
	Available Templates
	NOTE
	1. MEDIA - WITH AND WITHOUT PROGRESS BAR
	FORD HMI

	2. NON-MEDIA - WITH AND WITHOUT SOFT BUTTONS
	FORD HMI
	FORD HMI

	3. GRAPHIC_WITH_TEXT
	FORD HMI
	FORD HMI

	4. TEXT_WITH_GRAPHIC
	FORD HMI

	5. TILES_ONLY
	FORD HMI
	FORD HMI

	6. GRAPHIC_WITH_TILES
	FORD HMI

	7. TILES_WITH_GRAPHIC
	FORD HMI
	FORD HMI

	8. GRAPHIC_WITH_TEXT_AND_SOFTBUTTONS
	FORD HMI

	9. TEXT_AND_SOFTBUTTONS_WITH_GRAPHIC
	FORD HMI
	FORD HMI

	10. GRAPHIC_WITH_TEXTBUTTONS
	FORD HMI

	11. DOUBLE_GRAPHIC_SOFTBUTTONS
	FORD HMI
	FORD HMI

	12. TEXTBUTTONS_WITH_GRAPHIC
	FORD HMI

	13. TEXTBUTTONS_ONLY
	FORD HMI
	FORD HMI

	14. LARGE_GRAPHIC_WITH_SOFTBUTTONS
	FORD HMI

	15. LARGE_GRAPHIC_ONLY
	FORD HMI
	FORD HMI

	Text, Images, and Buttons
	Text
	NOTE

	Images
	NOTE
	SHOW THE IMAGE ON A HEAD UNIT

	Soft & Subscribe Buttons
	SOFT BUTTONS
	RECEIVING SOFT BUTTONS EVENTS
	RECEIVING SOFT BUTTONS EVENTS

	SUBSCRIBE BUTTONS
	NOTE
	RECEIVING SUBSCRIBE BUTTONS EVENTS
	NOTE
	NOTE

	Menus
	Default Menu
	FORD HMI
	FORD HMI

	Menu Structure
	ADD MENU ITEMS
	ADD A SUBMENU
	DELETE MENU ITEMS
	DELETE SUBMENUS

	Custom Menus
	CREATE A SET OF CUSTOM MENU ITEMS
	FORMAT THE SET OF CUSTOM MENU ITEMS
	INTERACTION MODE
	VR INTERACTION MODE
	FORD HMI

	MANUAL INTERACTION MODE
	FORD HMI
	FORD HMI

	INTERACTION LAYOUT
	NOTE

	ICON ONLY INTERACTION LAYOUT
	FORD HMI

	LIST ONLY INTERACTION LAYOUT
	FORD HMI
	FORD HMI

	LIST WITH SEARCH INTERACTION LAYOUT
	FORD HMI

	TEXT-TO-SPEECH (TTS)
	TIMEOUT
	SEND THE REQUEST
	DELETE THE CUSTOM MENU

	Alerts
	Alert UI
	ALERT WITHOUT SOFT BUTTONS
	FORD HMI
	FORD HMI

	ALERT WITH SOFT BUTTONS
	FORD HMI

	Alert TTS
	Example
	Dismissing the Alert

	Uploading Files and Graphics
	NOTE
	Detecting if Graphics are Supported
	SDL File and SDL Artwork
	CREATION
	A RESOURCE ID
	A URI
	A URI
	A BYTE ARRAY

	Uploading a File
	UPLOADING MULTIPLE FILES
	UPLOADING ARTWORK

	File Naming
	File Persistance
	NOTE

	Overwrite Stored Files
	Check if a File Has Already Been Uploaded
	GETTING REMOTE FILES
	SEE IF A FILE IS UPLOADED

	Check the Amount of File Storage
	Delete Stored Files
	FOR A SINGLE FILE
	MULTIPLE FILES

	Image Specifics
	Image File Type
	Image Sizes
	IMAGE SPECIFICATIONS

	Get Vehicle Data
	NOTE
	Single Time Vehicle Data Retrieval
	Subscribing to Vehicle Data
	Unsubscribing from Vehicle Data

	Knowing the In-Car UI Status
	Monitoring HMI Status
	More Detailed HMI Information
	AUDIO STREAMING STATE
	SYSTEM CONTEXT

	Monitoring Audio Streaming State and System Context

	Setting the Navigation Destination
	NOTE
	NOTE
	Determining the Result of SendLocation
	Detecting if SendLocation is Available
	Using SendLocation

	Calling a Phone Number
	NOTE
	Determining the Result of DialNumber
	Detecting if DialNumber is Available
	How to Use
	NOTE

	Getting In-Car Audio
	NOTE
	Subscribing to AudioPassThru Notifications
	NOTE

	Starting Audio Capture
	NOTE
	FORD HMI
	NOTE

	Ending Audio Capture
	Handling the Response

	Mobile Navigation
	NOTE
	Connecting an app
	NOTE

	Video Streaming
	SDL Remote Display
	NOTE
	NOTE

	Managing the Stream
	Ending the Stream

	Audio Streaming
	NOTE
	STREAMING AUDIO
	STOPPING THE AUDIO STREAM

	Supporting Haptic Input
	NOTE
	Using SDL Presentation
	Sending your own Rects

	Setting Security Level for Multiplexing
	Security Levels
	Applying to the Trusted Router Service Database

	Handling a Language Change
	SDL Broadcast Receiver
	MUST
	NOTE

	SDL Service

	System Capability Manager
	Querying Capabilities
	NOTE
	Capability Lists

	Asynchronous vs Synchronous Queries

	Permission Manager
	Querying Permission
	NOTE

	Querying Permission Parameters
	Querying Multiple Permissions at Once
	Adding Permissions Change Listener
	NOTE

	Remote Control
	NOTE
	WHY IS THIS HELPFUL?
	Integration
	NOTE
	SYSTEM CAPABILITY
	MUST

	GETTING DATA
	SETTING DATA
	BUTTON PRESSES
	SUBSCRIBING TO CHANGES
	NOTE

	Proguard Guidelines
	Required Proguard Rules
	NOTE

	Updating to 4.4 (Upgrading To Multiplexing)
	SmartDeviceLink Service
	SmartDeviceLink Router Service (New)
	NOTE
	MUST
	MUST
	MUST
	MUST

	SmartDeviceLink Broadcast Receiver
	NOTE
	NOTE
	MUST
	MUST
	MUST
	Main Activity

	Updating from 4.4 to 4.5
	AndroidManifest.xml Updates
	Intent Filter
	MUST
	MUST

	Metadata
	ROUTER SERVICE VERSION
	CUSTOM ROUTER SERVICE
	NOTE

	Android Oreo's Push To Foreground Services
	What do I need to do?
	SDLBROADCASTRECEIVER
	PREVIOUS VERSION
	PREVIOUS VERSION
	SAMPLE UPDATE

	SDLSERVICE (OR SIMILAR)
	EXITING THE FOREGROUND

	Notification Suggestions
	THE CORRECT WAY
	How to do it
	How to do it

	THE NOT SO CORRECT WAY
	How to do it
	How to do it
	How it looks
	How it looks

	THE ABSOLUTELY NOT CORRECT WAY
	How to do it
	How it looks
	How it looks

	Updating from 4.5 to 4.6
	AndroidManifest.xml Updates
	Gradle Update
	Deprecation of RPCRequestFactory

	Updating from 4.6 to 4.7
	Overview
	NOTE

	Integration Basics
	Removal of IProxyListenerALM
	4.6:
	4.6:
	4.7: THE REQUIREMENT TO IMPLEMENT IPROXYLISTENERALM IS REMOVED:
	NOTE

	Creation of SdlManager
	Listening for RPC notifications and events
	EXAMPLE OF A LISTENER FOR HMI STATUS:

	Sending RPCs
	4.6:
	4.7:

	Using AOA Protocol
	SDLBROADCASTRECEIVER
	4.6:
	4.7:
	4.7:

	SDLROUTERSERVICE
	4.6:
	4.7:
	NOTE
	MUST
	MUST

	SDLSERVICE
	4.6:
	4.7:
	ADDITIONAL CONFIGURATIONS:
	NOTE
	NOTE

	ANDROIDMANIFEST
	4.6
	4.7
	4.7

	Lock Screen
	USING YOUR CURRENT IMPLEMENTATION
	DISABLING THE LOCK SCREEN MANAGER:

	USING THE NEW LOCKSCREENMANAGER
	LOCK SCREEN ACTIVITY
	MUST
	CONFIGURATIONS
	Custom Background Color
	Custom App Icon
	Showing The Device Logo
	Setting A Custom Lock Screen View

	Displaying Information
	Setting text:
	4.6:
	4.6:
	4.7:

	Setting images:
	4.6:
	4.7:

	Using soft buttons:
	4.6:
	4.7:
	4.7:
	4.6:
	4.7:
	4.7:

	Receiving Subscribe Buttons Events
	4.6
	4.6

	Changing The Template:
	4.6:
	4.7:

	Uploading Files and Graphics
	SDL File and SDL Artwork
	CREATION
	A RESOURCE ID
	A URI
	A BYTE ARRAY

	Uploading a File

	Getting Vehicle Data and Subscribing to Notifications
	4.6:
	4.6:
	4.7:
	4.7:

	Getting In-Car Audio
	Subscribing to AudioPassThru Notifications
	4.6:
	4.6:
	4.7:
	4.7:

	Mobile Navigation
	Video Streaming:
	4.6:
	4.6:
	4.7:

	Audio Streaming
	4.6
	4.6
	4.7
	4.7

	Checking Permissions:
	4.6:
	4.6:
	4.7:
	4.7:
	Handling a Language Change

	Remote Control
	Subscribing to OnInteriorVehicleData Notifications
	4.6:
	4.7:

	What is SDL?
	Why do you see SDL notifications?
	How do you hide the notifications?
	What is the Android Router Service?
	What is a Trusted Router Service?
	How do I add my app to the SDL Trusted Router Service database?
	How do I know if an app is hosting a Trusted Router Service?

